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Abstract

The outcomes of extensive-form games are the realisation of an exponential num-
ber of distinct strategies, which may or may not be Nash equilibria. The aim of
this work is to determine whether an outcome of an extensive-form game can be
the realisation of a Nash equilibrium, without recurring to the cumbersome notion
of normal-form strategy. We focus on the minimal example of pure Nash equilib-
ria in two-player extensive-form games with perfect information. We introduce a
new representation of an extensive-form game as a graph of its outcomes and we
provide a new lightweight algorithm to enumerate the realisations of Nash equi-
libria. It is the first of its kind not to use normal-form brute force. The algorithm
can be easily modified to provide intermediate results, such as lower and upper
bounds to the value of the utility of Nash equilibria. We compare this modified
algorithm to the only existing method providing an upper bound to the utility of
any outcome of a Nash equilibrium. The experiments show that our algorithm is
faster by some orders of magnitude. We finally test the method to enumerate the
Nash equilibria on a new instances library, that we introduce as benchmark for
representing all structures and properties of two-player extensive-form games.

Keywords: extensive-form games, Nash equilibria, graph algorithm, complexity



1 Introduction

Extensive-form games represent players acting in sequence one after another (cf. Kuhn
and Tucker (1953)). These games are deployed to model situations in many domains,
such as e.g., macroeconomics (cf. Long (2011)), law (cf. Baird et al. (1998)) and
security (cf. Etesami and Basar (2019)). However, from a computational standpoint,
extensive-form games are not easy to deal with. Existing methods to compute solutions
of a generic extensive-form game do not scale with the game size. In this work, we
introduce a graph-based representation for finite extensive games with two players and
perfect information. Such representation permits to resort to algorithms on graphs
in the game resolution. Hence, building on what we denote graph form, we provide
an efficient method to enumerate all the solutions of a game, i.e., to answer to the
question whether or not a generic outcome of a game is a Nash equilibrium or not.

Computing solutions. The standard solution of a game used in this work is the
Nash equilibrium (cf. Nash Jr (1950)), covering many foreseeable scenarios of game-
theoretical models. The subgame perfect equilibrium (SPE) is the customary solution
of extensive-form games (cf. Selten (1965)). A practical advantage of a SPE is that it
can be computed with backward induction. On the other hand, the suitability of SPE
and the possibility to employ different notions of equilibria beyond the SPE has been
explored since its introduction (cf. Selten (1978)). For instance, the work Pettit and
Sugden (1989) discusses the theoretical assumptions underlying the notion of SPE and,
by restricting the horizon of acceptance of the backward induction principle acceptable
by a player, it concludes that such solution does not provide complete insight into the
possible equilibria. Later works, e.g., Binmore et al. (2002), show results of empirical
tests on basic sample games proving that other Nash equilibria rather than the SPE
are attained in practice. The discussion on refined equilibrium concepts is beyond
the scope of this paper. Indeed, we are rather interested in analysing the concept
of Nash equilibrium, whose fundamental role remains unquestioned. Extensive-form
games, in particular, can have other non-SPE equilibria. In this work we analyse
Nash equilibria independently from their properties and their corresponding refined
equilibrium concepts.

To this respect, the algorithms provided in the present work offer insight into the
whole set of Nash equilibria outcomes which can be ascribed to a given extensive-form
game.

To the best of our knowledge, there is no efficient method to compute all the Nash
equilibria of an extensive-form game. Identifying a Nash equilibrium for a generic
game in normal form belongs to the class of PPAD-complete problems (cf. Daskalakis
et al. (2009)) introduced by Papadimitriou (1992). The most known algorithm to
identify a Nash equilibrium is the Lemke-Howson algorithm (cf. Lemke and Howson
(1964)), that consists in identifying a completely labeled pair of vertices of two poly-
topes representing the game. Enumerating the Nash equilibria of a game corresponds
to enumerating all the completely labeled pair of vertices of the two polytopes. Meth-
ods to solve such problem are inefficient and require a large amount of memory (cf.
Avis and Fukuda (1992)). Recent algorithms have proven to be space efficient (cf. Avis
et al. (2010)), while others resort to parallel computing to overcome such issue (cf.



Widger and Grosu (2009)). In a generic extensive-form game, the number of strate-
gies available to a player is typically exponential in the size of the game, defined as
the number of its outcomes (cf. Von Stengel (1996)). Transforming an extensive-form
game in normal form is therefore highly inefficient, because it relies on the enumeration
of an exponential number of strategies. The structure of extensive-form games can be
exploited to introduce more efficient algorithms. A Mixed Integer Linear model intro-
duced by Koller et al. (1996) provides one Nash equilibrium and is linear in the size
of the game. However, no information is provided on possible other Nash equilibria.
This method proves to be highly efficient in zero-sum games (cf. Von Stengel (1996)),
but it might have exponential time complexity in a generic game. A variant of this
method (cf. Audet et al. (2009)) allows to find the extreme Nash equilibria, which are
identified by all the vertices of the polytope corresponding to a Mixed Integer Linear
model. Govindan and Wilson (2002) describe how to adapt homotopy-based methods,
conceived for nomal-form games, in order to determine an approximated Nash equilib-
rium for extensive-form games. However, how to control the set of equilibria returned
by such procedures may not be immediate. To this respect, the graph-based enumera-
tion proposed in this work represents, in its simplicity, a convenient algorithmic tool to
provide pure Nash equilibria outcomes, even when the aim is to inspect those satisfy-
ing prescribed utility ranges. For a general introduction to homotopy-based methods,
see Herings and Peeters (2010).

Outcomes of Nash equilibria. Since the number of strategy profiles is exponential in
the size of the game, the number of Nash equilibria can also be potentially exponential.
Throughout this work, the focus of the analysis is thus set on the outcomes of the Nash
equilibria, rather than on the Nash equilibria themselves. This choice, which could be
a trifling remark in a generic game, is relevant when dealing with extensive-form games
for two reasons. First, the number of outcomes of Nash equilibria is proportional to
the size of the game. Second, a large class of extensive-form games can be described
in a compact way using their outcomes rather than enlisting the full game-three. We
mention, among others, the important case of timing games, the case of pricing games
and the case of scheduling games. In timing games (cf. Argenziano and Schmidt-
Dengler (2014)), players have to perform a single action within an interval of time,
having the possibility of observing the actions of the opponents once they are taken.
An outcome of a timing game is just a vector of time values, one for each player.
Instead, the game-tree representation of a timing game, as well as that of the following
games, requires to list all the possible combinations of choices that players can perform.
In a pricing game (cf. Selten et al. (1997)), companies have to adjust the prices of
their goods in order to avoid churn towards competitors and maximise their profits.
The outcomes are the vectors of prices chosen in discrete intervals of time. In the
scheduling game (cf. Hassin and Yovel (2015)), ordered players choose in sequence a
machine to perform one job, being aware of the decisions taken by their predecessors;
the objective of any player is to minimise the congestion of the machine she chooses.
The outcome of the game is a vector of assignments of players to the machines.

Contributions. In this paper, we provide solution methods for the enumeration of
the outcomes of pure Nash equilibria in a two-player perfect-recall game. We chose
this specific class of extensive-form games, because it can be described with the most



convenient notation and it can be compared to the only other result known in the
literature. Our main objective is to introduce a new algorithmic approach that focuses
exclusively on the outcomes of extensive-form games. We believe that this method can
be extended to a larger class of games, but such analysis is left to future works.

Our new representation of extensive-form games describes a game as a graph of
its outcomes. Based on this, a method is provided to determine whether an outcome
is the realisation of a Nash equilibrium of a two-player extensive-form game. Since
the utility of every outcome is known, it is possible to determine upper (resp., lower)
bounds to the utility of Nash equilibria for any player by inspecting them once ordered
from the best to the worst (resp., from worst to best), rather than enumerating them
all. Moreover, it is possible to enumerate the Nash equilibria whose realisations fit
any given set of constraints on the utility by simply checking during our enumeration
procedure the outcomes that meet such constraints. The method is more efficient
when the games have specific structures. Indeed, it performs very well in games where
outcomes can be compared without explicitly constructing the sequences of actions
that lead to them. This is the case of games with a regular structure as described by
examples later in the manuscript.

Summary. The paper is structured as follows. Section 2 presents extensive-form
games with perfect information with a generic number of players. In Section 2.2,
we describe a known method to bound the utility of the Nash equilibria of a two-
player game. Section 3 introduces a new graph formulation of extensive-form games
that allows a new characterisation of pure Nash equilibria in two-player games with
perfect information. An equivalent formulation is discussed in Section 3.3 and used
in Section 4 to achieve the following objectives: to identify a Nash equilibrium, to
enumerate all Nash equilibria, to find an upper bound to their utility which is compared
to the methods in literature (cf. Von Stengel (1996)) and to identify the best and
the worst Nash equilibrium for a player. Section 5 presents extended computational
experiments of such methods on a given dataset of games. Section 6 ends the paper
with some insights and possible research directions to extend the results to more
generic extensive-form games. The reader can find examples of games in Appendix A
to visualize the notions introduced in the article and detailed proofs of the theorems
in Appendix B.

2 Extensive-form games

Notation. In this work we will use the following notation for vectors. A wvector a =

(a',...,a™) is an ordered sequence of elements a* with k € {1,...,n}. Given two
vectors a = (a',...,a") and b = (b,...b"), a concatenation of vectors a + b =
(at,...,a™ bl ... b") is represented by the operator +. Given a concatenation of

vectors a + b, a is said to be a prefiz of a + b, and that a < a + b. A vector with no
elements is called the empty vector () and () < a for all a. Two vectors a and a’ might
have a common prefix. We denote by ¢ = a N a’ the longest common prefiz of a and
a’, i.e., the longest sequence such that ¢ < a and ¢ < a’.



2.1 Definitions

We consider discrete, finite extensive-form games with perfect information, whose
feature is to have all information sets as singletons (cf. Kuhn and Tucker (1953);
Fudenberg and Tirole (1991)). We will describe this class of games with an operative
definition which appears more suitable to our algorithmic framework than the standard
one appearing in the literature. Note that, even if our definition is written specifically
for finite extensive-form games with perfect information, it is indeed compliant with
other ones appearing in the literature (cf. Kreps and Wilson (1982); Fudenberg and
Levine (1983); Koller and Megiddo (1992)). They are provided for a generic N-players
extensive-form game, even though this manuscript tackles the 2-player case only.

Let Z = {1,...,N} be the set of players acting in a sequence of time instants.
At each time instant, a player observes a history of actions h’ and picks an action
a € A(K'). In particular, at the beginning, the first player to act observes no actions
hY = () and thus can act within a set of M actions A(h°) = {a¥,...,a8,}. Let us say
that for instance she picks a’ = a2, € A(hY); the second player observes h! = (a°)
and can thus pick an action a' € A(h'). Tterating at each instant this procedure, we
define the set of histories H'. Accordingly, there is a function A : b’ € H' — A that
maps every history A’ to the set of actions A available to the player observing history
h'. The game ends when there is no actions left. Formally, there is a subset H C H'
such that A(h) = 0 for all h € H. Such terminal histories are called outcomes. Every
outcome h € H is evaluated by a function wu; that maps it to the value u;(h) € R
assigned by player i to h.

Definition 1 (extensive-form game). An extensive-form game is a tuple T =
(Z,A,H'  H, P u), where:

e 7T=1{1,...,N} is the set of players;

e H' is the set of histories with ) € H';

e A:h' € H — A is a function that provides for every history a set of actions, i.e.,
for alla € A= A(L'), we have b’ + (a) € H';

e H={he H|Ah) =0} C H' is the set of outcomes;

e P: H' \H — T is a function that indicates which player P(h') € T acts after
observing the history h' € H'\ H;

o u=(u;)icz, with u; : H — R, is the utility function.

The size of a finite extensive form game is the number of outcomes. In the lit-
erature, the standard representation of the game is the tree of possible histories (cf.
Appendix A.1). Hence, we alternatively call node a history observed by a player. The
standard definition of a strategy identifies the single action chosen by a player after
observing a history. In this paper, we consider pure strategies as we leave to future
works the analysis and algorithmic solution of the games in mixed strategies.
Definition 2 (strategy). Given a game I' = (Z, A, H', H, P,u) and a player i € T,
we pick all the histories at which the player acts: H; = {h' € H'\ HI[P(h') = i}. A
strategy s; is a function s; : h' € H; — a € A(R') that maps every observed history
h' € H; to an action a € A(h') available to the player i. Let S; denote the set of all
strategies of player i.



If every player picks a strategy, we have a tuple of strategies s = (s1,s2,...,5n),
that we call strategy profile. If we consider a strategy profile, for every history there
will be an action to be played. Eventually, this sequence of actions makes an outcome.
Such outcome is defined as the realisation of the strategy profile. In the following
sections we write s — h to identify the unique realisation h of the strategy profile s.
Moreover, with some abuse of notation, we write u(s), i.e., the utility of a strategy
profile s, to indicate u(s) = u(h : s — h).

The solution of a game is an equilibrium, i.e., a situation in which players to pick
strategies that they do not want to change. The Nash equilibrium is a combination
of strategies for which the players find it convenient not to deviate unilaterally. More
specifically, if the other players do not change their strategies s_; = (s;);ez\{i}, the
player ¢ has no interest in changing her own strategy s; because she would not improve
her utility. This concept of Nash equilibrium is hereafter defined.

Definition 3 (Nash equilibrium). Given a game I' = (Z, H, u), we say that a strategy
profile (3;)icz is a Nash equilibrium if for every i € T and for all s; € S;:

wi(55,5-4) > u;i(si,5-;).

An extensive-form game with perfect information always admits at least one Nash
equilibrium in pure strategies (cf. Selten (1965)).

2.2 Bounds for Nash equilibria in two-player games

The most efficient methods to provide an upper bound to the utility of Nash equilibria
have been introduced for two-player extensive-form games. We suppose that the games
are not zero-sum, since such subcategory of games has already been fully studied (cf.
Von Stengel (1996)).

Given a two-player extensive-form game I' = (Z = {1, 2}, A, H', P, u), we consider
the following optimization problem [ST]:

[ST] : §1 €argmax uj (81,?2)
S1E€S51

s.t. $g € argmaxus(sy, S2).
52€S2

This bilevel optimization problem has linear complexity in the number of the strate-
gies of the game. We note however that they might still be exponential in the game
size, i.e., in number of outcomes (cf. Von Stengel (1996)). Indeed, let us for instance
consider a game represented by a complete binary tree, i.e., a game in which every
node has two actions. Given |H’ \ H| the number of non-leaf nodes of the game tree,
it is easy to show that there are 217 \H| gtrategy profiles and |H'\ H|+ 1 outcomes.
However, a different formulation of [ST] introduced in (cf. Von Stengel (1996)) can
be written in the form of a bi-level linear program with a number of variables and a
number of constraint inequalities that grow linearly with respect to the tree size. Such
formulation, which considers mixed strategies, is discussed in details in Section 4.2
and it is adapted to solve games in pure strategies.



An optimal solution of [ST] provides an upper bound to the utility of the first
player of all the Nash equilibria of the game (cf. Zappala et al. (2022)).
Theorem 1. Let us consider S the set of feasible solutions 5 = (351,32) € Sy X Sz of
[ST] and the optimum value Uy = sups.g u1(5). Given a Nash equilibrium s* € Sy x S,
of the game T, it holds:
Uy > up(s*).

Proof. Tt is sufficient to prove that any Nash equilibrium is a feasible solution of [ST].
Indeed, since s* is a Nash Equilibrium, we have that for all s; € Ss:

up(sy, s3) = ua(sy, s2).

Therefore it holds that s5 = argmax,, g u2(s7, 52)- O

3 Graph form

3.1 A representation of extensive-form games as graphs of
outcomes

In this section, we introduce a new representation of a two-player game in extensive
form with perfect information as an undirected graph of its outcomes. The goal of
this representation is to focus on the outcomes, in order to identify which of them are
realisations of the Nash equilibria. We next put in relation the strategies of the players
with the outcomes of the game.

If a player chooses a strategy, she limits the number of outcomes that are reachable
by the other player. We formalise this observation by associating a strategy to a subset
of outcomes that represent it. We recall that every strategy profile (s1,s2) € S1 x So
can be mapped to its realisation h : (s1, s2) — h. Given a strategy s; € S7, we consider
the set of possible outcomes H(s;) which are realisations of strategy profiles (s1, s2)
which include s; € S; as a strategy of the first player and any sy € Sy as a strategy
of the second player.

Definition 4 (outcomes of a strategy). Given a two-player game T' = (T =
{1,2}, H,u) and a strategy s; € S1, the set of outcomes H(s1) C H of strategy sy is:

H(Sl) = {h S HBSQ €5y (81,82) — h}

In order to understand which elements belong to the set of outcomes of a strategy,
we introduce a new property, called compatibility. This property enables to identify
two outcomes that can be obtained by the same strategy chosen by a given player.
Definition 5 (compatibility). Given a two-player game I' = (Z = {1,2}, H,u), we
say that two outcomes h,h’ € H are compatible for player i € T if there is a strategy
s; € S; such that h € H(s;) and b/ € H(s;).

Remark. Since we discuss only two-player games, i.e., Z = {1,2}, we arbitrarily
choose one player to be the first player (e.g., i1 = 1) and one to be the second player
(e.g. io = 2). Later in this section it is shown that such choice can be arbitrary. If
not specified, we refer to two outcomes as compatible if they are compatible for player



1. If two outcomes h,h’ € H are compatible, there are a strategy s; € S; and two
strategies sa, sh € Sz such that (s1,s2) — h and (s1,85) — h'.

If two outcomes can be produced by the same strategy, the first player always takes
the same decisions at every node. Lemma 2 proves that this condition is not only
necessary but sufficient. Formally, given two outcomes h,h’ € H it is necessary to
observe at which node the history starts to be different; such node is identified by
their longest common prefix h N A'.

Lemma 2. We consider a two-player game I' = (Z = {1,2}, H, P,u). Two outcomes
h,h' € H are compatible if and only if P(hNh') = 2.

Proof. (i) First we prove that P(h N h') = 2 implies that h and h’ are compatible,
then (ii) we prove that P(hNAh’) = 1 implies that h and h’ are not compatible.

(i) Let us suppose that P(h N h') = 2. We need to define s; € S; and sg, s5 € S2
such that (s1,s2) — h and (s1, s5) — h’. We recall that a strategy of the first player is
a function associating an action to each partial history h” € H’ in the tree observed
by the first player, i.e., such that P(h”) = 1. For each h” < h (h” < W) if P(h") =1
we define a strategy s; € Si such that A" + (s1(R”)) < h (B + (s1(R"”)) < 1/).
Analogously, we define a strategy ss € S, such that for each h” < h with P(h"”) = 2
we have h” + (s2(h”)) < h, and a strategy s5 € Sy, such that for each h” < A’ with
P(h") = 2 we have h" + (sh(h")) < h'. For any other h”" &« h and h” £ h' we take an
arbitrary decision for defining s1, sa, s5. By construction, we have (s, s2) — h and
(s1,8%5) — b

(ii) Let us now suppose that P(hNh’) = 1. Let (s1, s2) and (s}, s5) be two strategy
profiles such that (s1,s2) — h and (s, s5) — h'. It is impossible to have s; = s since
P(hNh') =1 implies sy (hNA’') # sy (hNA'), from which we can conclude that h and
h' are not compatible. O

Based on the definition of compatibility, it is possible to build a graph of
compatibilities among all the outcomes of a game I', or the graph form for short.
Definition 6 (graph form). The graph of compatibility of a two-player game T' =
(T ={1,2},H,u) is a tuple T' = (H, E,u), where H is the set of outcomes as nodes
of the graph, E C H? is the set of edges connecting any two compatible outcomes and
u: H — R? is the utility function that assigns a pair of weights to every node.

Remark. In the following of the article we sometimes omit the transformation of
an extensive-form game T" into its graph form (H, E, u), which can be performed by
application of Lemma 2, and therefore we directly introduce the game by representing
it in its graph form I’ = (H, E, u).

3.2 Characterisation of Nash equilibria in the graph form of
the game

Given a game T, let us characterise the outcomes H(s1) of a strategy s; € S on its
graph form. By definition, such outcomes are all compatible with one another. Let us
consider the nodes on the graph corresponding to the outcomes H(s1); they induce a
clique and, as we show next, such clique is maximal.



Lemma 3. Consider a two-player game I’ = (Z = {1,2}, H,u) with its graph form
I'=(H,E,u). For every strategy s1 € S1, the set H(s1) C H forms a mazimal clique
of the graph (H,E, u).

Proof. According to Definition 5, we have that H(s;) induces a clique on the graph.
Consider any outcome h € H \ H(s1). Since h ¢ H(s;) there is a partial history
' e H', with " < h and P(h”) = 1, such that the subsequent action a4, € A(R")
is not chosen by strategy s1, i.e., ax+1 # s1(h”). Consider now an outcome h’ € H(s1)
such that A" + (s1(R")) < A'. Since P(hN'h’) = 1, from Lemma 2 h and b’ are not
compatible. Since this argument holds for every h € H \ H(s1), we have that H(s1)
forms a maximal clique. O

We observe that to every maximal clique of the graph there is at least one strategy
whose set of outcomes corresponds to it. We prove that it is always true in Lemma 4.
Lemma 4. Let us consider a two-player game I' = (T = {1,2}, H,u) with its graph
form T = (H, E,u). For every set of vertices C that induces a maximal clique on the
graph (H, E), there is a strategy s1 € S1 such that C = H(s1).

Proof. We first show that C C H(sy) for a given s; € Sy. For this, we consider a
strategy s1 € Sy such that, for all h € C and all A" < h such that P(h”) = 1, we have
that h"” + s1(h’) < h. Such strategy exists and it is defined by applying a procedure
similar to the one used in the proof of Lemma 2; we recall that P(hNh’) = 2 for each
pair of compatible outcomes h,h’ € C. Therefore C C H(s1). But, from Lemma 3,
H(s1) induces a maximal clique and thus C = H(s1). O

Lemmas 3 and 4 establish that there exists a bijection between a partition of the

set of strategies of the game and the set of maximal cliques in the graph form. An
illustration is given in Figure A2b). A similar result is obtained for the set of strategies
of the second player on the complementary graph.
Lemma 5. For every two-player game I' = (Z = {1,2}, H, P,u) with its graph form
' = (H,E,u), there is a bijection between a partition of the set of strategies of the
second player Sy and the set of mazimal cliques of the complementary graph (H, E€),
where E¢ = {(h,h’) € H?|h # 1/, (h,h') ¢ E}.

Proof. Given two outcomes h,h’ € H, we have that P(h N k') € {1,2}. Therefore
P(hNh')=2if and only if P(hNA') # 1. Lemma 2 thus determines that the graph
form of the second player is complementary to the one of the first player. The result
follows from Lemmas 3 and 4. O

Choosing a strategy for the first player implies picking a maximal clique in the
graph (H, E). Furthermore, one can observe that with an analogous method it is
possible to build a graph for the strategies of the second player. However, thanks to
Lemma 5 it is not necessary to perform further computations, because such graph is
complementary to (H, E).

Enabling strategy. We observe that the minimal representation of strategies as sets
of outcomes can be obtained by applying the concept of enabling strategy of Govindan
and Wilson (2002) to games with perfect information. Given a player ¢ € Z and an
outcome h € H, an enabling strategy S;(h) = {s; € S;|h € S;} is the set of strategies



of player i € 7 leading to outcome h € H. Enabling strategies are the minimal
representation of the set of strategies with respect to specific properties of the space
of strategies. In games with perfect information and two outcomes hy, hy € H, there
is only one player i € Z such that S;(h1) # S;(h2). The previous Lemmas can be
obtained by combining this property with the known properties of enabling strategies
(cf. Govindan and Wilson (2002)).

As anticipated in Section 2, we are interested in identifying Nash equilibria out-
comes in pure strategies. We recall that a Nash equilibrium is a strategy profile in
which none of the players is interested in changing her own strategy unilaterally.

Best responses and outcomes. The standard way to define a best response for an
extensive-form game entails to refer to its equivalent strategic form. In this case, if
a player picks a strategy, the other player will choose a best response, i.e., a strategy
such that her utility is maximized. A Nash equilibrium can be identified as a mutual
best response accordingly. We now provide a connection between this fundamental
definition of equilibrium based on the strategic form and properties of the outcomes in
the graph form of the game. In fact, every designated outcome h corresponds to one or
more strategies s; for the first player identified by a maximal clique C; on the graph
form which includes h. In turn, for every element h’ € Cy, the second player can choose
a strategy so whose corresponding set of outcomes C, on the complementary graph
includes b’ € Cy. The second player has an incentive to pick the element within C; that
maximises her utility, a condition that thus A must fulfill in order to avoid deviations
from the second player. A similar argument can be put forward by inverting the players.
Note that a single outcome may correspond to multiple strategy pairs. Thus, in the
graph form, determining if an outcome corresponds to a Nash equilibrium means to
answer to the question if there exists at least a pair of maximal cliques respectively on
the graph and on the complementary graph containing this outcome, and such that
their intersection is a mutual best response in the corresponding strategic form.

The best response of the second player leads to the outcome which is most preferred
by the second player within the maximal clique C; chosen by the first player. If a
vertex h € H corresponds to the outcome of a best response of the second player, two
conditions must hold. First, there must be a maximal clique C; which includes it, i.e.,
h € C1, so that the second player can choose it. Second, such maximal clique C; should
not include all the nodes X" which are preferred to h by the second player, so that
the second player has an incentive to choose h and no other outcome. Whether such
clique exists is the problem [MC] formalised hereafter.

Problem 6. [MC] Eristence of a mazimal clique including h and excluding X".
INSTANCE: (H,E,h,X") defining a graph (H,E), a verter h € H and a subset of
vertices X" C H with h ¢ X".

QUESTION: Is there a vertex set C C H \ X" with h € C that induces a mazimal
clique on (H,E)?

We would like to know if an outcome h is the realisation of a Nash equilibrium.
Hence, a maximal clique including the corresponding vertex h and excluding X" =
{h' € Hluz(h') > uz(h)} ensures that the first player has a strategy to induce the
second player onto the desired outcome h.
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Ezample. In the game of Figure Al the second player prefers X" = {hq, h3, h4}
to h = hg. In the graph of Figure A2a) we observe that there is no maximal clique
including hg and excluding all the elements of X". Therefore hg cannot correspond to
a best response of the second player.

Furthermore, by applying the same arguments on the complementary graph we
conclude that it is possible to determine whether an outcome is the realisation of a best
response also of the first player. Specifically, it is necessary to identify a maximal clique
on the complementary graph such that the vertices corresponding to the outcomes
preferred by the first player are excluded.

Ezample. In the graph of Figure A2a) the first player prefers X" = {ho, hs, hs, he}
to h = hy. There is no maximal clique on the complementary graph of Figure A2a),
i.e., there is no independent set, that includes h; and none of the elements in Xp,.
Therefore h; cannot be a best response of the first player.

Theorem 7 combines these findings and provides a characterisation of a Nash

equilibrium in the graph form.
Theorem 7. Let us consider a two-player game in its graph form T = (H, E,u) and
an outcome h € H. We consider X' = {h' € Hlui(h') > ui(h)} and X = {0’ €
Hlug(h') > ug(h)}, the sets of outcomes preferred to h, respectively, by the first and
the second player. The outcome h € H is a realisation of a Nash equilibrium if and
only if the problem [MC] has true as answer both providing as input (H, E, h, X}) and
(H,E€ h,X}).

The proof is provided in Appendix B.1. Such result allows us to develop methods
that compute Nash equilibria without listing all the strategies of the players, which
are often in exponential number with respect to the size of the game (cf. Section 2).
Such methods will be discussed in the following sections.

3.3 Analysis of the main problem and its complexity

The complexity of identifying a Nash equilibrium outcome on a game in its graph
form depends on the complexity of solving two instances of problem [MC]: one with
input (H, E, h, X!) and another with input (H, E, h, X}), as defined in the previ-
ous section. In this section, we evaluate the complexity of problem [MC| with input
(H,E, h, X") for a generic graph (H, E). More specifically, we first define a variant
[EC] of problem [MC] and then we show that the two problems are equivalent, i.e.,
that a solution of problem [EC] provides a solution of problem [MC] and conversely.
Let us consider a generic problem [MC] with input (H, E, h, X"). First, we argue
that when solving [M C] the problem can be restricted to the neighbourhood of h € H,
Vh = {W,(h,h') € E}. Indeed, let us suppose that there is a maximal clique induced
by a vertex set C C H with h € C excluding X" C H. Since the clique is maximal,
it must hold that, for every vertex b’ € X", there is at least one vertex h € C which
is not connected to A, i.e., such that (h,h') ¢ E. Those vertices in X" who are not
in the neighborhood V" always fulfill this property, as h € C. Therefore, instead of
considering all the vertices in X", we can restrict the problem to X = X*NV". With
this argument, we conclude that the vertex set C belongs to the neighborhood V.
Ezample. Consider the graph of Figure 1a), in which the set C = {h, ho, h3, hs}
induces a maximal clique. The vertices X" \ V* = {hs, hio} are not connected

11
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Fig. 1: Equivalence of problems [MC] and [EC]. ) Let us consider problem

[MC] Wlth H = {hl, hg, hg, h4, h5, h6, h7, hg, hg, th} and Xh = {hs, h6, h7, hg, th}-

A maximal clique that solves [MC] is C = {h, ha, h3, hy}; b) Let us consider problem

[EC] with V' = {h1,ho,h3,hs} and X = {hg, h7,hs}. A clique that solves [EC] is
= {h2, h3}.

to h and the vertex H \ X" \ V" = {hg} can never belong to the vertex set C
that induces the maximal clique. Therefore we can restrict the problem from H to
{hy, ha, hs, ha, he, bz, hs ).

Let us thus consider a slightly different problem [EC].
Problem 8. [EC] Ezistence of an excluding clique.
INSTANCE: (V, X, E) defining a graph (V U X,E) with VN X = 0.
QUESTION: Is there a vertex set C C V that induces a cliqgue on (V,E) that is
mazimal in (CU X, E)?

Theorem 9 shows that the problem [MC] with input (H, E, h, X"*) can be solved by
means of problem [EC] with a different input derived by the input of problem [MC].

Ezample. Indeed let us consider the problem [MC|] depicted in Figure la) and
its restriction to the neighborhood of h of Figure 1b). The problem [MC] requires
to identify a maximal clique that has no elements in X" and includes h, such as
{h, ha, hg, ha} or {h, hq, he}. The problem [EC] requires to identify a vertex set C’' on
V = {h1, ha, h3, ha} that induces a clique such that for all elements in X = {hg, h7, hg}
there is at least one element in C’ not connected to it. Such cliques are {h1}, {h1, ha},
{ha,h3}, {h3,ha} and {ho, h3, hs}. For instance, let us consider {hs, hg}: the vertex
hg is not connected to hg, while the vertices h7 and hg are not connected to ho.
Proposition 9. Let us consider a graph (H,E), a subset of vertices X" C H and
a vertex h € H\ X". Let us define V" = {W'|(h,h') € E}, X = X"nVh, V =
VR X and Elyux = {(W,h") € E|W € V,h” € V.N X}. The problem [MC] with
input (H,E,h,X") has true as answer if and only if the problem [EC] with input
<‘/, X7 E|VOX> has.

The proof is provided in Appendix B.2.

We observe that problem [EC] requires to prove the existence of a clique rather
than identifying a maximal clique, as in problem [MC]. Moreover, the input of [EC)|
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is a smaller graph induced by the neighborhood of one vertex, h, in graph of [MC].
Therefore, from now on, let us focus on the analysis of [EC]. In the following theorem,
we prove that [EC] is NP-complete. Indeed, we reduce it to the problem of the existence
of the dominating clique [DC], which is known to be NP-complete (cf. Kratsch and
Liedloff (2007)).

Problem 10. [DC] Existence of a dominating clique

INSTANCE: A graph (H, E).

QUESTION: Is there a vertex set C C H that induces a clique on the graph such that
for every vertex h'' € H\ C there is a vertex h' € C such that (W',h") € E?
Theorem 11. In a generic graph the problem [EC| is NP-complete.

Proof. We present next a polynomial reduction from [DC] to [EC]. The argument of
the proof is illustrated in Figure 2. We consider the problem [DC] with input (H, E)

and define two vertex sets V = H and X = H, where H and H are copies of set H.
Let us also define a set of edges E' = {(i,5)]i,5 € V,(i,5) € E}YU{(i,j)|i € V,j €
X, (i,7) ¢ E}. We consider the problem [EC| with input (V, X, E’). By construction,
the input has size O(|H|?), i.e., it is polynomial in the size of the input of problem
[DC]. We prove now that [DC|] admits answer true if and only if the same happens for
[EC] with input (V, X, E’). If [DC] has answer true, there exists a vertex set C C H
that: (a) induces a clique on (H, E); (b) and such that, for each j € H \ C, there is
a i € C such that (i,7) € E. From (a) and the definition of sets V and E’, there is
a copy of C C V defining a clique in graph (V U X, E’). Also, from the definition of
E’ and from (b), for each j € X there is a ¢ € C such that (¢,j) ¢ E’. Therefore C
provides also an answer true for [EC].

We now prove that an answer true for [EC] provides an answer true also to [DC].
A vertex set C C V that induces a clique on (V U X, E’), clearly defines a clique on
(H,E). Tt holds that for all j € X there is i € C such that (i,5) ¢ E’. Since X = H

and V = H, with H and H copies of H, we have that for all j € H\ C there is a vertex
i € C such that (4,j) € E. Therefore C provides also a solution true for [DC]. O

On the graph of an extensive-form game. We have just proved that problem [EC] is
NP-complete for a generic graph. However, the graph generated by an extensive-form
game is not a generic one. Indeed, it is possible to identify a graph that corresponds
to no extensive-form games. The graph (H, E) of Figure 3 does not represent any
extensive-form game (cf. Appendix A.5).

4 New methods for the identification of Nash
equilibria

In this section, the theoretical results introduced in Section 3 are applied to derive new
methods for the computation of outcomes of Nash equilibria in two-player extensive-
form games with perfect information. Theorem 7 provides a necessary and sufficient
condition for an outcome to be a realisation of a Nash equilibrium. This result is the
pillar for the development of computational methods to the following questions: (i)
whether it is possible to enumerate the Nash equilibria and (ii) whether the realisation
of Nash equilibria can achieve a value of utility with a given range of values.
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Fig. 2: Reduction. a) Problem [DC] with H = {ha,hp,hc,hp,hp} and solution
C = {hp,hp}; b) Problem [CL] with V = H and X = H; the solution is given by

C={hp,hp}CV.
@ (H,E) (H, E°)
h \% X \% X

ha 0 {hs} | {hc.hp} 0
hg | {hahcy 0 0 {hp}
he | {hp}  {hs} 0 {ha}

hp 0 {hc} {hB} {ha}

Fig. 3: Counterexample. Preferences of the players over the outcomes are respec-
tively Uy :ha =1 he =1 hp =1 hg and us : hg =2 he =2 ha =2 hp.

In what follows, we exploit the results of Section 3.3 and introduce a linear system
that enables to determine if an outcome is the realisation of a Nash equilibrium.
Relying on this linear system, we introduce a method to enumerate all Nash equilibria
outcomes in Section 4.1, a method to provide an upper bound to their utility in
Section 4.2 and a method to provide the best or worst Nash equilibrium outcomes
for any player in Section 4.3. The latter is compared to the one provided by the
optimization problem by Von Stengel (1996).
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4.1 Nash equilibrium

The condition to verify if an outcome is the realisation of a Nash equilibrium intro-
duced in Theorem 7 requires to solve two instances of problem [EC| with input
(VUX, E) such that V N X = (. We recall that the solution obtained by solving the
problem allows to identify some possible outcomes C C V' of a strategy within the set
V such that we have the guarantee that the elements X preferred by the opponent
are not included. We provide a formulation [C'L] of problem [EC]:

[(CL]: zi+ay <1, Vi,i' eV, (i,i') ¢ E, (CL-1)
Yo x>l VjeX, (CL-2)

i€V|(4,j)¢E
z; €{0,1}, VieV. (CL-3)

Formulation [C'L] models any feasible solution of problem [EC]: z; = 1 if and
only if ¢ € C. Constraints (C'L — 1) impose that C induces a clique, while constraints
(CL — 2) guarantee that every vertex j € X is not connected to at least one vertex
i € C. Any solution to the linear system [C'L] provides a solution to problem [EC]
with input (V U X, E).

Theorem 7 imposes to solve two instances of the problem [MC] to determine if an
outcome is the realisation of a Nash equilibrium. We thus exploit the fact that the
problem [MC] can be modeled by formulation [EC] and define a unique linear system
[NE] that allows to determine if an outcome is the realisation of a Nash equilibrium.
Let us consider a two-player game in its graph form I' = (H, F,u) and an outcome
h € H. Let us define the following sets:

e Xy ={h € H|(N,h) ¢ E,ui1(h') > ui(h)}, the set of outcomes compatible with h
in the complementary graph, that are preferred by the first player to h;

o Xy ={h" € H|(h',h) € E,uz(h”) > us(h)}, the set of outcomes compatible with
h in the graph, that are preferred by the second player to h;

e V1 ={h € H\ X,|(IW,h) € E}, the set of outcomes compatible with A in the graph,
such that h is preferred to them for the second player;

o Vo, ={h" € H\ Xy1|(h',h) ¢ E}, the set of outcomes compatible with h in the
complementary graph, such that & is preferred to them for the first player.

The outcome h € H is a realisation of a Nash equilibrium if and only if the system
[N E] provides a solution:
[NE] T +x <1, Vi;ilevla(iai/)¢E’
ri+xy <1, Vi,i' € Vo, (i,7') € E,

Z Ty 2 ]-7 Vj S X2u
i€V, (4,5)¢E

o wmi>1, VjeX,
i€Va,(i,j)EE
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x; € {0,1}, Vie V3 UVs.

Given a game I' = (H, E,u), by applying [NE] to every h € H it is possible to
enumerate all the realisations of the Nash equilibria. In the following, we propose an
enumeration algorithm [EA] that iterates over all the outcomes and then solves [N E]
for every outcome.

Algorithm 1 [EA] Enumeration Algorithm
INPUT: Game in graph form T' = (H, FE, u)

NE « )

for h € H do > for every outcome of the game
X, ={W e H|(W,h) ¢ E,u1(h') > uy1(h)} > vertex sets and excluding sets
Xo={h" € H|(K',h) € E,uza(h”) > ua(h)} > for player 1 and player 2

Vi={h € H\ X3|(W,h) € E}

Vo = {h" € H\ Xu|(h", ) ¢ E}

solve [NE] giving (V4, Vs, X1, X5, E) as input > test if & is an outcome of a
Nash equilibrium

if system [N E] has a feasible solution then

NE < NE U {h} > Update the set of Nash equilibria outcomes

end if
end for
OUTPUT: NE

4.2 Upper bounds for Nash equilibria

In this section, we compare two methods to compute upper bounds for the utility of
the first player when a Nash equilibrium is played. The most known formulation for
extensive-form games is the one introduced by Von Stengel (1996), which provides
a Nash equilibrium for zero-sum games. Recently, this formulation has been proven
to provide an upper bound to the utility of the first player of any Nash equilibrium
(cf. Zappala et al. (2022)). This method is based on the concept of sequence, which
is a vector of actions played by a same player. Given a game I' = (Z, A, H', P, u)
and a history ' € H', we denote by seq; = (hir) a sequence of actions played by
player ¢ according to h'. We write b/ = (seq1, seqa) to show that to every history A’
correspond two sequences seq; and seqa. We consider Ay and As, respectively, the set
of all sequences of the first and second player. Let z € {0,1}A1] and y € {0, 1}l
be the vectors defining the probability for a sequence to be played. We define the
matrix U’ : A; x A, — R that maps each couple of sequences to the utility of player i:
Ulear.seqs = wi(h) for all h = (seq1, seqa) € H; Ul o0, = 0if b/ = (sequ, seqz) ¢ H.
The utilities of the players can thus be written in the form 7 U'y and 27 U?y. The
formulation defining the set of possible sequences is constrained by the fact that if an
action is taken at a node of the game, such decision must be considered also in the
following ones.
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All such causal constraints, written Ex = e and Fy = f, respectively, for the first
and the second player, will be built according to the same principle. Finally, the upper
bound of any Nash equilibrium is given by the solution of the following bilevel problem
denoted by [V S].

[VS]: uwVS =max 27U
st. Ex = e,
z e [0,1)A ]
7 =argmax xlU%
y
st. Fy=f,

y e [0,1]HA=!,

The optimization problem [V S] has size O(|H|) (cf. Von Stengel (1996)). We now
formulate [V S] as a linear optimization problem. Note that, as anticipated in Section 2,
we are only interested in solutions corresponding to pure strategies. Therefore we can
add the integral constraints:

z; €{0,1} Vje Ay, (1)

yr € {0,1} Vk € As. (2)
We will also introduce the variable wj, € [0,1], which allows to linearise the
formulation by rewriting z; - yr, = wjj as:

r; > wir Vi€ A,k € A, (3)
Yk > wir V5 € Ak € Ay, (4)
ity <14+wje VieALkeAs, (5)
Wik € [0, ].] Vj S Al,k? S AQ. (6)

In the second level of problem [VS] the optimal @ := us(y) € R is achieved for some
k € Ay, i.e., we can write

— 2 )
U = max E U2 |,

keA
2 JEA

u e R. (7)

Since only one sequence k € A must be chosen, the constraint F'y = f is replaced

by
Z yr = 1. (8)
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The constraint EFx = e when written explicitly corresponds to:
Z Elj c Xy = 0 Wi (9)
JEAL

We now reformulate the second level of [V'S], using a set of linear constraints. Let us
denote by T € R the maximum utility for the second player. Also, we set a large value
M > 0 to use the following classical big-M constraints:

N Up-w; <0, Yk €A, (10)
JEA
N Ui -x;zu— M1 -y), VkeA,. (11)
JEAL

The bilevel problem [V S] is then denoted by [V.S — L], and written as follows:

Vs —1]: u®=max 3 > Uy
T jEAL KEA,
st (1—11)

Note that adding a constant value to the utility function does not change the
solution, therefore we can assume szk > 1 for all j € A; and k£ € Ay. Under this
assumption, we can add the following inequality:

ye < Y Uh-xj Yk €A, (12)
JEMA

which is valid for [V'S], since yp =0 <= 3,4, Ujgk-a:j =0andy, =1 < Jje
such that z; = 1.
Let us denote by [V'S — L2] the resulting formulation:

[VS—L2]: uy® = max Z Z Ujy, - wiik
T jEAL ke,
st (1-12).

In what follows, we introduce a new algorithm, called [UBA] and described in Algo-
rithm 2, that allows to compute an upper bound of the utility of the first player when
a Nash equilibrium is played. We show that such upper bound is the same as the one
provided by [V'S]. The algorithm starts by ordering the outcomes in decreasing order
of utility of the first player. Every outcome is then evaluated by solving problem [EC]
with input (Vi, X, E). If the existence of a clique is proven for [C'L] the algorithm
stops and an upper bound is found. As remarked previously, since the procedure tests
a necessary and yet not sufficient condition, the outcome found is not necessarily a
realisation of a Nash equilibrium. Both [V S] and [UBA] provide the best outcome for
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the first player that can be a best response of a strategy of the second player, a neces-
sary condition for the outcome to be a realisation of a Nash equilibrium. Theorem 12
thus proves that the two methods provide the same upper bound.

Theorem 12. Consider a game T’ = (Z, A, H, P,u) and its graph form (H, E,u). Let
uY® and u¥'BA be the optimal values obtained when [V S] and [UBA] are applied to
game T, then we have u}® = u¥/ B4,

Proof. We define the set of all the outcomes that can be a best response of the
second player to a strategy of the first player, BRy = {h € H|3s; € S;,h =
arg maxy, ¢ gr(s,) u2(h’)}. We show that u¥® = uYBA = maxycpp, ui(h). First, we
observe that BRy corresponds to the set of feasible solutions of [VS] and thus
u}® = maxpepr, u1(h). Let us prove that uY54 = maxuepr, ui(h). Given h € H,
X ={h € H|(W,h) € E;u1(h') > ui1(h)} and V = {h' € H\ X|(W,h) € E}, let
us consider HF the set of h € H such that problem [CL] with input (V, H, E) has
answer true. Then we have u{54 = max;c e ui(h). Moreover, for all h € HEF let
us consider a strategy sf € S; such that V C H(s%) and H(s})N X = (). By definition
of HYE for each h € HYL we have h = arg MaX, ¢ p(sh) w1 (h), which implies h € BRs.
Analogously, if h ¢ HEF there is no s; € S; such that h = arg maxy, ¢ g (s,) w1(h) and

thus h ¢ BRy. Since H°L' = BR,, we have uY54 = maxycpr, u1(h). O

Algorithm 2 [UBA] Upper Bound Algorithm
INPUT: Game in graph form I' = (H, E, u)

HZ' = order(H, =) > h =1 b iff ug(h) > ug(R)
index =0 > Start with the outcome of largest utility for player 1
do

h = HZ(index) > Select the outcome corresponding to index

UBA _

uy =uq(h)

Vi={h e H\ X5|(W,h) € E} > vertex set for player 1

Xo ={h" € H|(W',h) € E,uz(h”) > uz(h)} > excluding set for player 1

solve [CL] giving (Vi, X, E') as input
indexr = index + 1

while [C'L] has no solution

OUTPUT: «{B4

4.3 Best and Worst Nash equilibrium

Note that the algorithms [V'S] and [U BA] introduced in Section 2.2 do not provide the
tightest upper bound to the utility of the Nash equilibria (cf. Appendix A.6). In this
section, we introduce an algorithm that provides a Nash equilibrium outcome whose
utility is the highest for the first player. The algorithm [BNE] consists in ordering
the outcomes from best to worst with respect to the utility function of the first player
and then picking the first of them that is a realisation of a Nash equilibrium, i.e., for
which [NE] admits a feasible solution. Analogously, it is possible to identify the Nash
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equilibrium with the lowest utility for the first player, by ordering in reverse order the
outcomes. The algorithm [WW N E] is presented together with [BN E| in Appendix B.3.

5 Numerical results

To our knowledge, the only method for enumerating the pure Nash equilibria of
extensive-form games is a brute-force transformation of the game in normal form. This
approach requires an enumeration of the exponential number of strategy profiles of
the game, which cannot be tested numerically, unless we limited the size of games to
few (less than 20) outcomes.

For this reason, in this section, we assess the performance of the methods intro-
duced in Section 4 through several series of experiments. To our knowledge, there is no
standard library of extensive-form games in the literature. For this reason, we devel-
oped a new library presented in Section 5.1. The methods that provide bounds to
the utility of Nash equilibria and those who enumerate them are analysed separately,
respectively in Section 5.2 and in Section 5.3. The experimental study was conducted
on a Intel Xeon CPU 2.20 GHz with 13 GB RAM. The algorithms were implemented in
Python 3.8. The solver used to solve all Mixed-Integer Linear Programming problems
is GLPK (cf. Makhorin (2008)).

5.1 Library of extensive-form games

Extensive-form games with perfect recall and perfect information have never been
categorised. We thus introduce a new classification of games based on three key fea-
tures: the structure of the game-tree, the size of the game and the wtility function.
This allows to challenge our algorithms on a wide range of game instances and anal-
yse their efficiency. The proposed classification will be used to create a new library of
extensive-form games. More precisely, the structure of a game captures the properties
of the shape of the game-tree. The size of the game (i.e., the number of outcomes)
allows us to better assess the scalability of methods. Finally, once structure and size
are fixed, the only parameter that varies in a game is the utility function, which we
provide different families of functions for.

Each instance of the dataset is referred to with a specific name encoding the three
key features of the game. Such encoding is shown in Table 1. The games’ structure is
encoded as follows: Rn indicates that the number of actions at every child of a node
I’ € H is chosen uniformly at random U({0, ..., n-[A(R')|}), given the constraint that
they have on average n actions; Cn indicates that every node has the same number
of actions, with n actions per node; and finally Un indicates that, at every node, all
actions but one lead to an outcome, with n actions per node. The players’ utility
is encoded as follows: R if the utility of an outcome is chosen uniformly at random
U([0,1]) in the interval [0,1]; D if the utility is chosen randomly from a discrete set
U({1,...,10}), namely a natural integer between 1 and 10; Z if the game is zero-sum,
i.e., at every node h € H the winner is chosen at random ¢ € {1, 2} and gets u;(h) = 1,
while the loser gets 0; A if the game is zero-sum and the winner has a utility chosen
randomly from a discrete set U({1,...,10}); F if the utility is chosen randomly from
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Label Structure Definition
R Random Every node has a random number of actions.
C Complete Every node has the same number of actions.
U Totally Unbalanced At every node all children but one are outcomes.
Label Utility Definition
R Random ui(h) ~U(0,1), Vi € {1,2}, Vh € H
D Discrete ui(h) ~U({1,2,3,...,10}), Vi € {1,2}, Vh € H
Z Zero-sum ui(h) =1, u;(h) =0,i~U{1,2}),i# 4, Vhe H
A Asymmetric ui(h) ~U({1,2,3,...,10}), uj(h) =0, i ~U({1,2}), i #j,Vh e H
F Indifferent u1(h) = ua2(h) ~U(0,1), Vh € H
E Equal ui(h) =1,Vie {1,2}, Vhe H

Table 1: Label encoding of the games. Upper table: coding of the structure of the
tree. Lower table: coding of the utility function.

U([0,1]) at every outcome and it is the same for the two players; E if every utility of
every outcome has constant value. The latest value of a label is the size of the game.

Ezample. An instance of game labeled C4E100 has 100 outcomes, every node has
4 actions (C) and utility is a constant function (F).

The library is publicly accessible (cf. Zappala (2023)) and composed of three
distinct datasets. Dataset 1 contains 21 extensive-form games which vary in their
structure, within the range {R, C, U}, and in their size {100, 216, 324, 400, 512, 625,
729}, but not in their utility, which is always Random R. Dataset 1 has games of
smaller size, i.e., small enough to manage methods already known in the literature,
that provide bounds to the utility of Nash equilibria; Dataset 1 is used in Section 5.2.
Dataset 2 has 72 extensive-form games which vary in their structure {R, C, U}, size
{256, 729, 1296, 2401} and utility {R, D, Z, A, F, E}. Dataset 3 has 75 extensive-
form games of size 729 which vary in structures {R, C, U} and utility {R, D, Z, A,
F'}. Dataset 2 and 3 have games of larger size, that are used to assess the method
to enumerate the Nash equilibria outcomes. They are used in Section 5.3. Dataset 2
includes games with different characteristics; it enables us to assess the method on
a large variety of games. Dataset 3 includes 75 games with size 729, gathered in 15
groups, each one with 5 games having the same encoding. The 15 groups are built
alternating 3 different structures {R3729, C3%729, U5%729} and 5 different utilities
'« € {R,D,Z, A, F}. The utility E has been discarded, as we show next that it does
not need further analysis. The analysis performed on Dataset 3 allows to understand
the variability of the results obtained for Dataset 2.

5.2 Bounds to the utility of Nash equilibria

We first test the methods introduced in Section 4.2 and in Section 4.3 on Dataset
1. The reference methods known in literature, i.e., the branch and bound algorithms
used to solve formulations [V'.S — L] and [V'S — L2], are compared to algorithm [U BA]:
they all provide the same upper bound to the utility of the first player in a Nash
equilibrium. We recall that the proposed algorithms [BNE] and [W N E| provide the
tightest (respectively, upper and lower) bounds to the utility of every Nash equilibrium.
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Game Computation time (s) Iterations
Label Size | Structure | [VS-L] | [VS-L2] | [UBA] | [BNE] | [WNE] | [UBA] | [BNE] | [WNE]
R4R100 100 R 4.85 3.69 0.09 0.14 0.98 12 12 69
C10R100 100 C 0.32 0.46 <0.01 <0.01 0.10 1 1 30
U4R100 100 U 2.22 2.75 0.02 0.18 0.57 29 29 35
R4R216 216 R 51.34 44.23 <0.01 <0.01 1.53 2 2 124
C6R216 216 C 10.45 22.87 0.04 0.38 9.97 6 7 164
U6R216 216 U 19.43 12.03 0.06 0.61 2.24 39 39 178
R5R324 324 R 324.76 282.29 0.04 2.93 9.35 5 5 287
C18R324 | 324 C 2.11 2.97 0.01 0.28 0.22 5 5 57
U18R324 | 324 U 26.42 25.37 0.03 1.48 5.22 13 13 312
R5R400 400 R 512.75 461.24 2.20 2.71 9.49 32 32 334
C20R400 | 400 C 2.83 2.83 0.03 0.46 0.27 12 12 69
U4R400 400 U 234.33 248.02 0.27 2.21 5.68 60 60 341
R6R512 512 R 1918.39 | 1469.56 0.53 4.12 26.97 47 78 428
C2R512 512 C 1594.47 | 1114.76 0.25 0.38 161.49 1 1 317
U8R512 512 U 192.89 176.96 0.27 3.50 16.66 63 89 424
R6R625 625 R > 1h > 1h 0.11 7.18 24.97 15 15 558
C5R625 625 C 95.0 95.92 0.30 2.08 .77 22 22 182
U4R625 625 U 818.2 854.45 0.04 7.94 29.96 4 4 622
R7RT729 729 R > 1h > 1h 11.13 9.31 24.71 56 56 419
C3R729 729 C 104.33 126.89 0.02 3.02 32.75 3 3 244
U14R729 | 729 U 255.96 247.0 0.17 15.19 29.92 30 45 685

Table 2: Comparison of the CPU time for computation of Algorithms providing
bounds to the utility of NE. Every line is an instance. Running time is measured in seconds.
Time limit is set to 1 hour (> 1h indicates that such limit is reached). The instances in which
[BN E] tightens the bound of [UBA] are underlined.

Table 2 reports the computation time for every instance of each algorithm as well as
the number of iterations for the three iterative algorithms [UBA], [BNE] and [W N E].

Comparison of [UBA] vs [V.S — L] vs [V.S — L2]. First and main result is that the
algorithm [UBA] overcomes the methods relying on [V.S — L] and [V.S — L2] by some
orders of magnitude. The method [UBA] computes the upper bound to the utility of
Nash equilibria at least > 40 times faster than [V'S — L] and [V'S — L2]. Second, we
highlight the quality of the valid inequality added in [V'S — L2]. Indeed, we observe
that it improves the computation time with respect to [V.S — L] in 10 out of 21
instances and reduces of around 30% the computation time in instances like R6R512
and C2R512, which require more than 25 minutes for [V.S — L]. Both [V.S — L] and
[VS — L2] perform 17% to more than 99% faster on structures C and U than those
of type R; we ascribe this to the fact that these games present fewer nodes and thus
require fewer constraints in the linear formulation.

Comparison of [UBA] vs [BNE] vs [WNE]. Algorithm [BN E] allows us to tighten
the upper bound in 4 instances out of 21, thus showing that [UBA], [VS — L] and
[VS — L2] do not always achieve the tightest bound. In Table 2, the few instances in
which [BNE] tightens the bound are underlined, whereas in the other 17 out of 21
instances the number of iterations does not change. As predicted, [BN E| is slower than
[UBA], but still performs more than 6 times faster than both [V.S — L] and [V.S — L2]
in average on this dataset. Algorithm [W N E] requires a larger computation time than
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Label Structure | Utility | NE | Xgog tiot tavg tmaz
R3R729 R R 4 182.0 115.99 0.16 34.46
R3D729 D 18 163.8 31.92 0.04 7.91
R3Z729 Z 4 91.0 10.06 0.01 2.24
R3AT29 A 8 133.4 100.32 0.14 6.63
R3F729 F 12 182.0 83.15 0.11 8.23
R3E729 E 729 0.0 0.48 <0.01 | <0.01
C3R729 C R 76 182.0 881.46 1.21 4.76
C3D729 D 98 163.7 | 999.99 1.37 18.79
C3Z729 Z 271 91.1 466.35 0.64 3.64
C3AT729 A 90 139.1 1297.1 1.78 9.10
C3F729 F 133 | 182.0 | 1039.19 1.43 6.75
C3E729 E 729 0.0 0.46 <0.01 | <0.01
U5RT729 U R 3 182.0 43.63 0.06 8.55
U5D729 D 7 163.9 20.99 0.03 7.24
Ub5Z729 Z 1 91.0 3.78 0.01 0.02
U5AT729 A 1 137.1 44.55 0.06 8.75
U5FT729 F 8 182.0 39.94 0.05 7.67
U5E729 E 729 0.0 0.48 <0.01 | <0.01

Table 3: Application of Algorithm [FA] on games of
Dataset 2 with size 729. Every line is an instance. Computation
time is in seconds.

[BNE] in 19 out of 21 instances. In fact, it always has a larger number of iterations
than [BNE]. Indeed, [W N E] first checks the outcomes with lowest utility for the first
player, those are unlikely to correspond to the best response of the first player. It takes
thus far more time to identify an outcome which is a best response for both players.

5.3 Enumeration of realisations of Nash equilibria

In the next experiment, we tested the methods introduced in Section 4.1 on Dataset
2 and on Dataset 3. We have measured the performance of Algorithm [E'A] while
enumerating the Nash equilibria outcomes of every instance.

Analysis on Dataset 2. For the space’s sake, in Table 3 we display only the results
for all the games’ instances with size 729. More precisely, for each game, we show how
many outcomes are the realisations of Nash equilibria NE, the average size X, of
all sets X7 and X5, the total time required to run the algorithm t;.;, the average time
tavg and the maximal time t,,4, for an outcome of the game. In addition, Figure 4
displays the average time and the maximal time required to execute the algorithm
on a game outcome, and the percentage of Nash equilibria identified among all the
game’s outcomes.

Impact of the size on performance. As expected, the computation time increases
with the size of the game (cf. Figure 4). Algorithm [E A] iterates over the outcomes and
requires to solve system [N E] for each outcome. When the size of the game increases,
on average the size of system [N E] increases accordingly. However, if the size is fixed,
the structure and the utility function have a fundamental impact on the computation
time.
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Label Structure | Utility NE ttot tavg tmaz
R3R729 R R 17.2 206.61 0.28 7.11
C3R729 (@] 75.2 883.40 1.21 28.89
U5RT729 U 2.0 47.42 0.06 9.72
R3D729 R D 38.6 149.10 0.20 5.39
C3D729 C 101.8 1240.58 1.70 69.77
U5D729 U 8.0 12.96 0.02 4.37
R3Z729 R 7 31.4 70.24 0.10 4.01
C37729 C 276.6 | 654.16 0.90 26.68
Ub5Z729 U 1.8 4.34 0.01 0.02
R3A729 R A 10.0 250.22 0.34 4.96
C3AT29 C 95.4 1523.49 | 2.10 | 167.65
UB5AT729 U 1.8 40.07 0.06 7.74
R3FT729 R F 91.4 364.85 0.50 6.86
C3F729 C 132.8 1354.45 1.86 121.96
U5F729 U 8.8 58.53 0.08 7.72

Table 4: Application of Algorithms of [F'A] to Dataset
3. Every line shows the average value of 5 instances having
the same label. All games have size 729. Computation time
is in seconds.

Impact of the utility function on performance. In the degenerate case FE, when
outcomes all have same utility value, solving system [N E] gets trivial for each outcome
and thus the computation time of each iteration is negligible (cf. Table 3). Indeed, the
sets of outcomes to be excluded X; and X5 are empty at every iteration. For such case
building the graph is not even necessary. We observe that the computation time is
lower for the case Z, as the sizes of X; and X, are smaller. We cannot infer significant
correlations on the other cases (R, D, A, F') and we thus defer such analysis to Dataset
3.

Impact of the structure on performance. The structure of the game influences the
average time necessary to verify if an outcome is the realisation of a Nash equilibrium.
Indeed, we observe in Figure 4 that in games with the same size those whose nodes
have the same number of children (structure coding C) require more time on average to
compute an equilibrium. This is due to the fact that the neighborhoods of an outcome
V1 U X5 and V5 U X5 in the graph and its complementary have always the same size
in both parts of system [NE]. On the other hand, in games with more asymmetrical
structure (structure coding R and U) one of the two graphs is often smaller and thus
the corresponding [N E] is much faster to be solved in practice.

Analysis of Dataset 3. Table 4 shows the average of performances on 5 sample
games for each one of the 15 patterns. The outcomes are chosen with uniform random
probability. Every curve of Figure 5 shows the computation time distribution of [N E]
for an outcome of a game. The 15 curves provide such result for the 15 games having
the same utility coding. Namely, every line appearing in the plots shows for every
game type I' = (Z, H,u) the function f(t) = P(¢t(h) < t|h € H), i.e., the probability
that the algorithm solving system [N E] takes less than ¢ seconds to determine if h is
the realisation of a Nash Equilibrium.
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Impact of the structure on performance. These numerical results show empirically
that the structure is the main factor influencing the performance of the algorithm
solving system [NE]. Indeed, on a game with totally unbalanced (U) structure it
takes a negligible time for the vast majority (around 99%) of the outcomes of a game
instance (cf. Figure 5). On the other hand, on a game with complete (C) structure the
algorithm such percentage decreases to 20 — 50%. The algorithm performs in between
the two extremes for a game with random (R) structure.

Impact of the utility on performance. We observe on Table 4 that the best per-
formances are obtained for zero-sum games (coding utility Z) for the same structure.
This is due to the fact that when the utility is equal to 1 the set of outcomes to be
excluded X is empty (cf. Table 3). One of the two sides of the problem is always
trivial. If the game switches from utility Z to A, i.e., if the player that wins gains a
value between 1 and 10 instead of just 1, the property that makes one of the prob-
lems trivial is lost. Indeed, games with coding A have performances comparable to
those with other utility codings (R, D, F'). One might thus assume that increasing
the granularity of the utility might make the algorithm less efficient. However, we do
not observe any significant difference in the computation time while comparing (D)
(u; ~U{1,...,10})) to (R) (u; ~U(0,1)).

5.4 Obtaining insights on Nash equilibria of extensive-form
games

To the best of our knowledge, Algorithm [FA] is the first one proposed to enumerate
the Nash equilibria outcomes of an extensive-form game that does not resort to brute
force. Besides the analysis of its complexity, we can also provide further insights of
the numerosity of Nash equilibria in a game.

The number of possible realisations of a Nash equilibrium can vary from 1 to the
number of outcomes of a game. The latter case implies that the utility function is
constant (case F). However, in the generic case the number of Nash equilibria highly
depends on the structure of the game-tree. We observe from Section 5.3 that games
with a totally unbalanced structure (U) tend to host fewer Nash equilibria. This is due
to the fact that if there is an outcome with great value to a player, she might choose
to stick to it, and the opponent has few options to build a strategy that redirects her
to an outcome that lies deeper in the tree. If an outcome with great value happens
to lie at a very high level of the tree, the lower levels hardly host other realisations
of Nash equilibria. The converse tends to occur as well, i.e., in a generic game with a
complete structure (C) we typically observe many more Nash equilibria than in the
unbalanced case. This follows the intuition that in a complete game structure a player
can find more combination of strategies to convince the opponent to switch her best
response to a different outcome.

6 Conclusions

In this paper, we introduce a new representation for a two-player extensive-form game
with perfect information as a graph of its outcomes. We prove that identifying a Nash
equilibrium outcome of an extensive-form game corresponds to identifying two cliques
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on such graph and its complementary. Thanks to this result, we introduce the first
method of the literature to determine if an outcome of an extensive-form game is a
realisation of a Nash equilibrium. Such method allows to define the first algorithm
to enumerate the realisations of all Nash equilibria of an extensive-form game. The
algorithm performs very well on a sample dataset of games of different structures and
sizes. Moreover, it is possible to reframe the algorithm so that it provides any given
bound to the utility of all Nash equilibria. Such algorithm performs significantly better
than the most known method in literature, which provides a (not always the tightest)
upper bound to the utility of Nash equilibria.

We foresee several extensions for this work. First, we do not fully exploit the
properties of the graph form to improve the efficiency of the proposed algorithms.
Second, it would be interesting to devise methods to parallelize the computation of the
Nash equilibria outcomes in large instances. Finally, the categorisation of extensive-
form games suggests that more efficient methods can be designed for some specific
classes of games. For instance, customized algorithms can be written to compute the
compatibility of two outcomes. A possible extension of this results would be eventually
to extend the numerical results to larger games with mixed strategies, with more than
two players and with imperfect information.
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Appendix A Examples

A.1 Extensive form

We consider an example of extensive-form game, whose representation is the tree of
Figure Al. The game I' = (Z, H,u) with two players Z = {1,2} is represented by
a tree, which allows to show all the possible actions. The first player observes no
actions () and she picks an action in the set A(0) = {ai,az}. If she picks action
az, the game arrives to the outcome hy = (az) € H. On the other hand, if she
picks action a;, the second player observes it and picks an action from the set
A(ar) = {b1,b2}. If the second player picks action by, she gets to the outcome
hs = (a1,b1) € H. Analogously it is possible to get all the other outcomes of the game:
hg = (al, bg, as, bg), h4 = (al, bQ, as, b4), h5 = (al, bg, a4, b5), hﬁ = (al, bg, a4, b@)
The set of outcomes is therefore H = {hq, ha, h3, ha, hs, he}. The set of histories is
instead H' = {@, hl, (al), hQ, (&1, bg), (al, bQ, ag), (a1, bg, a4), h3, h4, h5, hﬁ} The func-
tion P maps respectively H' \ H = {0, (a1), (a1,b2), (a1, b2, a3), (a1,b2,a4)} to the
players acting at such nodes {1,2,1,2,2}. The utility function u : H — R? evaluates
the outcomes. For instance, we can have u(h;) = (2,0), where uy(h1) = 2 is the eval-
uation given to hy by the first player and ua(hy) = 0 is the one given by the second
player. For the game in Figure Al we assume that u(hs) = (3,4), u(hs) = (8,11),
u(hg) = (1,9), u(hs) = (5,1), u(hg) = (9, 3). The value of the utility allows to under-
stand which outcomes are preferred by the players. For instance, the second player
prefers hg to hg because uz(hs) = 11 > 3 = ua(hg). We write alternatively h >; h’ to
show that w;(h) > w;(h’). In the caption of Figure A1 all the preferences among the
outcomes are given, based on the values assigned by the utility function.

Strategies. In the game of Figure A1l the first player acts at two different moments
in which she observes respectively ) and (a1,bs): we have thus Hy = {0, (a1,b2)}.
According to Definition 2, a strategy for player 1 is a function that maps every history
observed in H; to an action that can be chosen by her. In Figure A1 the choices of the
players are marked by thicker arrows. In the example, the first player picks strategy
s1, where s1(0) = a; and s1(a1,b2) = ag. With some abuse of notation, we write
s1(aq,bs) instead of s1((a1,b2)) to simplify the notation. The histories observed by the
second player are Hy = {(a1), (a1,b2,a3), (a1,b2,a4)}. In Figure Al the second player
picks strategy so, where: sa(aq1) = by; so(aq,be,as) = bs; sa(a1,bs, aq) = bg.

Application of Theorem 1. We apply Theorem 1 to the game of Figure Al. The set
of the outcomes of Nash equilibria is {ho, h3}. If we compute the solution of [ST] for
such game, we get (51,52) € S1 X So, where 51(0) = a1, 51(a1,b2) = as, 52(a;) = by
and Sz (aq,ba, ag) = bs. The realisation of the strategy profile (31, 32) is hz. Coherently
with Theorem 1, the solution wu; (hs) is, indeed, an upper bound for the utility of every
outcome in the set of Nash equilibria {hg, hs}.

Sequences. We consider the framework introduced in Section 4.2. The sequences
of the first player are Ay = {0, (a1), (a2), (a1, a3), (a1,a4)}, while the sequences of the
second player are Ag = {(Z), (b1), (bg), (bg, b3), (bg, 1)4)7 (bQ, b5), (bg, b6)} If the first player
chooses action ai, she must choose either action az or a4. Therefore the constraint
T(ay) = T(ar,a3) T T(ar,aq) 18 added to the formulation. Similarly, if the second player
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Fig. Al: An extensive-form game in its representation as a tree. Preferences.
The order of preference for the first player is: hg =1 hg >=1 hs >=1 ho =1 h1 =1 h4.
The order of preference for the second player is: hy >o hy =2 ho >2 hg =2 hs >=2 hy.
Strategies. The two players choose respectively s; and s as strategies. At nodes () and
(a1,bs) the first player chooses respectively s1(0) = a; and s1(a1,b2) = ag. At nodes
(a1), (a1,ba,a3) and (a1,be,as) the second player chooses respectively sa(ai) = by,
82(@1, bg, a3) = b3 and Sz(al,bg, a4) = bG.

chooses action bs, she must choose at least one action among {bs, by, b5, bg }. Therefore
we add the constraint y(u,) = Y(bo,bs) T Y(ba,ba) T Y(ba,bs) T Y(ba,be)-

A.2 Graph form

We take into account the game of Figure Al with its corresponding graph form in
Figure A2a). Let us show, for instance, that outcomes hs and hy are compatible. We
define: s; € S7 such that s1(0)) = a1 and s1(a1,b2) = as; s2 € Sy such that so(ay) = by;
sh € So such that sh(ay) = be and sh(aq, ba, ag) = by. We have that (s1,s2) — he and
(81,8%) > hg: they are therefore compatible. On the other hand there is no strategy of
the first player that can lead to both hs and hq, because different actions would occur
at the beginning of the game, i.e., at node (). With similar arguments, it is possible to
build all the graph form of the game.

Strategies. We consider the game of Figure Al and a strategy s; € Sy such that
51(0) = aq and s1 (a1, b2) = a4. By definition we have that H(s1) = {hs, hs, h¢}, which
induces indeed a maximal clique in the graph of Figure A2a). Four different strategies
are available in S; to the first player, since we have two different actions that can be
played for every node ) and (a1, by). There are 3 maximal cliques in graph (H, E), i.e.,
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Fihes ar; (a1, be) = a3

ho, h3, ha}

@ Sl

10— ag; (a1, ba) — a4
{hz,hs5, he}

‘v {1}

5300 — az; (a1, b) — ag

5100 = ag; (a1,b2) = ay

(a) Graph form representation of  (b) Every strategy for the first player induces a max-
the game of Figure Al. imal clique of the graph.

Fig. A2: Strategies as maximal cliques

those induced by the sets of outcomes {h1}, {ha, hs, ha} and {ha, hs, he}, respectively.
This small example shows that the graph form is a less redundant representation of
the strategies of the players than the normal form. In fact, two different strategies
induce the set of outcomes {h1}.

A.3 Application of Theorem 7

We consider the game in extensive form of Figure A3a) game which can be solved
by direct inspection of the graph. Indeed, let us enumerate the realisations of Nash
equilibria of the game by applying Theorem 7 to every outcome. In this example, the
preferences of the players over the outcomes are respectively uy : hg >=1 hq =1 hs =1
he =1 hg =1 h7 =1 ho =1 h1 and ug : h1 =9 ho =9 hyg =9 hg =9 h5 =2 hg =2 h7 =9 h3.
In order to apply Theorem 7 we consider the graph (H, E) of the game depicted in
Figure A3b). By directly inspecting this graph and its complementary (H, E€) (cf.
Figure A3c), we achieve the following results.

® )y is not an outcome of a Nash equilibrium: hy is the outcome least preferred by
the first player. There is no strategy of the second player, i.e., there is no maximal
clique on the complementary graph (H, E€) which includes h; alone;

® )5 is not an outcome of a Nash equilibrium: the only maximal cliques on the comple-
mentary graph including ho are {h1, ha, hs}, {h1, ho, h¢} and {h1, ha, h7, hg}, but in
none of these cases hs is the favourite outcome by the first player. This means that
there is no strategy of the second player such that ho corresponds to the outcome
of the best response of the first player;

® )3 is not an outcome of a Nash equilibrium: it is the least preferred outcome by the
second player. Any maximal clique on the complementary graph which includes hg
also includes another outcome which is preferred by the second player to hs;

® ), is not an outcome of a Nash equilibrium: every maximal clique on the comple-
mentary graph which includes h4 also includes hg, which is preferred by the first
player to hy;
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® )5 is a possible outcome of a Nash equilibrium: we identify the maximal cliques
{hs, he, h7} and {hq, ho, hs} respectively on the graph form and its complementary.
In both cases hs is the preferred outcome, respectively by the second and the first
player;

® hg is not an outcome of a Nash equilibrium: every maximal clique in (H, E') which
includes hg also includes hs, which is preferred by the second player to hg;

® hy is not an outcome of a Nash equilibrium: every maximal clique on (H, EX) which
includes h; also includes hg, which is preferred by the first player to hr;

® hg is a possible outcome of a Nash equilibrium: we identify the maximal cliques
{hs, he, hg} and {hy, ho, h7, hg} respectively on the graph (H, E) and its comple-
mentary (H,E®). In both cases hg is the preferred outcome, respectively by the
second and the first player.

hs he
hl hg h3 h4 h? h8

(a) Game in extensive form.

Xéw

(b) Graph form of the game. (¢) Complementary graph form (graph
form of Player 2).

Fig. A3: Example. Preferences of the players over the outcomes are respectively:
uy : hg =1 hg =1 hs =1 hg =1 hg =1 hy =1 ho =1 h1 and us : hy >9 hg >9 hg =9
hg =9 hs =9 hg =2 hy =2 h3.
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Fig. A4: Example. System [CL] is applied to the graph in figure, with V =
{hz,h3,h4} and X = {h17h5}.

The only two outcomes which are possible realisations of Nash equilibria are thus
hs and hg. It is interesting to notice that they are not Pareto-optimal, since h4 is
preferred by both players. The Subgame Perfect Equilibrium of a game is also a Nash
equilibrium, therefore it must be either of the two outcomes. Indeed, by backward
induction it is proven to be hg.

A.4 Formulation of [CL]

Let us consider the graph (H, E) of Figure A4 and evaluate h as a possible realisation
of a Nash equilibrium. We would like to answer if h is the best response for a player ¢
(it is not necessary to specify which player in this mock example), i.e. h to be the best
outcome of a strategy. We assume given that hy >; h and hs >; h. In order to answer
this question, we would like to solve the problem [M C] with input (H, E, h, X"*), where
X" = {hy,hs} and h is just a parameter of the problem. This corresponds to solve
the problem [EC] with input (V, X, E), where V' = {hg, h3, hq} and X = {hy, h5}. We
thus look for some elements in V' that could guarantee the existence of a strategy that
includes h and none of the elements in X. We apply the system [C'L]. For every vertex
i € V let us introduce the variable x; € {0,1} which is equal to 1 if vertex ¢ € V is
included in the clique. The vertex hs is neither connected to hz nor to hy, therefore
the constraints o +x3 < 1 and x5+ x4 < 1 are added. The only vertex not connected
to hi is vertex hy4, therefore it must be included in the clique: x4 > 1. Both vertices
ho and hg are connected to hs, therefore at least one of them must be included in the
clique: 3 + x5 > 1. The system [CL] for the graph of Figure A4 is thus:

xo+x3 <1, ©>(ha,h3)¢ FE
xot+x4<1, > (ha,hs)¢FE

4 >1, > (hg,h1) ¢ E
vy +x3>1, > (he,hs) ¢ E,(h3,hs) ¢ E

XT2,T3,Tq4 € {0, ].}
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A.5 Graph that represents no game

Let us consider the graph (H, F) of Figure 3 and show that it is not the graph form
of an extensive-form game. If it were the graph form of an extensive-form game, any
preferences could be assigned by the players to the outcomes, i.e. any utility function
u can be chosen. We consider a utility function such that the preferences over the
outcomes are respectively ui : ha =1 ho =1 hp =1 hp and us : hp =2 ho =2 ha =2
hp. We show that if this graph were generated by a game, it would have no Nash
equilibria. This is a contradiction, because every extensive-form game has at least
one Nash equilibrium. The table of Figure 3 shows the analysis for every outcome
h € {ha,hp,hc,hp}. Every line of the table shows that the composition of the vertex
sets V and X for any pair of problems [EC] given (H, E) and its complementary
(H,E®) as input. For no outcome h, i.e. for no pair of problems at any given line,
both problems has answer true. Indeed, neither hg nor hp can be the outcome of a
Nash equilibrium, because they are the least favoured respectively by the first and
by the second player, and there is no maximal clique on (H, E) and on (H, E®) that
consists of the singleton including them, i.e. {hp} and {hp} are not maximal cliques.
In problem [EC| for hp in graph (H, E) we have that V = ), as well as for hp in
graph (H, E€). Outcome h 4 also is not a Nash equilibrium, because the only maximal
clique on the graph which includes it is {ha,hp}, but hp >=2 ha. We observe that in
problem [EC] defined for h4 in graph (H, E) we have V = (). Finally, outcome h¢ is
not a Nash equilibrium, because the only maximal clique on the graph defined from
(H,E®) is {ha,hc}, but ha =1 ho. Analogously, in problem [EC] defined for he in
graph (H, E€) we have V = (). Therefore there is no outcome corresponding to a Nash
equilibrium, which is a contradiction. This graph represents no extensive-form game.

A.6 [VS] does not provide the tightest bound

Let us apply [VS] to the game of Figure A5a). The sequences are respectively A; =
{0, a1, as,a1a3,a1a4} and Ay = {0}, b1, b2}. The optimal values are x,, = 1, 4,43 = 1,
yp, = 1 and u¥® = wuy(hy). Therefore the utility of the first player for outcome hy4
provides an upper bound to the utility of the first player for any Nash equilibrium.
However, hy is not the realisation of a Nash equilibrium: since hg =1 hy4, the first player
would never choose action a4 over az in a Nash equilibrium. The reader can verify, by
using Algorithm [E'A] on the graph of Figure A5b), that hs is the only realisation of
a Nash equilibrium.
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(a) Game in extensive form. (b) Graph form of the game.

Fig. A5: Upper bound is not a Nash equilibrium. Preferences of the players
over the outcomes are respectively: uy : hg >=1 hg =1 ho >=1 h1 and us : hy =2 hg =2
hg =9 hg.

Appendix B Proofs
B.1 Proof of Theorem 7.

(i) We prove first that for any Nash equilibrium the two maximal cliques in the state-
ment do exist. If h is a realisation of a Nash equilibrium (51,33) € S7 x So we have
that for all s; € S7 and sy € Ss:

u1(h) = u1(31,32) > ui(s1,32),

’LLQ(h) = UQ(§1,§2) Z U2(§1, 82).

We consider H(3;) C H. By Lemma 3, H(3;) forms a maximal clique in graph (H, E).
We thus define C; = H(31). Since (81,32) — h, we have that h € C;. For each h' € 4
there is a strategy so € Sy such that (31, s2) — h'. Since h is a realisation of a Nash
equilibrium, for each h’ € C; we have that us(h) > uz(h’). Therefore each h' € C; \ X%
and, as a consequence, the vertex set C; solves [MC] with input (H, E,h, X}). An
analogous argument can be used to show that Co = H(S2) solves [MC] with input
(H,EC, h, X1

(ii) We now prove that, if there are two vertex sets C; C H and C; C H that solve
problem [MC] for, respectively, (H, E,h, X}) and (H, EY, h, X}'), then h is a realisa-
tion of a Nash equilibrium. By Lemma 4, we have that there are 5; € S; and 352 € Sy
such that H(s;) = C; and H(S2) = Cy. We recall that, since C; = H(3;), for each
sy € Sy the strategy profile (31,s2) + h’ € Cy. Since C; N X% = (), we have that
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h' ¢ X and therefore ua(h') < ug(h). Since {h} = H(31) N H(32), the strategy profile
(51,82) has realisation h satisfying:

ua (351, 52) = ua(h') < uz(h) = uz(s1,32).
Analogously, we prove that for all s; € Si:
u1(s1,32) < ui(31,32).
Therefore (31,32) is a Nash equilibrium and A is its realisation.

B.2 Proof of Proposition 9.

(i) First, let us suppose that the problem [M C] has true as answer, i.e. there is a vertex
set C C H\ X" with h € C that induces a maximal clique on (H, E). By construction,
C C V induces a clique on (VU X, E|yyux). Moreover, the clique is maximal, i.e. there
is no h” € H\C such that for all A’ € C we have (h/, ") € E. Therefore for all b’ € X
there is b’ € C such that (b, h") ¢ E and thus (h/,h") ¢ Elyvyx.

(ii) Let us suppose now that the problem [EC] has true as answer, i.e. there is a
vertex set C' C V that induces a clique on (V U X, E|yx) such that for all b’ € X
there is b’ € C’ such that (h',h"”) ¢ E|yyx. Let us consider C” = C' U {h}, which
induces a clique on graph (H, E). For all b € X" either (a) h” € X and thus there
is an element b’ € C’ such that (h/,h”) ¢ E or (b) i/ € X"\ X and thus (h,h") ¢ E.
Therefore for all A € X" there is b’ € C" = C' U {h} such that (W/,h") ¢ E. If
C” induces not only a clique, but a maximal one on (H, E') we have the proof. If C"”
induces a non-maximal clique, there is a vertex set C"”’ such that C"” C C” that induces
a maximal clique on (H, E). By construction C"/ N X = (), which completes the proof.

B.3 Best and Worst Nash equilibrium

Algorithm 3 [BNE] (WNE) Best (Worst) Nash Equilibrium

INPUT: Game in graph form I' = (H, FE, u)
H~=1 = order(H, =) > Elements h € H are ordered from best to worst [from worst
to best] w.r.t. player 1: h =1 b/ iff uy(h) > ug(B') [iff ui(h) < ui(h')]
index =0
do
h = HZ(index) > Consider outcome h
X, ={W € H|(W,h) ¢ E,u1 (') > uy(h)} > Init vertex sets and excluding sets
Xo={h" € H|(K',h) € E,uza(h”) > ua(h)}
Vi={h € H\ X5|(W,h) € E}
Vo = {W" € H\ X1|(h",h) ¢ E}
solve [NE] giving (V1, V2, X3, X5, E) as input
index = index + 1
while [V E] has no solution
OUTPUT: h
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