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Abstract

We provide an algorithm for solving multidimensional screening problems which

are intractable analytically. The algorithm is a primal-dual algorithm which al-

ternates between optimising the primal problem of the surplus extracted by the

principal and the dual problem of the optimal assignment to deliver to the agents

for a given surplus. We illustrate the algorithm by solving (i) the generic monopolist

price discrimination problem and (ii) an optimal tax problem covering income and

savings taxes when citizens differ in multiple dimensions.

Keywords: Multidimensional screening, algorithm, numerical methods, price dis-

crimination, optimal tax

JEL classification: C02, H21, D42

1 Introduction

We provide an algorithm that solves any principal-agent problem of the following form:

max
y,U

N∑
i=1

fi[Si(yi)− λUi], (1)

under the constraints that for all (i, j)

Ui − Uj ≥ Λij(yj) := bi(yj)− bj(yj) (2)
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and for all i

Ui ≥ 0. (3)

In (1) yi is a vector capturing the allocation to person i, Si(yi) is the surplus created by

this allocation, Ui is the utility received by person i and fi is the frequency of this type

of person in the population. y and U without subscripts denote the set of allocations and

utilities.

In (2), the Λij(.) are the mimicking functions which will be specific to each applica-

tion. These functions capture the utility gross of transfers available if a person j receives

the allocation which was targeted at type i. Finally, the constraints (3) are individual

rationality conditions.

The interpretation of this problem is the following. A principal wants to assign different

goods, or bundles of goods, to a population of agents who can be of different types

i = 1, .., N . Types are not publicly observable. The mass of agents of type i is denoted

fi > 0. The function Si(yi) measures the surplus generated for the principal by agent

i when she receives assignment yi, Ui is agent i’s utility, and λ > 0 is a weight applied

by the principal to the agents’ utility. We give below two examples that will be used for

illustrating how our algorithm works.

This is a standard screening problem, but a general analytical solution does not exist

in large part due to the fact that in a multidimensional context there is no natural ranking

of the agents. This means the binding incentive compatibility constraints are not ex ante

identifiable which frustrates local analyses. This contrasts with the case of one dimensional

types when the Single Crossing Condition holds. In this one dimensional setting the local

downward incentive compatibility constraints are binding for all types, allowing a global

problem to be converted into a series of local optimisations which can be solved easily

(Mussa and Rosen (1978)). In the multidimensional setting the direction of the binding

incentive compatibility constraints can be subject to many variations which in turn can

lead to rich new features in the optimal solution to the canonical principal-agent problem.

We therefore move beyond the one-dimensional analysis which has dominated research

thus far. Thanks to the characterization of implementability that was given in Rochet

(1987)1, we can reformulate our screening problem into a max-min problem. This new

formulation enables us to use the powerful algorithm proposed by Chambolle and Pock

(2011) for solving such max-min problems. Since each step of the Chambolle-Pock algo-

rithm itself requires an optimization problem to be solved, it is not obvious a priori that it

can be used in practice for screening problems. Our first computational contribution is to

show that these steps are indeed numerically feasible and we offer a method to solve them.

A second advantage of our approach is that it can handle nonlinear parameterizations of

utilities, which give rise to non-convex programs. We demonstrate that an extension of

1Rochet (2024) surveys the literature on multidimensional screening that has followed that article.
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the Chambolle-Pock algorithm by Valkonen (2014) can be applied to such non-convex set-

tings. Our approach is therefore applicable to all quasi-linear multidimensional screening

problems.2

2 Motivations

Although there are many economic problems to which our algorithm can be applied,

we will focus on just two particular applications: the multidimensional version of the

multiproduct monopolist problem, and the joint taxation of labour and savings income.

2.1 Multiproduct Monopolist

Rochet and Choné (1998) have studied the multidimensional extension of the multiprod-

uct monopolist problem of Mussa and Rosen (1978). They established that pooling, i.e.

different types receiving the same assignment (this is also called bunching), is a general

feature of optimal screening in multiple dimensions. This has important consequences,

and makes analytical solutions hard, except in special cases. When the distribution of

types is discrete, the informational rent of agents (see below for a formal definition) is a

non-differentiable function of assignments in the pooling region. When the distribution of

types is continuous, the Euler-Lagrange equation that characterizes solutions of control

problems is not satisfied in the pooling region. Our algorithm overcomes these difficulties

by using two ingredients: the use of proximal functions for avoiding non-differentiability

problems, and a primal-dual approach to take into account the different expressions taken

by the informational rent when different incentive compatibility constraints are binding.

Our algorithm determines these endogenous pooling groups and binding incentive compat-

ibility constraints as it proceeds through the optimisation process. Using our algorithm

we are able to solve the discrete version of the monopolist pricing problem for an arbitrary

number of types.

As a specific example, consider a monopolist selling a durable good (say a car) that can

be designed with several specifications represented by a vector of characteristics yi ∈ Rd,

which denotes the set of characteristics targeted at consumers of type i . The dimension d

represents the number of different features upon which the product can be differentiated,

and each individual component in the vector yi can be thought of as the quality level of

that feature offered. The cost of producing one unit of the good with overall characteristics

yi is given by a convex function C(·). The utility of buying this good for agent i = 1, .., N

2We do not claim however that the algorithm we propose is more efficient than existing ones developed
for particular situations. For instance, the algorithm of Ekeland and Moreno-Bromberg (2010) handles
very efficiently the case of a quadratic surplus and linear utilities. The more recent adaptative method
of Mirebeau (2016) is certainly a more refined and efficient one to handle convexity constraints, but it
requires types to be on a regular two-dimensional grid. Our approach is more flexible, as it does not
share this limitation.
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is

Ui = θi · yi − pi, (4)

where the vector θi ∈ Rd represents the willingness to pay for a unit of quality across all the

available dimensions of the good and (yi, pi) is the combination of characteristics and price

that is designed for agents of type i. The firm wants to select the menu (yi, pi), i = 1, ..., N

of characteristics and prices that maximizes its profit∑
i

fi[pi − C(yi)] =
∑
i

fi [θi · yi − C(yi)− Ui] , (5)

under the constraint that, for all i, agents of type i buy the product yi at price pi. This

constraint can be decomposed into two conditions on individual utilities Ui = θi · yi − pi:

Ui ≥ θi · yj − pj = Uj + (θi − θj) · yj, (6)

for all i, j, expressing that agent i prefers the combination (yi, pi) that was designed for

him to any combination (yj, pj) designed for another agent j, and

Ui ≥ 0,

expressing the participation constraint of agent i. This is a particular case of our general

problem if we take

Si(yi) = θi · yi − C(yi), bi(yi) = θi · yi, λ = 1.

Rochet and Choné (1998) consider a continuous version of this model and show that

the solution necessarily involves some degree of pooling. Of course, pooling may already

appear in dimension 1, but it can be ruled out by assuming that the distribution of

types satisfy a monotone likelihood property. Armstrong (1996) shows that a simple

form of pooling is generic in multidimensional screening problems: a positive measure of

consumers is typically excluded. Rochet and Choné (1998) extend this result by showing

that a second form of pooling is also typical of multidimensional problems: low type

consumers are often offered a reduced set of products. Only high types are offered a

wide set of products that are tailored to their taste differences. By contrast, low quality

products are less differentiated and each of them is bought by several types of consumers.

Our algorithm allows us to characterise precisely the product range a monopolist would

choose to have so as to optimally manage the allocation of its products to its clients.

There is a second canonical version of the multiproduct monopolist problem. In this

version the seller’s goods are indivisible and consumers have differing valuations for each of

the N products on offer. Examples include a supermarket of groceries, a theatre or cinema
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selling multiple shows, or a bank offering its clients a number of different financial services

and account types. Each consumer chooses a subset of the goods to buy, which is known

as their ‘bundle’. This formulation of the problem again displays multiple type dimensions

as consumers can have valuations over each of the N goods available. The initial insight

that mixed bundling, that is offering prices for bundles of goods which differs from the sum

of the component prices, can be part of the optimal pricing strategy is often credited to

Adams and Yellen (1976). However optimal pricing policies were not established in that

work. In a widely cited contribution Schmalensee (1984) considered the case of consumers’

valuations being distributed according to a joint-normal distribution across two products.

Once again optimal pricing was not achievable at that time, though Schmalensee (1984)

proved that some bundle reduction was always more profitable than none if there was any

negative correlation in valuations. McAfee et al. (1989) then demonstrated that mixed

bundling was optimal if consumers’ distributions were uncorrelated across producers.

The difficulty of working with multidimensional screening then forced the literature

to adopt either the restriction that all consumers had to buy the whole bundle whilst

keeping general distributions (e.g. Armstrong and Vickers (2010)), or that distributions

were uniform on a square which allowed competition and other economic questions to

be explored (e.g. Thanassoulis (2007)). The final approach is to determine the optimal

prices numerically. With a small number of products standard optimisation routines can

work (Chu et al. (2011)), though without convergence theorems such approaches can be

impractical at scale.3 We note below some of the limitations of off-the-shelf approaches

and offer an algorithm which is flexible enough to solve such problems and for which

convergence is guaranteed.

2.2 Joint taxation of saving and labour incomes

The question of the optimal mix between labour and capital taxes is very old. However

influential books by Piketty (2014) or Saez and Zucman (2019) have recently restarted

the debate. These books recommend a more comprehensive taxation of inheritance and

savings. Such taxes, it is argued, would reduce inequality and would provide additional

fiscal resources without distorting too greatly the employment and consumption choices

of individuals and the investment decisions of firms.

However most of the academic literature on optimal taxation, starting with the in-

fluential papers of Chamley (1986) and Judd (1985), argue on the contrary that capital

(and by extension all financial activities) should not be taxed in the steady state of a

standard economy when optimal income taxation is possible. The modern approach to

optimal taxation, initiated by Mirrlees (1971), also recommends that capital should not

3For example Chu et al. (2011) note (footnote 27) that they have manually checked different start
points to draw comfort that the prices they determine are indeed optimal.
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be taxed at all: see in particular Atkinson and Stiglitz (1976) and Diamond and Mirrlees

(1971).

But these results are not valid when heterogeneity between individuals is multidi-

mensional, and there is an asymmetry of information between the tax payer and the

government. Labour income is one tool which can be used to screen the population, but

with multiple dimensions more tools can be valuable. For example, Saez (2002) shows that

taxing capital income is optimal when more productive people have a higher propensity to

save – the tax on capital alongside labour allowing for better screening outcomes. Mirrlees

(1976) himself was well aware of the fact that most of his results relied on the restric-

tive assumption that labour productivity is the only source of unobservable heterogeneity

among individuals, an assumption that he adopted for pure tractability reasons.

Many papers have tried to extend the Mirrlees (1971) model to several dimensions

of heterogeneity, but technical difficulties have hindered progress. In fact we know very

little about multidimensional screening problems in general. Explicit results have been

obtained for particular distributions of types in a variety of contexts. For example Wil-

son (1993) in his study of nonlinear pricing, and as noted above Armstrong (1996) and

Rochet and Choné (1998) in the setting of multi-good monopoly pricing model. Rochet

and Thanassoulis (2019) establish conditions such that dynamic screening, in which the

menu offered evolves across time, can be optimal, indicating a new frontier across which

the principal can optimise.4 This literature highlights that the solution pattern in the

multidimensional problem may differ markedly from that of the unidimensional case.

In the case of optimal taxation, the recent literature on the multidimensional problem

has explored no less than five different approaches to overcome these difficulties.

The first approach is to make assumptions on preferences and technology such that

the multidimensional problem reduces to a one-dimensional screening problem. This is

the approach adopted by Kleven et al. (2009) have done in their analysis of the optimal

taxation of couples. Similarly, Choné and Laroque (2010) consider an optimal taxation

problem with two dimensions of heterogeneity (labour productivity and the opportunity

cost of labour) but they simplify the incentive problem by assuming that individual labour

supply only depends on a unidimensional combination of the two parameters. Beaudry

et al. (2009) use similar simplifications in their analysis of employment subsidies.

A second approach is to assume that the government only has one instrument, e.g.

taxing total income, independently of its composition. Rothschild and Scheuer (2013,

2016) study the general equilibrium impact of taxation in a multisector economy where

agents have different (unobservable) productivities in the different sectors. Similarly, by

adapting the techniques introduced by Rochet and Stole (2002) for non-linear pricing,

Jacquet et al. (2013) study taxation when individuals differ in two dimensions, skill and

cost of participating in the labour market, whilst the government can only tax labour

4See also Rochet (2009) for the regulation of firms with different marginal and fixed costs.
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income.

A third approach is the variational approach of Golosov et al. (2014) for continuous

distributions of types. Roughly speaking the idea is to compute the (Gateaux) differential

of social welfare with respect to the different policy instruments available to the govern-

ment (here the different taxes). This allows one to analyze the impact of (infinitesimal)

tax reforms.5 This amounts to a calculus of variations problem constrained by a partial

differential equation. The problem is that the approach is only valid when there is no

bunching, i.e. different types always get different allocations. However, bunching is very

frequent in multidimensional screening problems.

A fourth approach is purely numerical. Tarkiainen and Tuomala (1999, 2007) consider

an income tax model where individuals differ by their productivity and their cost of labor

participation. They develop numerical methods that allow them to solve this problem

for particular specifications of preferences and type distributions. Similarly, Judd et al.

(2017) use a non-standard optimization algorithm to solve particular specifications of

highly complex taxation problems with 5 dimensions of heterogeneity. However, none

of these papers provide a convergence theorem. As acknowledged by Tarkianen and

Tuomala, these numerical approaches seem to work for special parametrizations but there

is no guarantee that the algorithms would also converge for other specifications. A more

promising approach is developed in Boerma et al.(2022), who use Legendre transforms

to transform the screening problem into a linear program. They are able to numerically

solve a large scale multidimensional tax problem that is calibrated to the US economy.

Finally, the fifth approach is only illustrative: it focuses on 2× 2 models with two di-

mensions of heterogeneity and two possible values for each parameter. Using the method-

ology introduced by Armstrong and Rochet (1999), such models are fully solvable. For

example, Cremer et al. (2001, 2003) show that taxing capital or luxury goods can be

optimal in a 2 × 2 model where individuals differ in their initial endowments as well as

their labour productivities. Similarly, Boadway et al. (2002) show that negative marginal

tax rates can be optimal in a 2× 2 model where individuals differ by their preferences for

leisure as well as their labor productivity. The problem is that these models are purely

illustrative: the need to restrict to 2 × 2 types means they cannot be calibrated to real

data.

We will use the algorithm we offer to solve a simple extension of the Mirrlees optimal

tax problem to the case where agents have two dimensions of heterogeneity: their initial

endowments ei and their disutilities of working xi. Agents consume at two dates t = 1, 2.

5Similarly, Renes and Zoutman (2017) adopt a mechanism design approach and solve the relaxed
problem (first order approach) where the second order conditions of individuals’ optimization programs
are neglected.
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Similarly to Diamond (1998) our agents have quasi linear preferences:6

Vi = u(C1
i ) + C2

i = u(ei − si) +Rsi + (w − xi)li − Ti,

where yi = (si, li) denote the (observable) decisions of agent i : savings si and labor supply

0 ≤ li ≤ 1. Ti denotes the total tax paid by agent i. R is the return on savings and w the

unit wage, both of which are exogenous and uniform across agents. The principal seeks

the tax system that maximizes a weighted sum of a Rawlsian objective and utilitarian

welfare:

W = λmin
j

Vj + (1− λ)
∑
i

fiVi, (7)

with 0 ≤ λ ≤ 1, under the constraint that tax revenue is sufficient to finance public

expenditures of G, which is taken as exogenously given. Note that no participation

constraints are required in this context of obligatory tax. However, the problem can be

put into our general form by defining incremental utilities by Ui = Vi −minj(Vj), which

implies by definition that Ui ≥ 0 for all i. This allows us to rewrite the objective function

(7) as W = minj Vj+(1−λ)
∑

i fiUi. Moreover, if we define the total surplus from citizens

i as the sum of their utility and tax payment, Si = Vi + Ti, and using that
∑

i fiTi = G,

the objective of the principal can be rewritten as:7

W =
∑
i

fi[Si − λUi]. (8)

It is easy to see that this program is a particular case of the general problem with

Si(yi) = u(ei − si) +Rsi + (w − xi)li, (9)

and

bi(y) = u(ei − s)− lxi.

An interesting economic question, which a solution to (7) would allow us to address,

is whether the taxation of savings should be independent of labour income. In particular,

should savings be taxed more heavily for employed or unemployed people? The involved

trade-off can be understood by looking at a model with two dimensional types and two

possible values for each dimension: taxpayers may have a low or high cost of participat-

ing in the labour force, and a low or high initial endowment. Given the preferences, a

6Diamond (1998) and Saez (2001) have shown that quasi-linearity allows a deeper and more intuitive
comprehension of optimal tax systems. The absence of wealth effects greatly simplifies the analysis.

7To derive (8) note we can write

W = min
j

Vj +
∑
i

fi(Si − Ti −min
j

Vj)− λ
∑
i

fiUi,

and this differs from (8) by the constant G.
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separable tax schedule would imply that savings and labour supply decisions are indepen-

dent: labour supply only depends on the first dimension of heterogeneity (the personal

disultility of working and so participating in the labour force), while savings only depend

on the second dimension (initial endowments). We will see in Section 7 that, for some

parameter values, greater societal welfare is generated if the planner conditions the tax

on savings on the citizen’s workforce status. This can be seen by direct computations in

the 2 × 2 model, but it very hard to assess in a calibrated model that reproduces data

more accurately. Our algorithm allows us to solve such models without having to assume

unrealistic distributions of types.

3 Problem Preliminaries

3.1 Additional Notation

For expositional simplicity, we restrict our discussion to the case where the assignment y

can be any vector8 in Rd. We assume that the functions bi and Si are smooth for all i.

There are N types, with weights in the population fi > 0. For an easy representation of

the constraints, we define the linear operator D: RN → RN×N by

(Du)ij := ui − uj.

Note that D(RN) ⊂ HN where HN denotes the (N×(N−1) dimensional) space of N×N

matrices with zero entries on the diagonal.

The inner product9 of the matrix Du with matrix v ∈ RN×N is defined as:

(Du) · v =
∑
i,j

(ui − uj)vij =
N∑
i=1

N∑
j=1

(vij − vji)ui.

The adjoint D∗ of this operator is the linear mapping from RN×N to RN defined by

(D∗v) · u = (Du) · v, ∀(u, v) ∈ RN × RN×N .

Hence, it is given, for all i, by:

(D∗v)i :=
N∑
j=1

(vij − vji).

We shall also use the more concise notation Λ for the map appearing in the right-hand

8The extension to the case where the yi’s are constrained to lie in a certain box of Rd, possibly
dependent on i, is straightforward.

9This is sometimes referred to as the Frobenius inner product or the scalar product for matrices. It
should not be confused with matrix multiplication.
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side of (2). For y = (y1, ..., yN) ∈ Rd×N and all (i, j):

Λij(y) = bi(yj)− bj(yj).

Setting S(y) :=
∑

i fiSi(yi), the screening problem (1)-(2)-(3) can be rewritten as

max
y,U

{(S(y)− λf · U) : DU ≥ Λ(y), U ≥ 0}

where the notation A ≥ B for matrices (respectively vectors) A and B means that A−B

has all nonnegative entries (respectively coordinates).

3.2 Existence and First Order conditions

Existence of a solution and first-order optimality conditions are given by:

Proposition 1 Assuming that for every i

Si(yi) → −∞ as |yi| → ∞, (10)

then (1)-(2)-(3) admits a solution. Let (y, U) be such a solution, and let A be the set of

binding IC constraints, i.e. the set of (i, j)’s for which U i − U j = Λij(yj). If either Λ is

linear or the IC constraints are qualified at (y, U), i.e. there exist ŷ, û such that

ûi − ûj > ∇Λij(yj)ŷj, ∀(i, j) ∈ A, (11)

then there exist multipliers µi ≥ 0 (for the IR constraints (3)), multipliers vij ≥ 0 (for

the IC constraints (2)) such that:

λf = µ+D∗v, fj∇Sj(yj) =
∑
i

vij∇Λij(yj), ∀j (12)

together with the complementary slackness conditions:

µiU i = 0, vij(DU − Λ(y))ij = 0. (13)

Proof. Condition (10) and the constraint U ≥ 0, guarantee that one can reduce the

maximization problem to a compact set for the yi’s so that Λij(yj) can be bounded a

priori. One can also choose U such that mini Ui = 0. The IC constraint imposes that

Uj ≤ mini Ui+maxkl −Λkl(yl) so that the Ui’s can also be chosen to remain in a bounded

set. We are therefore left to maximizing a continuous function over a compact set and the

existence claim follows. The necessity of the first-order optimality conditions (12)-(13)

for nonnegative multipliers µ and v follows from the Karush-Kuhn-Tucker Theorem: see
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e.g. Carlier (2022) Proposition 4.9 for the case of affine constraints and Theorem 4.5 for

nonlinear constraints satisfying the qualification condition (11).

Let us briefly comment on the assumptions in the previous proposition. First observe

that (10) is automatically satisfied in the Multiproduct Monopolist problem as soon as

the cost C is superlinear i.e. C(y)/|y| → +∞ as |y| → +∞. As for the qualification

condition, Lemma 1 in the Appendix gives a simple case where the condition (11) is

easily obtained. Note also that when Λ is linear and the Si’s are concave, the first-order

conditions (12)-(13) are sufficient conditions.

Of course (10) is a technical assumption which is not needed for the existence of an

optimal solution if y is constrained to remain in a compact set. This holds in the particular

case of a multiproduct monopolist facing linear costs and considering allocations which can

be randomisations over bundles – as initially explored by McAfee and McMillan (1988).10

In this case, S and Λ are linear and there are additional linear constraints: for every

j, yj ∈ Γ where Γ is a convex compact set defined by finitely many linear inequalities.

This makes (1)-(2)-(3) a linear programming problem with a compact constrained set

and the existence of a solution is straightforward. Characterization of optimal solutions

can be obtained by similar conditions as (12)-(13) with additional KKT multiplier terms

corresponding to the constraints yj ∈ Γ.

3.3 Alternative Numerical Methods

We develop below a primal-dual method that we propose for solving this problem. It is

easily implementable, flexible enough to address the multidimensional screening problems

discussed in the paper, and convergence is guaranteed.

However one might wonder if other currently standard numerical methods could also

work, such as explicit gradient methods, linearization of the constraints, and Newton

methods. Newton methods are well-known to converge only very close to the solution

for unconstrained problems and are not very well-suited to handle constraints. For opti-

mization problems with a large number of constraints, such as the screening problems we

consider in this paper, the standard projected gradient method on the initial formulation

of the problem is not really an option since each step is as costly as the intial problem.

Moreover, when incentive compatibility constraints are nonlinear, linearizing them may

lead to infeasible points, and to stability and convergence issues. We believe that this

is where our duality (max-min formulation) arguments are particularly appealing: they

enable us to satisfy the constraints by updating the multipliers at each step in a suitable

way. Of course, it comes with a cost: we have to project onto a set K in the space of

matrices at each step, but as shown in the appendix this is tractable. As for feasibility,

it is worth mentioning that our algorithm finds at each step a feasible point (see footnote

10Randomisations were subsequently shown to be optimal in some cases (Thanassoulis, 2004).
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15). More standard explicit methods based on gradients and linearizations techniques,

would not.

Linear programming methods can also be used such as the celebrated Frank-Wolfe

algorithm which consists in solving a linearized problem at each step. In theory these

linearized problems can be solved exactly (by the simplex algorithm), or approximately

(by interior point methods). However such methods are well-known to have a complexity

that scales badly with the number of constraints. For instance, in the worst cases, the

simplex algorithm may have to explore all the vertices of the constrained set. The number

of steps grows exponentially with the size of the problem. This makes LP prohibitively

costly, except for special constrained sets like the simplex or the box, on which optimizing

a linear function is easy. However, the geometry of the incentive compatibility constraints

does not fall in this category. To illustrate the limitations of LP solvers, it might be worth

recalling that the well-known optimal transportation problem is an LP problem but except

for small size instances, efficient methods are not by linear programming because they

have a cubic complexity. In our screening framework, unless the initial problem is linear,

the situation is even worse if we have to use LP at each step of the algorithm. So one

reason for not using linear programming is its computational cost. There are also stability

issues due to the fact that solutions of LP (which may be non-unique) are discontinuous

with respect to the objective and the constraints. This is a second reason why we did not

adopt LP like strategies.

Finally, for the quadratic version of the Rochet Choné problem that we solve in section

6, other methods are more efficient. For example, Mirebeau’s adaptative algorithm is

perhaps the current state of the art for handling convexity constraints when types are on

a regular two-dimensional grid. Similarly, Ekeland and Moreno-Bromberg (2010) use a

fast linear quadratic solver which achieves great efficiency, but only works with a quadratic

cost. The algorithm we propose is different because it also involves dual variables. It is

more widely applicable because it can handle non-regular grids, non-uniform distributions

and more general surpluses as well as nonlinear utilities.

4 Feasibility, informational rent and duality

The aim of this section is to reformulate the generic principal-agent model (1)-(2)-(3)

in terms of the assignment vector y only. This will allow us to divide the optimisation

problem into sub-problems which we will then be able to show can be brought to existing

optimisation algorithms.

4.1 Feasibility

Let us first introduce a definition:
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Definition 1 Let Λ ∈ HN (i.e. Λ is an N × N matrix with zero diagonal entries). We

will say that Λ is feasible whenever there exists U ∈ RN such that DU ≥ Λ.

Since DU is unchanged when adding a constant to U , one sees that feasibility of Λ is

the same as the existence of a U ∈ RN such that U ≥ 0 and DU ≥ Λ. Further, using

Λii = 0 we can show that the feasibility condition DU ≥ Λ can be rewritten as requiring

the existence of U such that U = TΛ(U) where TΛ is the self-map of RN given by

TΛ(U)i := max
j

{Uj + Λij}. (14)

This characterisation of feasibility results from the application of Theorem 1 in Rochet

(1987) to our context. Formally we have

Proposition 2 Let Λ ∈ HN . The following are equivalent:

1. Λ is feasible,

2. Whenever i0, . . . iL, iL+1 = i0 is a cycle in the set of indices in {1, . . . , N}, one has

L∑
k=0

Λikik+1
≤ 0. (15)

3. Defining TΛ by (14), the sequence starting from u0 = 0 and inductively defined by

un+1 = TΛ(u
n) for n ≥ 1 converges (monotonically and in at most N − 1 steps) to

the smallest non-negative fixed point of TΛ.

Proof. Suppose Λ is feasible, let U be such that Ui − Uj ≥ Λij for every i, j. If

i0, . . . iL, iL+1 = i0 is a cycle, then

L∑
k=0

Λikik+1
≤

L∑
k=0

(Uik − Uik+1
) = 0

so that 1. ⇒ 2.

Assume that Λ satisfies (15) and define un by u0 = 0 and un+1 = TΛ(u
n) for n ≥ 1.

We will show that uN = uN−1. Since Λii = 0, we have 0 ≤ un ≤ un+1 in particular

uN ≥ uN−1. One easily checks inductively that

un
i = max

{ n−1∑
k=0

Λikik+1
: i0 = i, i1, . . . , in ∈ {1, . . . , N}n}. (16)

Therefore uN
i =

∑N−1
k=0 Λikik+1

for some i1, . . . , iN ∈ {1, . . . , N}N and i0 = i. Necessarily

ik = il+1 for some pair of indices k and l such that 0 ≤ k ≤ l ≤ N − 1. Hence, thanks to

13



(15) we have
l∑

j=k

Λijij+1
≤ 0

so that

uN
i ≤

∑
j∈{0,..,N−1}\{k,...,l}

Λijij+1
≤ uN−1

i

where the last inequality follows from (16) and the fact that ik = il+1. This shows that

un = uN−1 for n ≥ N − 1 so that un converges to a nonnegative fixed point of TΛ in at

most N − 1 steps. If u is a nonnegative fixed point of TΛ, monotonicity of TΛ and an

obvious induction argument show un ≤ u which implies that un converges to the smallest

nonnegative fixed point of TΛ. So we have 2. ⇒ 3.

If 3. holds, there exists u ≥ 0 such that u = TΛ(u), hence ui − uj ≥ Λij i.e. Λ is

feasible, and so 3. ⇒ 1.

Note that part 3 of Proposition 2 gives a constructive way to solve DU ≥ Λ(y), U ≥ 0

when Λ(y) is feasible. The minimality of the fixed point TN−1
Λ (0) also implies:

Corollary 1 If Λ is feasible, the least nonnegative fixed-point of TΛ, u = TN−1
Λ (0) is the

unique solution of

min
{∑

i

fiUi : DU ≥ Λ, U ≥ 0
}

for any collection of positive weights fi > 0.

Intuitively the utility assignment is determined by allowing each possible agent type

just enough utility that it outweighs the benefits of mimicking another type. The proof

of Proposition 2 works by assessing all possible chains of mimickry, e.g. type i pretending

to be type j who in turn pretends to be type k and so on. The fixed point finds the

most tempting mimicking type at every stage in this chain. This process does not rely

on the number of types of i or j in the population, that is the frequency fi has no role.

All that is required is that a type i or j could exist. This is enough as it permits each

type the possibility of pretending to be that type. This is why Corollary 1 applies for all

distributions fi, given fi > 0 for all i.

A dual characterization of feasibility (upon which our proposed approach will in part

rely) is the following:

Lemma 1 Let Λ ∈ HN . Then Λ is feasible if and only if for every v ∈ RN×N ,(
v ≥ 0 and D∗v = 0

)
⇒ v · Λ ≤ 0.

Proof. If Λ is feasible, there exists U such that DU ≥ Λ. Hence if v ≥ 0 and D∗v = 0

we have v ·DU = 0 ≥ v · Λ. Conversely, suppose that Λ is not feasible: it is impossible

14



to find U and a matrix M ≥ 0 such that −Λ = D(−U) +M . Geometrically this means

that −Λ /∈ D(RN) + RN×N
+ . The set D(RN) + RN×N

+ is clearly convex, we claim that it

is also closed. To show this, take a sequence µn ∈ RN×N
+ , another sequence un ∈ RN and

assume that µn +Dun converges. Since the sum of the entries of Dun vanishes and µn is

nonnegative, the convergence of the sum of the entries of µn implies that µn is bounded.

Hence it has a convergent subsequence, which implies that Dun also has a convergent

subsequence. Since D(RN) is closed, the limit of this subsequence of µn + Dun belongs

to D(RN) +RN×N
+ . We can therefore strictly separate −Λ from D(RN) +RN×N

+ i.e. find

v ∈ RN×N and ε > 0 such that

−v · Λ ≤ −ε+ v · µ+ v ·Du, ∀(µ, u) ∈ RN×N
+ × RN .

Suppose now that v · Du < 0 for some u ∈ RN . Multiplying this vector u by a large

positive constant gives a contradiction. Similarly if v ·Du > 0, multiplying u by a large

negative constant gives a contradiction. Thus it must be that v ·Du = 0 for all u ∈ RN

i.e. D∗v = 0. By a similar reasoning on µ, the above condition implies v ≥ 0 and also

v · Λ ≥ ε > 0 which is the desired conclusion.

4.2 Informational rent and duality

For fixed assignment vector y, the informational rent R(y) left to the agents is given by

the value of the sub-problem:

R(y) := inf
{∑

i

fiUi : Ui ≥ 0, Ui − Uj ≥ Λij(yj)
}
. (17)

The interpretation is that R(y) is the minimum expected pay-off that must be left to the

agents in order to implement the assignment y. We adopt the convention that inf ∅ = +∞
so that R(y) = +∞ whenever Λ(y) is not feasible. The next proposition gives a dual

expression for the informational rent, for which it is convenient to introduce the closed

and convex (but unbounded) set

K := {v ∈ RN×N : v ≥ 0, D∗v ≤ λf}, (18)

as well as its support function:

σK(Λ) := sup{v · Λ : v ∈ K},

defined for all Λ ∈ HN .
11

11The support function of a set is an important tool in Convex Geometry. It can be thought of as
defining the set of hyperplanes which enclose the set (Hug et al., 2020).
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Proposition 3 The informational rent R(y) is the value of the dual problem:

R(y) = sup
{
v · Λ(y) =

∑
i,j

vijΛij(yj) :
∑
j

(vij − vji) ≤ fi, vij ≥ 0
}
. (19)

We thus have

λR(y) = σK(Λ(y)). (20)

Moreover whenever Λ(y) is feasible, there exists v ∈ K such that λR(y) = v · Λ(y).

Proof. If Λ(y) is not feasible, then R(y) = +∞ and it follows from Lemma 1 that there

is some v0 ≥ 0 such that D∗v0 = 0 and v0 · Λ(y) > 0. Since for t > 0, tv0 ≥ 0 and

D∗(tv0) = 0 ≤ f , we have

sup{v · Λ(y), v ≥ 0, D∗v ≤ f} ≥ sup
t>0

tv0 · Λ(y) = +∞ = R(y).

Assume now that Λ(y) is feasible, then the admissible set in the right-hand side of (17)

is nonempty. We claim that the infimum in (17) is a minimum: if Un is a minimizing

sequence, it is nonnegative and f · Un is bounded from above and since f > 0 this

implies that Un is bounded, and hence has a subsequence which converges to a solution

of the minimization problem in (17). Now we can invoke the duality Theorem for linear

programming (see e.g. Theorem 6.5 in Carlier (2022)): if the linear minimization problem

in (17) admits a solution, so does its dual problem which is exactly the linear maximization

problem in (19) and the values of both problems agree.

The informational rent is thus the composition of the support function σK of the

feasible set K of the dual problem by the “mimicking” functions Λij which represent the

gain of agent i when he mimicks agent j. Note that σK only depends on the distribution

of the agent types {fi}, not on the economic fundamentals of the problem. Moreover

σK(Λ) is infinite iff there is a cycle on which the sum of the Λ is positive.

When the Single Crossing Condition holds, the binding IC constraints are always the

local downward constraints (independently of the assignment) and the support function

has a simple linear expression:

σK(Λ) = λ
∑
i

(1− Fi)Λi+1,i,

where Fi =
∑

j<i fj. However in the multidimensional case, the sup in the definition

of the support function is not always attained for the same vector v when we consider

different assignments y = (y1, ..., yN) ∈ Rd×N . For these assignments, the rent R(y) must

be written as the sup of two or more affine mappings and is therefore not differentiable.
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4.3 Max-min reformulation, optimality conditions

Using (20) and Proposition 3, we will establish that the initial screening problem (1)-(2)-

(3) is equivalent to

max
y∈Rd×N

S(y)− σK(Λ(y)). (21)

By definition of σK , this can be rewritten in max-min form

max
y

min
v∈K

S(y)− v · Λ(y). (22)

Formally we have:

Proposition 4 (y, U) solves (1)-(2)-(3) if and only if y solves (21) and

σK(Λ(y)) = λ
∑
i

fiU i, DU ≥ Λ(y), U ≥ 0.

Note also that one can recover the optimal U from an optimal y using Proposition 2.

Indeed, if y solves (21) (so that Λ(y) is feasible) and U is the smallest nonnegative fixed

point of TΛ(y) (obtained as in Proposition 2) then (y, U) solves (1)-(2)-(3).

Now observe that the KKT conditions (12)-(13) imply that

D∗v ≤ λf and v ≥ 0 i.e. v ∈ K,

and λR(y) ≤ λf · U = D∗v · U = v ·DU = v · Λ(y) ≤ σK(Λ(y)) = λR(y)

which, thanks to Proposition 3, yields

σK(Λ(y)) = v · Λ(y).

We can therefore reformulate the necessary conditions (12)-(13) for the initial formula-

tion (1)-(2)-(3) in terms of conditions in the variables y and v (multipliers for the IC

constraints) instead of y and U :

Proposition 5 Assume that (y, U) solves (1)-(2)-(3) and the IC constraints are qualified

(see (11)) at (y, U). Then there exists v ∈ K such that

σK(Λ(y)) = v · Λ(y), (23)

and

fj∇Sj(yj) =
∑
i

vij∇Λij(yj). (24)

In terms of sufficient conditions, we have:
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Proposition 6 Assume (y, v) ∈ Rd×N ×K satisfy conditions (23)-(24) of Proposition 5

and that U is the smallest nonnegative fixed point of TΛ(y) (see Proposition 2). Then,

1. if y is a local (resp. global) maximizer of y 7→ S(y) − v · Λ(y), it is a local (resp.

global) solution of (21) that is (y, U) is a local (global) solution of (1)-(2)-(3),

2. if ∑
j

(
fjD

2S(yj)−
∑
i

vijD
2Λij(yj)

)
(hj, hj) < 0

for every nonzero h ∈ Rd×N such that there exist ui such that

∇Λij(yj) · hj = ui − uj when (i, j) ∈ A and vij > 0

and

∇Λij(yj) · hj ≤ ui − uj when (i, j) ∈ A and vij = 0

where A is the set of binding incentive compatibility constraints at (y, U), then y is

a local solution of (21).

Proof. 1. Follows from S(y)− σK(Λ(y)) ≤ S(y)− v · Λ(y) with equality for y = y. 2. Is

a (local) sufficient second-order condition which can be found in Chapter 3 (Proposition

3.3.2 and its refined version in Exercise 3.3.7) of Bertsekas (2009).

We conclude this section with the following remark:

Remark 2 If S is concave differentiable and Λ is linear or affine, S − σK ◦Λ is concave

so conditions (23)-(24) are in fact necessary and sufficient (global) optimality conditions

for problem (21).

5 The Algorithm

We now describe a proximal primal-dual algorithm to find a pair (y, v) ∈ Rd×N ×K which

solves the optimality conditions (23)-(24). We assume that S is concave and differentiable,

and that Λ is smooth. We start with the case in which Λ is linear. In this case the

algorithm we propose coincides with that developed by Chambolle and Pock (2011).12

5.1 On proximal methods

Before describing the algorithm, let us recall some concepts from convex analysis, with

the aim of giving some insights on proximal methods to the unfamiliar reader. Let φ :

12It is worth recalling, especially in this special issue, that the algorithm of Chambolle and Pock (2011)
is itself an extension of the classical Arrow-Hurwicz algorithm (Arrow et al. (1958)).
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Rm → R ∪ {+∞} be a convex, lower semicontinuous function which is not identically

+∞. Given x ∈ Rm, the subdifferential of φ at x, ∂φ(x) is defined by

∂φ(x) := {p ∈ Rm : φ(z)− φ(x) ≥ p · (z − x), ∀z ∈ Rm},

hence x minimizes φ if and only if 0 ∈ ∂φ(x) (which in the event φ is differentiable at x

reduces to the standard first-order condition 0 = ∇φ(x)). The proximal operator of φ,

was introduced in Moreau (1965) and is given by

proxφ(x) := argmin
z∈Rm

{
1

2
|z − x|2 + φ(z)

}
, ∀x ∈ Rm.

The map x ∈ Rm 7→ proxφ(x) is single-valued and one-Lipschitz (see Moreau (1965)) and

z = proxφ(x) ⇐⇒ x ∈ z + ∂φ(z).

In particular

x minimizes φ ⇐⇒ x ∈ x+ ∂φ(x) ⇐⇒ x = proxφ(x).

So minimizing φ is equivalent to finding a fixed point of proxφ (or proxτφ with τ > 0).

This is the basic idea behind the proximal point algorithm

xk+1 = proxφ(xk)

introduced in Martinet (1972). This algorithm is known to converge to a minimizer

provided such a minimizer exists, see Rockafellar (1976). The proximal point algorithm

has several appealing properties. These include that it allows for a nonsmooth objective

φ and also that the sequence φ(xk) is decreasing. The latter follows as by construction

the proximal operator satisfies the inequality φ(xk+1)+
1
2
|xk+1−xk|2 ≤ φ(xk). Of course,

to use proximal methods in practice, one should be able to compute proxφ efficiently. We

end this paragraph by a simple example (which will be useful in our setting). If C is a

nonempty closed and convex subset of Rm, its characteristic function χC :

χC(x) :=

0 if x ∈ C

+∞ otherwise

is lower semi continuous and convex. Its proximal operator proxχC
coincides with the

projection (closest point map) projC onto C.
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5.2 Proximal primal-dual algorithm in the linear case

Suppose the utilities bi are linear, i.e. of the form

bi(y) = θi · y,

where θi ∈ Rd is the constant marginal utility of agent i (e.g. their willingness to pay for

quality), and so Λ is the linear map

Λij(y) := (θi − θj) · y,

defined in (2).13 The problem (21) is a concave maximization problem equivalent to

finding (y, v) ∈ Rd×N ×K which solve for the optimality conditions (23)-(24). For given

step sizes τ > 0 and σ > 0 , the Chambolle-Pock algorithm consists of the following

iterations:

yk+1 = prox−τS(yk − τΛ∗(vk)), (25)

ỹk+1 = 2yk+1 − yk, (26)

vk+1 = projK(vk + σΛ(ỹk+1)). (27)

Theorem 1 from Chambolle and Pock (2011) (also see He and Yuan (2012) for a simpler

proof) guarantees that the iterates above converge to a solution of the system (23)-(24)

if τ > 0, σ > 0 satisfy τσ∥Λ∥2 < 1 where

∥Λ∥2 := sup
y ̸=0

∥Λ(y)∥2

∥y∥2
≤ max

i

∑
j

|θi − θj|2.

We can therefore use this algorithm to solve the linear version of the general multidi-

mensional principal-agent problem.

5.3 Proximal primal-dual algorithm in the General Case

When Λ is nonlinear, it is possible to use the linearization of primal updates which leads

to the algorithm proposed and analyzed by Valkonen (2014):14

yk+1 = prox−τS(yk − τ(Λ′(yk))
∗vk), (28)

ỹk+1 = 2yk+1 − yk, (29)

vk+1 = projK(vk + σΛ(ỹk+1)). (30)

13We denote by Λ∗ its adjoint. This is defined so that if v is a N ×N matrix, Λ∗v ∈ RN is given by
(Λ∗v)j =

∑
i(θi − θj)vij .

14Λ′(y) denotes the derivative of Λ at y and Λ′(y)∗ denotes its adjoint.
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Note that if these iterates converge to some y, v one will have

y = prox−τS(y − τ(Λ′(y))∗v) i.e. ∇S(y) = Λ′(y)∗v

and

v = projK(v + σΛ(y)) i.e. v ∈ K, and σK(Λ(y)) = v · Λ(y)).

In other words, the pair (y, v) satisfies the first-order conditions (23)-(24) from Proposition

5 and in particular Λ(y) is feasible15 in the sense of definition 1. The (local) convergence

analysis of the above algorithm to a solution of (23)-(24) is rather involved and can be

found under various technical assumptions16 in Valkonen (2014), and more recently in

Valkonen (2023). Theorem 1 in Gao and Zhang (2023) gives a shorter proof of local

convergence (for a slightly different algorithm where the linearization of the nonlinear

map Λ is used at the level of the updates (30) for v instead of the updates (28) for y).

Thus we have converted the multidimensional screening problem into a form which

can be tackled using recent algorithms. We explain in the Appendix how the proximal

steps (25) (or (28)) and (26) (or (29)) can be handled in practice.

6 Illustration 1: the Multiproduct Monopolist

In this section we apply our algorithm to the multiproduct monopolist problem described

in Section 2.1. We suppose that the monopolist produces a product whose quality or

type can be described by two characteristics y ∈ R2 with components y1, y2 capturing the

quality of each characteristic. The marginal cost of producing a product with quality y

is assumed to be given by a quadratic function

C(y) :=
1

2

(
y21 + y22

)
. (31)

The monopolist serves a population of consumers who are characterised by a type vector

θ ∈ R2. The components of the type vector capture the willingness to pay for each

characteristic. The total willingness to pay of type θ for a good with characteristics y is

therefore the scalar product θ ·y. The monopolist’s first best would choose an assignment

of a given product type for each consumer which maximised the surplus created for each

client and extracted that surplus in the price charged. Hence the first best would be for

a client of type θ to receive a product with characteristics y = θ.

To illustrate our algorithm let us suppose that consumers are uniformly distributed

on an N × N grid supported on the square [1, 2]2. The use of the uniform distribution

15Let us emphasize that in fact, at each step of our algorithm, we find a feasible point, indeed it directly
follows from (30) that Λ(ỹk+1) +

vk−vk+1

σ is feasible.
16Among these assumptions is the requirement - as for the original Chambolle-Pock algorithm - that

the steps τ and σ are small enough so that τσM2 < 1 where M is the Lipschitz constant of DΛ.
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of types and quadratic cost function is purely for expositional simplicity and to reflect

the textbook cases studied in the literature. The algorithm we propose permits arbitrary

distributions of types with any surplus functions which are smooth as long as the problem

has an interior solution such that the qualification condition of Proposition 1 is satisfied.

In Figure 1 we solve two versions of this monopolist problem: a large version in which

N2 = 2, 500 individual consumer types are modelled, and a smaller version with N2 = 25

individual types in which we study precisely which incentive compatibility constraints are

binding.

Panel (a) of Figure 1 demonstrates how the monopolist optimally distorts her product

range so as to maximise her profit. Recall that the first best has the product characteristics

a type θi receives equal to her type: yi = θi. Under the asymmetric information constraint

the ‘no distortion at the top’ result which holds in the one-dimensional case is almost

true for types who have the highest willingness to pay for at least one of the product

characteristics, and holds exactly for the clients with the highest willingness to pay on

both dimensions. It is the South West tail of the clients who find themselves with the

most distorted assignments. These assignments form a Stingray’s tail which is a typical

shape in these problems. The client of type (1, 1) who has the lowest willingness to pay

is optimally not served at all, and clients with low willingness to pay have their assigned

product significantly distorted towards lower quality on both dimensions. There is also

bunching so that multiple types of low-valuation clients are served with the same product.

Our finding that all clients who have a high valuation on at least one dimension

receive close to first-best, while there is significant distortion only for clients who have

a lower type on all dimensions extends the general intuition as to how sellers should

optimally offer volume discounts. It is known that in one dimension volume discounts

apply only to the highest volumes so that the high value clients purchase (close to) the

first-best quantity (Maskin and Riley, 1984). We show that volumes (or quality) are most

distorted downwards and bunched for those at the bottom for the value distribution in

all dimensions. Whereas those nearer the top in any dimension escape bunching and see

less by way of distortion.

These two features – the Stingray’s tail and bunching – are more clearly seen in the

(less busy) 5× 5 example in panels (b1) and (b2) of Figure 1. The Stingray’s tail is dis-

played in Panel (b1) where the South West clients with the lowest valuations have their

products distorted downwards. The bunching can be seen from Panel (b2) which depicts

that in the South West corner of the support of client types the binding incentive com-

patibility constraints are not just in the local downward and leftward direction. Instead

three, or sometimes four IC constraints become simultaneously binding (as evidenced by

the multiple arrows depicting binding IC constraints). This is because these types are op-

timally served the same product characteristics, or are indifferent between two distorted

products. The pattern of binding IC constraints forms a distinctive ‘tree pattern’ in which
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the branches of the tree are the binding IC constraints. One-dimensional problems have a

trivial such tree pattern; whereas the complexity of the tree in the multidimensional case

is closely tied to the difficulty in solving these problems, a problem which our algorithm

overcomes. The green spots in Panel (b2) further show that the rents of the bottom six

client types are fully extracted.

We offer a second illustration to demonstrate the versatility of our algorithm. We

solve the problem posed by Schmalensee (1984). Suppose that consumers are distributed

over an N ×N grid with the coordinates of the grid points capturing the value consumers

have for each one of two possible products. Further assume that the weight at each

grid point is adjusted so as to approximate a population with valuations drawn from a

joint normal distribution. Valuations are not therefore independent and neither are they

uniform. Suppose that the monopolist sells these two products and consumers’ demand

at most one unit of each good at her valuation. The monopolist wishes to choose the

optimal price profile {p1, p2, pb} for the two component goods 1 and 2 and the bundle of

both goods. If marginal costs are set to zero then the monopolist’s problem is:

max
{p1,p2,pb}

pb ·Qb(p1, p2, pb) + p1 ·Q1(p1, p2, pb) + p2 ·Q2(p1, p2, pb)

subject to {p1, p2} > 0, 0 < pb ≤ p1 + p2

where Q1 is the demand for good one only, and so on for the other functions. This program

can be rewritten as a screening problem identically to (4)–(6) with C(yi) = 0 and with

the additional constraint that

yi ∈ [0, 1]2.

That is, we restrict clients to get no more than one unit of a good.17

In Figure 2 we solve the Schmalensee (1984) problem at 5000 distinct pairs of param-

eter values for mean product valuation µ and correlation coefficient ρ. For a given (µ, ρ)

pair we model consumers as having valuations drawn from a normal distribution approx-

imated by a 10× 10 grid on [0, 10]2 with variance σ2 = 10. Figure 2 shows the richness of

the pattern of optimal prices. We see that the optimal component good prices are sensi-

tive to both the mean valuation in the population and the correlation the consumers have

between their component good valuations. The optimal bundle prices remain sensitive

to the the average valuation of each product (µ), and so to the average valuation clients

have for the bundle, while bundle prices are not highly sensitive to the correlation between

the product valuations (ρ). The spirit of this result – that mixed bundling allows less

volatility in bundle sales than in individual good sales – is captured in the literature only

when the law of large numbers can be invoked by assuming an infinity of products (Bakos

and Brynjolfsson (1999)). The individual product prices are sensitive to the correlation

17As marginal costs are linear the algorithm will pick out yi ∈ {0, 1} as optimal.
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of values and adjust so that the bundle discount can be set to optimally encourage bundle

sales amongst those with the highest valuations. Figure 2 demonstrates visually that our

algorithm allows this formulation of the general monopolist’s problem to be solved and so

showcases its flexibility even when consumers’ valuations are not uniformly distributed.

The proportional bundle discount 2p−pb
2p

is plotted in the third figure of Figure 2. The

beauty of the optimal pattern yields some insight into why analytical solutions are so

difficult to establish in this area. We see that bundle reductions become less generous as

the correlation coefficient between the goods valuations becomes more positive – but the

effect is not uniform and depends also on the average good valuations µ.
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Panel (a)

Panel (b1) Panel (b2)

Figure 1: Solution to the Multidimensional Monopolist Problem
Notes: Panel (a) depicts the optimal product mix for a monopolist serving 2, 500 = 50 × 50 consumers

– the Stingray’s tail is evident. Panel (b1) depicts the optimal product mix with 25 = 5× 5 consumers.

Panel (b2) depicts the tree structure of binding incentive compatibility (IC) and individual rationality

(IR) constraints for the 5×5 case at the optimal assignment of products to clients. All types are connected

to the lowest type (1, 1) by sequences of arrows (the ‘branches’ of the tree). Assignments are distorted

in order to decrease the rents of all types located higher up the tree. Clients are supported on [1, 2]2

and production costs are given in (31). Note that the green spots in panel b2 depict that rents are fully

extracted by the monopolist – the individual rationality constraints are binding. Code for the simulation

algorithm is available at https://github.com/x-dupuis/screening-algo.
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Figure 2: Solution to the Schmalensee (1984) problem
Notes: Consumers are distributed according to a joint-normal, and not a uniform, distribution. The

vertical axis gives the correlation coefficient ρ in all three graphs. The richness of the pricing solution is

apparent. For every pair of parameters (µ, ρ), optimal prices are calculated using our algorithm for a set

of consumers distributed according to a joint-normal distribution approximated by the values it takes on

a 10 × 10 grid covering [0, 10]2. The variance of the joint-normal is set to σ2 = 10. Non-deterministic

prices are not, in general, optimal under this discrete distribution. The small number of such points have

been dropped from the figures. The bundling discount is calculated as 1 − pb

2p . A proportionate bundle

reduction of 0.5 indicates parameters for which only the bundle is sold (pb = p). Code for the simulation

algorithm is available at https://github.com/x-dupuis/screening-algo.
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7 Illustration 2: Joint taxation of labour and savings

incomes

In this section we apply our algorithm to a second canonical problem in economics: op-

timal taxation when citizens differ in more than one dimension. This problem was intro-

duced in section 2.2. To study this tax setting the social planner’s objective function was

defined in (8) and the surplus available to citizens was given in (9). In this formulation we

allow citizens to be differentiated on two dimensions; the type of individual i is a couple

(ei, xi). In this illustration suppose that endowments ei are distributed uniformly on a

regular grid on [1, emax]. Labour disutilities xi are distributed uniformly on a regular grid

on [0, 1].18 We set the competitive wage at w = 1 so that the utility of full-time work is

1− xi > 0. The utility of consumption at date 1 is assumed to be

u(C1) :=
1

η

(
1− e−ηC1

)
, (32)

with η = 1. Period one consumption is e − s while period two consumption is the sum

of investment returns Rs and labour income, minus taxes. The return on savings is R

and the social planner’s Rawlsian weight is λ. Using the exponential utility as depicted

in (32), we can establish in closed form the first best allocation when types are publicly

observable. It is characterized by labour supply l = 1 for all (everyone participates in

the labor force) as labour contributes positively to each citizen’s surplus. Further, the

first best allocation would result in identical consumption at date 1 such that : C1 = ln 1
R

for all. Such an allocation, in the presence of full information, would be implemented by

personalized lump-sum taxes that do not depend on the labour or savings decisions of the

agents.

When labour disutility x is the same for all agents, so that the agents only differ in

their wealth endowment e, the second best allocation can be implemented by a savings

tax T (s). The indirect utility of an agent of type e is denoted by U∗(e) + (w− x)l where

U∗(e) = max
s

u(e− s) +Rs− T (s).

Note that the marginal tax rates are such that

T ′(s(e)) = R− u′(e− s(e)), (33)

where s(e) denotes the savings of agent e in the second best allocation. The envelope

theorem then implies

U∗′(e) = u′(e− s(e)) > 0. (34)

18The use of the uniform distribution here is for expositional convenience – the algorithm applies to
general distributions.
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The economic question we want to investigate is whether it is optimal to tax the savings

of employed people at a higher or lower rate than unemployed people in the general case

where both e and x are heterogenous and privately observable. Assuming for simplicity

that l can only take the values 0 or 1, the principal will offer a menu of tax schedules

(Tl(s), l = 0, 1), giving rise to an indirect utility function

max(U∗
0 (e), U

∗
1 (e) + w − x).

The critical value of x above which an agent of type (e, x) decides not to work is thus

x∗(e) = w + U∗
1 (e)− U∗

0 (e). (35)

This critical value is increasing in the citizen’s endowment e if and only if U∗′
1 (e) > U∗′

0 (e),

which arises if and only if the marginal tax rates are lower for employed rather than

unemployed agents. Using (33) and (34) we see that we can establish whether the tax

rates on savings is affected by employment status by comparing the marginal utility of

consumption across differing endowments.

Panel (a1) Panel (a2)

Figure 3: Solution to the multidimensional tax problem
Panel (a1) depicts the work decision citizens make in response to the optimal tax scheme. Panel (a2)

depicts the marginal tax rate on savings given in (33). The simulation sets λ = 1/2, R = 1, η = 1, and

citizens are modelled as taking one of 400 = 20×20 types. Code for the simulation algorithm is available

at https://github.com/x-dupuis/screening-algo.

We solve for the optimal tax in a 20× 20 example in Figure 3. Panel (a1) of Figure 3

depicts the citizen’s labour decision when faced with the optimal tax scheme implemented

by the social planner. We see that the labour force participation decision optimally
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depends on both the citizen’s disutility of labour and their initial endowment. Panel (a1)

shows us that the critical point at which citizens swap from not-working to working,

x∗(e) is increasing in the citizen’s endowment. This shows that optimality requires a

tax on savings, and further that this tax depends upon the citizen’s disutility of labour

(and therefore on their labour force decision). This is confirmed in Panel (a2) of Figure

3. Panel (a2) plots the marginal tax rate with respect to saving which is given in (33).

We see that the optimal savings tax depends upon the disutility of labour and so differs

depending on the citizen’s optimal labour force decision.

The dependence of the optimal labour taxes on the level of capital tax being paid is

likely to be an important feature of the structure of optimal tax in richer, multidimensional

settings. Simple discrete n×n examples for small n make it hard to discern the nature of

this dependence. Numerical approaches, such as that championed here, potentially allow

us to gain new insights on this topic.

Our initial question was whether the savings of employed people should be taxed

differently to those of the unemployed. From Panel (a1) of Figure 3 the unemployed have

the lowest endowments and the highest disutility of working. From Panel (a2) we see

that the marginal tax rate is highest for these people. So in our simple formulation a

form of no-distortion-at-the-top applies in which those with the largest endowment enjoy

zero marginal savings taxes, but for those with smaller endowments savings taxes at the

margin are larger, and the marginal tax rates are largest for those who do not supply

labour so as to create the maximal incentive to work and not just consume from one’s

initial endowment.

We hope our algorithm will allow these results to be expanded and refined in much

larger simulations making full use of the multidimensionality of the problem.

8 Conclusion

The objective of this paper is to make easily accessible to the research community an

efficient algorithm which allows one to solve any discrete, quasi-linear screening problem

of reasonable size. The examples analyzed here are only illustrative and do not have any

pretense to realism. However, our hope is that this algorithm will be used by specialists

in the different topics that can be modelled as screening problems, including of course

taxation and multiproduct design and pricing. The power of our algorithm makes it

effective for large numbers of types, which allows one to approximate continuous distri-

butions closely. We also hope to extend it, in subsequent research, to non quasi-linear

environments.
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9 APPENDIX

9.1 A simple case where IC constraints are qualified

Lemma 2 If y splits into y = (x, z) and bi(y) = φi(x) + θiz with i ̸= j ⇒ θi ̸= θj then

(11) holds at any admissible (y, U).

Proof. Take ûi =
1
2
|θi|2, ŷi = (0, θi) and note that Dûij −∇Λij(yj)ŷj =

1
2
|θi − θj|2.

9.2 Feasibility of the proximal steps

Let us now explain how the proximal steps (25) (or (28)) and (26) (or (29)) can be handled

in practice.

9.2.1 Updates for the primal variables y

The proximal steps (25) (or (28)) involve the proximal operator of the convex and smooth

function −τS. That is given y0 ∈ Rd×N we have to solve

sup
y

S(y)− 1

2τ
|y − y0|2.

Note that S(y) =
∑

i fiSi(yi) is a separable function so that these proximal steps can

be split into simple (strictly concave and smooth) optimization problems in dimension d

only:

sup
yi

fiSi(yi)−
1

2τ
(yi − y0i )

2

which can be completed by standard methods such as gradient ascent. Note that if Si is

quadratic (as in our Multiproduct Monopolist illustration), this proximal step is in closed

form.
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9.2.2 Updates for the multipliers: projecting onto K

Recall that K is the closed convex set of N ×N matrices,

K := {v ∈ RN×N , v ≥ 0, D∗v ≤ η} (36)

where η := λf . The projection onto K could be a serious bottleneck for the algorithm if

projecting onto K was costly. Our aim now is to explain how to project onto K efficiently.

Given w ∈ RN×N we wish to solve

inf
v∈K

|v − w|2 =
∑

1≤i,j≤N

(vij − wij)
2. (37)

This is a quadratic problem with finitely many linear and inequality constraints. The

unique solution v of (37) is characterized by the following KKT conditions: there exist

µ ∈ RN×N
+ (multipliers for the nonnegativity constraints) and β ∈ RN (multipliers for the

constraints on D∗v) such that

v − w = µ−Dβ, µ ≥ 0, µ · v = 0, (38)

as well as

β ≥ 0, D∗v ≤ η, β · (D∗v − η) = 0, (39)

One can simply eliminate µ and rewrite (38) as v = v(β) depending only on β (we insist

here that β only has dimension N) with

v = (w −Dβ)+ i.e. vij(β) := max(wij − (βi − βj), 0). (40)

We are left to find β in such a way that v(β) fulfills (39). At this point it is useful to

observe the following

Lemma 3 Define for every β ∈ RN

Φ(β) :=
1

2
|v(β)|2 = 1

2

∑
1≤i,j≤N

(wij − βi + βj)
2
+

then v solves (37) with K given by (36) if only if v = v(β) and β solves

inf
λ∈RN

+

Φ(β) + η · β (41)

Proof. Observe that Φ is convex and differentiable (it is even C1,1 i.e. has a Lipschitz

gradient) and

∇Φ(β) = −D∗v(β)
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so β solves (41) if only if

D∗v(β) ≤ η, (η −D∗v(β)) · β = 0

which is (39).

So projecting onto K consists in minimizing a smooth and convex function on RN with

only nonnegativity constraints (in (41)). One can therefore use a (projected) gradient

method and, we propose, use Nesterov’s acceleration as follows:

Given that∇Φ(β) = −D∗v(β) and v is 1-Lipschitz (for the euclidean norm of RN), ∇Φ

is M -Lipschitz with M := ∥D∗∥2, the 2-operator norm19 of D∗. The standard projected

gradient method for (41), consists, given an initial guess β0, in iteratively setting

βk+1 = Π+

(
βk −

1

M
(η −D∗v(βk))

)
where Π+ consists of taking componentwise the positive part. This is simple to implement

but converges quite slowly. That is the difference between the desired minimum and the

function to be minimized, evaluated at βk, is O(1/k). Nesterov’s acceleration (Nesterov

(1983), Beck and Teboulle (2009)) enables one to reach an error O(1/k2) with the same

computational cost just by choosing varying gradient steps tk by starting with t0 = 0 and

the recursion

tk+1 =
1 +

√
1 + 4t2k
2

.

Given an initial guess β0 = β0, Nesterov’s iterates are then given by

βk+1 = Π+

(
βk −

1

M
(η −D∗v(βk))

)
(42)

and

βk+1 = βk+1 +

(
tk − 1

tk+1

)
(βk+1 − βk).

The error between the minimum and the cost computed at βk is O(1/k2) (see Beck and

Teboulle (2009)).

These steps have been implemented in our code20 which we used to solve the illustrative

examples found in §6 and §7.
19i.e. ∥D∗∥2 is the square root of sup{

∑
i(D

∗v)2i :
∑

ij v
2
ij ≤ 1} which is also the largest eigenvalue of

DD∗.
20Available at https://github.com/x-dupuis/screening-algo.
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Martinet, B. (1972). Détermination approchée d’un point fixe d’une application pseudo-
contractante. Cas de l’application prox. C. R. Acad. Sci. Paris Sér. A-B 274, A163–
A165.

Maskin, E. and J. Riley (1984). Monopoly with incomplete information. The RAND
Journal of Economics 15 (2), 171–196.

McAfee, R. P. and J. McMillan (1988). Multidimensional incentive compatibility and
mechanism design. Journal of Economic theory 46 (2), 335–354.

McAfee, R. P., J. McMillan, and M. D. Whinston (1989). Multiproduct monopoly,
commodity bundling, and correlation of values. The Quarterly Journal of Eco-
nomics 104 (2), 371–383.

Mirebeau, J.-M. (2016). Adaptive, anisotropic and hierarchical cones of discrete convex
functions. Numer. Math. 132 (4), 807–853.

Mirrlees, J. A. (1971). An exploration in the theory of optimum income taxation. The
Review of Economic Studies 38 (2), 175–208.

Mirrlees, J. A. (1976). Optimal tax theory: A synthesis. Journal of public Economics 6 (4),
327–358.
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