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RELATIVE ENTROPY FOR THE NUMERICAL DIFFUSIVE LIMIT OF THE
LINEAR JIN-XIN SYSTEM

Marianne Bessemoulin-Chatard1 and Hélène Mathis2

Abstract. This paper deals with the diffusive limit of the Jin and Xin model and its approximation
by an asymptotic preserving finite volume scheme. At the continuous level, we determine a convergence
rate to the diffusive limit by means of a relative entropy method. Considering a semi-discrete approxi-
mation (discrete in space and continuous in time), we adapt the method to this semi-discrete framework
and establish that the approximated solutions converge towards the discrete convection-diffusion limit
with the same convergence rate.

1. Introduction

Jin and Xin introduced in [18] a relaxation technique in order to build robust numerical schemes for the
Cauchy problem associated with the nonlinear scalar equation

∂tu+ ∂xf(u) = 0, (1)

where f is typically a Lipschitz-continuous and nonlinear function. Relaxation consists in augmenting the
equation into a system which reads

∂tu
ν + ∂xv

ν = 0, (2)

∂tv
ν + λ2∂xu

ν =
1

ν
(f(uν)− vν), (3)

where uν , vν : QT → R are the unknowns, with QT = [0, T )× R and T > 0, λ > 0 is a given constant and ν is
a relaxation parameter. The hyperbolic part of (2)-(3) is linear, of wave velocities ±λ. The nonlinearity of f is
shifted to the right hand side of the second equation. Formally, as ν tends to zero, one observes that the second
equation gives vν = f(uν) and then solutions to (2)-(3) converge formally to the solution of (1). The question
of the convergence of solutions of uν towards a weak entropy solution u of (1) has been addressed, for example,
in [7,20,22]. The latter reference includes the proof of the existence of invariant domains for the relaxed system
(2)-(3) as long as they exist for the scalar equation (1). Moreover any convex entropy η ∈ C2(R) of the scalar
equation (1) extends to an entropy E ∈ C2(R2) for the relaxed system (2)-(3). These two ingredients make it
possible to prove, by a method of compensated compactness, convergence in long time to the scalar equation
for arbitrary initial data.
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In the present paper we focus on a slightly different scaling of the original Jin and Xin model. The system
we consider reads

∂tu+ ∂xv = 0, (4)

ε2∂tv + λ2∂xu = au− v, (5)

where ε is the relaxation parameter. Here we consider the linear case f(u) = au, where a is a given coefficient.
For the sake of readability, the ε dependency is not explicitly noted for u and v. This system is endowed with
an entropy-flux pair (Eε, F ε) which complies with the entropy inequality

∂tE
ε(u, v) + ∂xF

ε(u, v) ≤ −(au− v)2. (6)

In the specific case of a linear relaxation, the entropy function reads

Eε(u, v) =
λ2

2
u2 +

ε2

2
v2 − ε2auv, (7)

and the entropy flux F ε is defined by

F ε(u, v) = −λ2a

2
u2 − ε2a

2
v2 + λ2uv. (8)

Assuming the subcharacteristic condition [24]
λ > ε |a|, (9)

the entropy functional Eε(u, v) is strictly convex in the sense that there exists β1 ≥ β0 > 0 such that

spec(∇2Eε) ⊂ [β0, β1]. (10)

In this article, we focus on the diffusion limit of the solutions w = (u, v) of (4)-(5). Indeed in the limit ε → 0,
the solutions w = (u, v) of (4)-(5) converge, in a sense to be prescribed, to the solutions w̄ = (ū, v̄) of the
following convection-diffusion equation

∂tū+ a∂xū = λ2∂xxū, (11)

v̄ = aū− λ2∂xū. (12)

In [16], the authors exhibited a convergence result as the relaxation parameter ε tends to zero, using a priori
estimates in appropriate Sobolev spaces, for initial data close to ones producing a travelling-wave solution.
Very recently Crin-Barat and Shou [10] have studied the diffusive relaxation limit of the system (4)-(5) toward
viscous conservation laws (11)-(12) in the multi-dimensional setting. They prove global well-posedness of strong
solutions for initial data close to constant state in suitable Besov spaces.

Adapting the technique in [4], Bianchini considered in [2] the diffusive relaxation process of the Jin-Xin model
in terms of BGK type approximations. She established the convergence towards a nonlinear heat equation in
the relaxation limit and managed to derive a convergence rate in O(

√
ε) in the L2 norm. However, by applying

a numerical scheme preserving the hyperbolic-parabolic asymptotics proposed in [17] to the model (4)-(5), a
rate of convergence in ε2 is observed. Figure 1 presents the numerical evidence, the details of the numerical
scheme and the test case being given in Section 3.3.

Our present work is motivated by the observation of this different convergence rate in numerical simulations.
It turns out that we already observed similar numerical rates of convergence when studying the convergence
of the discrete solutions of the p-system with damping towards the discrete solutions of the porous media
equation [1, 6]. The numerical analysis, performed in the latter reference, is an adaptation at the discrete
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Figure 1. Linear test case. Top: profile of (u, v) in space, compared to (ū, v̄). Bottom: L2

norm of the error ∥(u, v)− (ū, v̄)∥2L2(QT ) with respect to ε in log scale.

level of the relative entropy method used by Lattanzio and Tzavaras in [19] to prove the convergence in the
continuous setting. The key tool is the relative entropy functional, which behaves as a squared L2 norm of the
difference between a solution of the p-system and a solution of the porous media equation. Actually the relative
entropy method has been applied successfully to a large number of problems concerning hyperbolic systems, for
instance: adaptation of the weak-strong uniqueness results of Dafermos [11] and Di Perna [12] to solutions of
hyperbolic systems of conservation laws with weaker regularity [13,23], uniqueness of measure-valued solutions
to hyperbolic-parabolic systems [8, 9], asymptotic stability of stationary solutions to hyperbolic systems with
singular geometry terms and nonconservative products [21]. Besides in [3] Bianchini also makes use of the
relative entropy method as well and applies it to an intermediate BGK-type model.

Our purpose is to make use of the relative entropy technique to establish the convergence of the solutions
of the system (4)–(5) towards the solutions of (11)–(12), both at the continuous and the discrete level. The
relative entropy Eε(w|w̄) of the system (4)–(5) is defined as the first order Taylor expansion of E around a
smooth solution w̄ of (11)–(12):

Eε(w|w̄) = Eε(w)− Eε(w̄)−∇Eε(w̄) · (w − w̄)

=
λ2

2
(u− ū)2 +

ε2

2
(v − v̄)2 − ε2a(u− ū)(v − v̄) (13)

for w a classical solution of (4)–(5). Thanks to the strict convexity (10) of Eε, the relative entropy behaves like
a squared L2 norm of the difference between the solution (u, v) of the hyperbolic relaxation system (4)–(5) and
the solution (ū, v̄) of the convection-diffusion limit problem (11)–(12), namely

β0

2

(
|u− ū|2 + |v − v̄|2

)
≤ Eε(w|w̄) ≤ β1

2

(
|u− ū|2 + |v − v̄|2

)
. (14)

The purpose of this article is to present similar results as in [1] for convergence of solutions of (4)–(5) towards
solutions to (11)–(12). Section 2 is devoted to the continuous result. We first establish a relative entropy
identity. Then under some regularity assumptions on the parabolic solutions, we establish a convergence result
in relative entropy with the expected convergence rate of ε2. The result is then extended to the semi-discrete
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level, by introducing a discrete in space and continuous in time numerical scheme in Section 3. In Section 3.2
we construct a discrete relative entropy identity with numerical residuals which we manage to control, leading
to the convergence result with the expected convergence rate. The section 3.3 concludes with the details of
the numerical result presented in Figure 1. In conclusion, we provide some perspectives for general nonlinear
relaxation terms.

2. The continuous setting

In this section, we first study the continuous case, adapting the diffusive relative entropy method developed
in [19] to the case of the linear Jin-Xin relaxation system (4)–(5).

We first establish an evolution law satisfied by the relative entropy (13).

Lemma 2.1. Let w = (u, v) be a strong entropy solution of (4)–(5) and w̄ = (ū, v̄) be a smooth solution of the
limit problem (11)–(12). Then the relative entropy Eε(w|w̄), defined by (13), satisfies the following evolution
law:

∂tE
ε(w|w̄) + ∂xF

ε(w|w̄) = − (a(u− ū)− (v − v̄))
2
+ ((v − v̄)− a(u− ū)) ε2∂tv̄, (15)

where the relative entropy flux is given by

F ε(w|w̄) = −λ2a

2
(u− ū)2 − ε2a

2
(v − v̄)2 + λ2(u− ū)(v − v̄). (16)

Proof. Using the definition (13), the time derivative of the relative entropy satisfies

∂tE
ε(w|w̄) =

[
λ2(u− ū)− ε2a(v − v̄)

]
∂t(u− ū)

+ [(v − v̄)− a(u− ū)] ε2∂t(v − v̄).

Remarking that the limit problem (11)–(12) can be written such that we get the same left hand side than for
the Jin-Xin system (4)–(5)

∂tū+ ∂xv̄ = 0,

ε2∂tv̄ + λ2∂xū = aū− v̄ + ε2∂tū,

it yields

∂tE
ε(w|w̄) =−

[
λ2(u− ū)− ε2a(v − v̄)

]
∂x(v − v̄)

− [(v − v̄)− a(u− ū)]λ2∂x(u− ū)

− (a(u− ū)− (v − v̄))
2
+ ((v − v̄)− a(u− ū)) ε2∂tv̄,

which concludes the proof using the definition of the relative entropy flux (16). □

In addition, we now suppose that the systems (4)–(5) and (11)–(12) are endowed with initial conditions such
that the following limits hold:

lim
x→±∞

w(t, x) = lim
x→±∞

w̄(t, x) = w±, (17)

where w± are constant states.
Now, to compare w solution of (4)–(5) and w̄ solution of (11)–(12), let us introduce the positive error estimate

given by

ϕε(t) =

∫
R
Eε(w|w̄) dx. (18)

The following convergence result, with an explicit rate, is established.
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Theorem 2.2. Consider initial data w0 for (4)–(5) and w̄0 for (11)–(12) such that ϕε(0) < +∞. Endowed
with these initial data, let w̄ be the smooth solution of (11)–(12) defined on QT = [0, T )×R, and w be a strong
entropy solution of (4)–(5). Let us assume that there exists K > 0 such that ∥∂tv̄∥L2(QT ) ≤ K. Then the
following stability estimate holds

ϕε(t) ≤ ϕε(0) +
K

2
ε4, t ∈ [0, T ). (19)

Moreover, if ϕε(0) → 0 as ε → 0, then

sup
t∈[0,T )

ϕε(t) → 0 as ε → 0. (20)

Proof. Using the limit assumptions (17), we first remark that F ε(w|w̄) → 0 in the limit x → ±∞. Then,
integrating (15) on [0, t)× R, t < T , yields

ϕε(t)− ϕε(0) ≤−
∫ t

0

∫
R
|a(u− ū)− (v − v̄)|2 (s, x) dxds

+ ε2
∫ t

0

∫
R
|(v − v̄)− a(u− ū)| (s, x) |∂tv̄|(s, x) dx ds. (21)

Concerning the last integral in this estimate, applying Cauchy-Schwarz and Young inequalities together with
the assumption ∥∂tv̄∥L2(QT ) ≤ K, we obtain

ε2
∫ t

0

∫
R
|(v − v̄)− a(u− ū)| |∂tv̄| dx ds ≤

1

2

∫ t

0

∫
R
|a(u− ū)− (v − v̄)|2 dxds

+
ε4

2

∫ t

0

∫
R
|∂tv̄|2 dxds

≤ 1

2

∫ t

0

∫
R
|a(u− ū)− (v − v̄)|2 dxds+

K

2
ε4.

Then, inequality (21) becomes

ϕε(t)− ϕε(0) ≤ −1

2

∫ t

0

∫
R
|a(u− ū)− (v − v̄)|2 (s, x) dxds+ K

2
ε4,

which concludes the proof. □

3. Semi-discrete finite volume scheme and numerical convergence rate

From a numerical point of view, the key ingredient is to consider a numerical scheme for (4)-(5) which
provides the required discretization of (11)-(12) in the limit of ε to zero.

Such schemes refer to Asymptotic Preserving Schemes, notion introduced by Jin in [15]. Such schemes 1)
have to provide a consistent discretization of the hyperbolic solutions of (4)-(5) and of the parabolic solutions
of (11)-(12) at the limit ε → 0, 2) admit a CFL condition which does not degenerate as ε → 0.

In the following, we focus on a scheme which is continuous in time and discrete in space. Therefore the
point 2) is not restrictive here. However the numerical results given in the Introduction, see Figure 1, have
been obtained by an asymptotic preserving scheme, satisfying both 1) and 2), introduced in [17] and defined
in Section 3.3. Note that the relative entropy method has been applied to a full discrete scheme by Bulteau et
al [6], for the p-system asymptotic towards the porous media equation.
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3.1. Definition of the semi-discrete scheme

Let us consider a uniform mesh made of cells (xi− 1
2
, xi+ 1

2
)i∈Z with uniform size step ∆x. Here, the centers

of cells are denoted xi = i∆x for all i ∈ Z. On each cell (xi− 1
2
, xi+ 1

2
), the solutions of (4)-(5) are approximated

by time dependent piecewise constant functions wi(t) =
t(ui(t), vi(t)). The space discretization scheme is based

on the standard HLL numerical fluxes (see [14]). Hence the continuous in time and discrete in space numerical
scheme reads 

d

dt
ui = − 1

2∆x
(vi+1 − vi−1) +

λ

2∆x
(ui+1 − 2ui + ui−1),

d

dt
vi = − λ2

2ε2∆x
(ui+1 − ui−1) +

λ

2∆x
(vi+1 − 2vi + vi+1) +

1

ε2
(aui − vi).

(22)

As soon as ε goes to zero, this finite volume scheme provides a consistent approximation of the parabolic
limit (11)-(12): the pair w̄i(t) =

t(ūi(t), v̄i(t)) evolves in time as follows
d

dt
ūi = − 1

2∆x
(v̄i+1 − v̄i−1) +

λ

2∆x
(ūi+1 − 2ūi + ūi−1),

λ2

2∆x
(ūi+1 − ūi−1) = aūi − v̄i.

(23)

The numerical scheme is endowed with convenient limit conditions, in agreement with (17) to be imposed to
the approximate solution as follows:

lim
i→±∞

ui = lim
i→±∞

ūi = u±,

lim
i→±∞

vi = lim
i→±∞

v̄i = v±.
(24)

Finally, to simplify the forthcoming computations, we introduce some notations. Let w(t) = (wi(t))i∈Z be a
function of time t ∈ [0, T ), piecewise constant on cells (xi− 1

2
, xi+ 1

2
). Then we define for i ∈ Z

(Dxw)i+ 1
2
=

ui+1 − ui

∆x
, (Dxxw)i =

wi+1 − 2wi + wi−1

∆x2
. (25)

We also introduce the following norm:

∥w∥L2(Qt) =

(∫ t

0

∑
i∈Z

∆x |wi(s)|2 ds

)1/2

.

3.2. Convergence rate

We adapt the discrete relative entropy method of [1], inspired of the continuous approach introduced by
Lattanzio and Tzavaras [19], to the semi-discrete scheme (22).

First, according to the definition of the relative entropy given by (13), we define the discrete relative entropy
function by

Eε
i (t) = Eε(ui, vi|ūi, v̄i)(t)

=
λ2

2
(ui(t)− ūi(t))

2 +
ε2

2
(vi(t)− v̄i(t))

2 − ε2a(ui(t)− ūi(t))(vi(t)− v̄i(t)).
(26)

Mimicking the continuous framework, we introduce ϕε(t) to denote the discrete space integral of Eε
i (t) as

follows:
ϕε(t) =

∑
i∈Z

∆x Eε
i (t). (27)

Without ambiguity and for the sake of clarity, the time dependence is omitted in the sequel.
Now, we state the discrete counterpart of Theorem 2.2.
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Theorem 3.1. Let w̄i(t) = (ūi(t), v̄i(t))i∈Z be a smooth solution of (11)-(12) defined on QT = [0, T )× R. We
assume the existence of a positive constant K < +∞ such that the following estimates are satisfied:∥∥∥∥ d

dt
v̄

∥∥∥∥
L2(QT )

≤ K, ∥Dxxv̄∥L2(QT ) ≤ K, (28)

where the discrete operator Dxx is defined in (25). Let wi(t) = (ui(t), vi(t))i∈Z be a solution of (22) such that
ϕε(0) < +∞. We assume that the subcharacteristic condition (9) is fulfilled, as well as the assumptions on the
limit conditions (24). Then we have

ϕε(t) ≤ ϕε(0) +B ε4, t ∈ [0, T ), (29)

where B is a positive constant which depends only on λ and K. Moreover if ϕε(0) → 0 as ε → 0 then
supt∈[0,T ) ϕ

ε(t) → 0 when ε → 0.

Because the relative entropy behaves like a squared L2 norm of w− w̄, see (14), it follows from (29) that the
convergence rate of ∥w − w̄∥2L2(QT ) behaves like O(ε4).

To establish this convergence result, the first step is to exhibit the evolution equation satisfied by the relative
entropy Eε

i , namely the discrete counterpart of Lemma 2.1.

Lemma 3.2. Let (ūi, v̄i)i∈Z be a smooth solution of (23) and let (τi, ui)i∈Z be a solution of (22). The relative
entropy Eε

i , defined by (26), verifies the following evolution law:

dEε
i

dt
+

1

∆x
(F ε

i+1/2 − F ε
i−1/2) = − [a(ui − ūi)− (vi − v̄i)]

2
+ ε2 [a(ui − ūi)− (vi − v̄i)]

d

dt
v̄i

+R1
i +R2

i +R3
i +R4

i ,
(30)

where F ε
i+1/2 corresponds to an approximation of the relative entropy flux F ε(w|w̄) at the interface xi+1/2 given

by

F ε
i+1/2 = −ε2

2
a(vi − v̄i)(vi+1 − v̄i+1)−

λ2

2
a(ui − ūi)(ui+1 − ūi+1)

+
λ2

2
[(ui − ūi)(vi+1 − v̄i+1) + (ui+1 − ūi+1)(vi − v̄i)] ,

(31)

and the quantities Rj
i , j = 1, . . . , 4 denote numerical residuals given by

R1
i =

λ3

2
∆x(ui − ūi) (Dxx(u− ū))i ,

R2
i =

ε2λ

2
∆x (vi − v̄i) (Dxx(v − v̄))i ,

R3
i =

ε2λ

2
∆x [(vi − v̄i)− a(ui − ūi)] (Dxxv̄)i,

R4
i = −ε2 a

λ

2
∆x [(vi − v̄i) (Dxx(u− ū))i + (ui − ūi) (Dxx(v − v̄))i] .

(32)

Observe that this evolution equation turns out to be a discrete form of (15) supplemented by numerical
viscosity terms.

Proof. According to the definition (26), the time derivative of the semi-discrete relative entropy Ei reads

dEε
i

dt
=λ2(ui − ūi)

d

dt
(ui − ūi) + ε2(vi − v̄i)

d

dt
(vi − v̄i)

− ε2a
d

dt
(ui − ūi)(vi − v̄i)− ε2a(ui − ūi)

d

dt
(vi − v̄i). (33)
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Now, we rewrite the second equation of the scheme (23) as follows:

ε2
d

dt
v̄i = − λ2

2∆x
(ūi+1 − ūi−1) + (aūi − v̄i) + ε2

d

dt
v̄i.

Using (22), we obtain

ε2
d

dt
(vi − v̄i) =− λ2

2∆x
[(ui+1 − ūi+1)− (ui−1 − ūi−1)] + ε2

λ

2
∆x (Dxxv)i

+ [a(ui − ūi)− (vi − v̄i)]− ε2
d

dt
v̄i.

Plugging this equality in (33) and using the first equations of (22) and (23) lead to

dEε
i

dt
=− λ2(ui − ūi)

1

2∆x
[(vi+1 − v̄i+1)− (vi−1 − v̄i−1)] + λ2(ui − ūi)

λ

2
∆x (Dxx(u− ū))i

− (vi − v̄i)
λ2

2∆x
[(ui+1 − ūi+1)− (ui−1 − ūi−1)] + (vi − v̄i)

ε2λ

2
∆x (Dxxv)i

+ (vi − v̄i) [a(ui − ūi)− (vi − v̄i)]− (vi − v̄i)ε
2 d

dt
v̄i

+ ε2a(vi − v̄i)
1

2∆x
[(vi+1 − v̄i+1)− (vi−1 − v̄i−1)]− ε2a(vi − v̄i)

λ

2
∆x (Dxx(u− ū))i

+ a(ui − ūi)
λ2

2∆x
[(ui+1 − ūi+1)− (ui−1 − ūi−1)]− ε2a(ui − ūi) (Dxxv)i

− a(ui − ūi) [a(ui − ūi)− (vi − v̄i)] + a(ui − ūi)ε
2 d

dt
v̄i.

By rearranging the terms and using the definition (31) of the relative entropy flux, it yields

dEε
i

dt
+

1

∆x
(F ε

i+ 1
2
− F ε

i− 1
2
) = − [a(ui − ūi)− (vi − v̄i)]

2
+ [a(ui − ūi)− (vi − v̄i)] ε

2 d

dt
v̄i

+λ2(ui − ūi)
λ

2
∆x (Dxx(u− ū))i + (vi − v̄i)

ε2λ

2
∆x (Dxxv)i

−ε2a(vi − v̄i)
λ

2
∆x (Dxx(u− ū))i − ε2a(ui − ūi)

λ

2
∆x (Dxxv)i .

Writing Dxxv as Dxx(v − v̄) +Dxxv̄, we are now able to identify the remainder terms Rj
i , j = 1, . . . , 4, which

concludes the proof. □

From now on, we state estimates satisfied by residuals Rj
i , j = 1, . . . , 4.
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Lemma 3.3. Under the subcharacteristic condition (9), for all θ > 0, we have the following estimates

∫ t

0

∑
i∈Z

∆xR1
i ds = −λ3

2
∆x ∥Dx(u− ū)∥2L2(Qt)

, (34)

∫ t

0

∑
i∈Z

∆xR2
i ds = −ε2λ

2
∆x ∥Dx(v − v̄)∥2L2(Qt)

, (35)

∫ t

0

∑
i∈Z

∆xR3
i ds ≤ ε4

λ2

8θ
∆x2∥Dxxv̄∥2L2(Qt)

+
θ

2

∫ t

0

∑
i∈Z

∆x [(vi − v̄i)− a(ui − ūi)]
2
ds, (36)

∫ t

0

∑
i∈Z

∆xR4
i ds ≤

λ3

2
∆x ∥Dx(u− ū)∥2L2(Qt)

+
λ

2
ε2 ∆x ∥Dx(v − v̄)∥2L2(Qt)

, (37)

where the discrete operators Dx and Dxx are defined in (25).

Proof. Equality (34) (resp. (35)) is directly obtained by summing R1
i (resp. R2

i ) over i ∈ Z, applying a discrete
integration by parts, and integrating with respect to time.

Then, by definition of R3
i (32), summing over i ∈ Z, integrating with respect to t and using the Cauchy-

Schwarz inequality, we obtain

∫ t

0

∑
i∈Z

∆xR3
i ds ≤

ε2λ

2
∆x

(∫ t

0

∑
i∈Z

∆x [(vi − v̄i)− a(ui − ūi)]
2
ds

)1/2

∥Dxxv̄∥L2(Qt).

Finally, we apply the Young inequality with θ > 0 to get (36).
At last, we prove estimate (37). To do this, we first perform a discrete integration by parts and apply the

Cauchy-Schwarz inequality to obtain

∫ t

0

∑
i∈Z

∆xR4
i ds = ε2a λ∆x

∫ t

0

∑
i∈Z

∆x (Dx(u− ū))i+ 1
2
(Dx(v − v̄))i+ 1

2
ds

≤ ε2|a|λ∆x ∥Dx(u− ū)∥L2(Qt) ∥Dx(v − v̄)∥L2(Qt).

But using the subcharacteristic condition, we have ε|a| < λ, which yields

∫ t

0

∑
i∈Z

∆xR4
i ds ≤ λ3/2

√
∆x ∥Dx(u− ū)∥L2(Qt)λ

1/2ε
√
∆x∥Dx(v − v̄)∥L2(Qt),

and we finally get (37) thanks to Young inequality. □

With these results, we can now establish the proof of Theorem 3.1.

Proof of Theorem 3.1. First of all, let us remark that thanks to Lemma 3.3, we have

∫ t

0

∑
i∈Z

∆x(R1
i +R2

i +R4
i ) ds ≤ 0.
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Then, integrating with respect to t and summing for i ∈ Z the semi-discrete evolution law derived in Lemma
3.2, and using the estimate (36), we obtain

ϕε(t)− ϕε(0) ≤−
∫ t

0

∑
i∈Z

∆x [a(ui − ūi)− (vi − v̄i)]
2
ds+ ε2

∫ t

0

∑
i∈Z

∆x [a(ui − ūi)− (vi − v̄i)]
dv̄i
dt

ds

+ ε4
λ2

8θ
∆x2∥Dxxv̄∥2L2(Qt)

+
θ

2

∫ t

0

∑
i∈Z

∆x [(vi − v̄i)− a(ui − ūi)]
2
ds.

Applying Cauchy-Schwarz et Young inequalities with α > 0 on the second term of the right hand side, we get

ϕε(t)− ϕε(0) ≤
(
−1 +

α

2
+

θ

2

)∫ t

0

∑
i∈Z

∆x [a(ui − ūi)− (vi − v̄i)]
2
ds

+ ε4

(∥∥∥∥ d

dt
v̄

∥∥∥∥2
L2(Qt)

+
λ2

8θ
∆x2∥Dxxv̄∥2L2(Qt)

)
.

Choosing, for example, α = 1
2 = θ concludes the proof thanks to assumptions (28). □

3.3. Numerical experiments

The numerical results presented in Figure 1 have been obtained by a fully discrete scheme as proposed by
Jin, Pareschi and Toscani [17]. This scheme is based on a reformulation of system (4)-(5)

∂tu− ∂xv = 0,

∂tv + λ2∂xu = − 1

ε2
(
au− v − (1− ε2)λ2∂xu

)
.

According to [17], it is convenient to is to use an explicit scheme for to approximate the convection step and
to treat the stiff source term implicitly. In the first step, the convective and non-stiff system is approximated
thanks to a classical HLL scheme [14]:

u
n+ 1

2
i = un

i − ∆t

∆x

(
Fu

i+ 1
2
−Fu

i− 1
2

)
, (38a)

v
n+ 1

2
i = vni − ∆t

∆x

(
Fv

i+ 1
2
−Fv

i− 1
2

)
, (38b)

where the numerical fluxes are defined by

Fu
i+ 1

2
=

1

2
(vni + vni+1)−

λ

2
(un

i+1 − un
i ),

Fv
i+ 1

2
=

λ2

2
(un

i + un
i+1)−

λ

2
(vni+1 − vni ).

This scheme is stable under the CFL condition
∆t

∆x
λ ≤ 1

2
which does not depend on ε (see for instance [5, section

2.3]). Next, the stiff source term is treated in an implicit way to obtain unconditional stability:

un+1
i = u

n+ 1
2

i ,

vn+1
i − v

n+ 1
2

i

∆t
=

1

ε2

aun+1
i − vn+1

i − (1− ε2)λ2
un+1
i+ 1

2

− un+1
i− 1

2

∆x

 ,
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where we take un+1
i+ 1

2

=
un+1
i+1 + un+1

i

2
.

Since un+1
i = u

n+ 1
2

i , let us emphasize that vn+1
i can be computed explicitly from (un

i , v
n
i )i∈Z. Finally, the

relaxation step can be written as

un+1
i = u

n+ 1
2

i , (39a)

vn+1
i =

(
ε2

ε2 +∆t

)
v
n+ 1

2
i +

∆t

ε2 +∆t

(
au

n+ 1
2

i − (1− ε2)
λ2

2∆x
(u

n+ 1
2

i+1 − u
n+ 1

2
i−1 )

)
. (39b)

Considering the scheme (38)-(39) in the limit of ε to zero provides a numerical scheme approximating the
solutions of the convection-diffusion problem (11)-(12). It reads:

ūn+1
i = ūn

i − ∆t

2∆x
(v̄ni+1 − v̄ni−1) +

λ∆t

2∆x
(ūn

i+1 − 2ūn
i + ūn

i−1), (40)

v̄n+1
i = aūn+1

i − λ2

2∆x
(ūn+1

i+1 − ūn+1
i−1 ). (41)

The numerical results presented in Figure 1-top correspond to a Riemann initial condition u(0, x) = 2 ·
1x<0 + 1x≥0, the initial condition v(0, x) is set to local equilibrium, namely v(0, x) = au(0, x). The final time
of computation is T = 0.1, the domain [0, 1] is discretized with Nx = 200 cells and the CFL parameter is set
to 0.95. The wave speed is λ = 0.72, a = 0.5 and the relaxation parameter ε is set to 1, according to the
subcharacteristic condition (9). Hence the profiles of (u, v) present the two waves of speed ±λ and are strongly
mollified by the relaxation term. On the other hand the asymptotic limit ū corresponds to the solution of the
parabolic equation (11) and v̄ to (12).

The convergence rate presented in Figure 1-bottom has been computed with different values of ε from 10−1

to 0.5× 3.10−3 with the same initial condition and various space discretizations. The log-log scale figure shows
the convergence rate in O(ε4), which is in agreement with theorems 2.2 and 3.1.

4. Conclusion and prospects

In this work, we establish the convergence of the solution of the linear Jin and Xin model to a solution of
the convection-diffusion equation obtained in the limit ε → 0 by a relative entropy method. The estimates give
a rate of convergence in O(ε4) , which is found numerically. Moreover, the technique adapted to the discrete
setting again gives the same rate of convergence for a class of finite volume schemes that are discrete in space
and continuous in time.

Actually the estimate holds for the nonlinear case, considering a relaxation term of type f(u) − v, with
nonlinear function f . In this case, relative entropy computations are more technical than in the linear case.
This is because the entropy of the Jin and Xin system with nonlinear f is not explicit, see [22]. In fact, the
relative entropy identity contains terms that are more difficult to handle at both continuous and discrete levels.

However the same rate of convergence in ε4 can be observed. As a numerical evidence, we present in Figure 2
the numerical results for the Jin and Xin model for f(u) = u2/2. Figure 2-top presents the profile of (u, v) for the
system (4)-(5). The initial data is at local equilibrium namely u(0, x) = 2 ·1x<0+1x≥0 and v(0, x) = f(u(0, x)).
One sets ε = 1 and λ = 3 in order to satisfy the subcharacteristic condition. The others parameters are identical
to the linear test case. Figure 2-bottom shows the behaviour of ϕ with respect to ε in log-log scale.

A natural perspective is to adapt the relative entropy method to exhibit the convergence rate in the nonlinear
case.
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