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Abstract

Extensive-form games with perfect information admit at least one Nash equilibrium. The backward induction algorithm identifies
in linear time a Nash equilibrium of the game, called subgame perfect. We introduce an extension of the backward induction
algorithm which is the first to identify all the outcomes of pure Nash equilibria of the game in linear time with respect to the size of
the game.
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1. Introduction

In extensive-form games with perfect information a finite set
of agents, called players, observe in turns each other’s actions
and pick one of the possible subsequent actions available to
them [1]. Extensive-form games are applied in different fields
[2], such as, for instance, economics [3, 4, 5] and law [6]. A
strategy of a player consists in picking one action whenever she
ought to during the game. A strategy profile is a combination
of strategies, one for each player, leading to an outcome of the
game. A Nash equilibrium (NE) is a strategy profile such that
no player has an incentive to change their own unilaterally. The
number of Nash equilibria can be exponential in the size of the
game, defined as the number of its outcomes [7]. The aim of
this work is to identify all the outcomes that are reachable by
actions picked by the players in a NE. The scope of our analy-
sis is extensive-form games with perfect information and their
pure Nash equilibria.

Every game admits at least one NE [8]. In particular,
extensive-form games always admit a specific NE, called sub-
game perfect equilibrium (SPE) [9]. Such equilibrium can
be computed by an algorithm called backward induction [10],
which, however, does not give insights on other Nash equilib-
ria. The SPE is considered the most appropriate solution for
extensive-form games [11], because it is intuitive in its formu-
lation and it can be computed in polynomial time with respect
to the size of the game [12]. To our knowledge, in the litera-
ture there is no algorithm other than brute force to compute all
the Nash equilibria in a generic extensive-form game [7]. Any
brute-force algorithm requires exponential time to compute all
the Nash equilibria, which makes the SPE also the only viable
solution in practice. The adequacy of the SPE as a solution of
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extensive-form games has been longly debated since its intro-
duction [13]. On one hand, the theoretical assumptions behind
the SPE have ben questioned before [14]. On the other hand,
empirical results show that even in basic examples other Nash
equilibria are attained [15]. To some extent, the lack of conve-
nient methods for computing Nash equilibria in extensive-form
games did not allow to advance further in the field.

Contribution. In this work, we introduce a new algorithm for
the enumeration of all outcomes of pure Nash equilibria of an
extensive-form game, which works recursively like the back-
ward induction. We show that it has the same complexity as the
one used to compute SPE outcomes.

The manuscript is organized as follows. In Section 2, we
describe some examples of extensive-form games in which the
SPE is not accepted as a solution. Then, we formally define the
extensive-form game with perfect information, the Nash equi-
libria and the backward induction algorithm. In Section 3, we
introduce the algorithm for the enumeration of the outcomes of
the Nash equilibria and we illustrate it with an example. Then,
we prove in Section 4 that the algorithm provides the enumera-
tion of the outcomes of the Nash equilibria in linear time with
the size of the game. Finally, Section 5 ends the paper with
possible directions of future research.

2. Extensive-form games

In this section, we provide two examples of extensive-form
games with perfect information and their formal definitions.
These examples are used to illustrate how, in some cases, the
SPE may not be the most adequate solution of an extensive form
game.

Chain store. This example is provided in [16] by the author
of the work introducing the SPE. Here, we provide a simplified
version of the game, which retains its basic structure. A chain
store (entrant company) wants to expand in a new town, where
a local competitor (incumbent company) has a monopoly. If the
chain store enters the market, the incumbent can either keep the
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Figure 1: a) Chain store. The entrant (E) can either open a store in the town (in) or not (out). The incumbent (I) can either lower the price (low) or keep them high
(high). The numerical values represent the profits (in $) made respectively by the entrant and the incumbent. b) Scheduling problem. Every player i ∈ {1, . . . , n}
observes the decisions of the preceeding players and chooses a machine ki ∈ {1, . . . ,m}.

prices high, and thus share the profits with the entrant, or lower
the prices, and nullify the profits. Let us consider the tree of
Figure 1a. First, the entrant takes the decision on whether to
enter the market or to stay out. If she stays out, the incumbent
gets all the profits (10$) and the entrant saves the money for the
investment (1$). If she enters the market, the incumbent can
either share the profits (5$ each) or nullify them (0$ each). The
backward induction argument suggests that if the chain store
enters the market, the incumbent has no incentive to lower the
prices. Therefore the intuitive solution is that the entrant cre-
ates a new store in order to share the profits. Actually, this
solution corresponds to a subgame perfect equilibrium. How-
ever, in real scenarios, the incumbent often reduces the prices
in order to discourage the chain store from entering the market
[17]. In fact, such scenario matches a different, non subgame-
perfect Nash equilibrium which results in outcome (1, 10). This
example has two equilibria, and they are easy to identify by
inspection. The original chain-store game [16], on the other
hand, has 20 towns rather than one, so that it is way harder to
list all the strategies of the players and identify the equilibria.
Our algorithm, however, enables to find all the outcomes of the
equilibria in linear time with respect to the size of the game.

Scheduling. We consider the scheduling problem introduced
in [4]. There are n ordered agents, each of whom has to perform
a different job on one single machine, chosen out of m distinct
machines. Agents sequentially choose a machine, being aware
of the choice of their own predecessors. As soon as a machine
completes all the jobs assigned to it, they are delivered to the
agents. The goal of each agent is to have her job delivered at
the earliest possible time. Let us consider the tree of the game in
Figure 1b). The first agent chooses the machine k1 ∈ {1, . . . ,m}.
The second agent observes this decision and chooses the ma-
chine k2 ∈ {1, . . . ,m}. Every agent thus observes the previous
decisions and chooses a machine. We do no represent the full
tree, since it would have mn leaves. The criterion used to eval-
uate this game is the sequential Price of Anarchy (SPoA) [4],
which recurs to the SPE, rather than the more common Price of
Anarchy (PoA) [18], which relies on the worse Nash equilib-
rium in order to evaluate the maximum performance loss over
the social optimum. The reason for this choice is that the back-
ward induction algorithm allows to compute the SPE in linear

time with respect to the size of the game (mn). On the other
hand, to the best of our knowledge, there are no methods in the
literature to compute efficiently the other Nash equilibria. Our
method to identify all the outcomes of the Nash equilibria al-
lows to extend the analysis in [4] to the PoA, rather than the
unusual SPoA.

Formalism. This work deals with recursive algorithms. We
next provide a notation framework for extensive-form games
which appears natural and convenient for the use of recursive
algorithms. More specifically, an extensive-form game with
perfect information is defined as the tree of the possible actions
that players can take [1]. We observe that every stage of the
game is a game itself, called subgame. We thus define recur-
sively a game as its first stage and all the subgames that follow
from it. In order to achieve the classical representation of games
as trees, it is sufficient to define the set of nodes of the tree as a
bijection of the set of all subgames. The outcomes of the games
correspond to the leaves of the tree.

We consider a game with a finite number N of players I =
{1, . . . ,N}. A finite extensive-form game develops in a finite
number of stages. At every stage, the designated player P ∈
I∪ {∅} is chosen based on the sequence of actions occurring up
to the stage. This designated player has available a new set of
actions A at this stage. Every action a ∈ A leads to a different
new stage of the game, that we denote by Γ(a). At this stage,
a new player can observe all previous actions; therefore we can
consider the new stage Γ(a) as a subgame. We also say that the
player acts at subgame Γ(a).

When the set of available actions is empty (A = ∅) the game
ends, and we obtain what is called an outcome. The correspond-
ing subgame is called a terminal subgame. We call H the set
of the outcomes of the game. Every outcome is evaluated by
every player i ∈ I through a function, called utility function,
ui : H → R. We also write h1 ≻i h2 for h1, h2 ∈ H when
ui(h1) > ui(h2), or h1 ∼i h2 when ui(h1) = ui(h2). Next, we
provide the recursive definition of an extensive-form game.

Definition 1 (extensive-form game). An extensive-form game
is a tuple Γ = ⟨I, A,H, P, u⟩, where:

• I = {1, . . . ,N} is a finite set of players;

• A is a finite set of actions;
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• H is the set of outcomes of the game;

• P ∈ I is the player acting;

• If A = ∅, then the game ends, |H| = 1.

• If A , ∅, then every action a ∈ A leads to a subgame, that
we denote by Γ(a).

• u = (ui)i∈I, with ui : H → R the utility function of player
i ∈ I.

Remark. The above recursive definition does not require to
introduce the notion of history or to refer to sub-games as trees,
as done usually in the literature. Hence, throughout the text,
the compact notation (AΓ,HΓ, PΓ) will uniquely determine any
object (A,H, P) of a game Γ.

We only consider pure strategies [8], from now simply called
strategies, as they are sufficient to compute all equilibria (cf.
[19] and Theorem 1 of [20]). As stated in the next definition, a
strategy is a function that shows which action would be taken
by a player at every stage.

Definition 2 (strategy). Given a game Γ = ⟨I, A,H, P, u⟩ and a
player i ∈ I, let us consider Gi the subgames at which player
i acts. A strategy si ∈ S i is a function si : Γ′ ∈ Gi 7→ a ∈ AΓ′
that maps every subgame Γ′ ∈ Gi to one of the actions a ∈ AΓ′
available to the player.

We call strategy profile a N-tuple of strategies s =

⟨s1, s2, . . . , sN⟩, one for each player. We denote by S i the set of
strategies of player i and by S = S 1×S 2×· · ·×S N the set of all
strategy profiles. If every player chooses a strategy, one single
action is picked at every node; therefore, given a strategy pro-
file, the actions chosen by the players lead to a single outcome.
We denote by s 7→ h the outcome h ∈ H of a strategy profile
s ∈ S . With some abuse of notation, let ui(s) := ui(s 7→ h)
denote the utility of player i under a certain strategy profile s.
Furthermore, we write s−i = ⟨s j⟩ j∈I\{i}.

A strategy profile is a Nash equilibrium if no player can in-
crease her utility by changing unilaterally her strategy.

Definition 3 (Nash equilibrium). Given a game Γ =

⟨I, A,H, P, u⟩, a strategy profile ⟨si⟩i∈I is a Nash equilibrium
if for every i ∈ I and for all s′i ∈ S i the condition ui(si, s−i) ≥
ui(s′i , s−i) holds.

We now introduce the fundamental question that leads the
analysis developed in this work.

Problem 1 (Outcome of a Nash equilibrium). Given a game
Γ = ⟨I, A,H, P, u⟩ and an outcome h ∈ H, is there a Nash
equilibrium s ∈ S having h as its realisation (s 7→ h)?

The object of our analysis is an algorithm able to answer the
above question for all the outcomes of an extensive-form game.
The proposed enumeration algorithm is inspired by the back-
ward induction (BI) algorithm, which is the most known al-
gorithm to compute outcomes of Nash equilibria in extensive-
form games [10]. For the sake of the subsequent development,
rather than the standard tree-folding procedure customary in the

ALGORITHM 1: Backward induction (BI)
Input: A game Γ = ⟨I, A,H, P, u⟩.
Output: The set of outcomes of the subgame perfect

equilibria S PE ⊆ H.
S PE ← ∅ ; // Initialising the output

if |H| = 1 then
S PE = H ;

else
⟨Γa, S PEa, ha⟩a∈A ← ∅;
for a ∈ A do

S PEa = BI(Γ(a)) ; // Recursive call on the

subgame Γ(a) following action a
ha ∈ arg minh′∈S PEa uP(h′) ; // An outcome of

a SPE achieving the lowest utility in

Γ(a) for the acting player P
end
S PE = {h ∈ ∪a∈AS PEa|∀a ∈ A, h ⪰P ha} ;
// Outcome h is preferred by player P

end

literature, we have reported a recursive, outcome-oriented ver-
sion of the BI procedure in Algorithm 1.

The BI algorithm provides only a specific subset of Nash
equilibria, i.e., the subgame perfect equilibria (SPE). A strat-
egy profile is a subgame perfect equilibrium if it defines a Nash
equilibrium for every subgame [9]. Every game with perfect
information admits a subgame perfect equilibrium [9].

The backward induction selects, starting from the leaves of
the tree of the game, the outcomes that are most preferred by the
player acting at a given node. Algorithm 1 descends along the
tree through recursive calls, then it selects at every subgame the
outcomes preferred by the acting player. The SPE might not be
unique, so the candidate outcome h must be preferred among at
least one possible selection of candidate outcomes {ha ∈ S PEa}

of the other subgames Γ(a) for each a ∈ A. Here, S PEa denotes
the set of SPE outcomes of the subgame following a. Showing
uP(h) is larger than at least one uP(h′) with h′ ∈ S PEa is equiv-
alent to showing that it is larger than the minimum of such val-
ues. The candidate outcomes thus propagate upwards, towards
the root of the tree, as exemplified next.

Example. Let us consider the game Γ represented by the tree
of Fig. 2a). The preferences of the players w.r.t. the outcomes
are indicated in the caption. Let us compute the subgame per-
fect equilibria of the game by applying the BI algorithm. Once
the algorithm reaches a terminal subgame, the backward selec-
tion of the SPE is executed. Player 1 strictly prefers h2 to h1
(h2 ≻1 h1), player 2 has no strict preference between h3 and
h4 (h3 ∼2 h4) and player 3 prefers h8 to h7 (h8 ≻3 h7). The
outcomes h2, {h3, h4} and h8 correspond to the SPE of the re-
spective subgames, as shown in Fig. 2b). At the second level of
the tree, player 3 prefers h2 to h3 and h4 (h2 ≻3 h3 ∼3 h4) and
player 2 prefers h5 to h6 and h8 (h5 ≻2 h8 ≻2 h6). Finally, at the
root of the tree, player 1 prefers h2 to h5 (h2 ≻1 h5). The (here
unique) outcome of a subgame perfect equilibrium of the game
is h2.
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Figure 2: Example. a) 3-player game in extensive form. Preferences of the players over the outcomes are respectively: u1 : h6 ≻1 h7 ≻1 h8 ≻1 h3 ≻1 h4 ≻1 h2 ≻1
h1 ≻1 h5, u2 : h5 ≻2 h8 ≻2 h7 ≻2 h6 ≻2 h2 ≻2 h3 ∼2 h4 ≻2 h1 and u3 : h8 ≻3 h7 ≻3 h6 ≻3 h2 ≻3 h5 ≻3 h3 ≻3 h1 ≻3 h4. The subgame Γ(L) is highlighted. Player
PΓ(L) = 3 observes action L. b) Application of the backward induction to the game. The (here) unique outcome of a subgame perfect equilibrium of the game is h2.

3. Enumeration of the outcomes of Nash equilibria

In order for an outcome to be the realisation of a subgame
perfect equilibrium, at every stage it must have a utility higher
than the lowest valued SPE ha from every subgame Γ(a) for the
acting player. Given i the player acting at the stage and A the
set of actions to be taken, this condition can be formulated as
such:

h ⪰i arg max
ha∈S PEa

min, a∈A
ui(ha),

where we define S PEa
min = arg minh′∈S PEa ui(h′) for a ∈ A.

Since the set A is finite, there is an outcome θ ∈ H such that
θ ∈ arg maxha∈S PEa

min,a∈A ui(ha). In other words, for every stage,
there is an outcome θ ∈ H whose value of utility ui(θ) represents
the threshold that the utility of the player i must exceed in order
for h to be an outcome of the SPE. The BI algorithm enables
to compute the threshold outcome θ at every stage, and then
compares its utility with the one of the candidate equilibrium
outcomes.

In this work, we present an algorithm that identifies all black
the outcomes of the Nash equilibria. Analogously to BI, the
Nash Backward Induction algorithm (cf. Algorithm 2) com-
putes recursively at every subgame a threshold and compares
its utility to the one of the candidate outcomes. The main dif-
ference between the backward induction (cf. Algorithm 1) and
the NE enumeration algorithm (cf. Algorithm 2) is in the com-
putation of the threshold. Indeed, let us observe Algorithm 2:
at every stage it stores not a single threshold outcome, but as
many threshold outcomes as players, i.e., a vector of thresh-
old outcomes ⟨θi⟩i∈I. At every stage, by applying the principle
of backward induction, these threshold outcomes are computed
recursively based on the threshold outcomes ⟨θai ⟩i∈I of the sub-
games Γ(a), a ∈ A, by maximising the value of the utility for
the player P acting at the considered stage, while minimising
the utility for the other players:

θi ∈ arg max
θai , a∈A

ui(θai ), if i = P,

θi ∈ arg min
θai , a∈A

ui(θai ), if i , P.

Finally, the threshold θP corresponding to the player i = P
acting at the stage is compared with the candidates outcomes
∪a∈ANEa (NEa denoting the set of NE outcomes of the sub-
game Γ(a)).

As we prove in Section 4, adopting such threshold definition
for the outcomes enables the enumeration of the outcomes of
the Nash equilibria, corresponding to both SPE and not SPE of
the game.

ALGORITHM 2: (NBI) Nash Backward Induction
Input: A game Γ = ⟨I, A,H, P, u⟩.
Output: ⟨NE, ⟨θi⟩i∈I⟩: the set of outcomes which are

realisations of all Nash equilibria NE ⊆ H and
the thresholds ⟨θi⟩i∈I for every player.

⟨NE, ⟨θi⟩i∈I⟩ ← ∅ ; // Initialising the output

if |H| = 1 then
NE = H ; // Terminal game

θi = h for all i ∈ I, where H = {h} ; // Threshold

outcomes for all players

else
⟨NEa, ⟨θai ⟩i∈I⟩a∈A ← ∅ ; // Subgames output

for a ∈ A do
⟨NEa, ⟨θai ⟩i∈I⟩ = NBI(Γ(a)) ; // candidate

outcomes and thresholds of Γ(a)
end
θP ∈ arg maxθaP,a∈A uP(θaP) ; // Outcome maximising

the utility for the acting player

NE = {h ∈ ∪a∈ANEa|h ⪰P θP} ; // Outcomes

exceeding the acting player’s threshold

for i ∈ I \ {P} do
θi ∈ arg minθai ,a∈A ui(θai ) ; // Outcome

minimising the other players’ utility

end
end

The application of the algorithm to the game provided in
Fig. 2 is given in Fig. 3. The left hand side shows the thresh-
old computed for every subgame, while the right side provides
the outcomes of the Nash equilibria of every subgame. Algo-
rithm 2 computes the threshold outcomes and checks which el-
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Figure 3: Application of Algorithm 2 to the game of Fig. 2. Left: Thresholds θ = (θ1, θ2, θ3) at every node. Right: Nash Equilibria NE of every subgame.

ements meet them at the same time. For sake of clarity, in the
following, we first illustrate the computation of the thresholds
and then their use to identify the outcomes of Nash equilibria.

Threshold outcomes. We identify now the thresholds for the
game of Fig. 2. Let us start from the bottom nodes on the
third stage. Player 1 must choose between h1 and h2. Follow-
ing Algorithm 2, we identify the outcome with largest utility
for player 1 (θ1 = h2, because h2 ≻1 h1) and the lowest util-
ity for the other players (θ2 = θ3 = h1 in both cases, since
h1 ≺2 h1 and h1 ≺3 h2). Player 2 chooses between h3 and h4,
which are equivalent for her h3 ∼2 h4, therefore θ2 = h3 = h4
(since both can be chosen, for clarity in Fig. 3 we write only
θ2 = h4). For the other two players 1 and 3 it is necessary to
minimise the utility: indeed, we have θ1 = θ3 = h4, because
h4 ≺1 h3 and h4 ≺3 h3. Player 3 has to choose between the h7
and h8. Maximising for the utility of player 3 and minimising
for the other two players (h8 ≺1 h7, h7 ≺2 h8 and h8 ≻3 h7),
we obtain (θ1, θ2, θ3) = (h8, h7, h8). Let us now compute the
thresholds for the nodes at the second stage. Player 3 must
choose between left and right, whose thresholds are respec-
tively θ = (h2, h1, h1) and θ = (h4, h4, h4). We maximise for
player 3 and thus have θ3 = h1, because h1 ≻3 h4, while we min-
imise for player 1 and 2, getting θ1 = arg minh∈{h2,h4}

u1(h) = h2
and θ2 = arg minh∈{h1,h4}

u2(h) = h1. At the second stage player
2 has three actions available (left, centre, right). Left and cen-
tre actions lead to outcomes of the game h5 and h6 and thus we
fix for them the thresholds θ = (h5, h5, h5) and θ = (h6, h6, h6).
The thresholds to be compared are thus θ = (h5, h5, h5), θ =
(h6, h6, h6) and θ = (h8, h7, h8). Let us maximise for the util-
ity of player 2, getting θ2 = arg maxh∈{h5,h6,h7}

u2(h) = h5,
and minimise for the utility of the other players 1 and 3,
leading thus to θ1 = arg minh∈{h5,h6,h8}

u1(h) = h5 and θ3 =
arg minh∈{h5,h6,h8}

u3(h) = h5. Finally at the root player 1 has
to choose between left and right actions, whose thresholds are
(h2, h1, h1) and (h5, h5, h5). For player 1 we have h2 ≻1 h5 and
thus θ1 = h2 (utility is maximised), while for players 2 and 3
we have θ2 = θ3 = h1, since h5 ≻2 h1 and h5 ≻3 h1.

Outcomes of Nash equilibria. Simultaneously with the com-
putation of the threshold values at each stage, a backward prop-
agation argument determines which outcomes are realisations
of a Nash equilibrium. For an outcome to be a realisation of
a Nash equilibrium, it should avoid unilateral deviations at ev-

ery stage from the root to the leaf. The threshold at every stage
is the lowest value a unilateral deviation of the acting player
can achieve in a subgame which is not explored: if an outcome
does not meet a threshold at a certain stage, it means that the
player acting at that stage has an incentive to deviate unilat-
erally. Once the thresholds are computed, we can thus verify
which outcomes meet all the thresholds at every stage.

We will analyse each outcome and verify if the Algorithm 2
identifies it as an outcome of a NE. Fig. 3 shows on the right
which outcomes meet the threshold at every stage, starting from
the leaves. Let us start from h1. Starting from the bottom to the
root the thresholds are θ1 = h2 (player 1 on the third stage),
θ3 = h1 (player 3 on the second stage) and θ1 = h2 (player
1 at the root). The thresholds are highlighted on the left of
Fig. 3. The outcome h1 does not meet two thresholds, indeed
h1 ≺1 θ1 = h2, h1 ∼3 θ3 = h1 and h1 ≺1 θ1 = h2, and then
it cannot be selected by the algorithm as a NE. Therefore it is
not the realisation of a Nash equilibrium. On the other hand,
outcome h2 has the same thresholds and it does meet them all:
h2 ∼1 θ1 = h2, h2 ≻3 θ3 = h1 and h2 ∼1 θ1 = h2. Therefore
it is the realisation of a Nash equilibrium; indeed, we verified
before (cf. Fig. 2b) that it is the outcome of the subgame perfect
equilibrium. The outcomes h3 and h4 confront the following
thresholds: θ2 = h4, θ3 = h1 and θ1 = h2, from the bottom
to the root of the tree. Outcome h3 meets all the thresholds:
h3 ∼2 θ2 = h4, h3 ≻3 θ3 = h1 and h3 ≻1 θ1 = h2. It is thus
the realisation of a Nash equilibrium. Outcome h4 fails to meet
threshold h4 ≺3 θ3 = h1, and therefore it is not pulled up by the
algorithm as a Nash equilibrium. Outcome h5 and h6 confront
two thresholds: θ2 = h5 and θ1 = h2. Outcome h6 fails to
meet the first one, h6 ≺2 θ2 = h5, while outcome h5 fails to
meet the second one, h5 ≺1 θ1 = h2. Finally, outcomes h7 and
h8 confront three thresholds: θ3 = h8, θ2 = h5 and θ1 = h2.
Both fail to meet h7 ≺2 h8 ≺2 θ2 = h5. Therefore none of
them is a realisation of Nash equilibria. The only outcomes
of Nash equilibria are NE = {h2, h3}. The right part of Fig. 3
displays each subset of outcomes identified at each stage by
Algorithm 2.

Nash equilibria. Fig. 4 shows two different strategy profiles,
having the actions chosen by the players marked in bold.
Fig. 4a) corresponds to a SPE of the game, having outcome h2,
which has also been identified previously by the BI algorithm.
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Figure 4: Nash equilibria. The strategy profiles of the Nash equilibria having respectively a) h2 and b) h3 as outcomes. The players’ actions are highlighted by
bolder edges.

Fig. 4b) shows another strategy profile, having outcome h3.
This strategy profile is a Nash equilibrium: indeed, every
player cannot get better off by deviating unilaterally. If player
1 goes right, she achieves outcome h5, with h3 ≻1 h5. If player
3 goes left, she reaches h1, with h3 ≻3 h1. Finally, if player
2 goes right, she obtains the same utility with h4: h3 ∼2 h4.
Such Nash equilibrium cannot be obtained by the BI algorithm.
Algorithm 2 not only identifies h3 as another outcome of a
Nash equilibrium, but also proves that no other outcome than
h2 and h3 holds this property for the game in the example.

Remark. The intuition behind the algorithm is that, in an
extensive-form game with perfect information, the unilateral
deviation of a player from a pure Nash equilibrium would lead
the player to an outcome of the part of the game not explored as
part of her strategy. The player does not deviate if and only if
the value of the utility of such outcome is lower than the utility
of the outcome of the Nash equilibrium. The threshold com-
putes the lowest value a deviation can achieve: as proven next
this is a sufficient and necessary condition for preventing an uni-
lateral deviation. The threshold outcomes, in fact, correspond
to the strategy profiles where the other players minimise the
utility of a deviating player, while she maximizes her own.

4. Proofs and complexity results

Correctness. In the proof that the BI algorithm provides the
outcomes of the SPE, the strategy profile defining an SPE is
built by following the backward step of the algorithm [9]. The
argument of the proof is that, according to BI, all players are
dictated to choose at every stage an action that leads to one of
the subgame perfect equilibria.

In this section, we prove that Algorithm 2 enumerates the
outcomes of the pure Nash equilibria. In order to do that, we
first show that if h ∈ H is an outcome of a Nash equilibrium, it is
possible to build a strategy profile s such that h is its realisation
(s 7→ h) and s is a Nash equilibrium. Following the scheme of
the proof of correcteness of the backward induction, we build
the strategies by following the backward phase of Algorithm 2.

Definition 4 (Strategy induced by an outcome). Let us consider
a game Γ = ⟨I, A,H, P, u⟩, one of its outcome h ∈ H and the
thresholds ⟨θi⟩i∈I computed at every node by Algorithm 2. A

strategy sh
i ∈ S i for some player i ∈ I is said to be induced by

the outcome h if at every node where player i acts, she chooses,
if available, 1) the action that leads to h, or, if not available,
2) the action that leads to the threshold θ j, where j ∈ I is the
player acting at the root of the smallest subgame including both
the node and h.

Example. We consider the game of Fig. 2 and the application
of Algorithm 2. Let us analyse the target outcome h3 ∈ H
returned as a NE by the algorithm.

The induced strategy sh3
1 ∈ S 1 of player 1 is going left (L)

at the root, because it leads to h3, and going left at the other
node where player 1 acts, because it leads to h1, which is the
threshold θ3 = h1. Indeed, player 3 acts in the subgame Γ(L)
including both the node where player 1 acts and h3.

The induced strategy sh3
2 ∈ S 2 of player 2 is going left in the

bottom node (to reach h3) and going left in the other node (θ1 =
h5). The induced strategy sh3

3 ∈ S 3 of player 3 is going right in
the upper node (to reach h3) and going right in the bottom node
(θ1 = h8).

The following two results state the correctness of Algo-
rithm 2 for a generic input game Γ = ⟨I, A,H, P, u⟩. Let
⟨NE, ⟨θi⟩i∈I⟩ be its output.

Theorem 1. All the outcomes NE produced by Algorithm 2 are
the realisation of a Nash equilibrium.

Proof. It is enough to prove that, for h ∈ NE, the induced strat-
egy profile sh = ⟨sh

i ⟩i∈I is a Nash equilibrium. By construction,
h is the realisation of the strategy profile sh. Let us consider
a unilateral deviation s′ , sh for some player j ∈ I. It holds
s′
− j = sh

− j. We prove that u j(sh) ≥ u j(s′). Let us consider the
outcome h′ realisation of s′. Since it is a unilateral deviation, it
is a node where player j acts that separates the paths from the
root to h and h′. By construction of the threshold of such node
θ j, we have that u(s′) = u j(h′) ≤ u j(θ j). Since u j(sh) ≥ u j(θ j),
we have the proof.

Algorithm 2 enables to identify a strategy profile s− j of play-
ers I \ { j} such that player j has no incentive to deviate.

We are now left to prove that if an outcome is not an output
for Algorithm 2, i.e., it does not meet a threshold at some node
of the game, then it is not the realisation of a Nash equilibrium.
The proof is based on the fact that if, for a given player j ∈ I,
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the induced strategy profile of players I\ { j}, built according to
(the thresholds output of) Algorithm 2 does not permit player j
to reach outcome h, no Nash strategy profile can do it.

Theorem 2. If h < NE, then such outcome is not the realisation
of a Nash equilibrium.

Proof. We prove it by contradiction. Let us assume that h does
not meet a threshold θ j at which player j acts and yet h is the
realisation of a Nash equilibrium s ∈ S . By hypothesis, u(s) =
u(h) < u(θ j). Let us consider the strategy sθ j

j ∈ S j induced
by θ j. By construction of θ j, we observe that it is the lowest
value player j can achieve with a deviation, i.e., u(sθ j

j , s− j) ≥
u(θ j). Since s is a Nash equilibrium, for any s′j ∈ S j it holds

u(s′j, s− j) ≤ u(s) < u(θ j). Hence the contradiction u(sθ j

j , s− j) <
u(θ j).

Complexity. We now show that, in a non-degenerate game,
Algorithm 2 has the same complexity as Algorithm 1. A game
is degenerate if there are nodes with only one action. In a non-
degenerate game, the set of all strategy profiles is in exponen-
tial size with respect to the number of outcomes [1]. As dis-
cussed in Section 1, a brute-force algorithm to enumerate the
Nash equilibria of the game is therefore not practical in real-
case scenarios. The backward induction has linear complexity
with respect to the number of outcomes, and it is thus preferred
to brute force.

Lemma 1 ([12]). Given a non-degenerate game Γ =

⟨I, A,H, P, u⟩, the complexity of Algorithm 1 is O(|H|).

Proof. The result is proven by induction. If |H| = 1, the game
ends and the backward induction has complexity O(1). If |H| >
1, then let us consider the set of actions A. For every action
a ∈ A, there is a subgame Γ(a) with |HΓ(a)| outcomes. By con-
struction,

∑
a∈A |HΓ(a)| = |H|. The complexity of the backward

induction is
∑

a∈A O(|HΓ(a)|) = O(
∑

a∈A |HΓ(a)|) = O(|H|).

In the theory of extensive-form games, players are assumed
to be finite and in a fixed number N = O(1). We now prove
that the complexity of Algorithm 2 is O(N · |H|), which is thus
equivalent to O(|H|).

Theorem 3. Given a non-degenerate game Γ = ⟨I, A,H, P, u⟩,
the complexity of Algorithm 2 is O(N · |H|).

Proof. The proof is analogous to that of Lemma 1. If |H| = 1,
Algorithm 2 has complexity O(N). If |H| > 1, the complexity
of Algorithm 2 is

∑
a∈A O(|HΓ(a)|)+O(N · |H|) = O(N · |H|).

A corollary of Theorem 3 is that the problem of the enumer-
ation of the outcomes of the Nash equilibria is as complex as
the problem of identifying the outcomes of the subgame perfect
equilibria of the game.

5. Conclusions

In this paper, we introduced a new method to compute all out-
comes of the pure Nash equilibria of an extensive-form game.

Notably, it operates in linear time with respect to the size of
the game. Our starting point is the backward induction algo-
rithm, which dates back to the 19th century and provides only
subgame-perfect Nash equilibria. Our extension of the back-
ward induction technique, based on the new notion of a thresh-
old outcome, enables to enumerate all the outcomes of pure
Nash equilibria of an extensive form game. Until now, the ab-
sence of efficient methods to compute Nash equilibria has lim-
ited the analysis of models relying on extensive-form games,
which find application in various fields in the literature. We be-
lieve that this new method for the enumeration of the solutions
of a game can support further theoretical insights in all these
domains.
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