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In the Mediterranean region, a reduction of annual precipitation and a longer and drier summer season are expected with climate change by
the end of the century, eventually endangering forest survival. To cope with such rapid changes, trees may modulate their morpho-anatomical
and physiological traits. In the present study, we focused on the variation in leaf gas exchange and different leaf morpho-anatomical functional
traits of Quercus pubescens Willd. in summer using a long-term drought experiment in natura consisting of a dynamic rainfall exclusion system
where trees have been submitted to amplified drought (AD) (∼−30% of annual precipitation) since April 2012 and compared them with trees
under natural drought (ND) in a Mediterranean forest. During the study, we analyzed net CO2 assimilation (An), stomatal conductance (gs),
transpiration (E), water-use efficiency (WUE), stomatal size and density, density of glandular trichomes and non-glandular trichomes, thickness
of the different leaf tissues, specific leaf area and leaf surface. Under AD, tree functioning was slightly impacted, since only An exhibited a 49%
drop, while gs, E and WUE remained stable. The decrease in An under AD was regulated by concomitant lower stomatal density and reduced leaf
thickness. Trees under AD also featured leaves with a higher non-glandular trichome density and a lower glandular trichome density compared
with ND, which simultaneously limits transpiration and production costs. This study points out that Q. pubescens exhibits adjustments of leaf
morpho-anatomical traits which can help trees to acclimate to AD scenarios as those expected in the future in the Mediterranean region.

Key words: acclimation, climate change, functional traits, long-term drought, Mediterranean forests, photosynthesis, stomata density, stomata size, trichomes.

Introduction

Climatic models forecast for the Mediterranean region a
general warming between 1 and 5 ◦C by the end of the
century, reaching up to 7 ◦C during summer, as well as a
reduction in annual precipitation of about 30% (Guiot and
Cramer 2016, Cramer et al. 2018, Lionello and Scarascia
2018, Zittis et al. 2019). Such changes will lead to longer
and more frequent summer drought periods in Mediterranean
climate areas (Lionello and Scarascia 2018), which should
have a negative impact on forest productivity, health and
regeneration (Cramer et al. 2018, Peñuelas et al. 2018).

To cope with water deficit, plants modulate their physio-
logical as well as their morphological and anatomical traits
(Basu et al. 2016, Li et al. 2023). For the former, rapid stomatal
closure is well known to allow water saving during drought
stress. Such response implies however a reduction in carbon
assimilation through photosynthesis eventually constraining
plant growth (Farquhar and Sharkey 1982, Chaves et al. 2002,
Pirasteh-Anosheh et al. 2016, Saunier et al. 2018). Regard-
ing morphological traits, stomatal density (SD) and stomatal
size (SS) are involved in water loss regulation and thus, in
plant adaptation to drought (Bertolino et al. 2019). Another
important morphological adaptation to limit water loss is the
development of leaf trichomes (Bickford 2016). Trichomes
are appendages derived from aerial epidermal cells in leaves,
stems and floral organs which act as a direct barrier against
transpiration but also as a protection against herbivores and

UV-radiation (Wang et al. 2021). Drought stress increases leaf
trichome density in many plant species (Shahzad et al. 2021,
Chen et al. 2022), including Quercus species (Hernandez and
Park 2022). Trichomes are classified as glandular trichomes
(GT) and non-glandular trichomes (NGT) (Xiao et al. 2016).
Glandular trichomes store and secrete large quantities of
specialized metabolites including terpenoids (Mahmoud et al.
2021), flavonoids (Tattini et al. 2000) and phenolic acids
(Zhou et al. 2021) which are involved in plant defense against
environmental stresses such as drought (Haberstroh et al.
2018, Laoué et al. 2022) or herbivory (Peiffer et al. 2009). By
contrast, NGT do not secrete specialized metabolites but act
as a physical protection against high light and temperatures,
playing a key role in limiting transpiration (Karabourniotis
et al. 2020). Finally, regarding anatomical traits, leaf thickness
plays an important role in plant adaptation to withstanding
drought stress (Flexas et al. 2014, Niinemets 2015, Afzal
et al. 2017) and more specifically, variation in mesophyll
anatomy is of a great importance for photosynthetic capacity
(Marchi et al. 2008, Somavilla et al. 2014). Usually, thicker
leaves possess a better tolerance against water scarcity due
to enlarged palisade mesophyll cells or increase in total leaf
thickness which allows the leaf to store more water (Wright
et al. 2004, Galmés et al. 2013). Moreover, a low specific
leaf area (SLA)—owing to high tissue thickness—in evergreen
sclerophyllous species, favors adaptation to arid and semi-arid
climates (Vaz et al. 2010, Ramírez-Valiente et al. 2020) while
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2 Laoué et al.

large leaves with high SLA—and thus thinner leaves—in non-
sclerophyllous broad-leaf deciduous species reflects an acqui-
sition resource-use strategy where light capture, photosyn-
thesis and resource assimilation are maximized (Pérez-Ramos
et al. 2013, Reich 2014).

Morpho-anatomical leaf traits are thus critical for leaf
gas exchange since they permit plants to adjust their net
CO2 assimilation (An), stomatal conductance to water (gs),
transpiration (E) and water-use efficiency (WUE) (Franks and
Farquhar 2007, Franks et al. 2009). Studies on morpho-
anatomical adjustments in response to water scarcity are well
documented in deciduous oak species (Thomas and Gausling
2000, Peguero-Pina et al. 2016, Robakowski et al. 2020,
Hernandez and Park 2022). In the study of Peguero-Pina
et al. (2016), significant morphological and physiological dif-
ferences in response to water deficit according to oak species
were seen where trees reducing the transpiring area appear to
be an example of adaptation to water deficit as observed in
Quercus faginea Lam.

Some tree species are more vulnerable than others to water
deficit. Quercus pubescens Willd. is a widespread deciduous
species in the North-Western part of the Mediterranean basin.
It is a drought-resistant species (Levitt 1980, Struve et al.
2009) using a strategy to avoid leaf dehydration under water
stress which is to develop a deep root system and high
hydraulic conductivity that allows subsurface soil moisture
uptake to leaves thus maintaining high relative leaf mois-
ture (Nardini and Pitt 1999, Tognetti et al. 2007, Struve
et al. 2009). Fotelli et al. (2000) showed that among other
Mediterranean oak species (i.e. Quercus frainetto Ten., Quer-
cus macrolepis Kotschy., and Quercus ilex L.), Q. pubescens
maintained the highest water potential under drought con-
ditions, reinforcing the idea that Q. pubescens has a greater
efficiency in hydraulic transport compared to other Quercus
species (Tognetti et al. 1998).

Our previous studies simulating future drought conditions
in a Q. pubescens forest revealed that canopy capacity to
fix CO2 was limited in response to short, middle, and long-
term amplified drought (AD; 1 year, 3–4 years, and 10 years
after installation of a rain exclusion system, respectively)
(Saunier et al. 2017, 2018, Genard-Zielinski et al. 2018,
Laoué et al. 2023). Such limitation in net photosynthesis in
response to long-term AD (>10 years) was accompanied by a
higher accumulation of leaf central antioxidant defenses (i.e.
carotenoids) to preserve Q. pubescens photosynthetic appa-
ratus (Laoué et al. 2023) at the expense of specialized antiox-
idant defenses (i.e. phenolic compounds) whose production
imposes an energetic cost to the plant because resources are
diverted away from growth processes and related central
metabolism (Paul-Victor et al. 2010, Agrawal 2011).

Although morpho-anatomical adjustments are crucial for
plant acclimation to drought stress (Thomas and Gausling
2000, Peguero-Pina et al. 2016, Robakowski et al. 2020,
Hernandez and Park 2022), no study has investigated such
changes in Q. pubescens after recurrent and long-term AD. In
order to fill this gap, this in natura study analyzed whether
Q. pubescens deploys morpho-anatomical changes (i.e. high
trichome density, low SD, thicker leaves) after 10 years of
AD allowing the species to acclimate to future drier climatic
conditions. Additionally, the present investigation explores the
relationship between these morpho-anatomical adjustments
and the limited net photosynthesis in trees submitted to AD
(Saunier et al. 2018, Laoué et al. 2023) and highlights if

such changes could avoid water loss allowing Q. pubescens
to withstand the increasing limited precipitation expected in
the Mediterranean area.

Materials and methods

Study site and species

This study was conducted at O3HP (Oak Observatory at the
‘Observatoire de Haute Provence’), an experimental forest
site in natura mainly populated by ∼ 85–100 years old Q.
pubescens. This experimental site allows long-term monitor-
ing of drought impact on a Mediterranean forest. It belongs
to both AnaEE-France (Analysis and Experimentation on
Ecosystems) and AnaEE-ERIC (European Research Infras-
tructure Consortium). It is located at 60 km north of Marseille
in Southern France (5◦42′44′′E, 43◦55′54′′N) at an eleva-
tion of 650 m above sea level. Annual rainfall is 830 mm
and annual mean temperature 11.9 ◦C (Laoué et al. 2023)
which corresponds to a humid supra-Mediterranean biocli-
mate (Quézel and Médail 2003).

This experimental site is equipped since April 2012 with a
dynamic rainfall exclusion device which is deployed during
some rain events from April to October to exclude between
30% and 40% of annual precipitation (which corresponds on
average to 20 days of rain exclusion) thus simulating future
climate predictions in the Mediterranean region (Lionello and
Scarascia 2018, Zittis et al. 2019). Two plots are monitored,
namely the AD plot of 300 m2 where trees are subjected to
partial rain exclusion and the natural drought (ND) adjacent
plot (300 m2) without rain exclusion where trees grow under
ND conditions occurring in this Mediterranean forest, i.e.
they suffer seasonal water deficit under summer drought
conditions (see Fig. S1 available as Supplementary data at Tree
Physiology Online). Twenty Downy oak (Q. pubescens) trees
(10 trees under ND and 10 trees under AD; Fig. S1 available as
Supplementary data at Tree Physiology Online) were selected
within the plots to study their leaf physiological and morpho-
anatomical traits in July 2021. Regarding climatic data, the
year preceding leaf sampling (2020) was considered as a dry
year since the annual cumulative precipitation was 499 mm
which is well below the annual mean precipitation of 830 mm
(Fig. 1a). Before our sampling dates in July 2021, the studied
forest was exposed to 3 months of ND (in May, June and July)
since temperature curves were above precipitation bars in the
ombrothermic diagram. Such ND in 2021 was intensified in
the AD plot since 27% of precipitation was excluded from
April to July (Fig. 1b and c).

Physiological leaf traits

Leaf gas exchanges of CO2 and H2O were measured with
an infrared open-gas analyzer (IRGA, CIRAS-3, PP Systems,
Amesbury, MA, USA). Measurements were performed
between 10 a.m. and 1 p.m. from 12 to 14 July 2021 on three
full sun leaves from the top of each canopy (ND and AD)
accessible using an elevated footbridge (see Fig. S1 available
as Supplementary data at Tree Physiology Online). Within the
leaf chamber, photosynthetically active radiation (PAR) was
set to 1000 μmol m−2 s−1, leaf chamber temperature at 27 ◦C
and CO2 concentration at 400 μmol mol−1. Physiological
traits measured were the net CO2 assimilation (An, μmol
CO2 m−2 s−1), stomatal conductance to water (gs, mmol
H2O m−2 s−1), transpiration (E, mmol H2O m−2 s−1) and
WUE (mmol CO2 mol−1 H2O) calculated as the ratio An/E.
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Figure 1. Climatic conditions at O3HP. (a) Cumulative precipitation in the
natural (ND) and amplified (AD) drought plots in 2020. The dotted line
represents the annual mean precipitation calculated for the period
1967–2000 (830 mm). (b) Cumulative precipitation under ND and AD
plots in 2021 (from January to July). (c) Ombrothermic diagram under
natural ND and AD plots in 2020 and 2021 (until July) where bars
represent monthly cumulative precipitation (P, mm) and curves represent
mean monthly temperature (T, ◦C) with P = 2 T. When temperature
curves are above precipitation bars (indicated by horizontal arrows), it
corresponds to dry periods.

Morphological and anatomical leaf traits

Leaves were collected from the top of the canopy of each
tree around midday and immediately frozen in liquid nitrogen
then stored at −80 ◦C until use. The SS, SD and trichome
density of Q. pubescens leaves were measured from 30 leaves
(3 leaves/tree, 10 trees/condition) to three different areas/leaf
(totaling 180 analyses). Measurements were performed on the
abaxial surface since the adaxial surface possessed a very low
density of NGT and no GT (Safou and Saint-Martin 1989,
Bussotti and Grossoni 1997, Fortini et al. 2009) (also see
Fig. S2 available as Supplementary data at Tree Physiology
Online). In Q. pubescens, GT are referred as simple seriate
trichomes composed of a single column of two or more thin-
walled cells. Their exact function (Fortini et al. 2015) and
content have not been clarified but it is likely they store
terpene-like compounds as in Q. robur (Engel et al. 1993). The
leaf abaxial surfaces were observed through scanning electron
microscope (Zeiss Evo 15 VP EP -SEM, Germany, 20 kV
accelerating potential, 10 mm working distance) at 100×
magnification to calculate the density of NGT and GT and
500× magnification for SS and density. Before microscopic
observations, leaf sections were sputtered with gold. The SS
was calculated as an ellipse from the measured guard cells
length (Zhu et al. 2018, Caine et al. 2019). Images were
analyzed using ImageJ software (National Institutes of Health,
Bethesda, MD, USA).

Leaf anatomical traits were characterized through leaf
tissue thickness, leaf surface and SLA measured on three
leaves/tree and three segments/leaf (1 × 0.5 cm) on either side
of the main vein. Each segment was progressively dehydrated
in ethanol series (70% to 100%, seven times) followed
by xylene and then embedded with warm paraffin. Leaf
transverse sections (9 μm) were then cut using a rotary
microtome (Leica biosystem RM235, Nussloch, Germany),
then stained with safranin (lignified tissues) and Astra Blue
(non-lignified tissues) and finally assembled in slides and
sealed with neutral glue (Férriz et al. 2023). The thickness
of both, adaxial and abaxial epidermis as well as palisade
parenchyma and spongy parenchyma were determined
using a light microscope (Leica DM2500, Germany) at a
magnification of 100×. The SLA (cm2 g−1) was calculated
as the ratio of leaf surface (cm2)—measured using ImageJ
software—to dry mass calculated on 10–15 leaves by tree.

Statistical analyses

Differences in morpho-anatomical and physiological traits
under drought conditions (ND and AD) were tested with
principal component analysis (PCA), using FactoMineR
and factoextra packages (Husson et al. 2010, Kassambara
2020), followed by permutational multivariate ANOVA
(PERMANOVA) using vegan package (Oksanen et al. 2013)
with 9999 permutations as well as with Student tests
(P < 0.05). The relationship between physiological and
morpho-anatomical traits within each drought condition
was determined by Pearson correlation coefficients (r) using
the ‘cor.test’ function. Pearson’s correlation matrices (Hmisc
package with ‘rcorr’ function; Harrell 2014) were performed
to assess relationship between physiological traits and
between leaf thickness traits with drought conditions pooled
together. Data were log-transformed when necessary to reach
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4 Laoué et al.

Figure 2. PCA for the first two PCA axes including all physiological and
morpho-anatomical traits measured in this study. Color scale indicates
the contribution of each variable. Natural drought (ND) and amplified
droughtdark (AD), with n = 10 for each condition and differences were
tested with PERMANOVA. Ab. ep, abaxial epidermis; Ad. ep, adaxial
epidermis; An, net CO2 assimilation; E, transpiration; gs, stomatal
conductance to water; thickness, total leaf thickness.

normality and homoscedasticity. All statistical analyses were
performed using R software v.4.0.3 (R Core Team 2020).

Results

Changes in leaf functional traits after 10 years of AD

When all traits (physiological and morpho-anatomical) were
considered together, trees growing under ND and AD sig-
nificantly differed in terms of morpho-anatomical traits, as
explained by the first PCA component (PC1) (PERMANOVA,
P < 0.05) which explained 35.2% of the variability (Fig. 2).
The second PCA component (PC2) was more correlated with
physiological traits (gs, E and WUE) and explained 18% of
the variation (Fig. 2). According to PC1, trees under long-term
AD featured higher values of SLA and non-glandular trichome
density (NGTD), whereas they exhibited lower leaf surface,
SD and glandular trichome density (GTD) as well as lower leaf
thickness-related traits (mesophyll, palisade, spongy and total
leaf thickness) than trees under ND. The most discriminant
traits in PC1 were total leaf thickness and leaf thickness-
related traits (i.e. mesophyll, palisade, and spongy thickness),
indicating a remarkable dichotomy between AD and ND
conditions according to these traits. Correlation values of each
variable with the two principal components are shown in
Table S1 (available as Supplementary data at Tree Physiology
Online).

Adjustments in leaf gas exchange after 10 years
of AD

Among the physiological traits measured in July 2021, An was
the only trait significantly reduced under AD (P < 0.001),
dropping from 5.78 under ND to 2.96 μmol CO2 m−2 s−1

under AD. The decreases also recorded in gs, E and WUE
under AD were not significant Table 1.

Adjustment of morphological traits after 10 years
of AD

Stomata, only present on the abaxial side of Q. pubescens
leaves (Figure 3a, Figure S2 available as Supplementary data
at Tree Physiology Online), occurred in lower density under

AD (510 stomata mm−2) than in trees under ND (601 stomata
mm−2) (P < 0.01; Fig. 3b). The SS ranged from 88 to 481 μm2

with no difference between the two drought conditions com-
pared (Fig. 3c). The SD and SS were not significantly corre-
lated either under AD or ND (Fig. 4a).

Quercus pubescens abaxial leaf surfaces were covered by
a crystal wax layer and presented two types of trichomes
namely the NGT and the GT (Fig. 4a). The NGT were uni-
cellular while GT were multicellular and uniseriate (i.e. they
possessed a single vertical row of cells) (Fig. 4a). The NGT
density (NGTD) was on average 3 and 7 trichomes mm−2

under ND and AD, respectively, therefore increased under AD
(P = 0.05; Fig. 4b). By contrast, GT density (GTD) signifi-
cantly dropped from 33 (under ND) to 18 trichomes mm−2

under AD (P < 0.05; Fig. 4c). Interestingly, we observed a
negative correlation between GTD and NGTD, reflecting a
trade-off between the trichomes secreting specialized metabo-
lites and those that do not (Fig. 5b).

Adjustment of anatomical traits after 10 years of AD

Leaf thickness ranged from 157 to 205 μm, and leaves were
significantly thinner (−7%) in trees growing under long-term
AD (P < 0.05; Fig. 6a and b) because leaves had thinner
mesophylls (P < 0.05; Fig. and b). The change in mesophyll
thickness was due to a thinner spongy parenchyma thickness
which significantly dropped from an average of 154 μm
under ND to 141 μm under AD (P < 0.05; Fig. 6a and b).
Thickness of most tissues positively correlated with each other
(Fig. S3 available as Supplementary data at Tree Physiology
Online). For example, spongy and palisade parenchyma were
highly correlated (r = 0.73, P < 0.001; Fig. S3 available as
Supplementary data at Tree Physiology Online). In addition,
trees under AD possessed a higher SLA in line with thinner
leaves since both traits (SLA and leaf thickness) were nega-
tively correlated (r = 0.41, P < 0.01). The leaf surface did
not differ according to drought conditions, although it was
slightly lower under AD (Fig. 6c).

Concomitant morpho-anatomical and physiological
adjustments in response to 10 years of AD

Regarding morphological traits related to the leaf surface,
higher SD was associated to lower An under ND (P < 0.05)
while lower SD was associated to lower An under AD
(P = 0.06) (Fig. 7a). Additionally, higher NGTD under AD
was associated with low E (r = 0.43, P < 0.05; Fig. 7c)
and high WUE (r = 0.39, P < 0.05; Fig. 7d) but was not
associated with gs (Fig. 7b). The total leaf thickness was
positively associated with physiological traits (An, gs and
E) under AD (Fig. 8a–c). Especially, the decrease in An under
AD was correlated with a decrease in the spongy parenchyma
thickness (r = 0.56, P < 0.01; Fig. 8d). Also, the spongy
parenchyma thickness positively correlated with gs (r = 0.54,
P < 0.01; Fig. 8e) and E (r = 0.48, P < 0.05; Fig. 8f). However,
the palisade thickness was not associated to physiological
traits (Fig. 8g–i). Lower leaf surface under AD was associated
to higher WUE (r = 0.39, P < 0.05; Fig. 9).

Discussion

Previous studies on the same site indicated that production of
leaf specialized chemical defenses in Q. pubescens was slightly
reduced (e.g. some phenolic compounds) or remained stable
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Table 1. Physiological leaf traits measured in July 2021 under ND and AD.

Physiological traits ND AD

Net assimilation (An; μmol CO2 m−2 s−1) 5.78 ± 0.56 2.96 ± 0.36 ∗∗∗

Stomatal conductance to water (gs; mmol
H2O m−2 s−1)

28.27 ± 4.89 19.13 ± 3.46 Ns

Transpiration (E; mmol H2O m−2 s−1) 0.50 ± 0.10 0.32 ± 0.07 Ns
WUE (mmol CO2 mol−1 H2O) 15.63 ± 2.85 13.07 ± 2.14 Ns

Significant differences are tested with Student tests and are denoted using asterisks (∗∗∗: P < 0.001). Ns: not significant. Values are mean ± SE (n = 10).

Figure 3. Leaf morphological traits of Q. pubescens including SD and size on the abaxial leaf surface according to ND and AD conditions. (a) Scanning
electron microscopy (SEM) images of the abaxial leaf surface under ND (left) and AD (right). (b) SD. (c) SS. The horizontal lines inside the boxes are the
medians and the horizontal dashed lines are the means (n = 10 trees). Differences between ND and AD were tested with Student tests with asterisk
denoting significant differences between conditions (∗∗: 0.001 < P < 0.01; ns: not significant).

in response to long-term (10 years) AD (Laoué et al. 2023).
Only some central metabolites (plastochromanol-8, lutein,
and neoxanthin), were more accumulated after 10 years of
rain withholding indicating some capacity of Q. pubescens
to cope with increasing drought-related oxidative pressure.
In order to understand the physical strategies deployed in
response to prolonged rainfall deficit, we investigated whether
Q. pubescens exhibited morpho-anatomical adjustments and
how they could contribute to tree acclimation to drought.

After 10 years of partial rain exclusion, trees exhibited signs
of physiological slow down through a 49% decrease of An
measured in summer, indicating a significant impact on the
capacity of Q. pubescens to fix CO2. This result confirms
results from Saunier et al. (2018) after 3 and 4 years of
partial rain exclusion on the same experimental site. Stom-
atal conductance remained stable under amplified long-term
drought which is explained by the capacity of Q. pubescens to

maintain the hydraulic conductivity and relative leaf moisture
content (Nardini and Pitt 1999, Tognetti et al. 2007, Struve
et al. 2009). In addition, the decline in net photosynthesis
while stomatal conductance was stable under AD, revealed
that non-stomatal limitations to photosynthesis were predom-
inant at this level of stress, as highlighted in our previous study
(higher internal CO2 concentration in summer under AD)
(Laoué et al. 2023). In addition, the decoupling between pho-
tosynthesis and stomatal conductance has also been reported
under both water and heat stress combined for other decid-
uous trees and partially for Q. pubescens (Haldimann et al.
2008, Marchin et al. 2023). It is worth noting that stomatal
conductance stability despite increasing aridity is also typical
in anisohydric plant species such as Q. pubescens where stom-
ata remain partially opened even under severe water stress
conditions (Damesin and Rambal 1995, Poyatos et al. 2008).
This strategy can be considered advantageous since it allows
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6 Laoué et al.

Figure 4. Leaf morphological traits of Q. pubescens including trichome density on the abaxial leaf surface under ND and AD conditions. (a) SEM images
of the abaxial leaf surface under ND (left) and AD (right). The arrows indicate NGT and GT. (b) NGTD. (c) GTD. The horizontal lines inside the boxes are
the median and the horizontal dashed lines are the mean (n = 10 trees). Differences between ND and AD were tested with student tests with asterisk
denoting significant differences between conditions (∗: 0.01 < P < 0.05).

Figure 5. Linear Pearson correlations between leaf surface morphological traits. (a) Correlation between SD and SS under both drought conditions. (b)
Correlation between GTD and NGTD under both drought conditions. In b, solid lines represent the regression line for ND and AD. Pearson coefficient of
determination (r ) and P-values are indicated. Each point represents the means ± SE (n = 10 trees).

stomata to stay partially opened thus maintaining certain
CO2 assimilation (Levitt 1980, Genard-Zielinski et al. 2014).
Deciduous oak species (Q. faginea Lam. and Q. pyrenaica
Willd.) do not usually show a conservative water-use strategy
and tend to maintain photosynthetically active leaves dur-
ing most of the summer (Mediavilla and Escudero 2003).
Such characteristic allows these species to compensate for the
shorter leaf longevity compared with evergreen oak species
(Q. ilex and Q. suber), which avoid irreversible leaf damage
during summer drought through extremely conservative water
use (Mediavilla and Escudero 2003).

Two morpho-anatomical traits (spongy parenchyma thick-
ness and SD) were positively correlated with photosynthesis
in trees submitted to AD. Given that spongy parenchyma and
stomata provide the physical basis for CO2 conduction for
photosynthesis and could modulate the entry and diffusion
of CO2 to fixation sites (Flexas et al. 2012, Borsuk et al.
2022), poor spongy parenchyma thickness and SD under AD
could have resulted in limited photosynthesis rates. Although
reducing SD has been described as an advantageous strategy
allowing to limit both gs and E (Liu et al. 2015, Hughes et al.
2017, Morales-Navarro et al. 2018), SD did not correlate
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Figure 6. Leaf anatomical traits of Q. pubescens according to ND and AD. (a) Optical microscopy images of leaf cross sections under ND (left) and AD
(right). Ad. Ep, adaxial epidermis; Ab. Ep, abaxial epidermis. (b) Leaf thickness of the different tissues. (c) Leaf surface. (d) SLA. The horizontal lines
inside the boxes represent the median and the horizontal dashed lines represent the mean (n = 10 trees). Differences between ND and AD were tested
with Student tests. Asterisks denote significant differences between drought conditions (∗: 0.01 < P < 0.05, ∗∗∗: P < 0.001; ns: not significant).

with these physiological traits in our study. It is worth noting
that only SD changes do not necessarily limit gas exchange,
but rather the combination with SS. Indeed, smaller and
denser stomata are associated with higher maximal stomatal
conductance (Henry et al. 2019). In our study, the absence
of changes in SS could explain that stomatal traits did not
influence either stomatal conductance or transpiration. Unex-
pectedly, SD negatively correlated with An under ND (Fig. 7a)
which differs from several previous studies (Xu and Zhou
2008, Tanaka et al. 2013, Zhang et al. 2014). Also, the
relationship between photosynthesis and stomatal traits is not
only determined by mechanical process but is more likely a
combination of diffusive and biochemical process, limited by
both stomatal and non-stomatal factors (Nadal and Flexas
2018). The recent work of Trueba et al. (2022) puts some
light into this relationship by demonstrating that the ratio
of stomatal number to mesophyll volume, rather than the
stomata number alone, is positively correlated with gs and
negatively with WUE. Such result indicates that the combina-
tion of the whole three-dimensional leaf structure combined
to SD has a direct impact on leaf gas exchange and thus on

physiological performance of the plant. In addition, the meso-
phyll conductance (gm) can also impose the same level of lim-
itation to photosynthesis than stomata traits or biochemistry
(Gago et al. 2020). Indeed, the modification in leaf structure
can influence the gas- and liquid-phase conductance and thus
the CO2 diffusion efficiency for photosynthesis (Niinemets
et al. 2009, Gago et al. 2020).

As a whole, leaves under AD exhibited a lower leaf thick-
ness (−7%) associated to higher SLA (+14%). The opposite
response to increasing water stress has, however, been more
documented (that is, SLA decrease is associated to higher
leaf thickness), particularly in sclerophyllous species like Q.
coccifera as a strategy to limit water transpiration and favor
drought resistance (Peguero-Pina et al. 2016, Ormeño et al.
2020). Quercus pubescens growth should have been halted
in trees submitted to harsher drought conditions because
there is always a negative relationship between growth and
drought (Weber et al. 2007, Vodnik et al. 2019, Gea-Izquierdo
et al. 2021). Indeed, in our previous study, SLA was lower in
summer leaves compared with spring leaves, but such decrease
was less marked under amplified (Laoué et al. 2023). This
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8 Laoué et al.

Figure 7. Linear Pearson correlations between physiological and
morphological traits. An, net CO2 assimilation; E, transpiration; gs,
stomatal conductance to water; NGTD, non-glandular trichome density;
SD, stomatal density and WUE, water-use efficiency. Solid lines represent
the regression line for ND and AD. Pearson coefficient of determination
(r ) and P-values are indicated. Values are means ± SE (n = 10 trees).

result indicates that trees growing under AD—and related
limited carbon uptake—will experience limited leaf growth
compared to trees growing under ND conditions. When leaves
possess not only higher SLA but also larger leaves, this is
regarded as an acquisition resource-use strategy where light
capture, photosynthesis and resource assimilation are maxi-
mized (Pérez-Ramos et al. 2013, Reich 2014). In our study,
leaves under AD conditions showed higher SLA (as also
observed in Q. pubescens seedlings; Genard-Zielinski et al.
2014), but also a lower An and potentially smaller leaf surface.
This result suggests a potential loss of competitive ability—
due to prolonged water stress, negatively affecting CO2 fixa-
tion and thus leaf growth—rather than an optimal adaptation
strategy as already suggested for Q. petraea when submitted to
water stress (Robakowski et al. 2020). Despite the fact that Q.
pubescens reduces both its capacity to fix CO2 and potentially
its leaf surface under AD, this could be partially offset by
enhancement in WUE—as evidenced through a negative corre-
lation between leaf surface and WUE (also previously reported
in Ackerly et al. 2002)—and could also be advantageous by
reducing tissue construction costs. A reduction in leaf size has
already been proposed as one of the key traits that allow
different Mediterranean oaks to cope with drier conditions
(Baldocchi and Xu 2007, Peguero-Pina et al. 2016).

Despite the lower SD under AD, transpiration rate did
not drop (as also reported in spring and autumn; Laoué
et al. 2023), which could be an indicator of Q. pubescens
capacity to acclimate to long-term water stress. This could
be explained by both partial stomatal closure to preserve
hydraulic conductivity (Nardini and Pitt 1999) and by a
higher NGTD (+52%), which negatively correlated with tran-
spiration in trees under AD. These trichomes have indeed been
suggested to limit transpiration by reducing the boundary
layer conductance, thereby minimizing water loss (Buckley
et al. 2022). The higher density of NGT under AD is consistent
with several studies where water stress increased the density
of leaf trichome to limit water loss eventually conferring
drought resistance in Quercus species (Mediavilla et al. 2019,
Hernandez and Park 2022) and other plant species (Gonzáles
et al. 2008, Galdon-Armero et al. 2018, Chen et al. 2022).

Unlike unicellular NGT, multicellular GT—identified in
the abaxial leaf surface, as previously reported (Safou and
Saint-Martin 1989, Fortini et al. 2009)—did not seem to
provide any advantage against long-term AD. The GTD was
on average two-fold lower in trees under AD compared with
trees under ND and correlated negatively with the NGTD,
which indicates a trade-off between these two types of tri-
chomes when trees are subjected to carbon-uptake-limiting
conditions (as suggested by the drop in An). When water
resources are limited during drought periods, the production
of simple unicellular structures (i.e. NGT) may be prioritized
over multicellular GT, since the former is less costly (Hare et al.
2003).

Another plausible explanation for the poorer density of GT
under AD is the limited capacity of Q. pubescens to produce
terpene-like defense compounds under pronounced water
scarcity. Although further research is required to confirm
this hypothesis, Q. pubescens leaves contain small amounts
of monoterpene compounds (Santonja et al. 2015) which are
likely to be stored within GT as in Q. robur leaves (Engel
et al. 1993). Furthermore, alike isoprene, whose synthesis
was impacted since the third year of rain restriction in our
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Figure 8. Linear Pearson correlations between physiological and anatomical traits. An, net CO2 assimilation; E, transpiration; and gs, stomatal
conductance to water. Solid lines represent the regression line for ND and AD. Pearson coefficient of determination (r ) and P-values are indicated.
Values are means ± SE (n = 10 trees).

Figure 9. Linear Pearson correlations between WUE and leaf surface.
Solid lines represent the regression line for AD. Pearson coefficient of
determination (r ) and P-values are indicated. Values are means ± SE
(n = 10 trees).

field site (Saunier et al. 2018), monoterpene synthesis and
storage could also be reduced after 10 years of partial rain
exclusion since isoprene and monoterpenes are produced from
the same precursors, isopentenyl pyrophosphate (IPP) and
dimethylallyl pyrophosphate (Zhao et al. 2013). Producing
a poor density of GT under AD would thus avoid an

unnecessary extra-cost production for Q. pubescens when
it grows under long-term AD.

All these results suggest that the trade-off between both
types of trichomes in favor of low-cost NGT confers a com-
petitive advantage in terms of resistance to long-term drought
(and more particularly, limiting leaf transpiration) despite the
partial loss in the production of specialized defenses (isoprene,
phenolic compounds) under AD observed in previous studies
(Saunier et al. 2017, 2022, Laoué et al. 2023). Altogether,
the decrease observed in all the different leaf traits analyzed
express carbon limitation in trees under long-term AD.

Conclusion

In conclusion, Q. pubescens functioning was clearly limited
under long-term partial rain exclusion since net photosynthe-
sis was two-fold lower (as a result of lower SD and spongy
thickness). Several leaf morphological and anatomical adjust-
ments—including a high NGTD, a low SD and a potential
reduction in leaf surface—can contribute to maintain phys-
iological functioning of Q. pubescens and confer protection
under future drier Mediterranean climate. Another remark-
able result was the trade-off between non-glandular and GT
reflecting an important adjustment where low-cost NGT are
favored providing both, a more limited transpiration rate (also
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10 Laoué et al.

provided by partial stomatal closure) and lower production
costs. Together with thinner and potentially smaller leaves,
all these adjustments could contribute to minimize tissue
construction cost and allow Q. pubescens to resist against
more arid summer conditions expected in the future in the
Mediterranean region.

Supplementary data

Supplementary data are available at Tree Physiology online.
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