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Intrinsic features of the cancer
cell as drivers of immune
checkpoint blockade response
and refractoriness

Chiara Ursino, Cécile Mouric, Laurent Gros,
Nathalie Bonnefoy and Julien Faget*

Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Univ Montpellier, Institut
du Cancer de Montpellier (ICM), Montpellier, France
Immune checkpoint blockade represents the latest revolution in cancer treatment

by substantially increasing patients’ lifetime and quality of life in multiple neoplastic

pathologies. However, this new avenue of cancer management appeared

extremely beneficial in a minority of cancer types and the sub-population of

patients that would benefit from such therapies remain difficult to predict. In this

review of the literature, we have summarized important knowledge linking cancer

cell characteristics with the response to immunotherapy. Mostly focused on lung

cancer, our objective was to illustrate how cancer cell diversity inside a well-

defined pathologymight explain sensitivity and refractoriness to immunotherapies.

We first discuss how genomic instability, epigenetics and innate immune signaling

could explain differences in the response to immune checkpoint blockers. Then, in

a second part we detailed important notions suggesting that altered cancer cell

metabolism, specific oncogenic signaling, tumor suppressor loss as well as tight

control of the cGAS/STING pathway in the cancer cells can be associated with

resistance to immune checkpoint blockade. At the end, we discussed recent

evidences that could suggest that immune checkpoint blockade as first line

therapy might shape the cancer cell clones diversity and give rise to the

appearance of novel resistance mechanisms.

KEYWORDS

immune checkpoint, plasticicity, immunogenicitiy, adjuvanticity, tumor micro
environment (TME)
1 Introduction

The success of immunotherapies, including immune checkpoint blockers (ICB),

depend on mutual regulation networks established at the interface between the cancer

cells and the non-malignant cell types that constitute the tumor ecosystem. Importantly,

the abundance, localization, and functional orientation of each cell component within the

tumor microenvironment (TME) vary significantly over time and during treatment.
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Dissecting and modeling the biological mechanisms governing the

TME structuration leaded to the identification of multiple

prognostic factors and therapeutic targets, as illustrated by the

emergence of ICB as first line therapy in multiple cancer types

(Lung KEYNOTE-024, KEYNOTE-189 (1, 2); Melanoma

[Chekmate-066) (3); MSIhi-CRC (4)].

PD-1/PD-L1 expression on cancer cells has thought to be

important to predict the response to immune-checkpoint

inhibitors. However, several studies in non-small cell lung cancer

(NSLCLC), confirmed that even if patients showing high expression

level of PD-L1 on cancer cells were having the greater survival

improvement upon ICB, anti-PD1 immunotherapy was still

beneficial across all treated groups, even in patients having

moderate to undetectable level of PD-L1 (2, 5, 6).

Tumor immune contexture, representing the pre-existing

immune parameters associated with patient survival, appears as a

pan-cancer hallmarks linked with the response to ICB. Indeed, high

infiltration by CD8 T lymphocytes, B cells, NK cells and the presence

of tertiary-lymphoid structures (TLS) are most frequently associated

with a better response to therapy. Conversely, massive tumor

infiltration by immunosuppressive macrophages, regulatory T

lymphocytes (Treg) and polymorphonuclear cells (PMN) such as

neutrophils are all linked with treatment failure (7–10). The existence

of such common features across multiple cancer types suggest that

cancer progression and resistance to treatments might share similar

mechanisms to escape the immune control by subverting the host

anti-tumor response [for review see: (7, 9)].

Together with immune cell infiltration, alteration of the tumor

vasculature is an important factor determining tumor progression

and immune contexture. Disorganized tumor vessels hider CD8 T

cells trafficking, alter T cell effector functions and might impede

dendritic cell maturation. Conversely, T-helper-I (Th1) responses

can restore blood vessel normalization and suppress tumor

angiogenesis. These observations demonstrated a reciprocal

regulation of the tumor vasculature function by the immune

stroma while vasculature alteration directly contributes in shaping

the tumor immune compartment [for review see: (11)]. Hence,

many efforts are currently undertaken to develop novel anti-

angiogenic drugs to improve immunotherapies.

Together with endothelial cells, cancer associated fibroblasts

(CAFs) account among the most important stromal cells affecting

the response to immunotherapy. Notably, single cell analysis of

CAF from breast cancer revealed that specific subtypes of CAF

would determine the upregulation of (PD-1) and CTLA4 in Tregs.

In turn Tregs would mediate Transforming growth-factor b (TGFb)
signaling in CAF contributing to ICB refractoriness (12). In

multiple mouse models of solid tumors (pancreas, lung, colorectal

and breast), CAFs were shown to form a physical barrier in the

tumor mass, by shielding the cancer cell and limiting immune cell

ability to infiltrate the tumor mass (13). As an example, Chen et al,

recently showed that IL-17 promotes collagen deposition by CAF,

enhancing immune exclusion of tumors (14). As illustrated in

pancreatic tumors, for which their infiltration is predominant on

the TME composition, CAFs from an heterogeneous population of

cells with functional diversity ranging from tumor-promoting to

anti-tumor activity (15, 16). While both immune cells and
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endothelial cells are routinely targeted in cancer patients’ care,

targeting the fibroblastic tumor compartment did not result in any

major translation in clinic yet.

Knowledge describing the relationship between cancer cell

clones phenotype and diversity with the TME architecture

remains fragmentary. To evaluate the association between the

TME and the cancer cell, different kinds of bioinformatics

analyses were performed on publicly available databases such as

The Cancer Genome Atlas (TCGA). In a recent article, Bagaev et al.

(17) studied the tumor immune compartment using a

deconvolution data algorithm and co-integrated these signatures

with transcriptomic and genomic parameters. This allowed the

identification of four distinct TME subtypes conserved over more

than 10 000 cancer patients and across 20 different cancers. Finally,

this work leaded to the definition of immune favorable TME

subtypes displaying the best responses to ICB (17). This research

showed that modeling the TME obviously requires a deep

characterization of the immune and non-immune tumor stroma,

but also of the cancer cell clones phenotype and diversity. A take-

home message from these immunogenomics approaches is that

specific driver mutations, transcription profiles, microRNA

expression, gene copy number variations, metabolic and

epigenetic process carried by the cancer cell are involved in the

TME structuration (17, 18).

This manuscript will focus on lung cancer and refers to

observations showing that specific characteristics of the cancer cells

such as the tumor mutation burden (TMB) (19), genomic instability

(20), oncogenic stress (21), epigenetics (22), metabolism (23) and

intrinsic innate immune signaling (24–26) known to orchestrate the

TME architecture and response to ICB (see Figure 1). Conversely, the

diversity of cancer cell clones forming the tumor is also determined

by the host immune system and thus, the TME. Finally, we will

discuss whether the expansion of ICB usage in clinic could associate

with the emergence of resistance mechanisms.
2 Section 1, cancer cell characteristics
that might drives immune response

2.1 Tumor associated antigens

Non-mutated self-antigens consist of proteins expressed by the

cancer cells while normally absent in the healthy tissue and are

referred as tumor associated antigens (TAAs). TAAs have been seen

as attractive inducers of an antitumor-immune activation. There are

different class of TAAs, I) overexpressed TAAs, that are proteins

overexpressed in the cancer cells and that, thanks to different

mechanisms, can contribute to cancer progression, as MUC-1,

HER-2, TERT and Survivin; II) differentiation TAAs, which

expression is normally associated to a specific differentiation state

of the tissue and that starts to be aberrantly expressed by the cancer

cell, like Gp100 in melanoma and the prostatic acid phosphatase

(PAP) in prostate cancer; III) cancer testis antigens that are proteins

overexpressed in a variety of tumors that should normally be

expressed only in immune-privileged germline tissue. Example of

this type of antigens are MAGE3, overexpressed in colon, brain,
frontiersin.org
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FIGURE 1

Five types of cancer cell alterations governing tumor immunogenicity, adjuvanticity and the response to ICB. Specificities of oncogenic signaling
influence cytokines and chemokine production and ultimately the TME structuration. The nature of the oncogenic and tumor suppressor alteration
in the cancer cell associates with genomic instability, epigenetic and metabolic reprograming of the cancer cell. Genetic instability together with
epigenetic reprograming are sources of tumor antigens and danger signals accumulation in the cancer cell and TME. Cancer cell undergo metabolic
reprograming to sustain their growth, this associates with nutrient deprivation, alarmines and immunosuppressive metabolites accumulation in the
TME. Activation or inhibition of innate immune signaling pathways are impacting tumor antigen processing and presentation as well as immune cell
recruitment in the TME.
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lung and skin cancer, and NY-ESO-1, expressed in a plethora of

cancers among which sarcoma, esophageal, ovarian and prostate

cancers (27).

Remarkably, PAP-loaded dendritic cell (DC)-based vaccine

(Sipuleucel-T) (28) received FDA approval in 2010 (29) for the

treatment of castration-resistant metastatic prostate cancer.

Ongoing clinical study are evaluating the interest of combining

PAP-loaded DC vaccine in combination with ICB (30), yet it is not

possible to conclude whether Sipuleucel-T can increase ICB

effectiveness in clinic. The efficacy of TTA targeting was also

evaluated in a large clinical trial (NCT00480025) on NSCLC

patients expressing MAGE-A3 treated with MAGE-A3 vaccine

(AS15 proprietary adjuvant). which failed showing any benefit

(31). Similar results have been shown in a study on different solid

cancers using NY-ESO-1 based vaccine. Indeed, no activated CD8 T

cells nor increased levels of antibodies against NY-ESO-1 were

detected in patients’ blood and, coherently, responses were similar

between treated and control arms of the study (32). An interesting

study conducted by Cebon et al., demonstrated that the absence of

clear therapeutic response in patients treated with NY-ESO-1 based

vaccine could be associated to the reduction of HLA-NY-ESO-1

complexes in the cancer cells as a mechanism of resistance (33).

Multiple DC-vaccines were or are being evaluated in melanoma

based on gp100 and MART1 TAAs. The combination of a DC

vaccine with ICB has been shown to be effective in treatment of

melanoma patients. Even after recurrence in patients who received

adjuvant DC vaccination, treatment with first- or second-line PD-1
Frontiers in Immunology 03
inhibitor monotherapy resulted in a response rate of 52% suggesting

that adjuvant DC vaccination might increase ICB effectiveness at

least in recurrent disease (34). However, the clinical benefit from

TAA vaccination remains limited. This might be linked to the fact

that TAAs are self-antigen against which the generation of a strong

immune response is avoided thanks to central and peripheral

immune tolerance. Therefore, the manipulation of the immune

compartment concomitantly to TAAs delivery may be needed to

assure clinical efficacy of TAA based vaccine strategies. The efficacy

of the PAP-loaded-DC-based vaccines is an example, patient

immunization with dendritic cells modified to express PAP fused

to granulocyte-macrophage colony stimulating factor (GM-CSF), to

promote DC survival and proliferation, is able to overcome immune

tolerance and generate a proper immune response against prostatic

cancer (28).
2.2 Genomic instability and tumor
specific neoantigens

Genomic instability, defined by an increased tendency for DNA

mutations and other genetic changes during cell division, translates

into a higher tumor mutational burden (TMB, number of somatic

mutations per megabase) (35), is thought to be linked with cancer cell

immunogenicity and anti-tumor immune response. Indeed, it is

considered as important for the accumulation of tumor-specific

neoantigens (TSA) in the cancer cells, which are produced by
frontiersin.org
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mutation in exonic sequences and can constitute the substrate of the

adaptive anti-tumor immunity as they are exempted of central

tolerance (36). Cancer cell TSA load appears as a critical factor

linked with ICB clinical benefit (37, 38), as most of the cancer types

for which ICB were approved as first line treatment show remarkably

high TMB (ranging from 5 to 20 mutations/megabase) (36). However,

the association between TMB and response to ICB among patients

suffering from the same cancer type is not always so evident. In

colorectal cancer (CRC), microsatellite-instability-high-CRC (MSIhi-

CRC) show greater sensitivity to ICB (approved as first line treatment)

when compared to microsatellite stable-CRC (MSS-CRC) upon ICB

treatment. First line ICB was approved for mismatch-repair-deficient

(dMMR) and MSIhi-CRC [for review see (39)]. Interestingly,

immunopeptidomic analyses performed on MSIhi and MSS-CRC did

not identify more putative TSA in the MSIhi group (40) when

compared to MSS-CRC samples. At the molecular level, other major

differences exist between CRC subtypes and could explain differences in

ICB sensitivity through mechanisms independent of TSA generation.

Nevertheless, in the case of non-small-cell lung cancer (NSCLC), a

better response to ICB was reported among patients harboring

mutations in a series of genes implicated in DNA replication and

repair as POLD1, POLE, MSH2, DNA-PK and RAD17It (41). A more

recent study performed on 12 different types of cancer established that

around the 70% and 21% of patients were showing respectively partial

and complete responses since they were displaying defect in the DNA

damage repair (DDR) machinery and the expansion of TSA specific

CD8 T cell-clones was observed in ICB responder patient (42). Wang

and colleagues demonstrated the crucial importance of DNA damage

repair defects, more specifically co-mutation on homologous

recombination repair and mismatch repair (HRR-MMR) and

homologous recombination and base excision repair (HRR-BER),

and their association with higher TMB, neoantigen load and

immune-regulatory gene expression. In this study, defect in HRR-

MMR and HRR-BER represents a predictive biomarker for patients’

response to ICBs. Interestingly, this work underline that the key

element to have enhanced efficacy of immunotherapy response is the

concomitant mutation of two important mismatch repair pathways,

since mutations caused by a defect in a single DDR pathway determine

a low TMB and TSA load, not high enough, to be predictive of the

outcome of therapy (43). Finally, together with DNA repair defect,

mutations in tumor suppressor genes important for genome integrity,

as Tp53, were associated with higher TMB and response to ICB in

NSCLC and head and neck squamous cell carcinoma (HNSCC). (44–

46). However, a direct association between TMB, the TSA load and the

T cell repertoire, as predictive factor of the response to ICB among

patients suffering from the same pathology remains to be better

understood and characterized. While homologous recombination

deficiency was associated with a better survival in high grade serous

ovarian cancer, this parameter did not strongly correlate with T-cell

receptor clonality even if the latter showed strong positive link with

patients’ survival (47). Furthermore, the TMB is not always associated

with better outcome of ICB. For example, in a study on renal cell

carcinoma (RCC) patients treated with PD-L1 or combinational

therapy of PD-L1 + anti-VEGF-A, the TMB and the tumor

neoantigen burden (TNB) did not correlate with the response to

therapy. The reason behind this might come from the fact that not
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all mutations can give rise TSA capable of supporting the anti-tumor

adaptive immunity. The evaluation of nonsynonymous mutation

burden is a better predictor of immunotherapy response than total

exonic mutation burden (41, 44). Neoantigens derived from gene

fusion can also provide a pool of immunogenic TSA in TMB low

cancer. This phenomenon was nicely exemplified in HNSCC, with the

description of a patient showing a complete response to ICB. This

patient displayed a tumor with very low CD8 T cells infiltration, low

TMB and low PDL1 expression before ICB, but presented a DEK-AFF2

fusion resulting in an HLA-C restricted TSA for which specific T cells

were detected in the patient’s blood (48). These findings might be of

importance for many types of cancer characterized by gene fusion, thus

important efforts have to be done in improving tools for detecting gene

fusion and predicting immunogenic TSA load (49, 50).

Recently, a second family of tumor specific antigen was identified

from immunopeptidomic. These are the non-mutated aberrantly

expressed (aeTSA), which, emanate from the transcription and

translation of non-coding genomic regions and represent the

majority of the TSA pool (40, 51). Furthermore, about 3,000

transcriptionally active endogenous retroviruses (ERVs) were

identified in the TCGA dataset across multiple cancer types, and

ERVs signature has been used to predict immunotherapy response

(52) since their expression can associate with expression of aeTSA

(52) and therefore with cancer cell innate immune signature.

Interestingly, not only the ERVs, but also other kind of

transposable elements (TEs) such as long interspersed nuclear

elements (LINEs), short interspersed nuclear elements (SINEs) can

become a source of aeTSA (53). The current consensus suggests that

expression of these aeTSA is mainly due to epigenetic dysregulation

in the cancer cell (52–54).

Future development of personalized cancer treatments will

most probably benefit from the emergence of RNA based vaccines

allowing the design of a specific TAA/TSA cocktail for each patient.

The development of such strategies will require improving our

ability in identifying the best tumor antigens that should also

include aeTSA. However, tumor antigen based therapeutic

strategies requires that cancer cells indeed express and present

these antigen on their major histocompatibility complex-1. Cancer

cells can control their immunogenicity through divers alterations of

MHC-I expression linked with IFN sensing pathways as well as

antigen processing and peptides loading on MHC-I molecules.

These mechanisms were described in studies of mechanisms

linked with ICB insensitivity. In this review, they will be shortly

evoked in the discussion as they were also observed in the context of

acquired resistance to ICB treatment [for review see, (55)].
2.3 Cancer cell epigenetics and antiviral-
like innate immune signaling

Genetic mutations are not the only genomic alterations that

ultimately drive antitumor immune-surveillance. Structural

alterations, like epigenetic modifications, represent a cancer cell-

intrinsic factor that modify the TME as well. Indeed, epigenetic

modifiers were found to be important in cancer responsiveness to

ICB. Beside from driving the expression of TSA and TAA, the
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deregulation of the epigenome can also lead to the accumulation of

nucleic acids into the cytoplasm ultimately sensed by innate

immune signaling pathways into the cancer cells. An example of

this phenomenon is the enhanced bidirectional transcription of

ERVs caused by the inhibition of different histones demethylases.

ERVs would then fold in double stranded RNA (dsRNA) that can be

sensed in the cytoplasm by toll-like receptor 3 (TLR3), melanoma

differentiation-associated gene 5 (MDA5) and IRF7 initiating an

antiviral-like innate immune cascade ultimately driving interferon

(IFN) signaling activation and tumor growth control. This

phenomenon has been shown in human in in vitro models of

breast, kidney, skin, lung (56), ovarian (57) and colorectal cancers

(58). The opportunity to trigger cancer cells innate immune

signaling was pharmaceutically exploited to remodel the immune

compartment into the tumor mass. Indeed, therapeutic strategies

that implies the coupling of methyltransferase inhibitors and

immunotherapy result in increased anti-PD1 (56) and anti-

CTLA-4 (57) responses in mouse models of melanoma. Together

with ERVs, small non-coding RNA enriched in ds-structures, like

U1 and U2 and long non-coding RNA (lncRNA) can lead to the

activation of the of retinoic acid-inducible gene I (RIG-I) (59). This

was exemplified through the characterization of long non-coding

RNA antisens (lnc-RNA-AS) which can activate the IFN response

leading to an anti-proliferative activity at least in part via interferon

regulatory factor 1 (IRF1) in esophageal squamous cell carcinoma

(60). Similarly, RNA binging proteins (RBPs), that have important

functions in mRNA splicing and stabilization, seem to be interesting

pharmaceutical targets to enhance innate immune response trough

similar mechanisms. For instance, in two in vitro models of breast

cancer the repression of heterogeneous nuclear ribonucleoprotein C

(HNRNPC), a RBP, generated pre-mRNA introns that gave rise to

dsRNA highly enriched in Alu elements belonging to HNRNPC

binding sequences. This was shown to trigger RIG-I signaling

therefore determining IFN response and tumor growth arrest

(61). Thus, epigenetic alteration together with endogenous innate

immune signaling in the cancer cell represents a very attractive

therapeutic opportunity [for review see (54)].
3 Section 2: cancer cell characteristics
linked with ICB refractoriness

3.1 Metabolic pathways linked with
ICB resistance

Cancer cells affect the immune microenvironment through the

metabolites that they release into the TME that can have a

detrimental effect to the bystander cells, or through competition

for crucial nutriments. Indeed, immune cells antitumor functions,

which includes local T cell proliferation, motility and the

production and release of cytokines and chemokines, require high

amounts of energy. For example, upon activation, T cells increase

their oxygen consumption since they boost up aerobic glycolysis

and glutaminolysis (62). Thus, glucose deprivation results in a

massive impairment of T cell functions. Consistently, in a mouse

model of sarcoma, the tumor glucose consumption dampened T cell
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mammalian target of rapamycin complex 1 (mTORC1) activity,

their capacity to do glycolysis and to produce IFNg, lowering
adaptive anti-tumor activity in spite of the high antigenicity of

the cancer cells (63, 64) (see Figure 2).

3.1.1 Anaerobic and aerobic metabolism of the
cancer cell and immunity

In anaerobic conditions, the enhanced glycolysis associates with

the accumulation of pyruvate which is then converted into lactate

by lactate dehydrogenase A (LDH-A). This enzyme is particularly

active in KRAS and EGFR mutant tumors, where its inhibition

determines reduced glycolytic flux in vivo, ex vivo and in vitro and

decreased lactic fermentation. This type of metabolism seems to be

essential for lung cancer-initiating cells and disease progression,

since inhibition of LDH-A results in tumorigenesis impairment and

regression of already established tumors (65). High glucose

consumption and lactate production and excretion is common to

different types of cancers resulting in the acidification of the TME.

An environment particularly enriched in lactic acid is detrimental

for the immune microenvironment. In particular T cells exposed to

lactic acidosis have impaired phosphorylation of c-Jun N-terminal

kinases (JNK), C-JUN and p38 which drives the blockage of

cytokines production, proliferation (66) and the general

impairment of the effector CD8 T cells functions (67).

Coherently, high lactic acid levels in the blood of metastatic lung

cancer patients are predictor of poor survival (68).

In presence of oxygen, pyruvate can also be converted to Acetyl

Co A that fuel the TCA cycle for the production of high quantity of

energy. In KRAS and KRAS and Liver kinase B1 (LKB1) (KL) mutant

tumors the oxidative phosphorylation seems to be another metabolic

process importantly enhanced (69, 70). This process requires high

amount of oxygen for the tumors cells, and limiting oxygen

availability within the TME affects immune cell polarization.

Indeed, oxygen is critical for T cell differentiation and activity upon

immunotherapy. In melanoma, in vitro and ex vivo experiments from

patients’ samples showed that tumor oxidative metabolism

determines elevated tumor oxygen uptake from the TME that was

associated to T cells exhaustion and therefore decreased immune

activity and anti-PD1 response (64).While it might sounds difficult to

target cancer cell metabolic profile without strongly affecting heathy

and stromal cells function, retrospective studies highlighted the fact

that Metformin, a component used to treat diabetes seems to increase

ICB efficacy in patients from multiple cancer types. The mechanisms

through which it might work remains to be better understood yet but

the impact on cancer cell metabolism seems obvious, thus multiple

clinical trials are ongoing [for review see (71)].

3.1.2 Fatty acids metabolism of the cancer cell
and immunity

Aside from the TCA cycle, glucose metabolites derived from

enhanced glycolytic flux are often redirected toward citrate synthesis,

an important intermediate for lipid biosynthesis. This happens in

KRAS mutant cancer, where hexokinase 2 (HK2) overexpression has

been shown to be a key player to divert glucose in ribonucleotide and

fatty acids synthesis (70). This was also observed in LKB1 mutant

lung cancer in a process supported bymTORC1-dependent Hypoxia-
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1170321
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


FIGURE 2

Nutriment deprivation, immunosuppressive metabolites and regulation of purinergic signaling are important players in cancer cell
immunosuppression and adjuvanticity. Cancer cells have a strong avidity for glucose which lead to it deprivation in the TME while T cells requires it
fo optimal anti-tumor function. In absence of oxygen, glycolytic cancer cells produce lactate from glucose. Lactate can have an immunosuppressive
effect on T cells. Cancer cells can synthetize important amount of immunosuppressive lipids by expressing FANS. HO1 can oxidize LDL that have an
immunosuppressive impact on DC and T cells. COX2 converts arachidonic acid into immunosuppressive PGE2. CD39 and CD73 expressed by the
cancer cell degrade extracellular ATP into adenosine (Ado). ATP is a danger signal able to induce inflammatory while adenosine inhibits T cell
activation and favors DC and macrophage immunosuppressive functions. IDO-1 converts pro-inflammatory extracellular Tryptophan in to
immunosuppressive kynurenine. Cancer cell avidity for glutamine and leucine deprive the TME in these amino acids that play important roles in anti-
tumor T cell polarization and function.
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inducible factor 1-alpha (HIF1a) expression (69, 72). These anabolic

pathways are important for production of biomolecules that assure

cancer cell proliferation. Indeed, fatty acids synthesis is needed for the

growth of NSCLC. Inhibition of ACC (Acetyl CoA Carboxylase), one

rate limiting step of de novo fatty acid synthesis, reduces tumor

growth in KP and KLmouse models (73). Nevertheless, the fatty acids

synthase (FASN) is overexpressed in NSCLC and its inhibition leads

to a diminution of lactate and ATP production, as well as cancer

proliferation, invasion and migration (74). Interestingly, fatty acids

synthesis, in addition to be crucial for cancer progression, is also

influencing the TME. Indeed, in ovarian cancer FASN expression has

been associated with an immunosuppressive immune

microenvironment. FASN activity in cancer cells is responsible for

the accumulation of fatty acids in the TME, which are detrimental for

DC ability to present antigens. Inhibiting FASN was partially

restoring the immunostimulatory ability of the DC in a mouse

model of ovary carcinoma (75). In NSCLC, bioinformatics analyses

of the TCGA and of a cohort of 240 patients treated with ICB showed

that mutations in genes involved in fatty acids metabolism associate

with a greater response to therapy. Interestingly, patients displaying

highest mutation rates in fatty acids metabolism genes are also those

showing higher PDL1 expression and TMB in cancer cells (76).

Cancer cell metabolism alterations associate with perturbations of

cholesterol synthesis (77), oxidized low-density-lipoproteins (ox-

LDL) through cancer cell expression of the heme oxygenase-1

(HO-1) (78), and sphingolipids diversity and accumulation (79).
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These perturbations of lipid biosynthesis and metabolism occurring

in the cancer cells were shown to affect T cells and antigen presenting

cells anti-tumor functions in multiple cancer types, and might

contribute to ICB refractoriness. Finally, another link between

cancer cell fatty acid metabolism and response to ICB resides on

the expression of the cyclo-oxygenase-2 (COX-2) that leads to the

accumulation of prostagandine-E2 (PGE2) produced from

polyunsaturated fatty acids (arachidonic acid). Indeed, COX2

expression by the cancer cells was suggested to be an important

immune escape mechanism. While PGE-2 induces blood vessel

dilatation and inflammation, COX2 expression by the cancer cells

was shown to inhibit T cell accumulation in the tumor mass, to favor

immunosuppressive myeloid cell polarization, to impair DC and NK

cell functions and to drive the expression of the indoleamine 2,3-

dioxygenase-1 (IDO-1) [for review see (80)]. Thus, COX2 specific

inhibitors such as celecoxib were evaluated in clinic in combination

with targeted therapy, chemotherapy and ICB. Unfortunately, this

failed demonstrating clear benefit for the patients yet, but numerous

clinical trials are still ongoing (NCT03026140, NCT03926338,

NCT04188119, NCT04348747). However, non-specific COX2

inhibitor such as Aspirin and non-steroidal anti-inflammatory

drugs (NSAID) are frequently administrated to cancer patients

receiving ICB and retrospective analyses provided contradictory

results making impossible to conclude if COX2 inhibition would be

or not beneficial in combination with ICB at least for lung cancer

(81, 82).
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3.1.3 Amino-acids metabolism in the cancer cell
and immunity

Amino-acids degradation within the TME can be unfavorable

for the immune compartment. Almost all cell types in tumors

including the cancer cells can express IDO-1 that degrades

tryptophan into kynurenine. IDO-1 expression by the cancer cell

was associated with immunosuppressive function through

inhibition of T-cell receptor expression and induction of Treg [for

review see (83)] andhigh IDO-1 activity was linked with ICB

refractoriness in NSCLC (84), therefore making it a very

attractive target and multiple inhibitors have been developed and

are under evaluation in multiple cancer types. However, the phase

III clinical study of epacadostat a selective IDO-1 inhibitor in

combination with pembrolizumab in melanoma patients (ECHO-

301/KN-252) provided negative results (85). Indoximob, another

IDO-1 inhibitor was recently evaluated in combination with ICB in

a phase II clinical trial on melanoma patients. However, while the

percentage of patients showing disease control was encouraging,

this was a single arm study, making impossible to conclude whether

the combination therapy performed better that ICB alone (86).

Aside from tryptophan degradation, LKB1 mutant tumors have a

pro-growth metabolism characterized by high glutamine uptake

and usage (72). Similarly, in KRAS mutant NSCLC, oncogene

activation drives the uptake of amino acids, such as glutamine

and leucine in a phosphoinositide 3-kinase (PI3K)/Nuclear factor

erythroid 2-related factor 2 (NRF2)/Activating transcription factor

4 (ATF4) dependent mechanism that leads to a pro-oncogenic

metabolism reprogramming (87). The scarce availability of

glutamine in the TME determine CD4 T cell polarization toward

Foxp3+ Tregs because of decrease in mTORC1 signaling, regardless

of the presence in the TME of cytokines that would normally lead to

Th1 differentiation (88). Oh and colleagues showed in a mouse

model of triple negative breast cancer resistant to immunotherapy,

that inhibition of glutamine metabolism coupled with a-PD1, led to

the sensitization to immunotherapy thanks to the consequent

immune compartment reprogramming, with the increased

activation of macrophages and antigen presentation as well as the

death of myeloid derived suppressor cells (MDSCs). However in

this study total glutamine metabolism was blocked in both cancer

and stromal cells, thus it is not possible to descriminate to what

extend glutamine uptake and usage specifically by cancer cells

might interfere with ICB (89). These evidences open the doors to

new attractive pharmaceutical possibi l i t ies to bypass

immunotherapy resistance.

3.1.4 Cancer cell purinergic signaling
and immunity

Another metabolite that importantly impacts tumor growth and

drives immune escape is adenosine. Adenosine is produced through

extracellular ATP degradation mainly via two ectonucleotidases,

CD39 and CD73. While ATP release in the TME consequent to

cellular stressing events as hypoxia and necrosis constitute an

important alarmin favoring antigen presenting cell recruitment

and T cell activation, adenosine signaling can fuel tumor growth

and metastasis formation while impairing T-cell receptor (TCR)
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signaling and favoring immunosuppressive myeloid cell

functions (23). In lung cancer, epithelial growth factor receptor

(EGFR) mutant tumor cells have been shown to express

high levels of CD73, which give rise to high concentrations of

immunosuppressive adenosine in the TME (90, 91). Recently, a

subclass of NSCLC stem-like cells, expressing CD133 and CXCR4,

were shown to express CD38, PC-1 and CD73, enzymes that, leads

to the production of high level of adenosine through the non-

canonical adenosine pathway (92). Since NSCLC patients refractory

to aPD1 immunotherapy show high expression of adenosine

receptor (93), clinical interest is aroused regarding the inhibition

of adenosine signaling. In in-vivo model of melanoma and NSCLC

the inhibition of adenosine receptor with specific antagonists

suppresses tumor cell growth and induced the expression of PD-

L1. Coherently, the coupling of aPD-L1 and adenosine receptor

antagonist gave promising synergistic effects (93). An interesting

phase I clinical trial on metastatic or advanced NSCLC patients is

actually ongoing to evaluate the safety of on PBF-1129, a selective

Adenosine A2b receptor antagonist (NCT03274479). Similarly,

early clinical evaluation of CD73 and CD39 inhibitors are

ongoing (NCT04148937, NCT05075564).

Metabolism reprogramming occurring in cancer cells represent

an important mechanism of TME reshaping, immune escape and

resistance to immunotherapy. Thus, it might generate new

therapeutic avenues to predict and enlarge immunotherapy

sensitivity. Research for extending current knowledge on how

cancer cell metabolism could be manipulated to boost immune

activation is an expanding field, although yet it failed delivering

significant improvement of patient’s care. Because they are

intrinsically linked together, characterization of oncogenic

signaling and targeting of cancer cell metabolic subtypes needs to

be integrated toward enhanced anti-tumor immunity.
3.2 Oncogenic signaling and ICB
refractoriness

Studies in lung cancer show remarkable evidences that the type

of oncogenic signaling and tumor suppressor alteration are tightly

associated with the response to ICB. Similarly, specific mutations

linked with cancer cell oncogenic signaling were shown to associate

with survival of melanoma patients upon ICB (94). In this section,

we will see that oncogene and tumor suppressor alterations can

drive different outcomes on the tumor ecosystem directly through

specific signaling events or by interfering with cancer cell genomic

stability and metabolism.

3.2.1 KRAS
KRAS mutated lung cancer have been linked with incremented

glycolytic flux (95) and this is also the case also for EGFR mutant

tumors, in which the activation of PIP3K/AKT/mTORC1 supports

glycolysis and consequently fosters cell proliferation (96). Inhibition

of PI3K/mTOR in these tumors decreased the membrane

localization of the glucose transporter 1 (GLUT1) (96) which

expression in lung adenocarcinoma has been associated with
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adverse clinical outcome, lymphovascular invasion and advanced

TNM stage (97). However, KRAS mutant tumors often display co-

occurring mutations, among which TP53 is the most common. As

previously discussed, TP53 mutations are linked with a higher TMB

of the cancer cells. Thus, KRAS-TP53 co-mutated (KP) cancers are

those that demonstrated the best response to immunotherapy (98)

having high TMB, high expression of PD-L1 that seems to depend

on extracellular signal-regulated kinases (ERK) signaling (99) and

high T cell infiltration (100, 101). Importantly, specific KRAS

mutation might be associated with different expression levels of

PD-L1 in NSCLC cells. Indeed, PD-L1 is expressed at higher levels

in KRASG12D,G12V,G13C mutated cancers and at lower levels within

KRASG12A and G12C mutated cancers (102), suggesting that different

KRAS mutations confers to the mutated protein higher or lower

ability to influence downstream signalling pathways that then

shapes the TME.

3.2.2 EGFR
Activating mutations on EGFR, are often present in NSCLC

cells. Treatment with tyrosine kinase inhibitors (TKI) are the

standard of care in this case, but almost systematically, resistant

mechanisms will appear. The use of immunotherapy on EGFR

mutant patients was recently evaluated but it gave poor outcome,

suggesting that EGFR oncogenic signaling could represent an

intrinsic resistance mechanism to immunotherapies. Indeed,

analysis of NSCLC patients harboring or not EGFR mutations

revealed that EGFR mutant tumors are not responding to

immunotherapy irrespectively of their PD-L1 expression levels

(103, 104). One of the reasons for such resistance could be the

fact that these tumors show low TMB and expression of immune

checkpoints (90, 105). Furthermore, the analysis of the immune

microenvironment of EGFR mutant tumors highlighted a TME

enriched in immunosuppressive cell types (106) and displaying low

T cell clonality and CD8 T cell density. Such immunosuppressive

TME could be explained by the tight regulation of important

chemokines for the recruitment and the activation of immune

cells in EGFR mutant cancer cells. Indeed, compared to the WT,

EGFR mutant cancer cells downregulate the expression of CXCL10,

chemoattractant for CD8 T cells, and CCL21, important for the

accumulation of NK cells and naïve T cells, and whole tumor

extracts revealed a trend toward a lower expression levels of IFNg
(90, 107). Moreover, EGFR mutant cancer cells upregulates TGFb
and CCL22 that are important for Tregs polarization and

accumulation, and CXCL8, a neutrophil chemoattractant (90,

107). Finally, aberrant EGFR pathway activation would cause a

suppression of IRF1 signaling and therefore, even when stimulated

with IFN, EGFR mutant cells upregulate PDL1 at a lower extent

compared to their WT counterpart (107). These data describing an

inert immune compartment in EGFR mutant cancers could explain

the refractoriness of these tumors to immunotherapy.

3.2.3 Phosphatase and tensin homolog (PTEN)
Analyses of immunotherapy resistant gliomas, leyomiosarcomas

and melanomas revealed that resistant phenotypes are in some case

associated to the loss of PTEN (108–110). Indeed, PTEN loss in
Frontiers in Immunology 08
cancer cells determines the constitutive activation of PI3K-AKT

pathway, which in turn causes the upregulation of several cytokines

that shape the surrounding TME (109). Specifically, in patients

affected by melanoma and metastatic leyomiosarcoma, PTEN loss

was demonstrated to contribute to immunosuppressive cells

infiltration in tumors, while avoiding lymphocytes accumulation

(108, 109). The inhibition of PI3K, when combined with anti-PD-1

in syngeneic model of PTEN deficient melanoma resulted in an

increased efficacy of immunotherapy, associated with an increase of

CD8 T cells infiltration and efficient tumor regression (111). In lung

cancer, PTEN loss has been associated to lower patients’ overall

survival (112, 113). In in vitromodels of lung adenocarcinoma, PTEN

loss results in the activation of the ROS/SHP2 pathway, ultimately

leading to unresponsiveness of these cells to IFNg signaling (114),

suggesting that in lung cancer PTEN loss and PI3K activation are also

associated with lower responses to immunostimulating therapies.

3.2.4 Anaplastic lymphoma kinase
Alteration of the of Proto-oncogene tyrosine-protein kinase

(ROS), Rearranged during Transfection (RET) and ALK genes have

been associated with ICB refractoriness (101). Specifically in ALK

rearranged tumors, the resistance to immunotherapy seems to be

link to the low PD-L1 expression and the lack of CD8 T cells (115,

116) and activated memory CD4 (116). Interestingly, ALK

rearrangement in lung cancer, via augmented PI3K/AKT pathway

activation, have been associated to an important expression and

activation of HK2), a key enzyme of the glycolysis, that contributes

to high glucose usage via aerobic glycolysis (117). However, the

mechanism behind this deleterious shaping of TME remains

poorly understood.

3.2.5 WNT/b-CATENIN
In several type of cancers, including lung cancer, the activation of

WNT/b-catenin signaling in cancer cells has been associated with T cell

deprivation in the tumor mass, low PD-L1 expression and resistance to

immunotherapy (118–120). In both colorectal cancer and melanoma,

the activation of b-catenin/AMP-dependent transcription factor

(ATF3) signaling inhibits CCL4 secretion by the cancer cells, a

crucial chemokine for the recruitment of DCs in the tumor mass,

and therefore the correct priming of a potent antitumor immune

response (121, 122). The absence of DCs was linked with naïve T cells

accumulation in the tumor mass, that are not proliferating nor having

cytotoxic function even if cancer cells showed high tumor antigen

expression (122). Interestingly, b-catenin has also been shown to be

activated in metastatic lesions and participate to acquired resistance

mechanism to immunotherapy (123, 124). This was illustrated by the

case of a melanoma patient, in whom the primary tumor showed a

good response to immunotherapy but who developed a metastatic

lesion with acquired resistance to immunotherapy. Despite the

presence of circulating T cell against TSAs expressed by the cancer

cells of the metastatic lesion, these T cells failed accumulating in the

metastatic site, most probably because of acquired constitutive

activation of b-catenin signaling in metastatic cancer cell clones

(124). These notions suggest that during the cancer progression the

tumor cells acquire the ability to activate b-catenin signaling as a
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mechanism of escape from immune surveillance. The cancer cells

would therefore go through a change in their phenotype to survive

trough out therapy, a process that raise questions on how cancer cell

plasticity could be used as a mechanism of resistance to therapy.

3.2.6 STK11/LKB1
An integrative analysis of genomic, transcriptomic and proteomic

data on KRAS mutated lung adenocarcinoma patients shown that the

most frequent co-occurring genomic alterations, together with KRAS

mutation, are the loss of STK11/LKB1 or TP53 functions.

Importantly, the high sensitivity of KRAS mutated cancers to ICB

is lost if cancer cells harbour co-mutation in the tumor suppressor

STK11/LKB1 instead of TP53 (101, 125–127). The alteration in

STK11/LKB1 or TP53 were clonal and non-overlapping among

cancer initiated by KRAS amplification, suggesting that they are

mutually exclusive (125). This notion arises the possibility that

KRAS-LKB1 (KL) mutant cancer are refractory to immunotherapy

rather because they usually preserve unaltered expression of TP53

than because of intrinsic LKB1-dependant mechanisms. Indeed,

LKB1 mutant or deprived tumors have lower TMB, low tumor-

infiltrating CD8 T cells and low PD-L1 expression when compared to

KP (125). However, low expression of PD-L1 might not be the major

criteria for the impaired response to immunotherapy, since a

retrospective study on NSCLC patients reveal that LKB1 mutant

tumors that have high PDL1 expression are also refractory to ICB

(125). Koyama and colleagues that studied the TME in a mouse

model of NSCLC mutated for KRAS and LKB1 have proposed a

mechanistic explanation for the resistance to immunotherapy in

these tumors. They found that LKB1 mutant cancer cells, in

addition to having decreased PDL1 levels, showed an upregulation

of pro-inflammatory cytokines as chemokine (C-X-C motif) ligand 7

(CXCL7), granulocyte colony-stimulating factor (G-CSF) and

interleukin 6 (IL-6), that drive the accumulation of neutrophils and

the inhibition of cytotoxic function of T cells. The treatment with ICI

inhibitors in this model was not effective, while the inhibition of IL6

via blocking antibody or the depletion of neutrophil leaded to

increased T cell function and tumor growth control in mouse

model of lung cancer (126). Finally, LKB1 deficient tumors, fail to

activate 5’ AMP-activated protein kinase (AMPK), thus keeping

mTORC1 active and abrogating energetic checkpoint control (128).

Indeed, KL mutant tumors are characterized by a pro-growth

metabolism, with high glucose and glutamine uptake and usage

that could represent an important mechanism through which the

anti-tumor immunity is altered (69, 72).
3.3 Alterations of the Cyclic GMP-AMP
synthase – stimulator of interferon genes
pathway in cancer cells

Constitutive genomic instability and genotoxic stress imposed

by oncogene, DNA replication and metabolic alterations in the

cancer cells leads to dsDNA accumulation in the cytoplasm. This

cytoplasmic dsDNA accumulation can further be enhanced by

chemotherapy and radiotherapy induced genotoxic stress. The

accumulation of cytoplasmic dsDNA determines the activation of
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the cGAS-STING pathway. The cGAS-STING pathway was initially

described as an antiviral and anti-intracellular bacteria innate

immune signaling pathway driving the expression of Interferon

regulatory factor 3 (IRF3)/nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB) transcription programs that

are characterized by the expression of type I interferon (IFN),

interferon stimulated genes (ISG) and other immune-stimulatory

cytokines. Thus, self and non-self-sources of cytosolic dsDNA can

trigger cGAS/STING signaling in a very large variety of cell-types

including immune cells, endothelial cells, fibroblasts, epithelial and

cancer cells (129, 130).

cGAS catalyzes the formation of cyclic-di-guanosine-adenosine

monophosphate (cGAMP) by degrading cytosolic dsDNA, then,

cGAMP binds to and activates STING dimers which translocate

from the endoplasmic reticulum toward their degradation into

lysosomes while activating the Tank-Binding Kinase-I (TBK1)

phosphorylation cascade (131). Ultimately, STING signaling

drives IRF3 phosphorylation, dimerization, and translocation into

the nucleus through TBK1 (132). Although this remains less

characterized, STING mediated TBK1 and/or IKKe activation

could lead to both, canonical (133) and non-canonical (134)

NFkB signaling in immune and non-immune cells.

The activation of the cGAS/STING pathway in cancer cells

seems to have controversial effects. Indeed, despite having high

amount of dsDNA in their cytoplasm, type I IFN is hardly produced

in cancer cells at the basal level without other stimulations (135),

suggesting that cGAS-STING pathway may be somehow perverted

in these cells as a mechanism of escape from immune sensing. As

illustrated by mutant HRasV12 expression in human lung fibroblasts

(IMR90) and mouse embryonic fibroblasts, oncogenic stress leads

to dsDNA accumulation in the cytoplasm. This drives the

expression of a senescence-associated secretory program (SASP)

characterized by IL6, tumor necrosis factor (TNF), Chemokine (C-

C motif) ligand 5 (CCL5)/RANTES and neutrophil attracting ELR-

chemokines expression together with cell proliferation inhibition in

a cGAS and STING dependent manner (129, 136) [for review see

(137)]. cGAS/STING dependent senescence induction requires p38-

Mitogen-activated protein kinases1 (MAPK) and p21 function and

was posed as an important mechanism involved in chromosome

stability (138). Besides cell senescence and chronic inflammation,

cGAS/STING signaling in the cancer cell was also proposed to

induce anti-tumor immunity. Indeed, STING expression is

repressed in a variety of cancers (139–141). Particularly, in KL

mice model, loss of LKB1 leads to cytoplasmic dsDNA

accumulation released from aged/damaged mitochondria. Thus,

KL tumors displaying low STING expression avoid constitutive

ISG induction. Interestingly, an increased serine utilization and

synthesis of S-adenylmethionine (SAM) in KL tumors that is

associated with STING loss, and hyper activation of DNA

(cytosine-5)-methyltransferase 1 (DNMT1) and enhancer of zeste

homolog 2 (EZH2) epigenetic modifiers that use SAM as substrate

could be responsible for STING promoter hyper-methylation

necessary for lung tumor development and growth (141). STING

activity could also be inhibited trough different mechanisms such as

cytoplasmic dsDNA degradation by Trex1 (142), or post

transcription modification limiting STING and TBK1 interaction
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(143) or by facilitating its degradation (144). However, the

importance of each of these different levels of STING signaling

regulation remains to be explored in the context of advanced cancer

and ICB treatment.

More importantly, even in absence of functional STING, cGAS-

dependent production of cGAMP in the different cancer cell types was

proven to be crucial for the activation of an efficient antitumor

immune-response both in vitro and in-vivo (135, 145). Indeed,

cGAMP would be transferred via gap junctions to DCs,

macrophages and non-tumor host cells, where STING activation will

promote the production of immunostimulatory type I IFN (135) and

therefore a good response to immunotherapy (146). The importance of

cGAS was further illustrated by the fact that its expression correlates

with immune activation and patients’ survival in melanoma (145). To

avoid the immune response associated to cGAMP production and

release, cancer cells can downregulate cGAS expression, as suggested in

colorectal adenocarcinoma (139) and melanoma (140). Another

possibility for cancer cell to escape STING-dependent immune

surveillance was shown in breast cancer model. In this model, the

ectonucleotidase ENPP1 is responsible for the degradation of

extracellular cGAMP into extracellular AMP that can then be

converted into immunosuppressive adenosine via CD73 (147),.

Coherently, expression of ENPP1 in human cancer is associated with

poor immune infiltration and resistance to PD1/PD-L1

immunotherapy (147). Thus, the cGAS/STING pathway represent a

very attractive opportunity to increase anti-tumor immunity and

cancer cell adjuvanticity. However, together with cell transformation,

cancer cells acquire the ability to circumvent and/or subvert to their

advantage the function of STING. In fact STING expression and

activity in cancer was also associated with pro-tumor functions. A

non-canonical STING pathway have been suggested to foster tumor

progression (148), metastasis formation (134, 149), resistance to

therapies (150), sustain the stemness traits of cancer cells (151) and

escape immune control (148, 152). These evidences point out to a

certain plasticity of STING pathway, that has not totally been

uncovered and that cancer cells could take advantage of to escape

from the immune system and at the same time fuel their growth.

To date, STING agonists have been developed to be injected

intra-tumoral and fuel immune response directly in situ. Such

administration led to tumor regression in mice model of

melanoma, breast and colorectal cancer (153) and are expected to

enhance ICB efficacy. However, intra-tumoral injection is not

always possible, therefore other strategies are in development and

several clinical assays are actually ongoing to test the efficacy of

STING agonists alone or as adjuvant for ICB [recently reviewed by

Amouzegar and colleagues (154)].
4 Discussion

All along this review, we have reported important characteristics

linked with cancer cell immunogenicity and adjuvanticity. Then, we

presented some mechanisms through which the cancer cell can

adapted and escape from the pressure of the immune system. In

this review article, we only focused on pathways and mechanisms

occurring naturally in the cancer cells rather than those induced upon
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treatment. Hence, we omitted notions of immunogenic cell death that

can be induced by chemotherapy and radiotherapy (155, 156).

Altogether, discoveries summarized in this manuscript are pointing

to the possibility that under ICB, cancer cell displaying specific

alterations might be selected giving rise to the emergence of highly

immune resistant cancer cell clones. However, during disease

initiation and progression, tumor development occurs in the

presence of a competent immune system in most of cancer

patients, thus, it is also possible that ICB resistance mechanisms

naturally pre-exist and that ICB onlymarginally influences cancer cell

clones diversity.

We have seen that TAA and TSA load in the cancer cells dictate

the quality of the ICB response, but for being effective as adaptive

anti-tumor immunity targets, these tumor antigens have to be

presented on the MHC-I molecules expressed by the cancer cells.

An important study performed on melanoma by Zaretsky et al. in

2016 compared genetic alterations over four patients before and after

disease relapse upon anti-PD-1 blockade (157). This allowed for the

first time the identification of mutations associated with acquired

resistance to ICB and shown loss of function mutation in IFN

signaling (Janus kinase-1 and 2) in two patients and beta-2-

microglobulin (B2M) in a third patient in ICB resistant cancer

lesions (157). IFN signaling exert an antiproliferative effect on the

cancer cells but also contributes to MHC-I induction while B2M

expression is required for MHC-I expression and antigen

presentation. Thus this study suggested in 3 patients over four that

developed acquired resistance to ICB, MHC-I expression and then

tumor antigen presentation by the cancer cell was impaired (157).

Again, in line with the concept that acquired resistance to ICB relies

and cancer cell loss of immunogenicity, Anagostou et al. showed the

tumor antigens landscape evolves with acquired resistance to ICB in

NSCLC (158). They observed that over 4 NSCLC patients, acquired

resistance to ICB was linked with the loss of putative mutation

associated with TSA expression through selection of cancer cell

clones that do not presented these genetic alterations during the

treatment course. These TSA were able to induce autologous T cell

clonal expansion and the TCR clonality changed in these patients

while ICB resistant cancer cell clones emerged (158). Thus, similarly

to the cancer cell editing process occurring during disease appearance

(159), ICB treatment might lead to the selection of cancer cell clones

harboring lower immunogenic TSA load and presentation capability.

Cancer cells diversity can be assessed by single-cell RNA

sequencing. In small cell lung cancer (SCLC) this approach allowed

the identification of a stem-like, pro-metastatic tumor cell sub-

population enriched at different prevalence across all patients

analyzed and associated with worst survival. This population of

cancer cells was characterized by the expression of PLCG2 and

associated with a highly immunosuppressive TME (160). There are

multiple studies in lung cancer and other pathologies showing that

partial epithelial-to-mesenchymal transition phenotype of the cancer

cell could be considered as a hallmark of cancer cell plasticity and

refractoriness to ICB in patients (161, 162) and in mice (163). EMT

signature in cancer cells links with the WNT/b-Cat pathway

activation (164), cancer stem cell phenotype and multidrug

resistance (165). Thus, it becomes critical to determine if ICB

treatment might favor the selection of cancer cell sub-populations
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1170321
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ursino et al. 10.3389/fimmu.2023.1170321
demonstrating strong EMT and stemness properties that would

contributes to disease relapse and progression.

To conclude, while multiple important characteristics of the

cancer cells were identified as essential for sustained ICB efficacy as

well as refractoriness, some recent evidences indicate that upon ICB

the cancer cell clones diversity is rearranged through the selection of

transformed cells displaying lower immunogenicity. However, yet it

is impossible to conclude whether ICB could also significantly

change the behavior of the cancer cells toward the acquisition of

a more aggressive phenotype such as EMT or to drive the

emergence of cancer stem cell populations that would then be

responsible for disease recurrence. Further research is required to

determine how ICB efficacy might be influenced, not only by cancer

cell clones diversity but also by the plasticity of the transformed cells

present in the primary tumor and at metastatic sites. Such

investigation will most probably help predicting patients’

response and proposing novel combination therapies to further

increase the benefit of ICB in clinic.
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Glossary

ACC Acetyl CoA Carboxylase

aeTSA Aberrantly expressed tumor specific antigen

AMP Adenosine monophosphate

AMPK AMP-activated protein kinase

ATF3 Activating transcription factor 3

ATF4 Activating transcription factor 4

ATP Adenosine triphosphate

CAFs Cancer associated fibroblasts

cGAMP Cyclic di-guanosine-adenosine monophosphate

cGAS Cyclic GMP-AMP synthase

COX-2 Cyclo-oxygenase-2

CRC Colorectal cancer

CTLA-4 Cytotoxic T-lymphocyte associated protein 4

DC Dendritic cell

DDR DNA damage repair

dMMR Deficient mismatch repair

DNA-PK DNA-dependent protein kinase

DNMT1 DNA methyltransferase 1

dsDNA double-stranded DNA

dsRNA double stranded RNA

EGFR Epidermal Growth Factor Receptor

ELR Glutamate-Leucine-Arginine motif

ENPP1 Ectonucleotide pyrophosphatase/phosphodiesterase 1

ERK Extracellular-signal related kinase

ERVs Endogenous retroviruses

EZH2 Enhancer of zeste 2 polycombe repressive complex 2 subunit

FASN Fatty acids synthase

Foxp3 Forkead box P3

G-CSF Granulocyte-Colony Stimulating Factor

GLUT1 Glucose transporter 1

GM-CSF Granulocyte-monocyte colony stimulating factor

HER-2 Human epithelial growth factor receptor-2

HIF-1a Hypoxia-inducible factor-1a

MHC-I Major histocompatibility complex-1

HK2 Hexokinase 2

HNRNPC Heterogeneous nuclear ribonucleoprotein C

HNSCC Head and neck squamous cell carcinoma

HO-1 Heme oxygenase-1
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HRR-BER Homologous recombination repair and base excision repair

HRR-MMR Homologous recombination repair and mismatch repair

ICB Immune checkpoint blockers

IDO-1 Indoleamine 2

3-dioxygenase-1

IFN Interferon

IKKe Inhibitor of NFkB kinase subunit epsilon

IL-6 Interleukin-6

IL-17 Interleukin-17

IRF1 Interferon regulatory factor 1

IRF3 Interferon regulatory factor 3

ISG Interferon stimulated genes

JNK Jun N-terminal kinase

KL KRAS-LKB1 co-mutated

KP KRAS-TP53 co-mutated

LDH-A Lactate dehydrogenase-A

LINEs Long interspersed nuclear elements

lncRNA Long non-coding RNA

lncRNA-AS Long non-coding RNA antisense

MAGE-A3 Melanoma-associated antigen family member 3

MAPK Mitogen-Activated Protein Kinase

MDA5 Melanoma differentiation-associated gene 5

MDSCs Myeloid-derived suppressor cells

MSH2 mutS homolog 2

MUC-1 Mucin-1

MSlhi-CRC Microsatellite-instability-high colorectal cancer

MSS-CRC Microsatellite stable colorectal cancer

mTOR mechanistic Target Of Rapamycin kinase

mTORC1 mTOR complex 1

NFkB Nuclear factor kappa B

NK Natural Killer

NRF2 Nuclear factor erythroid 2 related factor 2

NSAID Non-steroidal anti-inflammatory drugs

NSCLC Non-small cell lung cancer

NY-ESO-1 New York Esophageal cell carcinoma 1

ox-LDL oxidized low-density-lipoproteins

PAP Prostatic acid phosphatase

PD-1 Programmed cell death-1

PD-L1 Programmed cell death-ligand 1

PGE2 Prostaglandine-E2
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PI3K Phosphatidylinositol-3-kinase

PMN Polymorphonuclear cells

POLD1 DNA polymerase delta 1

POLE DNA polymerase epsilon

PTEN Phosphatase and tensin homolog

RBPs RNA binding proteins

RCC Renal cell carcinoma

RIG-I Retinoic acid-inducible gene I

SAM S-adenosylmethionine

SASP Senescence-associated secretory program

SCLC Small cell lung cancer

SHP2 Src homology-2 domain containing phosphatase 2

SINEs Short interspersed nuclear elements

STING Stimulator of interferon genes

STK11 Serine/Threonine Kinase 11

TAAs Tumor associated antigens

TBK1 Tank-Binding Kinase 1

TCA Tricarboxylic acid

TCGA The Cancer Genome Atlas

TCR T-cell receptor

TEs Transposable elements

TERT Telomerase reverse transcriptase

TGF-b Transforming Growth Factor-b

Th1 T-helper-I

TKI Tyrosine kinase inhibitors

TLR3 Toll-like receptor 3

TLS Tertiary-lymphoid structures

TMB Tumor mutation burden

TME Tumor microenvironment

TNB Tumor neoantigen burden

TNF Tumor Necrosis Factor

TNM Tumor Node Metastasis

Treg Regulatory T lymphocytes

TSA Tumor-specific antigens

VEGF Vascular Endothelial Growth Factor

WT Wild type
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