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Abstract

Based on the A. V Hill’s muscle model (Medicine Nobel prize 1922), mathematical models validated by
experiments due to Ding et al. in the 2000’s allow to describe the muscular force isometrical contraction due to
electrostimulation, taking into account the fatigue. They serve as a model to control and to predict the effect of
trains of electrical stimulations, with rest periods aiming to force rehabilitation or reinforcement. In this article
we briefly present the main issues of the problem. Two typical training sessions are described related to increase
the force or the endurance. Each program is translated into an optimization problem which is analyzed in the
sample-data control frame. The parameters of the models split into parameters independent of each individual vs.
parameters related mainly to the fatigue, which have to be online estimated. Geometric estimation theory leads to
describe a software sensor to make explicit computations.

1. Introduction
Recent mathematical models validate by experiments due mainly to Ding et al. [4–6] and based on the earliest
work by A.G. Hill [9] allow to predict the isometric force response to external electrical stimulation, taking into
account the fatigue phenomenon due to a long stimulation period. Such models contain two basic nonlinearities
which constitute the intricate part of the dynamics. First of all, the ionic conduction and the nonlinear effect of
successive pulses on the Ca++concentration. Second, the nonlinearity relating the muscular force response to such
concentration, modeled by the Michaelis-Menten-Hill functions, which cause the force saturation called tetany. The
control is formed by a sequence of trains of pulses which fit in the frame of sample-data control (digital controls)
due to limitation on the interpulse. Our objective is to use the model to construct a smart electrostimulator for
force rehabilitation or reinforcement based on two objectives : maximize the force response 𝐹𝑚𝑎𝑥 to a single train
corresponding exactly to the tetany or an endurance session regulating the force to a reference force e.g. 𝐹𝑚𝑎𝑥
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while minimizing the fatigue. Each training session is limited to 30 minutes since external stimulation causes
severe fatigue and even during an endurance session rest periods have to imposed. Besides those objectives they
are computational limits related to on-board electronics and cost reduction of the commercial device. In particular
integrating the nonlinear dynamics is time consuming and is bypassed by an approximation of the force response.

Hence the first part of this article is to briefly recall an off line formal approximation of the force dynamics
to compute 𝐹𝑚𝑎𝑥 . It is based on a piecewise linear approximations of the Michaelis-Menten-Hill functions and
is fully described in [3]. The second part of this article is to describe an internal input-output model which is
used to regulate the force-fatigue to a given level using Model Predictive Control [1, 13] and based on the Ding et
al. (nonlinear)model. The final important issue of the project is to estimate the parameters based on preliminary
experiments in the industrial realization of the electrostimulator. They are based mainly on the piezoelectric force
sensor and the measurements being realized either at the beginning of each training session or during the “rest
periods” where the muscle can be in reality stimulated with small intensity and frequency. Geometric control
techniques developed in the 90s, see for instance [10] , are used to study the observability of the system and to
identify the ”bad inputs” for which the systems is not observable. In the experiments they correspond roughly to
the zero input where no force is produced. Recent geometric estimation techniques allow to identify the parameters
of the model. Based on the experiments they can be sorted into two types in the Ding et al. model: four parameters
which are not depending on the individuals and four additional parameters related mainly to the fatigue phenomenon
and which are depending of each individual and can be time varying. Such parameters can be estimated in the
frame of geometric estimation developed in the 2000s and the general techniques presented in [7, 8, 11, 12] based
on the construction of normal coordinates and Kalman or Luenberger-type observers, and adaptive control where
the effect of the inputs formed by trains of impulses on the Ca++ concentration is described and leads to explicit
estimation of the so-called observation space related to such inputs.
Numerical simulations are presented for the MPC algorithm based on the linear parametric model with online
computation of the parameters and the train of pulses in the industrial prototype, taking into account the problem
of severe fatigue caused by external stimulations.
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2. Force-fatigue model
2.1. Ding et al. force-fatigue model
The FES input over a pulse train [0, 𝑇] is modelled as a sum of Dirac pulses by

𝑡 →
∑︁
𝑖=0,𝑛

𝜂𝑖𝛿(𝑡 − 𝑡𝑖), (2.1)

Fig. 1 stimulation period, stimulation and rest sub-periods

where 0 = 𝑡0 < 𝑡1... < 𝑡𝑛 < 𝑡𝑛+1 = 𝑇 are the impulses times with 𝑛 ∈ N being fixed (see figure 1 for constant
interpulse and stimulation amplitude), 𝜂𝑖 being the amplitude of each pulse, which are convexified by taking
𝜂𝑖 ∈ [0, 1] and 𝛿(. − 𝑡𝑖) denoting the Dirac at time 𝑡𝑖 . We denote by 𝐼𝑖 = 𝑡𝑖 − 𝑡𝑖−1 the interpulse and we have a
digital constraint 𝐼𝑖 ≥ 𝐼𝑚 in the problem e.g. 𝐼𝑚 ≥ 30𝑚𝑠 for a train of 10 impulses of around 𝑇 = 500𝑚𝑠. Such a
control provides the FES signal taken as the physical input, using a linear filter (first-order linear dynamics).

𝑑𝐸

𝑑𝑡
(𝑡) + 1

𝜏𝑐
𝐸 (𝑡) =

∑︁
𝑅𝑖𝜂𝑖𝛿(𝑡 − 𝑡𝑖) (2.2)

so that it takes the form
𝐸 (𝑡) = 1

𝜏𝑐

∑︁
𝑖=0,𝑛

𝑅𝑖𝑒
− 𝑡−𝑡𝑖

𝜏𝑐 𝜂𝑖𝐻 (𝑡 − 𝑡𝑖), (2.3)

where 𝐻 is the Heaviside function. 𝐸 (𝑡) depends upon the time response parameter 𝜏𝑐 and the scaling function
𝑅𝑖 depending on parameter 𝑅(0) as following:

𝑅0 = 1, 𝑅𝑖 = 1 + (𝑅(0) − 1)𝑒−(𝑡𝑖−𝑡𝑖−1 )/𝜏𝑐 , 𝑖 = 1, ..., 𝑛, (2.4)

which codes the memory effect of successive muscle contractions.
The FES signal drives the evolution of the electrical conduction describing the evolution of Ca++-concentration

𝑐𝑁which is related to the force response 𝐹. The dynamics being described by

𝑑𝑐𝑁

𝑑𝑡
(𝑡) = 𝐸 (𝑡) − 𝑐𝑛 (𝑡)

𝜏𝑐
, (2.5)

𝑑𝐹

𝑑𝑡
(𝑡) = −𝑚2 (𝑡)𝐹 (𝑡) + 𝑚1 (𝑡)𝐴(𝑡) (2.6)

where

𝑚1 (𝑡) =
𝑐𝑁 (𝑡)

𝐾𝑚 + 𝑐𝑁 (𝑡)
, 𝑚2 (𝑡) =

1
𝜏1 + 𝜏2𝑚1 (𝑡)

. (2.7)

Hence six parameters are introduced in the model (𝜏𝑐, 𝑅(0), 𝜏1, 𝜏2, 𝐾𝑚, 𝐴(𝑡)), where to simplify (𝜏𝑐, 𝑅(0), 𝜏1, 𝜏2, 𝐾𝑚)
are fixed parameters and the time variable parameter 𝐴(𝑡) is the scaling force parameter which is used to model the
fatigue dynamics according to

𝑑𝐴

𝑑𝑡
(𝑡) = − 𝐴(𝑡) − 𝐴0

𝜏 𝑓 𝑎𝑡
+ 𝛼𝐴𝐹 (𝑡). (2.8)



Tab. 1 Ding et al. model parameters

Symbol Unit Value description
𝐶𝑁 — — Normalized amount of 𝐶𝑎2+-troponin complex
𝐹 𝑁 — Force generated by muscle
𝑡𝑖 𝑚𝑠 — Time of the 𝑖𝑡ℎ pulse
𝑛 — — Total number of the pulses before time 𝑡
𝑖 — — Stimulation pulse index
𝜏𝑐 𝑚𝑠 20 Time constant that commands the rise and the decay of 𝐶𝑁
𝑅(0) — 1.143 Term of the enhancement in 𝐶𝑁 from successive stimuli
𝐴 𝑁

𝑚𝑠
— Scaling factor for the force and the shortening velocity of muscle

𝜏1 𝑚𝑠 — Force decline time constant when strongly bound cross-bridges absent
𝜏2 𝑚𝑠 124.4 Force decline time constant due to friction between actin and myosin
𝐾𝑚 — — Sensitivity of strongly bound cross-bridges to 𝐶𝑁

𝐴𝑟𝑒𝑠𝑡
𝑁
𝑚𝑠

3.009 Value of the parameter 𝐴 when muscle is not fatigued
𝐾𝑚,𝑟𝑒𝑠𝑡 — 0.103 Value of the parameter 𝐾𝑚 when muscle is not fatigued
𝜏1,𝑟𝑒𝑠𝑡 𝑚𝑠 50.95 The value of the parameter 𝜏1 when muscle is not fatigued
𝛼𝐴

1
𝑚𝑠2 −4.0 10−7 Coefficient for the force-model parameter 𝐴 in the fatigue model

𝛼𝐾𝑚

1
𝑚𝑠𝑁

1.9 10−8 Coefficient for the force-model parameter 𝐾𝑚 in the fatigue model
𝛼𝜏1

1
𝑁

2.1 10−5 Coefficient for force-model parameter 𝜏1 in the fatigue model
𝜏 𝑓 𝑎𝑡 𝑠 127 Time constant controlling the recovery of (𝐴, 𝐾𝑚, 𝜏1)

Values of the parameters are reported in the reference [4] (see table 1) in the frame fo Ding et al. experiments,
the system formed by (2.5) and (2.6) describing the non-fatigue model, while the additional equation (2.8) is
describing the fatigue and depends on two parameters 𝛼𝐴 which defines the ”slope” of the fatigue evolution while
𝜏 𝑓 𝑎𝑡 is the time constant controlling the recovery to the rest point 𝐴𝑟𝑒𝑠𝑡 = 𝐴(0). The model provides a closed curve
𝑡 → 𝐴(𝑡) obtained from the fatigue dynamics associated to concatenation of two arcs: the first one associated to
the application of the averaged force 𝐹𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 = 1

𝑇

∫ 𝑇
0 𝐹 (𝑡)𝑑𝑡 over a pulse train on [0, 𝑇] and the recovery arc

during the complete rest period where no force is applied.
The main properties of the dynamics of the non-fatigue model is resumed in two lemmas.

Lemma 2.1 For a pulse train defined by 𝜎 = (𝑡0 = 0, 𝑡1, ..., 𝑡𝑛, 𝑡𝑛+1 = 𝑇, 𝜂0, 𝜂1, ..., 𝜂𝑛) the concentration 𝐶𝑁 can
be written as the superposition of 𝑛 + 1 lobes

𝑐𝑁 (𝑡) =
1
𝜏𝑐

∑︁
𝑖=0,𝑛

𝑅𝑖𝜂𝑖 (𝑡 − 𝑡𝑖)𝑒−
𝑡−𝑡𝑖
𝜏𝑐 𝐻 (𝑡 − 𝑡𝑖) (2.9)

which represents a piecewise polynomial-exponential mapping.

Lemma 2.2 The force dynamics in the non-fatigue case can be written as

𝑑𝐹

𝑑𝑠
(𝑠) = 𝑐(𝑠) − 𝐹 (𝑠),

using the time reparameterization 𝑑𝑠 = 𝑚2 (𝑡)𝑑𝑡 and can be integrated by quadrature using Lagrange formula. This
gives an explicit force response 𝑠 → 𝐹 (𝑠) which is smooth with respect to the control parameters and 𝑠 at each
time different of a pulse time 𝑡𝑖 .

From which we deduce the following , see [3] for the complete details and numerical simulations.

3. Construction of the approximation of the force response to a single train and the Punch Program in
non-fatigue case

3.1. Approximation
According to (2.9) each lobe 𝑙𝑘 is given by

𝑙𝑘 = 𝑅𝑘𝜂𝑘
𝑡 − 𝑡𝑘
𝜏𝑐

𝑒−(𝑡−𝑡𝑘 )/𝜏𝑐𝐻 (𝑡 − 𝑡𝑘),



the lobe reaches its maximum at 𝑡 = 𝑡𝑘 + 𝜏𝑐 which is equal to 𝑅𝑘𝜂𝑘/𝑒 and is concave on [𝑡𝑘 , 𝑡𝑘 + 2𝜏𝑐] and can be
approximated by its restriction to [𝑡𝑘 , 𝑡𝑘 +5𝜏𝑐] . The restriction of𝑚1 to one lobe is maximal when the concentration
𝑐𝑁 is maximal and we denote 𝑡∗

𝑘
the corresponding time. Let 𝜎 be the sequence defined in (2.9) and assume that

the minimal interpulse is such that 𝐼𝑚 ≥ 𝜏𝑐 .
We divide the the subdivision 𝑡0 < 𝑡1 < ... < 𝑡𝑛 < 𝑇 introducing the intermediate times 𝑡∗

𝑘
where 𝑚1 and 𝑚2 are

respectively approximated by a piecewise linear mapping and a piecewise constant mapping on each subinterval.
This leads to an explicit formula for the force response 𝐹 on [0, 𝑇] . Note that this basic partition can be refined

to improve the approximation, see [3] for the complete description. The approximation contains the parameters of
Ding et al. model.

3.2. Punch program
Using the previous force approximation denoted 𝐹𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 one compute a local minimum 𝜎∗ over the set of
pulse trains 𝜎. The details of the optimization algorithm and the numerical simulations are presented in [3].

4. Endurance session using the force-fatigue model and the MPC algorithm
4.1. Notation 1
The force fatigue model described by (2.5), (2.6), (2.8) is shortly written as

𝑑𝑥

𝑑𝑡
(𝑡) = 𝑋 (𝑥(𝑡)) + 𝑢(𝑡)𝑌 (𝑥(𝑡)), (4.1)

where 𝑥 = (𝑐𝑛, 𝐹, 𝐴)𝑇 is the state variable and 𝑢(𝑡) denotes the general input corresponding to the FES signal.
Restriction on 𝑢 are imposed by the physical device: bounds implied by the constraints 𝜂𝑖 ∈ [0, 1], sampling times
and interpulse constraints. They will be considered as soft constraints in the MPC algorithm and relaxed in the
control computations using a quadratic optimization method.

We assume that in the dynamics two variables are observed 𝑦 = ℎ(𝑥) = (𝐹, 𝐴) which defines the construction
of the input-output dynamics.

In the MPC algorithm we consider the following discrete linear input-output system{
𝑉𝑋 (𝑘 + 1) = 𝑀𝐴𝑘𝑉𝑋 (𝑘) + 𝑀𝐵𝑘𝑈 (𝑘)
𝑦(𝑘) = 𝐶𝑋 (𝑘) (4.2)

where:
𝑀𝐴𝑘 =

(
𝑎1 𝑎2
𝑎3 𝑎4

)
𝑘

, 𝑀𝐵𝑘 =

(
𝑏1
𝑏2

)
𝑘

, 𝑉𝑋 (𝑘) =
(
𝐹𝑚𝑘

𝐴𝑚𝑘

)
. (4.3)

The parametric model (4.2) results from the identification routine minimizing the criterion:

𝐽 = 𝑚𝑖𝑛
𝑁𝑖=𝑁𝑖1 ,...,𝑁𝑖𝑚𝑎𝑥

1
𝑁𝑖

𝑘∑︁
𝑗=𝑘−𝑁𝑖

((
𝐹𝑚𝑒𝑎𝑛 𝑗

𝐴𝑚𝑒𝑎𝑛 𝑗

)
−
(
𝐹𝑚 𝑗

𝐴𝑚 𝑗

))2
. (4.4)

Fig. 2 Force, mean force and identification horizons to identify the parametric model



𝑁𝑖 being the backward identification horizon. Figure 2 represents the force, the mean force and the backward
identification horizon to be found in order to get the best parametric model. The same figure could be constructed
for 𝐴. 𝐹𝑚𝑒𝑎𝑛𝑘 and 𝐴𝑚𝑒𝑎𝑛𝑘 are calculated as following:

𝐹𝑚𝑒𝑎𝑛𝑘 = 1
𝑡𝑘+1−𝑡𝑘

∫ 𝑡𝑘+1
𝑡𝑘

𝐹 (𝜉)𝑑𝜉
𝐴𝑚𝑒𝑎𝑛𝑘 = 1

𝑡𝑘+1−𝑡𝑘

∫ 𝑡𝑘+1
𝑡𝑘

𝐴(𝜉)𝑑𝜉
(4.5)

The criterion (4.4) traduces the fact that 𝑀𝐴 and 𝑀𝐵 are updated at each iteration (𝑀𝐴𝑘 , 𝑀𝐵𝑘). The couple is
used in MPC strategy to calculate the control value 𝜂𝑘 . The frequency of the stimulation being fixed.

4.2. MPC Algorithm
We present a version of the algorithm to illustrate the procedure which is classical, and the quadratic cost can be
modified. The control constraints have been relaxed and they have to be introduced later to define the true feedback
control .

We fix a sequence 𝑘 = 1, ..., 𝐾 where 𝑁𝑝 is the prediction horizon and an output reference trajectory 𝑦𝑟𝑒 𝑓
associated to regulation of the force response 𝐹 to a fixed level 𝐹𝑚𝑎𝑥/𝜌 with 𝜌 > 1 and a fatigue reference 𝐴𝑟𝑒 𝑓 (.).
Denoting by 𝑒(𝑘) = (𝑦(𝑘) − 𝑦𝑟𝑒 𝑓 (𝑘)), we minimize a cost of the form

𝐽 (𝑦, 𝑢) =
∑︁
𝑘=1,𝐾

𝜆1 ∥ 𝑒(𝑘) ∥2
2 +𝜆2 ∥ Δ𝑢𝑘 ∥2

2, (4.6)

where Δ𝑢(𝑘) is the control increment and 𝜆𝑖 are weighting parameters .
The feedback control 𝑢(𝑘) is computed on the horizon 𝐾 solving the LQ-problem defined by the linear dynamics

(4.2) with the quadratic cost (4.6). We implement 𝑢(1) and we restart the computations.
The nonlinear system (4.1) is used as a simulation of the data which will be replaced by the experimental data

during the endurance session.

5. Estimation of the parameters in the design of the electrostimulator
5.1. Notations and definitions
The force fatigue model is written shortly

𝑑𝑥

𝑑𝑡
(𝑡) = 𝑋 (𝑥(𝑡)) + 𝑢(𝑡)𝑌 (𝑥(𝑡)), (5.1)

where 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)𝑇 = (𝑐𝑁 , 𝐹, 𝐴, 𝛼𝐴, 𝜏 𝑓 𝑎𝑡 )𝑇 and 𝑢 represents the FES input which can be smoothed
as 𝑢 =𝑢𝑠𝑚𝑜𝑜𝑡ℎ.

The full system is defined by extending the dynamics with 𝑑𝛼𝐴

𝑑𝑡
=
𝑑𝜏 𝑓 𝑎𝑡

𝑑𝑡
= 0. We denote by ℎ = (ℎ1, ℎ2) = (𝐹, 𝐴)

the observation mappping.
The Lie bracket of two vector fields is defined by [𝑋,𝑌 ] (𝑥) = 𝜕𝑋

𝜕𝑥
(𝑥)𝑌 (𝑥) − 𝜕𝑌

𝜕𝑥
(𝑥)𝑋 (𝑥). Fixing a smooth control

𝑢(𝑡), the system with 𝑥(0) = 0 defines a control trajectory pair (𝑥(.), 𝑢(.) and we denote in short the Lie derivative
𝐿𝑋+𝑢𝑌 ℎ(𝑥(𝑡)) = 𝑑

𝑑𝑡
ℎ(𝑥(𝑡)).We denote by O(x) the observation space formed by the iterated functions {𝐿𝑘

𝑋+𝑢𝑌 ℎ𝑖; 𝑖 =
1, 2, 𝑘 = 0, +∞}}. The system is called 𝑢−(weakly) observable if 𝑥 → 𝑑O(x) is of full rank=dimension of the state
space. Given a smooth input 𝑢 the system is called locally observable if there exists a sequence 0, .., 𝑘1, 0, ...𝑘2 so
that the mapping 𝑥 → 𝛷(𝑥, 𝑢) = [ℎ1 (𝑥), ..., 𝐿𝑘1

𝑋+𝑢𝑌 ℎ1 (𝑥), ℎ2 (𝑥), ..., 𝐿𝑘2
𝑋+𝑢𝑌 ℎ2 (𝑥)] is a diffeomorphism with respect

to 𝑥 for all (𝑥, 𝑢) in an nonempty set 𝜒 × U where U contains the 𝑘 − 1 derivatives of 𝑢, with 𝑘 = 𝑚𝑎𝑥(𝑘1, 𝑘2).
We say that 𝜒 × U is an observable set. The construction of the observer is described in full details in [12] and is
presented shortly in the next section.

5.2. Construction of the observer
Assume that the control trajectory pair (𝑥, 𝑢) ∈ Ω𝑥 × 𝛺𝑢 ⊂ 𝜒 × U. Perform the nonlinear change of coordinates
𝑧 =𝛷(𝑥, 𝑢) and construct the observer

𝑑𝑧

𝑑𝑡
(𝑡) = 𝑃𝑟𝑜(𝐴𝑧 + 𝜌(𝑧, 𝑢) + 𝑆−1𝐾0 (𝑦 − 𝐶𝑧, 𝑧). (5.2)

The triple (𝐴,𝐶, 𝜚(𝑧, 𝑢) ) is obtained writing the system is the coordinates 𝑧. The matrix 𝐾0 is chosen so that
(𝐴 − 𝐾0𝐶) is Hurwitz and 𝑃𝑟𝑜 𝑗 (𝑦, 𝑧) is the projection operator associated to

𝑝(𝑧) =
∥ 𝑧 − 𝑧0 ∥2 −𝑟2

𝛺

𝛼2 + 2𝛼𝑟𝛺
.



The point 𝑧0 is the center of the domain 𝛺𝑧 =𝐵(𝑧0, 𝑟𝛺 ) contained in 𝛷(𝜒 × U) and 𝛼 is a arbitrarily small
positive constant. The construction involves block diagonal matrices including 𝑆 described in [12]. Note that it is
introduced in relation with uniform linearization which is related in our construction to the uniform construction
of the observable canonical form.

5.3. Geometric application
The experiments show that among the set of parameters the parameters (𝜏𝑐, 𝑅(0)) are fixed and not depending upon
the individual. Hence in particular the𝐶𝑎++ concentration 𝑐𝑁 can be taken as the control variable and can be chosen
smooth according to a smooth FES-signal or taking the averaged value 𝑐𝑁𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 (𝑡) = 1

𝑡

∫ 𝑡
0 𝑐𝑁 (𝑠)𝑑𝑠 over any

subinterval of the training period. The bad input behavior is related to 𝑐𝑁 = 0, in computing the inverse mapping
of the map 𝑧 =𝛷(𝑥, 𝑢). Hence note that the observer can be turned off imposing that: 𝛼 ≤ 𝑐𝑁 ≤ 𝛽. At low level of
stimulations corresponding to rest period one can rescaled 𝛼 →∈ 𝛼 and expand the 𝐹−dynamics described by the
Michaelis-Menten-Hill functions in Taylor Series at 𝑐𝑁 =0, at a given order. This will reduce the computational
complexity of the Lie derivatives which involve the derivative of the the Michaelis-Menten-Hill functions with
respect to 𝑐𝑁 and the time derivative of the concentration. A test input function of the form 𝑐𝑁 (𝑡) = 𝑎 + 𝑏𝑠𝑖𝑛(𝜔𝑡)
where 𝑎, 𝑏 chosen so that the concentration stays in a arbitrarily band domain.

Additional parameters 𝐴𝑟𝑒𝑠𝑡 , 𝐾𝑚 are depending upon the individuals and can be estimated using the observer
(5.2) during a single train [0, 𝑇] using the force sensor only while the estimation of the fatigue parameters (𝛼𝐴, 𝜏 𝑓 𝑎𝑡 )
needs to use the force and fatigue sensors.

6. Simulation results
6.1. System identification
To identify the parametric model which will be used to calculate the MPC based control strategy, we use the Ding
et al. model instead of real force and fatigue values (coming from experiments). The parametric model (linear
model) will traduce locally the behaviour of the muscle, and needs to be updated for each new interpulse using, in
our case, a variable identification moving horizon.

Fig. 3 Evolution of the force (Ding et al. model) over a 1 second stimulation period with a 50𝑚𝑠 interpulse interval, mean
force values (for each interpulse) and identified mean force values over time

Fig. 4 Evolution of the fatigue (Ding model), mean fatigue values and identified mean fatigue values over time

Figures 3 and 4 show the evolution of the force and the fatigue based on the Ding et al. model over a 1 second
stimulation period, with a 50𝑚𝑠 interpulse interval, respectively. These figures clearly display the lobes generated
by this stimulation. The mean values of this force for each interpulse, as well as those obtained by the least squares
method, are also shown. The identified mean force value fits well the mean force value over identification horizon.



6.2. Model predictive control

Fig. 5 Evolution of the force and fatigue over pulses at a reference of F=350𝑁

Fig. 6 Evolution of the force and fatigue over pulses at a reference of F=230𝑁

Figures 5 and 6 illustrates the evolution of force and fatigue over pulses, computed from the Ding et al. model,
over a stimulation period of 5 seconds with an interpulse interval of 30𝑚𝑠. The reference values for fatigue remain
constant at 3.009𝑁/𝑚𝑠, while the reference values for force are respectively 350𝑁 (5) and 230𝑁 (6). As expected,
the MPC strategy allows to fit the force references while minimizing the difference between the fatigue and the
fatigue rest value.

7. Conclusion
In this brief article we present the main steps in the design of a smart electrostimulator in relation with the
construction of an industrial prototype: model, training sessions and estimation of the parameters using the
physical sensors. Numerical simulations are presented for the MPC algorithm implemented to regulate the force
and fatigue using a parametric model. The parameters are identified using the data of the Ding et al. model and will
be replaced in fine by the experimental data. The Ding et al. model can be used to implement a NMPC algorithm
where the parameters are estimated using an observer. But the method is computationally expensive for the design



of the prototype. MPC algorithm based on linear parametric model has been chosen in the industrial project to
tackle computational time while giving good results in terms of force and fatigue control.
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