Geometric surgeries of three-dimensional flag structures and non-uniformizable examples
Elisha Falbel, Martin Mion-Mouton

To cite this version:
Elisha Falbel, Martin Mion-Mouton. Geometric surgeries of three-dimensional flag structures and non-uniformizable examples. 2024. hal-04598551

HAL Id: hal-04598551
https://hal.science/hal-04598551
Preprint submitted on 3 Jun 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
GEOMETRIC SURGERIES OF THREE-DIMENSIONAL FLAG STRUCTURES AND NON-UNIFORMIZABLE EXAMPLES

ELISHA FALBEL AND MARTIN MION-MOUTON

ABSTRACT. In this paper, we introduce a notion of geometric surgery for flag structures, which are geometric structures locally modelled on the three-dimensional flag space under the action of $\mathrm{PGL}_3(\mathbb{R})$. Using such surgeries we provide examples of flag structures, of both uniformizable and non-uniformizable type.

1. INTRODUCTION

A fundamental problem in the study of any locally homogeneous geometric structure is simply to construct examples of such structures, and a basic way to produce new examples is to combine formerly known ones. With this goal in mind, an easy way to topologically combine two manifolds is to form their connected sum, which raises then the natural question whether the connected sum of two geometric manifolds can be endowed with a geometric structure combining the ones of the two pieces. In the case of flat conformal Riemannian manifolds for instance, locally modelled on the round sphere $S^n$ with the conformal action of $\mathrm{PO}(1,n+1)$, or in the one of spherical CR-manifolds modelled on $\partial \mathbb{H}^{n+1}_{\mathbb{C}}$ with the CR action of $\mathrm{PU}(1,n)$, previous works established such geometric connected sums (see [Kul78] for the former and [BS76, Fal92] for the latter).

Both of these structures have however the common important property to be modelled on rank one simple Lie groups, and to the best of our knowledge no such gluing procedures were yet described for higher-rank geometries in dimension strictly greater than two. Our goal in this paper is to introduce such a notion of geometric surgery for three-dimensional flag structures, which are one of the simplest higher-rank geometries and are modelled on the three-dimensional flag space under the action of $\mathrm{PGL}_3(\mathbb{R})$. We will see that flag structure surgeries involve not anymore connected sums, but gluings along genus two surfaces. We then initiate the study of these surgeries and use them to produce new examples of flag structures of various geometric flavours.

1.1. Flag structures in dimension three. We will be interested in this paper in a three-dimensional homogeneous space of the Lie group $\mathrm{PGL}_3(\mathbb{R})$. Denoting by $\mathbb{RP}^2$ the space of projective lines of $\mathbb{RP}^2$, the flag space is the set

$$X = \{(p, D) \mid p \in D\} \subset \mathbb{RP}^2 \times \mathbb{RP}^2$$
of pointed projective lines of $\mathbb{RP}^2$. This is a closed orientable three-manifold, endowed with a transitive diagonal (projective) action of $\text{PGL}_3(\mathbb{R})$. We will study in this paper three-manifolds that are locally modelled on $X$ with respect to the action of $\text{PGL}_3(\mathbb{R})$, namely which are endowed with a $(\text{PGL}_3(\mathbb{R}), X)$-structure: a maximal atlas of charts to $X$ whose transition functions are restrictions of elements of $\text{PGL}_3(\mathbb{R})$. We will also call flag structure a $(\text{PGL}_3(\mathbb{R}), X)$-structure, and flag manifold a three-manifold endowed with a flag structure.

Flag structures can also be defined as flat path structures, a path structure on a three-manifold being a pair $(E^\alpha, E^\beta)$ of transverse rank one distributions in the tangent bundle whose sum $E^\alpha \oplus E^\beta$ is a contact distribution (we will give in paragraph 2.1 below more details about this interpretation). Although any orientable closed three-manifold can be given a path structure, it is a basic and open problem to decide which ones bear a flag structure. For instance, while a flag structure was constructed by the first author and Thebaldi on a (finite-volume and complete) non-compact hyperbolic three-manifold in [FT15], it is not known whether a flag structure exists or not on a closed hyperbolic three-manifold. More generally the known topologies of closed three-manifolds supporting a flag structure are rare, which makes a surgery procedure relevant.

1.2. A rank-two surgery. In the rank-one flat conformal or CR-spherical geometries, it is the existence of North-South dynamics for the action of any generic element which ultimately allows one to endow the connected sum of two geometric manifolds with a compatible structure. On the contrary in the dynamics of the rank two group $\text{PGL}_3(\mathbb{R})$ on the flag space $X$, the attractive and repulsive points of North-South dynamics are replaced by geometric one-dimensional objects that we call $\alpha - \beta$ bouquet of circles, described as follows.

The flag space $X$ enjoys two natural $\text{PGL}_3(\mathbb{R})$-equivariant circle-bundle projections $\pi_\alpha$ and $\pi_\beta$, which are the respective first and second coordinate projections onto $\mathbb{RP}^2$ and $\mathbb{RP}^2^*$, and whose fibers define two $\text{PGL}_3(\mathbb{R})$-invariant transverse foliations of $X$ by circles, respectively called $\alpha$ and $\beta$-circles $C_\alpha(x)$ and $C_\beta(x)$. These foliations being $\text{PGL}_3(\mathbb{R})$-invariant they define on any flag manifold $M$ two transverse one-dimensional foliations $F_\alpha$ and $F_\beta$, and through any point $x$ in $X$ passes thus a $\alpha - \beta$ bouquet $B_{\alpha, \beta}(x) = C_\alpha(x) \cup C_\beta(x)$ of two circles, which are the attracting sets of loxodromic elements of $\text{PGL}_3(\mathbb{R})$ acting on $X$ as we will see in paragraph 2.2.

Because of this fundamental property of the rank-two dynamics, we cannot anymore geometrize a standard connected sum and need our manifolds to contain full $\alpha - \beta$ bouquet of circles, which leads us to a natural notion of flag surgery above $\alpha - \beta$ bouquets of circles properly introduced below in Definition 2.1. The gluing being made along the boundary of a tubular neighbourhood of the attracting set, and a neighbourhood of a bouquet of two circles being a genus two handlebody, the flag surgery is a geometric realization of the gluing of two three-manifolds along two genus two handlebodies (see paragraph 3.1 for more details). The following result providing flag surgeries is proved in section 3.3.

**Theorem A.** Let $M$ and $N$ be two flag manifolds, and $B_M \subset M$, $B_N \subset N$ be two $\alpha - \beta$ bouquet of circles admitting open neighbourhoods flag isomorphic to open subsets of $X$. There exists then a flag surgery of $M$ and $N$ above $B_M$ and $B_N$.
One of our main motivation for Theorem A is to provide new examples of flag structures, of various geometric types that we now describe.

1.3. Combination of Kleinian flag manifolds by surgery. For any discrete subgroup $\Gamma \subset \text{PGL}_3(\mathbb{R})$ acting properly discontinuously on an open subset $\Omega \subset X$, the quotient $\Gamma \backslash \Omega$ bears a canonical flag structure (defined by the continuous sections of the canonical projection $\Omega \to \Gamma \backslash \Omega$), and such flag structures are called Kleinian. Kleinian examples will be produced by surgery through the following result proved in section 3.4 (see Theorem 3.7), inspired from an argument initially proved in [KP86, §5.6] for conformal structures.

**Theorem B.** A flag surgery of Kleinian flag manifolds is a Kleinian flag structure.

Actually, most of the known Kleinian flag structures arise from Anosov representations, forming an important and deeply studied class of examples. Such representations $\rho: \Gamma \to \text{PGL}_3(\mathbb{R})$ of hyperbolic groups $\Gamma$ into $\text{PGL}_3(\mathbb{R})$ admit $\rho(\Gamma)$-invariant open subset $\Omega_\rho \subset X$ with a proper, discontinuous and cocompact action of $\rho(\Gamma)$, and yield thus a closed Kleinian flag manifold $\rho(\Gamma) \backslash \Omega_\rho$. We refer to [Bar01, Bar10] for the first examples of flag Anosov representations (having actually appear before the introduction of Anosov representations themselves) and to [GW12, KLP18] for the general theory, providing domains of discontinuity for Anosov subgroups in a more general setting.

Particularly nice examples are provided by Schottky flag manifolds, obtained from free Anosov subgroups of $\text{PGL}_3(\mathbb{R})$ which are Schottky in a natural sense defined in [MM22a, §1.3.1]. Building up on the latter, Theorem B yields the following examples of Kleinian flag manifolds (see Corollary 3.10).

**Corollary C.** Let $M$ and $N$ be two Schottky flag manifolds, and $B_M$, $B_N$ be two $\alpha - \beta$ bouquets of circles contained in the respective fundamental domains of $M$ and $N$. There exists then a flag surgery of $M$ and $N$ above $B_M$ and $B_N$, which is a Kleinian flag manifold.

Combination results generalizing the Klein-Maskit theorem were proved for Anosov subgroups in [DKL19, DK23], to which Theorem B gives a concrete geometric interpretation in the case where the considered Kleinian flag manifolds are quotients of Anosov subgroups. However, not all Kleinian flag manifolds arise from Anosov subgroups, and that Theorem B gives thus a more general “combination” result for Kleinian flag manifolds. A first necessary condition for a Kleinian example to arise from an Anosov subgroup is indeed that the holonomy group should be word-hyperbolic, which forbids for instance the following examples to be of this kind.

The action of the Heisenberg group $\text{Heis}(3) \subset \text{PGL}_3(\mathbb{R})$ on $X$ admits an open orbit $O$ (and actually only one) on which it acts simply transitively, and the action of the lattice $\text{Heis}_\mathbb{Z}(3)$ on $O$ is thus properly discontinuous and cocompact. This yields a Kleinian flag manifold $\text{Heis}_\mathbb{Z}(3) \backslash O$ whose holonomy is nilpotent, preventing it to arise from an Anosov representation (see [MM22b, §4.2.3] for more details on these examples). We emphasize however that the flag surgeries cannot be applied to these flag manifolds, since they do not contain any $\alpha - \beta$ of circles. The $\alpha$ and $\beta$-leaves of these nil-manifolds examples are indeed the stable and unstable leaves of partially hyperbolic diffeomorphisms (see [MM22b, §1.1]), and as such none of them is closed. The authors do not know of any
example of Kleinian flag manifold which does not arise up to finite index from an Anosov subgroup and contains an embedded $\alpha - \beta$ bouquet of circle.

1.4. Flag structures beyond Kleinian examples. To the best of our knowledge all of the flag structures described in the literature are Kleinian (most of them arising furthermore from Anosov representations as we explained previously), to the exception of the non-compact flag structure constructed in [FT15] on the complement of a knot. A general way to produce examples of closed flag structures (more generally of $(G, X)$-structures) is the Ehresman-Thurston principle, asserting that the set of morphisms from $\pi_1(M)$ to $\text{PGL}_3(\mathbb{R})$ that are holonomy morphisms of a flag structure on a closed manifold $M$ is open. In a very specific situation, suggested to the authors by Charles Frances and described in paragraph 4.1, this approach yields indeed non-Kleinian deformations. These are however topologically constrained to $\Sigma_2 \times S^1$ with $\Sigma_2$ a genus two closed, connected and orientable surface.

The initial motivation of this paper and of the surgery introduced therein was precisely to widen the realm of known flag structures by producing other non-Kleinian closed flag manifolds. In the following result proved in sections 4.2 and 4.3, we use flag structures surgeries to provide a general recipe to construct non-Kleinian flag manifolds. We denote by $\Sigma_3$ the genus three closed, orientable and connected surface, and we say that a flag structure is virtually Kleinian if it has a Kleinian covering.

**Theorem D.** There exists a virtually Kleinian flag structure on $M = \Sigma_3 \times S^1$ such that, for any $\alpha - \beta$ bouquet $B_M \subset M$ of two circles, and for any Kleinian flag manifold $N$ satisfying

1. $N$ contains an $\alpha - \beta$ bouquet $B_N$ of two circles admitting a neighbourhood which embeds in $X$,
2. the holonomy group of $N$ contains a loxodromic element,

we have the following. For any flag surgery $S$ of $M$ and $N$ above $B_M$ and $B_N$, the developing map $\delta$ of $S$ is surjective onto $X$. In particular $\delta$ is not a covering map, and $S$ is not virtually Kleinian.

Proposition 3.8 shows that Theorem D can for instance be applied to $N$ being any Schottky flag manifold. This construction is inspired from the one of [KP86] for conformal geometry and of [FG94] for CR structures. But as for the construction of flag surgeries, the situation fundamentally changes when the rank of the acting group goes from one to two, involving new geometrical and topological arguments.

1.5. Further questions. The flag surgery introduced in this text raises number of questions that the authors hope to consider in future works. The first question concerns the possible deformations of flag surgeries for fixed initial flag manifolds and $\alpha - \beta$ bouquets inside those. This question was investigated in [Lz96] for conformal structures, where non-trivial deformations in the Teichmüller space of conformal structures were described.

Another question is the higher-dimensional generalization of the procedure described here. There are several higher-dimensional analogs to flag structures, among which there are those modelled on complete flags but also structures modelled on partial flags. The spaces $X_{2n+1}$ of pointed projective hyperplanes of $\mathbb{R}P^{n+1}$ under the action of $\text{PGL}_{n+2}(\mathbb{R})$
are particularly interesting to the authors. These are indeed the flat Lagrangian-contact structures, which are the natural higher-dimensional analog to path structures.

1.6. Acknowledgments. The authors would like to thank Charles Frances for his interest and suggestions about this work, and especially for initially suggesting them to consider the deformations described in paragraph 4.1. The second author would like to thank Jean-Philippe Burelle for an interesting and motivating discussion about deformations of flag structures.

2. Flag structures and Schottky flag manifolds

In this section, we summarize the geometric and dynamical informations and facts that we will need about the flag space and the action of $\text{PGL}_3(\mathbb{R})$, and present the examples described in [MM22a] on which our constructions will be based. We refer to the latter paper for more details, and for the proofs of the results claimed in this section.

2.1. Flag structures. The flag space $\mathbf{X}$ is an orientable three-dimensional closed manifold, with universal cover $\mathbb{S}^3$ and fundamental group of cardinal 8. The stabilizer of the standard flag $\alpha := ([e_1], [e_1, e_2])$ for the transitive action of $\text{PGL}_3(\mathbb{R})$ is the subgroup $\mathbf{P}_{\text{min}} \subset \text{PGL}_3(\mathbb{R})$ of upper-triangular matrices, minimal parabolic subgroup of $\text{PGL}_3(\mathbb{R})$ (where $(e_i)$ denotes in all of this paper the standard basis of $\mathbb{R}^n$). The action of $\text{PGL}_3(\mathbb{R})$ induces thus an equivariant identification of $\mathbf{X}$ with the homogeneous space $\text{PGL}_3(\mathbb{R})/\mathbf{P}_{\text{min}}$.

The vague idea of a structure locally modelled on $\mathbf{X}$ is formalized in the following way.

**Definition 2.1.** A $(\text{PGL}_3(\mathbb{R}), \mathbf{X})$-atlas on a three-manifold $M$ is an atlas of connected charts of $M$ with values in $\mathbf{X}$, whose transition functions are restrictions of elements of $\text{PGL}_3(\mathbb{R})$. A $(\text{PGL}_3(\mathbb{R}), \mathbf{X})$-structure, or flag structure on $M$ is a maximal $(\text{PGL}_3(\mathbb{R}), \mathbf{X})$-atlas on $M$, and a flag manifold a three-manifold endowed with a flag structure. A $(\text{PGL}_3(\mathbb{R}), \mathbf{X})$-morphism, or flag morphism between two flag structures is a map which reads in any connected $(\text{PGL}_3(\mathbb{R}), \mathbf{X})$-chart as the restriction of an element of $\text{PGL}_3(\mathbb{R})$.

We recall (see for instance [Thu97, CEG87] for more details) that for any $(\text{PGL}_3(\mathbb{R}), \mathbf{X})$-structure on $M$, there exists:

1. a local diffeomorphism $\delta: \tilde{M} \to \mathbf{X}$ which is a $(\text{PGL}_3(\mathbb{R}), \mathbf{X})$-morphism, called the developing map,

2. and a holonomy morphism $\rho: \pi_1(M) \to \text{PGL}_3(\mathbb{R})$ for which $\delta$ is $\rho$-equivariant.

Moreover, if the flag structure is fixed then such a pair $(\delta, \rho)$ is unique up to the action $g \cdot (\delta, \rho) = (g \circ \delta, g \rho g^{-1})$ of $\text{PGL}_3(\mathbb{R})$, and reciprocally any such pair defines a unique compatible flag structure.

The $\alpha$- and $\beta$-circles of $x = (p, D) \in \mathbf{X}$ are denoted by

$$\mathcal{C}_\alpha(x) = \{(p, D') \mid D' \ni p\} = \mathcal{C}_\alpha(p) \text{ and } \mathcal{C}_\beta(x) = \{(p', D) \mid p' \in D\} = \mathcal{C}_\beta(D).$$

The $\alpha$- and $\beta$-circles of $\mathbf{X}$ being $\text{PGL}_3(\mathbb{R})$-equivariant, they induce on any flag manifold $M$ a pair $\mathcal{L}_M = (\mathcal{F}_\alpha, \mathcal{F}_\beta)$ of transverse one-dimensional $\alpha$- and $\beta$-foliations, which we call the flat path structure induced by the flag structure of $M$. 


The reason for this denomination is that the pair of $\alpha$- and $\beta$-foliations induced on a three-manifold by a flag structure are specific instances of a path structure, which is a pair $(E^\alpha, E^\beta)$ of smooth transverse line fields on a three-manifold whose sum $E^\alpha \oplus E^\beta$ is a contact structure (see [IL] or [MM22a, §1.2] for more details). A path structure $(E^\alpha, E^\beta)$ is indeed equivalent to its integral foliations $(\mathcal{F}_\alpha, \mathcal{F}_\beta)$, and it can be checked that the $\alpha$- and $\beta$-foliations of a flag structure define a path structure, i.e. that $\text{TC}_\alpha \oplus \text{TC}_\beta$ is a contact distribution in $X$. Path structures can be interpreted as Cartan geometries modelled on the flag space $X$ which endows them with a notion of curvature, and the path structures induced by flag structures are precisely the ones whose curvature vanishes and are therefore called flat (see [SC97] or [MM22b, §2] for more details). A flag structure and its associated flat path structure turns out to be equivalent in the following sense.

**Proposition 2.2.** Let $M$ and $N$ be two flag manifolds, of associated flat path structures $\mathcal{L}_M$ and $\mathcal{L}_N$. Then a diffeomorphism $f : M \to N$ is a flat path structure isomorphism if, and only if it is a path structure isomorphism.

A diffeomorphism $f : M \to N$ is a path structure isomorphism if for any $x \in M$:

$$D_x f (E^\alpha_M (x)) = E^\alpha_N (f(x))$$ and $$D_x f (E^\beta_M (x)) = E^\beta_N (f(x)).$$

**Proof of Proposition 2.2.** The direct implication is straightforward, and the reverse one follows from a path structure analog of the “Liouville theorem”. Let $f : M \to N$ be a path structure isomorphism from $\mathcal{L}_M$ to $\mathcal{L}_N$. Then in any two $(\text{PGL}_3(\mathbb{R}), X)$-charts $\varphi$ and $\psi$ from connected open subsets $U \subset M$ and $f(U) \subset N$, $F = \psi \circ f \circ \varphi^{-1}$ is a diffeomorphism between the connected open subsets $\varphi(U)$ and $\psi(f(U))$ of $X$, preserving the flat path structure of $X$ defined by $\alpha$ and $\beta$-circles. According to the “Liouville theorem” [MM22b, Theorem 2.9], $F$ is thus the restriction of an element $g \in \text{PGL}_3(\mathbb{R})$. Hence $f$ is indeed a $(\text{PGL}_3(\mathbb{R}), X)$-isomorphism which concludes the proof.

2.2. Dynamics of $\text{PGL}_3(\mathbb{R})$ on $X$. The group $\text{PGL}_3(\mathbb{R})$ has rank two which means that the diagonal Cartan subalgebra $\mathfrak{a}$ of $\mathfrak{sl}_3$ has dimension two, as opposed for instance to the conformal group $\text{PO}(1, n + 1)$ of the round sphere $S^n$ which has rank one. This algebraic difference reflects in the following dynamical way. The action of $\text{PO}(1, n + 1)$ on $S^n$ exhibits a dynamics known as the “North-South” property: for any sequence $(g_n)$ going to infinity, up to subsequence, $(g_n)$ has a repulsive point $p_-$ and an attractive one $p_+$ and the restriction of $(g_n)$ to $S^n \setminus \{p_+\}$ converges to the constant map $p_+$. For the action of $\text{PGL}_3(\mathbb{R})$ on $X$, the rank two leaves space in a Weyl chamber of the Cartan subalgebra of $\mathfrak{a}$ for three different ways to go to infinity: along one of the walls, or in the interior of the chamber. In the latter case however, a kind of North-South dynamics persists with the attractive and repulsive points being respectively replaced by an attractive and a repulsive $\alpha - \beta$ bouquet of circles.

More precisely, let us say that $g \in \text{PGL}_3(\mathbb{R})$ is loxodromic if any representative of $g$ has three real eigenvalues of two-by-two distinct absolute values $a > b > c > 0$, whose corresponding eigenlines are denoted by $p_+, p_\pm$ and $p_-$. Then $x_- = \{p_-, [p_+, p_\pm]\}$ and $x_+ = \{p_+, [p_+, p_\pm]\}$ are the repulsive and attractive fixed points of $g$ in $X$, and we call their $\alpha - \beta$ bouquet of circles

\begin{equation}
B^-_{\alpha\beta} (g) = \mathcal{C}_\alpha (x_-) \cup \mathcal{C}_\beta (x_-) \quad \text{and} \quad B^+_{\alpha\beta} (g) = \mathcal{C}_\alpha (x_+) \cup \mathcal{C}_\beta (x_+)
\end{equation}
the repulsive and attractive bouquet of circles of \( g \). Note in particular that \( B^{+}_{\alpha\beta}(g^{-1}) = B^{-\alpha\beta}(g) \) (see for instance [MM22a, Remark 2.14]).

Example 2.3. For any diagonal matrix \( g = \text{Diag}(a,b,c) \) with \( a > b > c > 0 \), \( x_-= ([e_1], [e_1, e_2]) \) and \( x_+ = ([e_3], [e_2, e_3]) \).

The set of compact subsets of \( X \) is endowed with the topology defined by the Hausdorff distance (induced by any Riemannian metric on \( X \)), see for instance [MM22a, §2.1] for more details), for which it is a compact metrizable space. We have then the following result, which is a direct reformulation of [MM22a, Lemma 2.2, Lemma 2.21 and Example 2.22].

Lemma 2.4. Let \( g \in \text{PGL}_3(\mathbb{R}) \) be a loxodromic element and \( K \subset X \setminus B^{-}_{\alpha\beta}(g) \) be a compact subset. Then any accumulation point of the sequence \( (g^n(K)) \) is contained in \( B^{+}_{\alpha\beta}(g) \).

2.3. Schottky flag manifolds. Let \( \{g^t\}_{t \in \mathbb{R}} \subset \text{PGL}_3(\mathbb{R}) \) be a 1-parameter subgroup of loxodromic elements, of respective repulsive and attractive points \( x_-, x_+ \in X \), and repulsive and attractive bouquet of circles \( B^- = B^{-\alpha\beta}(x_-), B^+ = B^{+\alpha\beta}(x_+) \). Let \( \Omega = X \setminus (B^- \cup B^+) \), \( g = g^1 \) and \( \Gamma \) be the cyclic group \( \langle g \rangle \simeq \langle \mathbb{Z} \rangle \). Then according to [MM22a, Lemma 3.1], there exists a compact connected neighbourhood \( H \) of \( B^- \), which is genus 2 handlebody and such that:

1. \( \Sigma := \partial H \) is a genus 2 closed surface, transverse to the orbits of \( \{g^t\} \);
2. and

\[(x, t) \in \Sigma \times \mathbb{R} \mapsto g^t(x) \in \Omega \]

is a diffeomorphism.

The diffeomorphism (2.3) induces a diffeomorphism from \( \Sigma \times S^1 \) to the quotient \( M_0 := \Gamma \backslash \Omega \) (where \( S^1 = \mathbb{R}/\mathbb{Z} \)), as well as an identification between the fundamental group of \( M_0 \) and \( \pi_1(\Sigma) \times \mathbb{Z} \) (\( \pi_1(\Omega) \) being identified with \( \pi_1(\Sigma) \) since \( \Sigma \) is a deformation retract of \( \Omega \)). Furthermore with \( H^- := H, H^+ := X \setminus \text{Int}(g(H^-)) \) and \( D := X \setminus (H^- \cup H^+) \), \( D \) is a fundamental domain for the action of \( \Gamma \) on \( \Omega \).

Since \( M_0 \) is the quotient of \( \Omega \) by the free and proper action of \( \Gamma \), it inherits a Kleinian flag structure from the one of \( \Omega \subset X \), and we now describe the developing map and holonomy morphism of this flag structure. With \( \pi_\Omega: E \rightarrow \Omega \) the universal covering map of \( \Omega \) and \( \pi_\Gamma: \Omega \rightarrow M_0 \) the canonical projection, \( \pi_\Gamma \circ \pi_\Omega: E \rightarrow M_0 \) is the universal covering map of \( M_0 \). Hence \( \pi_1(M_0) \equiv \pi_1(\Sigma) \times \mathbb{Z} \) acts on \( E \), \( \pi_\Omega \) is \( \pi_1(\Sigma) \equiv \pi_1(\Omega) \)-invariant, and is thus equivariant for the action of \( \pi_1(M_0) \equiv \pi_1(\Sigma) \times \mathbb{Z} \) with respect to the morphism

\[\rho_{M_0}: (\lambda, n) \in \pi_1(\Sigma) \times \mathbb{Z} \mapsto g^n.\]

Hence \( (\pi_\Omega, \rho_{M_0}) \) is a pair of developing map and holonomy morphism of \( M_0 \), and we denote \( \delta_{M_0} = \pi_\Omega \).

In [MM22a, §1.3.1 Theorem D], the second author describes Kleinian flag manifolds \( \Gamma \backslash \Omega(\Gamma) \) obtained from Schottky subgroups of \( \text{PGL}_3(\mathbb{R}) \), that we will call Schottky flag manifolds. These examples are the analog of the previous construction for non-cyclic free subgroups of \( \text{PGL}_3(\mathbb{R}) \) (their existence also follows from [GW12]).
2.4. An obstruction to be Kleinian. In this section we make explicit an obstruction for a flag structure to be Kleinian (inspired from [KP86] pg. 20-22).

Lemma 2.5. Let $\delta(\tilde{M}) \subset X$ be the developing map image and $\Gamma \subset \text{PGL}_3(\mathbb{R})$ be the holonomy group of a flag structure on a closed three-dimensional manifold $M$.

1. Assume that there exists a loxodromic element $g \in \Gamma$ such that $B_{\alpha\beta}(g) \subset \delta(\tilde{M})$. Then $X \setminus B_{\alpha\beta}^+(g) \subset \delta(\tilde{M})$.

2. Assume that $\Gamma$ contains a loxodromic element $g$ such that $\delta(\tilde{M})$ contains the attracting and repelling bouquets $B_{\alpha\beta}^-(g)$ and $B_{\alpha\beta}^+(g)$ of $g$. Then $\delta(\tilde{M}) = X$.

3. If $\delta(\tilde{M}) = X$ and $\pi_1(M)$ is infinite, then $\delta$ is not a covering map. In particular, $M$ is not virtually Kleinian.

Proof. 1. Since $B_{\alpha\beta}^-(g) \subset \delta(\tilde{M})$, there exists a compact neighbourhood $P$ of $B_{\alpha\beta}^+(g)$ which is contained in $\delta(\tilde{M})$. Then with $K = X \setminus \text{Int}(P)$, any accumulation point of $g^n(K)$ is contained in $B_{\alpha\beta}^+(g)$ according to Lemma 2.4. In particular for any open neighbourhood $O$ of $B_{\alpha\beta}^+(g)$, there exists $n$ such that $g^n(K) \subset O$, i.e. such that $X \setminus O \subset g^n(\text{Int}(P))$. But $\delta(\tilde{M})$ is $\Gamma$-invariant, hence $g^n(\text{Int}(P)) \subset \delta(\tilde{M})$ and thus $X \setminus O \subset \delta(\tilde{M})$.

Finally, $X \setminus B_{\alpha\beta}^+(g) = \bigcup_{O} X \setminus O \subset \delta(\tilde{M})$, the union being taken on neighbourhoods $O$ of $B_{\alpha\beta}^+(g)$, which concludes the proof of the claim.

2. According to the first claim $\delta(\tilde{M})$ contains $X \setminus B_{\alpha\beta}^+(g)$, and it contains $B_{\alpha\beta}^+(g)$ by assumption, hence $\delta(\tilde{M}) = X$.

3. Assume by contradiction that $\delta$ is a covering map onto $X$. Then since $\pi_1(X)$ is finite, $\delta$ is a finite degree covering and $\tilde{M}$ is thus compact. This contradicts the fact that $\pi_1(M)$ is infinite, and $\delta$ is thus not a covering map. Assume now by contradiction that $M'$ is a covering of $M$ which is Kleinian. Then the developing map of $M'$ remains $\delta : \tilde{M} \to X$, and is a covering map since $M'$ is Kleinian. This contradicts what we have proved and concludes the proof. \qed

3. Flag surgeries and Kleinian examples

3.1. Definition and main result. Let $M, N$ be two three-manifolds, $H_M \subset M$ and $H_N \subset N$ be compact submanifolds of $M$ and $N$, and $f : \partial H_M \to \partial H_N$ be a diffeomorphism between their boundaries (which are closed two-dimensional submanifolds in $M$). Then the surgery of $M$ and $N$ above $f$

\begin{equation}
M \# f N := (M \setminus \text{Int}(H_M)) \cup (N \setminus \text{Int}(H_N)) / \{ \forall x \in \partial H_M : x \sim f(x) \}
\end{equation}

contains natural embeddings of $M \setminus \text{Int}(H_M)$ and $N \setminus \text{Int}(H_N)$ denoted by $j_M$ and $j_N$, and has a unique natural smooth structure extending the ones of $j_M(M \setminus \text{Int}(H_M))$ and $j_N(N \setminus \text{Int}(H_N))$. Moreover, the homeomorphism type of $M \# f N$ only depends on the homotopy type of $f$. For instance, if $H_M$ and $H_N$ are balls then $M \# f N = M \# N$ is simply the connected sum of $M$ and $N$.

If $M$ and $N$ are two flat conformal Riemannian manifolds, then it is possible to endow their connected sum $M \# N$ with a compatible flat conformal Riemannian structure, as shown in [Kul78]. This construction relies on the existence of specific conformal automorphisms: for any open set $U \subset S^n$, there exists an inversion reversing the two
boundary spheres of $B_2 \setminus B_1$, with $B_1 \subset B_2$ two balls contained in $U$. For flag structures, such inversions with respect to spheres which can be chosen as small as one wants, and exchanging a North and a South pole, do not anymore exist. Because of the rank two dynamics described in 2.2, the best that we can hope for is an involution exchanging two $\alpha - \beta$ bouquet of circles. These involutions will exchange the boundaries of two nested neighbourhoods of a bouquet of two circles, which are genus two handlebodies. We recall that a \textit{genus two handlebody} in an orientable 3-manifold is a compact, orientable and connected submanifold, with boundary homeomorphic to a genus two closed, connected and oriented surface, and that any two genus two handlebodies are homeomorphic.

Our goal in this paragraph is to construct a compatible flag structure on the surgery of two flag manifolds above genus two handlebodies, and we now make explicit what this means. In a flag manifold $M$, we will call $\alpha - \beta$ bouquet of circles a bouquet of two circles $B = F_\alpha(x) \cup F_\beta(x)$ formed of two closed $\alpha$- and $\beta$-leaves intersecting at a single point.

\textbf{Definition 3.1.} Let $M$ and $N$ be two flag manifolds, and $B_M \subset M$, $B_N \subset N$ be two $\alpha - \beta$ bouquet of circles. We will say that a flag manifold $S$ is a flag surgery of $M$ and $N$ above $B_M$ and $B_N$, if there exists:

1. genus two handlebodies $K_M \subset M$, respectively $K_N \subset N$, containing $B_M$, resp. $B_N$ in their interiors, and flag structure embeddings $j_M : M \setminus K_M \to S$ of image $M'$ and $j_N : N \setminus K_N \to S$ of image $N'$, such that $S = M' \cup N'$;

2. and open subsets $U_M \supset K_N$ and $U_N \supset K_N$ with flag structure embeddings into $X$, such that $M' \cap N' \subset V = j_M(U_M \setminus K_M) \cap j_N(U_N \setminus K_M)$, with $\partial M'$ and $\partial N'$ isotopic within $V$.

This definition directly implies that a flag surgery $S$ of $M$ and $N$ above $B_M$ and $B_N$ is diffeomorphic to a surgery of $M$ and $N$ above some diffeomorphism $f : \partial H_M \to \partial H_N$, with $H_M \subset U_M$ a genus two handlebody containing $B_M$ in its interior and of boundary isotopic to $\partial K_M$ and likewise for $H_N$. Definition 3.1 fulfills thus our initial goal, namely to geometrically realize topological surgeries above genus two handlebodies, its condition (1) translating the compatibility of the surgery with the structures of the two pieces.

\textbf{Remark 3.2.} If the condition (2) of Definition 3.1 asking for a flag embedding of a neighbourhood of the $\alpha - \beta$ bouquets is absent in the conformal case, it is simply because any open subset of $\mathbb{R}^n$ contains a conformally embedded euclidean ball, and thus so does any conformally flat manifold. This allows one to form conformal connected sums of any two conformally flat manifolds, while it is not even true that any $\alpha - \beta$ bouquet of circles in a flag manifold admits a neighbourhood embedding in $X$.

The necessary condition (2) of Definition 3.1 imposed on the $\alpha - \beta$ bouquets is sufficient to obtain the existence of the surgery, given by Theorem A of paragraph 1.2 and proved in paragraph 3.3 below.

\textbf{3.2. Anti-flag involutions of the flag space.} Denoting by $V^\perp$ the orthogonal of a vector subspace $V \subset \mathbb{R}^3$ for the standard euclidean quadratic form, the \textit{standard involution}

\begin{equation}
\kappa : (p, D) \in X \mapsto (D^\perp, p^\perp) \in X
\end{equation}
of the flag space will be used to glue flag structures, replacing in this context the inversion of the round sphere used for conformal structures. The standard inversion is easily seen to be equivariant for the involutive morphism

\[ \Theta : g \in \text{PGL}_3(\mathbb{R}) \to \,^t g^{-1} \in \text{PGL}_3(\mathbb{R}), \]

and to exchange the \( \alpha \)- and \( \beta \)-foliations, namely for any \( x \in X \):

\[ \kappa(C_\alpha(x)) = C_\beta(\kappa(x)) \text{ and } \kappa(C_\beta(x)) = C_\alpha(\kappa(x)). \]

Observe in particular that \( \kappa \) is not an element of the automorphism group \( \text{PGL}_3(\mathbb{R}) \) of the flat path structure \( (C_\alpha, C_\beta) \) of \( X \). The group of automorphisms of the unordered pair \( \{C_\alpha, C_\beta\} \) is actually generated by \( \text{PGL}_3(\mathbb{R}) \) and \( \kappa \), and its two connected components are \( \text{PGL}_3(\mathbb{R}) \) and the left coset of anti-flag morphisms, i.e. diffeomorphisms of \( X \) exchanging the \( \alpha \) and \( \beta \)-foliations, which are of the form \( \kappa \circ g \) for \( g \in \text{PGL}_3(\mathbb{R}) \). Note moreover that \( \kappa \) is not a canonical involution of \( X \), its choice being equivalent to the one of an euclidean quadratic form on \( \mathbb{R}^3 \). The set \( g \circ \kappa \circ g^{-1} \) of conjugates of \( \kappa \) by elements of \( \text{PGL}_3(\mathbb{R}) \) is however canonical (a change of quadratic form being indeed equivalent to conjugating \( \kappa \) by some \( g \)). These conjugates are precisely the involutive anti-flag morphisms of \( X \), that we will call more simply anti-flag involutions.

**Remark 3.3.** Note that for any \( x \in X \), \( \kappa(B_{\alpha\beta}(x)) \) is disjoint from \( B_{\alpha\beta}(x) \).

**Remark 3.4.** The definition of \( \kappa \) can be generalized to the higher dimensional flag spaces (see more details in [FW17]), and the procedure of flag surgery could be applied to higher dimensional structures. In this paper we restrict ourselves to the three-dimensional case, and the higher-dimensional Lagrangian-contact structures or complete flag structures will be considered in a future work.

**Lemma 3.5.** Let \( B \subset X \) be an \( \alpha - \beta \) bouquet of circles and \( H_2 \subset X \) be a genus two handlebody which is a neighbourhood of \( B \). Then there exists a genus two handlebody \( H_1 \) which is a neighbourhood of \( B \), as close as one wants from \( B \), and \( g \in \text{PGL}_3(\mathbb{R}) \) such that with \( \varphi = g^{-1} \circ \kappa \circ g \):

\begin{itemize}
    \item[(1)] \( H_1 \subset \text{Int}(H_2) \),
    \item[(2)] \( \varphi(H_1) = X \setminus \text{Int}(H_2) \),
    \item[(3)] \( \varphi(\partial H_1) = \partial H_2 \),
    \item[(4)] \( \varphi(H_2 \setminus \text{Int}(H_1)) = H_2 \setminus \text{Int}(H_1) \).
\end{itemize}

**Proof.** Let \( B = C_\alpha(x) \cup C_\beta(x) \) and \( g \) be a loxodromic element in the stabilizer of \( x \) which has \( B \) as repelling bouquet (see section 2.2 for more details). We will show below that with \( \varphi_n = g^{-n} \circ \kappa \circ g^n \), any accumulation point of \( H^n_1 := X \setminus \varphi_n^{-1}(\text{Int}(H_2)) \) is contained in \( B \). For any neighbourhood \( O \) of \( B \), there exists thus \( n \) such that \( H^n_1 \subset O \cap \text{Int}(H_2) \), and the claims (1), (2) and (3) follow then directly for \( H_1 = H^n_1 \) and \( \varphi = \varphi_n \). Moreover \( \text{Int}(H_1) = X \setminus \varphi^{-1}(H_2) \), hence \( \varphi(H_2 \setminus \text{Int}(H_1)) = \varphi(H_2 \cap \varphi^{-1}(H_2)) = \varphi(H_2 \cap H_2 = H_2 \setminus \text{Int}(H_1) \) since \( \varphi \) is involutive. Note that \( H_1 \) can be chosen in \( O \), i.e. as close from \( B \) as one wants.

For \( n_k \to \infty \) such that \( X \setminus g^{-n_k} \circ \kappa \circ g^{n_k}(\text{Int}(H_2)) \) converges to \( K_\infty \), it only remains to show that \( K_\infty \subset B \). Since the compact subset \( X \setminus \text{Int}(H_2) \) is disjoint from \( B = B_{\alpha\beta}(g) \), any accumulation point of \( g^n(X \setminus \text{Int}(H_2)) \) is contained in \( B_{\alpha\beta}(g) \) according to Lemma 2.4, i.e. any accumulation point of \( X \setminus \kappa \circ g^n(\text{Int}(H_2)) \) is contained in \( \kappa(B_{\alpha\beta}^+(g)) \), which
is disjoint from $B^\perp_{\alpha\beta}(g) = B^-_{\alpha\beta}(g^{-1})$. Taking a subsequence, we can thus assume that $X \setminus \kappa \circ g^{\infty}(\text{Int}(H_2)) \subset P$ with $P \subset X \setminus B^\perp_{\alpha\beta}(g^{-1})$ a compact subset. But according to Lemma 2.4 again, any accumulation point of $g^{-n}(P)$ is then contained in $B^\perp_{\alpha\beta}(g^{-1}) = B^-_{\alpha\beta}(g) = B$, hence $K_\infty = \lim g^{-n}(X \setminus \kappa \circ g^{\infty}(\text{Int}(H_2)))$ is contained in $B$, which concludes the proof of the Lemma.

3.3. Proof of Theorem A. Possibly taking smaller neighbourhoods and composing with the action of some element of $\text{PGL}_3(\mathbb{R})$, there exists an $\alpha - \beta$ bouquet of circles $B = C_{\alpha}(x) \cup C_{\beta}(x) \subset X$, connected neighbourhoods $U \subset X$ of $B$, $U_M \subset M$ of $B_M$, $U_N \subset N$ of $B_N$, and flag isomorphisms $\phi_M: U_M \to U$ and $\phi_N: U_N \to \kappa(U)$. Hence $\phi_N' := \kappa \circ \phi_N$ is a diffeomorphism from $U_N$ to $U$. According to Lemma 3.5, there exists two genus two handlebodies $H_1$ and $H_2$ in $U$ for which $\varphi = g^{-1} \circ \kappa \circ g$ preserves $H_2 \setminus \text{Int}(H_1)$ and exchanges $\partial H_1$ and $\partial H_2$. We now introduce the manifold

$$S := (M \setminus \phi_M^{-1}(H_1)) \cup (N \setminus \phi_N^{-1}(H_1))/\{\forall x \in \text{Int}(H_2) \setminus H_1: \phi_M^{-1}(x) \sim \phi_N^{-1}(\varphi(x))\},$$

together with the natural embeddings $j_M$ and $j_N$ of $M \setminus \phi_M^{-1}(H_1)$ and $N \setminus \phi_N^{-1}(H_1)$ in $S$. According to the equivariance of $\kappa$ (see (3.3)), $\phi_N^{-1} \circ \varphi \circ \phi_M$ equals $\phi_N^{-1} \circ g g \circ \phi_M$ and is thus a flag morphism in restriction to $\phi_M^{-1}(\text{Int}(H_2) \setminus H_1)$. In other words, the equivalence relation $\sim$ defining $S$ preserves the flag structures of the open subsets $\phi_M^{-1}(\text{Int}(H_2) \setminus H_1)$ and $\phi_N^{-1}(\text{Int}(H_2) \setminus H_1)$ of $M$ and $N$.

Therefore, the union of the $(\text{PGL}_3(\mathbb{R}), X)$-atlases of $j_M(M \setminus \phi_M^{-1}(H_1))$ and $j_N(N \setminus \phi_N^{-1}(H_1))$ defines a $(\text{PGL}_3(\mathbb{R}), X)$-atlas on $S$, which induces by definition the canonical flag structure of $S$. Conversely, any flag structure on $S$ for which $j_M$ and $j_N$ are $(\text{PGL}_3(\mathbb{R}), X)$-morphisms has to coincide with this specific flag structure. $S$ is a surgery of $M$ and $N$ above $B_M$ and $B_N$, which concludes the proof of Theorem A.

Remark 3.6. Let us emphasize that in the procedure described previously, the choice of open subsets used to form the surgery above a given pair of $\alpha - \beta$ bouquets is non-unique. The investigation of these distinct flag structures will be the subject of a subsequent work.

3.4. Kleinian flag manifolds by surgery. Using the surgery procedure introduced in the previous paragraph we can prove, using the same argument as in [KP86, §5.6], the following result (Theorem B of the introduction) yielding Kleinian flag structures. We point out a related work in [DKL19, DK23] where combination results generalizing the Klein-Maskit theorem were proved for Anosov subgroups, and to which Theorem 3.7 below gives a concrete geometric interpretation when the considered Kleinian flag manifolds are quotients of Anosov subgroups.

Theorem 3.7. A flag surgery of Kleinian flag manifolds is a Kleinian flag structure.

Proof. Let $\Gamma_1$ and $\Gamma_2$ be the holonomy groups of two Kleinian flag manifolds $M_1 = \Gamma_1 \setminus \Omega_1$ and $M_2 = \Gamma_2 \setminus \Omega_2$ (which we can assume to be connected without lost of generality), $\Omega_1$ and $\Omega_2$ being connected open subsets of $X$ where $\Gamma_1$ and $\Gamma_2$ act freely and properly discontinuously. We will say that an open connected set $D \subset \Omega$ is a fundamental domain for the action of $\Gamma$ on $\Omega$ if it equals the interior of its closure, is disjoint from its translates by any non-trivial element of $\Gamma$, if $\Omega \subset \Gamma \cdot D$ and for any compact subset
such that $\phi$ exists and that $O$ be open subset of $M$ and $D$ attach on the same way the copy $\Omega$.

Since $\Gamma$ and $U$ we glue to $\phi$ of each $\Gamma$ and $U$ of $O$ taken on all $\gamma$ such that $\phi$ and $\phi$ are conjugated because any two anti-flag involutions are according to paragraph 3.2.

For $i = 1, 2$, $\Gamma_i$ acts freely and properly discontinuously on $\Omega_i' := \Omega_i \setminus \bigcup_{\gamma \in \Gamma_i} (\gamma \overline{U_i}) \subset X$

with fundamental domain $D_i \setminus \overline{U_i}$, and we will construct recursively an open subset $O$ of $X$ as a tree-like gluing of $\Omega_1'$ and $\Omega_2'$ thanks to the involutions $\phi_i$. For the first step, we glue to $O_1 := \Omega_1'$ a copy of $\Omega_2'$ by attaching them through $g^{-1}\phi_2 = \phi_1g^{-1}$ on the components $\partial U_1$ and $\partial U_2$ of their boundaries. Namely, since $\Omega_2' := g^{-1}\phi_2(\Omega_2') \subset U_1$ and $g^{-1}\phi_2(\partial U_2) = \partial U_1$, $O_2' = \Omega_1' \cup \Omega_2'$ is an open subset of $\Omega_1$. For any $\gamma \in \Gamma_1$, we can attach on the same way the copy $\Omega_2' = \gamma(\Omega_2') \subset \gamma(U_1)$ of $\Omega_2'$ at the boundary component $\partial(\gamma U_1)$ of $\Omega_1'$ to get an open set $O_2'$, obtaining eventually the open subset $O_2 := \cup_{\gamma \in \Gamma_1} O_2'$ where each “hole” $\gamma \overline{U_1}$ has been “filled in” with the corresponding copy $\Omega_2'$ of $\Omega_2'$. Note that $g^{-1}\phi_2(U_2) = X \setminus U_1$ and thus with $\Omega_2 := g^{-1}\phi_2(\Omega_2')$, $\Omega_1' \subset \Omega_2'$. Therefore $O_1 \subset O_2$, $O_2 \subset \Omega_1 \cap \Omega_2'$ and $O_2 \setminus \overline{U_i} = \cup_{\gamma \in \Gamma_1} \Omega_2'$ with $\Omega_2' \subset \gamma(U_1)$.

In the second step for any $\gamma_1 \in \Gamma_1$ and $\gamma_2 \in \Gamma_2 \setminus \{id\}$, let $U_2(\gamma_1, \gamma_2) = \gamma_1 g^{-1}\phi_2 \gamma_2(\gamma_2(U_2))$ be the copy of $U_2$ contained in $\gamma_1(U_1) \setminus \overline{U_2}$ and corresponding to $\gamma(U_2)$. As we previously did for the copies of $O_2'$ glued to $\Omega_1'$, we can now glue to each created boundary component $\partial U_2(\gamma_1, \gamma_2)$ of $O_2$ the suitable copy $\Omega_2^{1,\gamma_2}$ of $\Omega_1$ on $\partial U_1$ through $\phi_1$. More precisely, as before $\Omega_1^{1,\gamma_2} := g\phi_1(\Omega_1') \subset U_2$ and $\Omega_2' \cup \Omega_1^{1,\gamma_2} \subset O_2$ is open, hence with $\Omega_1^{1,\gamma_2} := (\gamma_1 g^{-1}\phi_2 \gamma_2)(\Omega_1^{1,\gamma_2})$, $\Omega_2^{2,\gamma_2} := O_2 \cup \Omega_1^{1,\gamma_2} \subset \Omega_1 \cap \Omega_2'$ is open. This leads to an open subset $O_3$ such that $O_2 \subset O_3$, $O_3 \subset \Omega_1 \cap \Omega_2'$ and $O_3 \setminus \overline{U_2} = \cup \Omega_3^{1,\gamma_2}$, the union being taken on all $\gamma_1 \in \Gamma_1$ and $\gamma_2 \in \Gamma_2 \setminus \{id\}$. We can then continue this procedure recursively to obtain an increasing sequence of open sets, and eventually define $O = \cup_n O_n$ which is an open subset of $\Omega_1 \cap \Omega_2'$.

We now introduce the group $\Gamma_2' = (g^{-1}\phi_2) \Gamma_2 (g^{-1}\phi_2)^{-1}$, and emphasize that $\Gamma_2' \subset \text{PGL}_3(\mathbb{R})$ since $\phi_2 = g\phi_1 g^{-1}$ is involutive and equivariant. Since $(g^{-1}\phi_2)^{-1} = \phi_2 g = g\phi_1$, $O$ is by construction $\Gamma_1$- and $\Gamma_2'$-invariant, and $\Gamma_1$ (resp. $\Gamma_2'$) moreover preserves $O(1)$ (resp. $O(2)$) with $O(i) = \cup_{k \in \mathbb{Z}[i]} O_k \setminus \overline{U_{k-1}}$ the “$\Omega_i$-part” of $O$ (where $O_0 = \varnothing$). Since $\Gamma_1$ (resp. $\Gamma_2'$) acts freely and properly discontinuously on $\Omega_1$ (resp. on $\Omega_2'$) and $O \subset \Omega_1 \cap \Omega_2'$, both groups act moreover freely and properly discontinuously on $O$. For the same reason, $\Gamma_1$ (respectively $\Gamma_2'$) acts freely and properly discontinuously on
A standard ping-pong-like argument shows now that the group $\Gamma$ generated by $\Gamma_1$ and $\Gamma_2$ is a free product of $\Gamma_1$ and $\Gamma_2$, and acts freely and properly discontinuously on $O$. Indeed using the notations introduced previously, for any $(\gamma_1, \gamma_2) \in \Gamma_1 \times \Gamma_2$: $\Omega_2^\gamma = \gamma_1(\Omega_2^\nu)$ and $\Omega_1^{\gamma_1 \gamma_2} = \gamma_1 \gamma_2(\Omega_1^\nu)$ with $\gamma_2 := (g^{-1} \varphi_2) \gamma_2 (g^{-1} \varphi_2)^{-1}$ (observe that $\Omega_1^{\gamma_1 \text{id}} = \Omega_1^\nu$). More generally, continuing the recursive construction described above with analogous notations, for any reduced word $w = g_1 g_2 \ldots g_n$ whose letters are alternatively in $\Gamma_1$ and $\Gamma_2$, and denoting by $\bar{w}$ the image of $w$ in $\Gamma$ obtained by replacing any $\gamma \in \Gamma_2$ by $\gamma^*$, we obtain $\Omega_w^\nu = \bar{w}(\Omega_w^\nu)$ and $\Omega_w^w = \bar{w}(\Omega_w^\nu)$. The key-remark is now that by the very construction of $O$, for any two distinct reduced words $w$ and $w'$ the subsets $\Omega_w^\nu$, $\Omega_w^{\nu'}$, $\Omega_w^w$ and $\Omega_w^{w'}$ are two-by-two disjoint. This fact allows us to conclude, by the same argument than the usual ping-pong lemma, that the map $w \mapsto \bar{w} \in \Gamma$ sending a reduced word to its image induces an isomorphism between the free product $\Gamma_1 * \Gamma_2$ and $\Gamma$, and that the action of $\Gamma$ on $O$ is free and properly discontinuous.

In the end $M := \Gamma \backslash O$ is a Kleinian flag manifold containing a copy $M_\gamma$ of $M_1 \setminus \overline{U}_\gamma$ and such that $M = M_1 \cup M_2^\gamma$, i.e. $M$ is flag isomorphic to $S$ which concludes the proof. 

Let us emphasize that the use of anti-flag involutions is crucial in the construction of the open domain of discontinuity $O$ in the previous proof, by allowing to obtain disjoint subsets gluing in open ones, and thus to conclude by a ping-pong-like argument.

We now construct using Theorem A a large family examples of Kleinian flag manifolds. We use in the statement below the notations from [MM22a].

**Proposition 3.8.** Let $\Gamma \subset \text{PGL}_3(\mathbb{R})$ be a Schottky subgroup of rank $d$ of separating handlebodies $\{H_i^-, H_i^+\}_{i=1}^d$. Let $M = \Gamma \backslash \Omega(\Gamma)$ be the associated Schottky flag manifold. Then for any $\alpha - \beta$ bouquet of circles $B$ contained in the fundamental domain $X \setminus \bigcup_{i=1}^d (H_i^- \cup H_i^+)$, $B$ admits a neighbourhood which embeds in $M$. The theorem A can thus be applied to glue $M$ above the resulting $\alpha - \beta$ bouquet of circles $B_M$ in $M$.

**Proof.** This follows from the fact that $D = X \setminus \bigcup_{i=1}^d (H_i^- \cup H_i^+)$ is a fundamental domain for the action of $\Gamma$ on $\Omega(\Gamma)$ according to [MM22a, Theorem D]. The restriction of the canonical projection $\Omega(\Gamma) \rightarrow M$ to $D \supset B$ is thus a flag embedding, which proves the claim. \hfill $\square$

**Remark 3.9.** Observe that not every $\alpha$ (respectively $\beta$) leaf of a Schottky flag manifold is closed. For instance, the examples of [MM22a, §4.4] are isomorphic up to a finite index to Schottky flag manifolds, and are compactifications of $T^4 \Sigma$ with $\Sigma$ a non-compact hyperbolic surface. Here $T^4 \Sigma$ is endowed with a natural flag structure whose $\alpha$ and $\beta$ leaves are the stable and unstable horocycle of the geodesic flow (see [MM22b, §1 and Lemma 4.3]). They are thus not closed, and [MM22a, Proposition 4.9] ensures for instance that some of them remain unclosed in the compactification.

**Corollary 3.10.** Let $M$ and $N$ be two Schottky flag manifolds, and $B_M$, $B_N$ be two $\alpha - \beta$ bouquets of circles contained in the respective fundamental domains of $M$ and $N$. Then there exists a flag surgery of $M$ and $N$ above $B_M$ and $B_N$, which is a Kleinian flag manifold.

**Proof.** This is a direct consequence of Proposition 3.8 and Theorem 3.7. \hfill $\square$
Remark 3.11. Comparing with [MM22a, Theorem C], we emphasize that the flag surgery of two flag manifolds $M$ and $N$ above two $\alpha - \beta$ bouquets, is related to the procedure of removing two bouquets $B_1$ and $B_2$ from the same flag manifold and gluing together neighbourhoods of these bouquets. Comparing with topological surgeries, the former procedure is a flag structure realization of an amalgated product, while the latter one is analog to an HNN-extension. In particular, one can obtain Schottky flag manifolds by surgery of several of the examples $M_0$ (see section 2.3).

4. NEW non-KLEINIAN flag structures

The goal of this paragraph is to construct new examples of non-Kleinian flag manifolds. We describe in paragraph 4.1 a first very specific family of such examples, obtained as deformations of cyclic Schottky flag manifolds on $\Sigma_2 \times S^1$. We use then surgeries to give a general recipe producing non-Kleinian examples, and conclude in paragraph 4.3 the proof of Theorem D.

4.1. First example: deformations of the flag structure on $M$. The first examples of non-Kleinian flag structures arise as deformations of the examples of section 2.3 which have infinite cyclic holonomy. These examples were suggested to us by C. Frances and are analogous to the construction of affine structures on the torus with non-discrete holonomy ([Gun67, §6 p. 79]). Consider a loxodromic element $g \in \text{PGL}_3(\mathbb{R})$ as in section 2.3. We let again $x_-, x_+ \in X$ be the repulsive and attractive points and $B^- = B_{\alpha \beta}(x_-)$, $B^+ = B_{\alpha \beta}(x_+)$ the associated $\alpha - \beta$ bouquet of circles. Define $\Omega = X \setminus (B^- \cup B^+)$ and $\Gamma := \langle g \rangle$. Then $M = \Gamma \setminus \Omega$ is a Kleinian flag manifold diffeomorphic to $\Sigma_2 \times S^1$.

Proposition 4.1. There exists on $M$ distinct pairwise non-isomorphic flag structures, which are continuous deformations of the Kleinian structure of $\Gamma \setminus \Omega$, but which are not virtually Kleinian.

Proof. The fundamental group of the quotient manifold $M$ is $\pi_1(M) = \pi_1(\Sigma_2) \times \mathbb{Z}$. The holonomy map $\rho: \pi_1(M) \rightarrow \text{PGL}_3(\mathbb{R})$ is defined on generators $a_1, b_1, a_2, b_2$, where $a_1, b_1, a_2, b_2$ are standard generators of $\pi_1(\Sigma_2)$ subject to the single relation

$$[a_1, b_1][a_2, b_2] = \text{id},$$

and $z$ is the positive generator of $\mathbb{Z}$, by $\rho(a_i) = \rho(b_i) = \text{id}$, $1 \leq i \leq 2$, and $\rho(z) = g$. Let $\epsilon = \{s_i, t_i \in \mathbb{R}; 1 \leq i \leq 2\}$ be any choice of four real numbers such that $\mathbb{Z}s_1 \oplus \mathbb{Z}s_2 \oplus \mathbb{Z}t_1 \oplus \mathbb{Z}t_2$ is dense in $\mathbb{R}$. Note that this choice can be made with the $s_i$ and $t_i$ as small as one wants. Then since the one-parameter group $\{g^t\}_{t \in \mathbb{R}}$ is abelian, there exists a unique morphism $\rho_\epsilon: \pi_1(M) \rightarrow \text{PGL}_3(\mathbb{R})$ so that $\rho_\epsilon(a_i) = s_i$, $\rho_\epsilon(b_i) = t_i$ for $1 \leq i \leq 2$, and $\rho_\epsilon(z) = g$. According to Ehresmann-Thurston principle (see [Thu97] and [CEG87]) for any small enough choice of $\epsilon$, $\rho_\epsilon$ is then the holonomy morphism of a flag structure $\mathcal{L}_\epsilon$ on $M$ which is close to the original Kleinian one. In particular, for $\epsilon$ small enough the resulting flag structure is thus a continuous deformation of the original Kleinian structure of $\Gamma \setminus \Omega$ (since the moduli space of $(G, X)$-structures is locally arwise-connected for any homogeneous space $X$ under a connected Lie group $G$, see for instance [Gol88, Deformation theorem p.178]). Note furthermore that there exists choices of $\epsilon$, as small as one wants, and whose associated sets of traces

$$\left\{\text{tr}(g^{js_1+ks_2+lt_1+mt_2+n}) \mid (j, k, l, m, n) \in \mathbb{Z}^5\right\}$$

are pairwise distincts. This sets being invariants of conjugacy of the $\rho_\epsilon$ in $\text{PGL}_3(\mathbb{R})$, they
are in particular invariants of the associated flag structures $\mathcal{L}_c$, which are thus pairwise non-isomorphic. Lastly, the holonomy group of any finite-index covering of the flag manifold $(M, \mathcal{L}_c)$ is a finite-index subgroup of $\text{Im}(\rho_c)$, and is thus non-discrete since $\text{Im}(\rho_c)$ is dense by assumption. In particular, $\mathcal{L}_c$ has thus no finite-index Kleinian covering which concludes the proof. \hfill \Box

4.2. A suitable covering. Recall that $\Omega = X \setminus (B^- \cup B^+)$ denotes the image of the developing map $\delta_{M_0}$ as in section 2.3. The quotient manifold is $M_0 = \Gamma_0 \\backslash \Omega$, where $\rho_0(\pi_1(M_0)) = \Gamma_0 := \langle g \rangle$ is the holonomy group, and $B^-$ and $B^+$ are the repulsive and attractive bouquets of circles. We also denote by $E \simeq \Omega$ the universal cover of $M_0$, and by $\delta_{M_0} : E \to \Omega = \delta_{M_0}(E)$ the developing map of $M_0$ which is just the universal covering map of $\Omega$.

Let $B$ be a $\alpha - \beta$ bouquet of circles disjoint from $B^-$ and $B^+$. Then, possibly replacing $g$ by some big enough power and $H$ by a smaller neighbourhood, we can assume that $B$ is contained in the fundamental domain $\Omega$. There exists then an open neighbourhood $U_0 \subset X$ of $B$ contained in $\Omega$, and with $\pi_\Gamma : \Omega \to M_0$ the canonical projection, $\pi_\Gamma|_{U_0} : U_0 \to U_0 := \pi_\Gamma(U_0)$ is thus an embedding of $U_0$ in $M_0$ of image $U_0$, neighbourhood of the $\alpha - \beta$ bouquet of circles $B_{M_0} = \pi_\Gamma(B)$.

The goal of this paragraph is to show the following:

Lemma 4.2. There exists a Galoisian order 2 covering $F : M \to M_0$ such that with $\pi_M : E \to M$ the universal covering map of $M$, there exists a connected component $U$ of $F^{-1}(U_0)$ such that:

1. $F|_U : U \to U_0$ is a diffeomorphism;
2. $\delta_{M}(E \setminus \pi_M^{-1}(U)) = \delta_{M}(E) = \Omega$.

We will construct this covering from a suitable covering $\Sigma_\beta$ of $\Sigma$ by a genus 3 surface, and to this end we first have to homotope the bouquet of circles $B$ to $\Sigma$.

4.2.1. Homotopy of $B$ to $\Sigma$. In section 2.3 we described a fundamental domain for the action of a loxodromic element. It consists of a product $\Sigma \times [0; 1]$, with $\Sigma$ a genus two surface which is the boundary of a tubular neighbourhood of the repulsive bouquet $B^-$. The quotient space $M_0 = \Gamma_0 \\backslash \Omega$ is a flag manifold homeomorphic to $\Sigma \times S^1$ with $\Sigma$ a genus 2 closed connected and orientable surface.

An explicit tubular neighbourhood of a bouquet can be constructed as follows. Consider the two $\text{PGL}_3(\mathbb{R})$-equivariant fiber-bundle projections of $X$, $\pi_\alpha$ and $\pi_\beta$, which are the first and second coordinate projections onto $\mathbb{RP}^2$ and $\mathbb{RP}^2$. The $\alpha - \beta$ bouquet passing through $x$, $B_{\alpha \beta}(x) = C_\alpha(x) \cup C_\beta(x)$, is the union of the two fibers $C_\alpha(x) = \pi_\alpha^{-1}(\pi_\alpha(x))$ and $C_\beta(x) = \pi_\beta^{-1}(\pi_\beta(x))$.

A convenient description of a tubular neighbourhood of $B_{\alpha \beta}(x)$ is given as the union of fibered neighbourhoods of each of the circles of the bouquet. Let $U_\alpha$ and $U_\beta$ be two neighbourhoods of $\pi_\alpha(x)$ and $\pi_\beta(x)$ respectively, which we suppose to be homeomorphic to discs. The fibrations are trivial over each neighbourhood and, therefore, $\pi_\alpha^{-1}(U_\alpha)$ and $\pi_\beta^{-1}(U_\beta)$ are tubular neighbourhoods of the two circles forming the bouquet. Each neighbourhood is a fibered full torus.
Lemma 4.3. Let $B_{\alpha\beta}(x)$ be the bouquet of circles associated to the flag $x$. Then, for any neighbourhoods $U_\alpha$ and $U_\beta$ in $\mathbb{RP}^2$ and $\mathbb{RP}^2_\epsilon$ homeomorphic to discs, $\pi^{-1}_\alpha(U_\alpha) \cup \pi^{-1}_\beta(U_\beta)$ is a tubular neighbourhood of $B_{\alpha\beta}(x)$.

Proof. Clearly, $\pi^{-1}_\alpha(U_\alpha)$ and $\pi^{-1}_\beta(U_\beta)$ are tubular neighbourhoods of the two circles forming the bouquet. We note that the intersection of these two neighbourhoods is homeomorphic to a ball in a special case. Consider an affine chart containing $U_\alpha$, which we can assume to be a disc centered at the origin. The flag $x$ can be identified to the pair consisting of the origin and the $x$-axis. The neighbourhood $U_\beta$ can be chosen to be formed of parallel lines of slopes ranging, for small $\epsilon$, from $-\epsilon$ to $\epsilon$, and intersecting the disc $U_\alpha$. The intersection $\pi^{-1}_\alpha(U_\alpha) \cap \pi^{-1}_\beta(U_\beta)$ is then a cylinder parametrized by $U_\alpha \times (-\epsilon, \epsilon)$. \hfill \Box

From this lemma we conclude that any two bouquets $B_{\alpha\beta}(x_i), i = 1, 2$, with $\pi_\alpha(x_i) \in U_\alpha$ and $\pi_\beta(x_i) \in U_\beta$ are homotopic. This implies that one can choose a bouquet $B \subseteq \Sigma \times (0, 1)$ contained in the fundamental domain and it will be homotopic to a bouquet contained in the surface $\Sigma$.

The goal now is to construct a double cover of the quotient space $M_0 = \Gamma_0 \setminus \Omega = \Sigma_2 \times S^1$ such that the bouquet $B$ lifts to two bouquets, each of them homeomorphic to the original one by the covering map. It is sufficient to construct a double cover of the surface with the same property as $B$ can be deformed to the surface $\Sigma$.

4.2.2. Suitable covering of $\Sigma$. Let $\Sigma$ be a genus two closed connected and orientable surface and $a_1, b_1, a_2, b_2$ be standard generators of $\pi_1(\Sigma)$. The bouquet $B$ can be identified, through a homotopy, to the element $a_1 \cup a_2$ in $\Sigma$. We need now the following:

Lemma 4.4. Let $\Sigma$ be a genus two surface and $a_1, b_1, a_2, b_2 \subseteq \Sigma$ be standard generators of $\pi_1(\Sigma)$. Then, there exists a Galoisian double cover by a genus three surface $\pi : \Sigma_3 \to \Sigma$, such that the inverse image of $a_1a_2$ has two connected components. In other words, the covering exact sequence

$$\{e\} \to \pi_1(\Sigma_3) \to \pi_1(\Sigma) \to \mathbb{Z}/2\mathbb{Z} \to \{0\}$$

satisfies $a_1, a_2 \in \ker \phi$, where $\phi : \pi_1(\Sigma) \to \mathbb{Z}/2\mathbb{Z}$ is the quotient map.

Proof. This lemma is straightforward once we choose $\pi_1(\Sigma_3)$ to be the kernel of the homomorphism $\pi_1(\Sigma) \to \mathbb{Z}/2\mathbb{Z}$ given by $a_1 \to 0, a_2 \to 0, b_1 \to 1, b_2 \to 1$. \hfill \Box

4.2.3. Proof of Lemma 4.2. We can now prove Lemma 4.2. Consider the double cover $\pi : \Sigma_3 \to \Sigma$ of Lemma 4.4. Recall that $M_0 \simeq \Sigma \times S^1$ and define the double cover $M = \Sigma_3 \times S^1$ induced by the cover $\pi$. Let $U_0$ be a tubular neighbourhood of the bouquet $B$ (which, by homotopy, we may consider to be the union of the two generators $a_1$ and $a_2$ in $\Sigma$). By lemma 4.4, $F^{-1}(U_0)$ has two connected components $U$ and $U'$, each of them homeomorphic to $U_0$ through $F$.

Consider now the universal covering $\pi_M : E \to M$ and the developing map $\delta_M : E \to \Omega$. The latter coincides with $\delta_M : E \to \Omega$ since $M$ is a cover of $M_0$, and satisfies thus
\( \delta_M(\gamma x) = \rho_{M_0}(\gamma)\delta_M(x) \) for any \( \gamma \in \pi_1(M_0) \) and \( x \in E \). Since \( \rho_{M_0} \) restricted to \( \pi_1(\Sigma) \) is trivial according to (2.4), we have thus

\[
\delta_M(\gamma x) = \delta_M(x)
\]

for all \( \gamma \in \pi_1(\Sigma) \). Choose one of the connected components \( U \subset F^{-1}(U_0) \). Observe that \( \pi_M \) restricts to a covering map \( E \setminus \pi_M^{-1}(U) \rightarrow M \setminus U \) and the developing map defined on the universal cover of \( M \setminus U \) descends to a map defined on \( E \setminus \pi_M^{-1}(U) \). Moreover if \( x \in \pi_M^{-1}(U) \), then since the covering \( F : M \rightarrow M_0 \) is Galois there exists an element \( \gamma \in \pi_1(\Sigma) \) such that \( \gamma x \in \pi_M^{-1}(U') \subset E \setminus \pi_M^{-1}(U) \), hence \( \delta(x) = \delta(\gamma x) \in \delta_M(E \setminus \pi_M^{-1}(U)) \) according to (4.1). We obtain thus that \( \delta_M(E \setminus \pi_M^{-1}(U)) = \delta_M(E) = \Omega \), which concludes the proof of the lemma.

### 4.3. Conclusion of the proof of Theorem D

Let \( N \) be a Kleinian flag manifold such that

1. \( B_N \subset N \) an \( \alpha - \beta \) bouquet of two circles admitting a neighbourhood \( U_N \) flag isomorphic to the neighbourhood of an \( \alpha - \beta \) bouquet of circles in \( X \);
2. \( \Gamma_N \subset \text{PGL}_3(\mathbb{R}) \) the holonomy group of \( N \), there exists a loxodromic element \( h \in \Gamma_N \).

We now use the open set \( U_M := U \subset M \) given by Lemma 4.2, which is a neighbourhood of the \( \alpha - \beta \) bouquet of circles \( B_M \), and the neighbourhood \( U_N \subset N \), to form the flag surgery \( S \) of \( M \) and \( N \) above \( U_M \) and \( U_N \) (see the proof of Theorem A in paragraph 3.3). Let \( \delta_S : S \rightarrow X \) and \( \rho_S : \pi_1(S) \rightarrow \text{PGL}_3(\mathbb{R}) \) be the developing map and holonomy morphism of \( S \), and \( \Gamma_S = \rho_S(\pi_1(S)) \) its holonomy group. Recall that \( E \) is the universal cover of \( M \).

**Lemma 4.5.** \( \delta_M(E \setminus \pi_M^{-1}(U)) \subset \delta_S(\tilde{S}) \).

**Proof.** This follows from the fact that one can obtain a cover of \( S \) by taking the tree formed by the components \( E \setminus \pi_M^{-1}(U_M) \) and \( N \setminus \pi_N^{-1}(U_N) \) glued accordingly (see 3.7). Now the developing map defined on \( \tilde{S} \) descends to a map defined on that cover. In particular, \( \delta_M(E \setminus \pi_M^{-1}(U)) \subset \delta_S(\tilde{S}) \).

\[ \square \]

According to Lemmas 4.2 and 4.5, \( \delta_S(\tilde{S}) \) contains \( \Omega \). We denote by \( \Omega_N \subset X \) the domain of discontinuity of the holonomy \( \Gamma_N \).

Now, following the proof of Theorem 3.7 we construct a tree-like manifold \( Y \) which is a cover of \( S \) by attaching \( E \) (using involutions as described in section 3) along each component \( \partial \gamma \pi_M^{-1}U_M \), with \( \gamma \in \Gamma \), to \( \Omega_N \setminus \bigcup_{\gamma \in \Gamma_N} (\gamma U_N') \) (here \( U_N' \subset \Omega_N \) is a lift of \( U_N \)). We repeat the attaching procedure recursively as in Theorem 3.7. Remark that in this case, contrary to the surgery of two Kleinian structures, the manifold \( Y \) is not embedded into \( X \). But the developing map defined on \( \tilde{S} \), descends to a map defined on \( Y \). The holonomy group contains the group \( \Gamma \) and a subgroup isomorphic to \( \Gamma_N \) as in the proof of Theorem 3.7. This can be checked by observing that the developing map defined on \( Y \) is equivariant with respect to the action of these groups.

By construction, the neighbourhood \( \pi_M^{-1}U_M \subset X \) contains a bouquet in the limit set of the holonomy of the surgery. In fact, this is the case for each \( \gamma U_N' \) with \( \gamma \in \Gamma \). Indeed, \( X \setminus U_N' \) contains a bouquet in the limit set of the holonomy of \( N \) and by the appropriate
inversion used in the surgery, it will be translated to inside the neighborhood $\gamma \pi^{-1}_M U_M$.

The conclusion follows from Lemma 2.5.

Bibliography


GEOMETRIC SURGERIES OF THREE-DIMENSIONAL FLAG STRUCTURES


MARTIN MION-MOUTON, MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES IN LEIPZIG

Email address: martin.mion@mis.mpg.de
URL: https://orcid.org/0000-0002-8814-0918

INSTITUT DE MATHÉMATIQUES DE JUSSIEU-PARIS RIVE GAUCHE, CNRS UMR 7586 AND INRIA

EPI-OURAGAN

Email address: elisha.falbel@imj-prg.fr
URL: https://webusers.imj-prg.fr/~elisha.falbel/