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ABSTRACT

Digital Breast Tomosynthesis (DBT) is an X-ray modality
enabling to reconstruct 3D volumes in the context of breast
cancer screening. However, because of the limited angle and
sparse view constraints, artefacts emerge in the reconstruc-
tions and greatly reduce their quality. In a previous work,
we proposed a post-processing deep learning reconstruction
pipeline for DBT that is trained using synthetic data. Ow-
ing to the geometrical limitations of the acquisition device,
the amount of information to extrapolate is important and the
neural network could inevitably commit errors. As such, the
reconstructed volumes are not completely reliable, and exact
consistency with the measurements is not guaranteed. In this
study, we first propose two methods to estimate the uncer-
tainty of the model reconstructions, and show that the result
can be used as a proxy of the true error. Secondly, we ex-
plore the minimisation of a data consistency term constrained
by the predicted uncertainty, in order to mitigate the network
errors. We demonstrate experimentally that this approach en-
hances the quality of reconstruction as compared to reintro-
ducing projections information without constraint.

Index Terms— Deep learning, tomosynthesis, recon-
struction, uncertainty, inverse problem.

1. INTRODUCTION

Digital Breast Tomosynthesis (DBT) DBT [1] is an X-ray
imaging technique that is primarily employed in the context of
breast cancer screening. During a DBT examination, several
low-dose cone-beam acquisitions are performed from differ-
ent angles, which are subsequently used to reconstruct a 3D
volume. However, a number of geometrical constraints im-
pede the quality of the reconstructed images [2, 3]. Indeed,
the rotation of the X-ray source is restricted to a narrow angu-
lar range (limited angle), and the number of acquired projec-
tions does not exceed a dozen (sparse view). Consequently,
the resolution along the vertical detector-to-source axis (z-
axis) is severely reduced: objects are spread through multi-
ple horizontal planes and tend to blend as they vanish at a
slow pace. Furthermore, many artefacts appear in the images,

forming streaks or replications depending on the anatomical
plane considered. In this work, we simulate the use of a DBT
system thanks to GPU-based algorithms, and acquire 9 pro-
jections on a 25° angular range.

Mathematical framework Let x ∈ Rn and y ∈ Rm be
the vectorised versions of the 3D object to image and the cor-
responding DBT projections. The X-ray acquisition can be
modelled as y = Ax + η, with A ∈ Rm×n the projection
operator and η ∈ Rm a noise component [2, 3]. DBT recon-
struction is an inverse problem: from the measurements y, the
goal is to retrieve x. However, because of the physical lim-
itations of the system, y does not carry enough information
to retrieve a perfect estimation of x. Thereby, this problem
is severely ill-posed, leading to an infinite number of possible
solutions that are of unequal quality.

Contributions In [4], we proposed a post-processing ap-
proach in which a deep neural network (NN) is used to re-
move the artefacts present in an initial filtered back-projection
reconstruction. Yet, because of the geometrical setting of the
DBT system, the neural network has to recreate a lot of infor-
mation not present in the data. Therefore, the prediction given
by the neural network, despite its potential accuracy, cannot
be fully trusted. Furthermore, maintaining consistency with
the measurements becomes challenging when a large portion
of the data is extrapolated (n ≫ m) as the model errors in the
reconstructed volume would modify the information present
in the measurements once re-projected. Yet, this consistency
is crucial as the acquired projections are the only indisputable
data. For this reason, we compare in this paper two meth-
ods enabling the neural network to evaluate its own reliability,
taking into account both epistemic and aleatoric uncertainties.
Such estimates are then used in an easily understandable iter-
ative post-processing step in order to improve the data consis-
tency of the reconstructed volume and correct their potential
errors, while limiting the reintroduction of artefacts. Even-
tually, our method is experimentally validated on simulated
datasets. To our best knowledge, deep learning reconstruc-
tion with uncertainty quantification for an X-ray imaging ge-
ometry as constrained as the DBT system used here has never
been addressed before.



Related works Uncertainty [5] is generally broken down
into epistemic and aleatoric terms. The former stems from the
model optimisation, while the latter is part of the data them-
selves and thus cannot be reduced. To model aleatoric uncer-
tainty, a common choice in the literature is to consider that
the error of pixel j from image i, noted [ϵi]j , follows a cer-
tain distribution with zero-mean and a pixel-dependent scale
parameter [̂si]j (a property called heteroscedasticity) [6]:
[ϵi]j ∼ Pϵ(0, [̂si]j). Regarding epistemic uncertainty, the
majority of methods rely on getting several plausible output
images from a single input: their mean is taken as the pre-
diction while their standard deviation is the uncertainty. To
this aim, the authors of [7] proposed to use deep ensembles:
a certain number of deep networks are trained on a same
dataset, but with different initialisations. One can also resort
to Bayesian NNs, turning the deterministic layer weights into
their probabilistic counterparts. This category includes varia-
tional inference [8] and Monte Carlo dropout [9] approaches.

Several authors studied data consistency (DC) for X-ray
reconstructions generated by a NN. Some incorporate a min-
imisation of this DC term inside the optimisation process [10,
11] at the cost of a higher memory-consumption of the train-
ing loop. Others consider offline post-processing steps [12–
14] but have no control over the location and the variation of
the pixels that are updated.

2. METHODS

Dataset To train our deep neural network in a supervised
way despite the lack of DBT ground truth artefact-free vol-
umes, we resort to a synthetic dataset made up of phantoms
whose texture closely resembles the one of a breast [15]. We
use the same methodology as in our previous work [4], but we
increase the number of generated phantoms to 288. The vol-
umes are then digitally projected (without noise) and recon-
structed iteratively on GPU, before being downsampled to a
fifth of the initial resolution for memory concerns. Examples
of such phantoms and their associated iterative reconstruc-
tions (IR) are displayed in the two left columns of Figure 1.
Eventually, we get a paired training dataset from 80 % of the
whole database, composed of initial IR x̃i and corresponding
ground truth (GT) phantoms x∗

i . The remaining 20 % are split
equally to form the validation and test sets.

Aleatoric uncertainty In order to estimate the aleatoric
uncertainty, we consider that the per-pixel output error
[ϵi]j ≜ [x∗

i ]j − [x̂i]j follows a zero-mean Laplace distri-
bution, ensuring a regression that is more robust to outliers
than with a Gaussian. Deriving the negative log-likelihood
of the above Laplace law and removing the constant terms,
we obtain the training loss function of the NN for the image i
with n pixels:

L(x̂i, b̂i) =
1

n

n∑
j=1

|[x∗
i ]j − [x̂i]j |
[b̂i]j

+ log[b̂i]j ,

with x∗
i the ground truth, x̂i the output reconstruction, and b̂i

the pixel-dependent scale parameter. In practice, to predict x̂i

and b̂i, the head of the NN is split into two branches [6, 16].

Epistemic uncertainty To compute the epistemic uncer-
tainty, we compare the use of a deep ensemble (DE) [7] and
a Bayesian network with Monte Carlo dropout (MCDO) [9].
MCDO networks can be loosely seen as an alternative
form of ensemble, as dropping neurons during inference
yields slightly different NN architectures for each prediction.
Both methods are trained, validated and tested on the same
datasets. In order to ensure enough diversity in the ensemble,
we use the same strategy as in [7]: each network is learnt on
the whole training dataset, with the sample images shuffled
each time and weights initialised at random. To create the
MCDO network, we randomly zero-out entire feature maps
before each convolution [17], with a probability p = 0.1.
The predicted variance (i.e., the squared uncertainty) is then
approximated by Monte Carlo integration [7, 16]:

[σ̂2
i ]j ≈

1

T

T∑
t=1

2
(
[b̂i]

t
j

)2
︸ ︷︷ ︸

Aleatoric term

+
1

T

T∑
t=1

(
[x̂i]

t
j −

1

T

T∑
t=1

[x̂i]
t
j

)2

︸ ︷︷ ︸
Epistemic term

with T the number of forward passes (or NNs in the ensem-
ble), [b̂i]

t
j and [x̂i]

t
j respectively the output scale and pre-

dicted j-th pixel of the t-th forward pass. In this work, we
choose T = 6. Remark that in the case of a Laplace with
scale b, the variance is given by 2b2. The predicted mean (i.e.,
the reconstruction) is computed as [x̂i]j =

1
T

∑T
t=1[x̂i]

t
j . Ac-

cording to [18], the biased total variance σ̂2
i should reflect

the true variance E[(x∗
i − x̂i)

2] when the predictions are well
optimised.

Data consistency To avoid a large computational intake,
we prefer to decouple the data consistency constraint from
the training loop [13]. Thereby, we add an offline DC algo-
rithm to our pipeline, taking already reconstructed volumes
as input. Common DC algorithms minimise ∥Axi − yi∥2 for
a volume i, where xi is initialised with a reconstruction (in
our case the output of the MCDO or DE models), and yi are
the true projections acquired by the DBT system. However,
doing so requires a projection and a back-projection, which
reintroduce artefacts in the volume due to the ill-posed nature
of the problem. To avoid this effect, we propose to focus the
updates onto the uncertain areas only by optimising

argmin
x

1

2
∥Axi − yi∥22 s.t. ∥(xi − x̂i)⊘ σ̂i∥∞ ≤ α,

with [σ̂i]j =
√
[σ̂2

i ]j , and α a relaxation parameter which is
taken as 1 in this study to keep the same order of magnitude
as the pixels of x̂i. The symbol ⊘ denotes the element-wise
division. The second term ensures that the volume stays close
to the NN prediction where the uncertainty is low, but allows



for more freedom where it is high. We minimise this opti-
misation problem using a projected gradient descent, and call
this technique uncDC. Remark that there is no regularisation
as our projections and reconstructions are noiseless.

3. RESULTS

Implementation details The neural network used in this
work is a residual 2D U-Net with two output branches
(see [4] and Section 2). We employ a 2.5D training strat-
egy: inputs and targets are actually stacks of 7 successive
coronal slices, which are thereafter aggregated to create
the final reconstruction. The layer weights are optimised
using Adam algorithm. We moreover consider that the out-
put branch predicting aleatoric uncertainty actually corre-
sponds to its logarithm. The loss function then becomes∑

ij |[x∗
i ]j − [x̂i]j |e− log[b̂i]j + log[b̂i]j , which results in a

better numerical stability.

Evaluation metrics To evaluate the quality of the recon-
structed volumes, we choose the well-known Root Mean
Squared Error (RMSE) and Structural Similarity Index Mea-
sure (SSIM). Besides, to gauge the calibration of the pre-
dicted uncertainties, we use the Uncertainty Calibration Error
(UCE) [18], which compares the error and the uncertainty, as
the latter should reflect the former. All metrics are gathered
in Table 1.

Reconstructions and uncertainty maps From Table 1,
one can observe that the DE and MCDO performances some-
what surpass the ones of a single 2.5D NN with the same ar-
chitecture. All three methods improve a lot the quality of the
initial reconstruction, yet the advantage of MCDO and DE lie
in their ability to compute uncertainty maps.

RMSE (×10-3) ↓ SSIM ↑ UCE (×10-4) ↓

x̃i 6.07 ± 1.12 0.733 ± 0.041 -

NN 3.94 ± 0.91 0.814 ± 0.051 -
DE 3.52 ± 0.81 0.836 ± 0.047 4.41 ± 0.75
MCDO 3.71 ± 0.83 0.825 ± 0.050 6.32 ± 1.25

Table 1: Quantitative metrics averaged on the test set. We
recall that x̃i is the initial iterative reconstruction used as input
to our neural network. NN corresponds to the results obtained
with a single deterministic 2.5D neural network trained with
the same loss function, and hyperparameters.

Figure 1 shows visual results from randomly sampled
slices of three different phantoms with varying texture con-
figurations. These images were processed by the best per-
forming model, i.e., the deep ensemble. The true materials’
distribution, albeit not perfectly located, is still very well
retrieved compared to the input IR. Remark that some areas
of the reconstructed volumes are blurred: they correspond

to pixels on which the networks in the ensemble could not
agree. As anticipated, the uncertainty of these regions is high,
reflecting the difficulty the model had to match them to the
ground truth. The images clearly show that the inner sec-
tions of the material blobs are accurately reconstructed, with
minimal uncertainty. However, we observe that the model
struggles to retrieve the boundaries between the materials.
Vertical borders tend to be thinner on the uncertainty maps
than the horizontal ones. This anisotropy is expected: as
explained in the introduction, due to the geometry of the
imaging system, breast tissues are poorly separated along the
vertical axis in the input of the model. As shown in Fig-
ure 1, vertical borders are much more visible than horizontal
ones. Thereby, recreating the horizontal boundaries at the
right height position is a difficult task for the model, as the
limit between materials in these regions is unclear. Conse-
quently, an ensemble or MCDO model generating several
predictions for a same image may not place the boundaries at
the same height each time, resulting in a hazy and spread out
uncertainty map.

Accuracy of the uncertainty prediction Calibration can
be further analysed with specific plots showing the error
as a function of uncertainty. From Figure 2, one can see
that for low errors, DE estimates rather well the uncertainty
while MCDO tends to overestimate it. For high errors, DE
slightly underestimates the uncertainty, while MCDO is well
calibrated. Yet, both methods are quite close to the identity
line, meaning that the uncertainty estimated by our mod-
els can be used as a proxy of the true error. Better curves
could be obtained by re-calibrating [18], although applying
this method in the case of Laplace distributions would need
further investigations.

Data consistency To evaluate the performance of our data
consistency block, we compare in Table 2 the relative error
between the reprojections of the post-processed volume and
those that were acquired with the computer-simulated DBT
system. We also monitor the same quantity with relation to
the ground truth volume.

Rel. error x∗
i (%) ↓ Rel. error yi (%) ↓

DE 7.80 ± 1.85 3.83 ± 1.37

DC - 4 it. 7.69 ± 1.80 1.02 ± 0.29
uncDC - 7 it. 7.66 ± 1.79 2.17 ± 1.15

DC - 200 it. 7.89 ± 1.67 0.25 ± 0.18
uncDC - 200 it. 7.79 ± 1.71 2.10 ± 1.18

Table 2: Relative errors of the iterated volume and its pro-
jections compared respectively to the ground truth x∗

i and the
acquired projections yi. Metrics of the deep ensemble (DE)
output volumes are given for comparison.

We perform several iterations of a classic gradient descent
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Fig. 1: Random slices taken from the results of three representative phantoms from the test set.
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Fig. 2: Calibration plots for the test set. The dashed line cor-
responds to a perfect calibration.

to minimise ∥Axi − yi∥2 (DC), and do the same for our pro-
posed method (uncDC). After 4 and 7 iterations respectively,
the minimum GT error is hit. uncDC yields lower GT er-
ror than DC, however, the projection error is around 2 times
bigger. We then let the algorithm run until reaching 200 iter-
ations. As expected, the GT error of DC raises because of the
reintroduction of artefacts, while the error on the projections
keeps being minimised. On the other hand, the GT error of
uncDC is still lower than that of the neural network output
volume, although it does not stay at the minimum. Overall,
our proposed method needs further research, namely regard-
ing a stopping criterion or the benefit of using uncertainty into
downstream tasks. We can however conclude that performing
very few iterations on the output of the neural network is a
good trade-off: it enables to get back some consistency to the
projections while staying close to the ground truth despite the
reintroduction of artefacts.

4. DISCUSSION AND CONCLUSION

In this paper, we proposed a deep learning pipeline for DBT
reconstruction which is able to estimate its own reliability.
Yet, our proposed models output accurate reconstructions of
coronal planes, despite a huge lack of information in this
direction. The two compared methods, deep ensemble and
Monte Carlo dropout, enable to compute uncertainties that
share the expected geometrical properties of the true error,
namely anisotropy along the vertical axis. The algorithms
we developed generate a well-calibrated total uncertainty that
could be used as a proxy to estimate the true error without
access to a ground truth, as it is the case during inference. We
thus propose a way to integrate uncertainty into a downstream
data consistency task in order to focus the updates onto the
uncertain areas. The corresponding results, although prelimi-
nary, show that uncertainty can help to get a better estimation
of the ground truth reconstruction. However, this method is
highly dependent on the quality of the NN reconstruction.

Nevertheless, using the negative log-likelihood as a loss
function to train our neural networks can cause faster conver-
gence of the residual error compared to the uncertainty [19].
This is confirmed by the calibration plots in Figure 2 where
the points with high error are not fully optimised. To avoid
this effect, one could prefer to use a more complex distribu-
tion to model the pixel-wise error [ϵi]j , such as a generalised
Gaussian [20], giving the network more control over the out-
liers by allowing fatter tailed distributions where the acquisi-
tion geometry is known to be hard to handle.
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