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Abstract:  

Background:  

The risk of SARS-CoV-2 transmission to health care workers in intensive care units (ICU) and the 

contribution of airborne and fomites to SARS-CoV-2 transmission remain unclear. To assess the rate of 

air and surface contamination and identify risk factors associated with this contamination in patients 

admitted to the ICU for acute respiratory failure due to SARS-CoV-2 pneumonia. 

Methods: 

Prospective multicentric non-interventional study conducted from June 2020 to November 2020 in 3 

French ICUs. For each enrolled patient, 3 predefined surfaces were swabbed, 2 air samples at 1m and 

3m from the patient’s mouth and face masks of 3 health care workers (HCW) were collected within the 

first 48 hours of SARS-CoV-2 positive PCR in a respiratory sample. Droplet digital PCR and quantitative 

PCR were performed on different samples, respectively. 

Results: 

Among 150 included patients, 5 (3.6%, 95%CI: 1.2% to 8.2%) had positive ddPCR on air samples at 1 

meter or 3 meters. Seventy-one patients (53.3%, CI95%: 44.5% to 62.0%) had at least one surface 

positive. Face masks worn by HCW were positive in 6 patients (4.4%, CI: 1.6% to 9.4%). The threshold 

of RT-qPCR of the respiratory sample performed at inclusion (odds ratio, OR= 0.88, 95%CI: 0.83 to 0.93, 

p<0.0001) and the presence of diarrhea (OR= 3.28, 95%CI: 1.09 to 9.88, p=0.037) were significantly 

associated with the number of contaminated surfaces. 

Conclusion:  

In this study, including patients admitted to the ICU for acute respiratory failure « contact route » of 

transmission, i.e. through fomites, seems dominant. While presence of SARS-CoV-2 in the air is rare in 
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this specific population, the presence of diarrhea is associated to surface contamination around Covid 

patients.  

Key words:  

SARS-CoV-2; viral shedding; airborne; viral contamination; intensive care unit 

Introduction:  

Three years into the pandemic, there is conflicting debate about the contribution of different routes of 

transmission (1) of SARS-CoV-2. Like other respiratory viruses, SARS-CoV-2 can be transmitted by air 

or by hand contact. Several authors have attempted to answer this question by trying to optimize 

preventive measures, but as far as we know, we still do not have a clear answer to this question.   There 

is no doubt that SARS-CoV-2 can infect humans by a “respiratory route” or by a "contact route" after being 

carried by hand. However, the proportion of each route of transmission remain unclear. Some authors 

argue that the “respiratory route” is predominant (2), while others suggest that the "contact" route is 

predominant.  

During the various waves of the pandemic, several authors have demonstrated the presence of viral RNA 

on surfaces (3–5), more rarely in air samples(6, 7).  However, a viable virus has rarely been identified by 

culture(8–10).  One of the difficulties is that many confounding factors make the literature difficult to 

interpret. Indeed, several factors could contribute to air or surface contamination (11). The delay between 

contact and onset of symptoms, the intensity of symptoms (12), the type of care and the duration of 

exposure appear to be among several factors associated with a higher risk of contamination.  

Understanding the different routes of transmission is the first step to help healthcare workers (HCWs) 

better adapt protective measures to reduce the risk of secondary infection. During the pandemic, HCWs 

in intensive care units were particularly exposed to SARS-CoV-2 infection because they not only cared 

for a large number of patients, but were also exposed to many situations considered to be aerosol-

generating procedures(13). Despite these facts, authors have suggested a lower risk of SARS-CoV-2 
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acquisition in this specific population citing better protection(14)  or lower risk due to delayed treatment 

after symptom onset.(15). The discrepancy in SARS-CoV-2 samples from ICU patients is important: on 

the one hand, some studies do not find any virus in the air(16–19) while on the other hand, other authors 

were able to isolate viable virus from air and surface samples of hospitalized ICU patients(20). Thus, the 

role of contaminated surfaces and air in the spread of SARS-CoV-2 in ICU environments remains unclear.  

Our study aimed to assess the air and surface contamination rate and identify risk factors associated with 

this contamination in infected patients requiring ICU care for acute respiratory failure. 

Materials and Methods : 

This prospective multicentric non-interventional study was conducted from June 2020 to November 

2020 in 3 intensive care units (ICU) of academic hospitals of the Assistance Publique – Hôpitaux de Paris, 

France. Consecutive adult patients, admitted to one of the participating units for acute respiratory failure 

due to COVID-19 were enrolled in the study.  

To meet the inclusion criteria, patients admitted to the ICU for acute respiratory failure due to Covid-19 

should have positive RT-qPCR on a respiratory tract secretion (nasopharyngeal or tracheal aspirate, 

sputum, or broncho-alveolar lavage) within the last 48 hours prior to enrollment. The following data were 

collected: age, gender, vaccination status against SARS-CoV-2; Ct (cycle threshold) for SARS-CoV-2 on 

respiratory samples within the last 48 hours, and duration of symptoms prior to environmental sampling. 

On the day of sampling : respiratory rate, fever, respiratory symptoms such as cough, sneezing, sputum, 

diarrhea (defined as more than 3 episodes of loose stools or one episode of liquid stools). Comorbidities 

were also collected such as:  Diabetes mellitus ; Arterial hypertension ; COPD. Immunocompromised 

status was defined as :  neutropenia < 1G/L, or administration of any of the following drugs: cytotoxic 

chemotherapy in the last year, Rituximab in the last year, more than 10mg of steroids/day for more than 

14 days in the last 3 months, any immunosuppressive agents in the last 3 months.  
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Various modes of respiratory support were duly recorded such as : Non-invasive Ventilation ; Invasive 

Mechanical Ventilation ; High Flow Nasal Cannula Oxygenation ; Conventional face mask oxygenation 

and Nebulization if administered. 

To assess viral spread around Covid-19 patients, we systematically swabbed 3 predefined surfaces and 

collected 2 air and face mask samples from healthcare workers (HCW) for each enrolled patient as 

described below:  

Surface samples: Surface samples were collected at three specific points (External surface of the oxygen 

device used by the patient, intravenous infusion line, table or computer at least 2 meters from the patient’s 

head) using a pre-impregnated e-swab (reference ESWABR1, COPAN). The e-swab was rolled on the 

external surface of the oxygenation device used by the patient (the tube delivering oxygen of the high flow 

nasal cannula, the tube used during invasive mechanical ventilation, the mask of oxygen or non-invasive 

ventilation). A 100 cm2 area was swabbed for each sample. The swabs were soaked in Viral Transport 

Medium (VTM) and rubbed over their entire surface against the various objects described above before 

being immersed in VTM tubes and taken to the laboratory. Transport medium samples were divided 

equally into two sterile tubes, one for SARS-CoV-2 RT-qPCR and one stored at -80°C for later in vitro 

viral isolation.  

Air Samples: Air samples were collected using the Coriolis® system and placed at the same height as 

the patient's head, at a distance of 1 and 3 meters from the patient's head. Aspiration was continuous at 

100L/mn for 6mn to obtain 600L of air. Air was vortexed in 15mL phosphate buffered saline (PBS). PBS 

was immediately frozen at -80°C until SARS-CoV-2 was detected by digital droplet PCR (ddPCR) on 

defrosted PBS.  

Face masks samples: The outer surface of a face mask worn by different healthcare providers for a 

single use was analyzed. The outer surface for the HCW’s mask was processed according to the protocol 

defined above to obtain 3 mL of sample, equally divided into two aliquots. 1) Cut 25 cm2 of the inner 

surface (for the patient's mask) or the outer surface (for the caregiver's mask) of the mask with a scalpel. 
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2) Place it in a 50 mL Falcon® containing 3.0 mL of 1X PBS (Phosphate-Buffered Saline) if it is a FFP2 

mask or in 3.5 mL of 1X PBS if it is a surgical mask, as this type of mask is more absorbent (average loss 

of 0.5 mL of PBS). 3) Mix by suction and backflow with the pipet for 5 seconds. 4) Vortex for 10 seconds. 

5) Finally, remove the 1X PBS and aliquot into 2 tubes (one for RT-qPCR and one for viral isolation test). 

Digital droplet PCR was performed on air samples (description below) while quantitative PCR was 

performed other samples. 

PCR methods: For ddPCR, 10 µL of extracted RNA were amplified using a one-step RT-ddPCR kit (Bio-

Rad). Two target genes, nucleocapsid (N), and RNA-polymerase (RdRP-nsp12) were searched. Primers 

have been published elsewhere(21) while optimal primer and probe concentrations for each ddPCR assay 

have been previously described(22) . Probes were labeled with either FAM (N) or with HEX (RdRP-nsp12) 

fluorescent dyes, and 3’-modified by Iowa Black Quencher (IBQ, Integrated DNA technologies, Coralville, 

Iowa, USA), which produces less background noise. Droplets were generated and read on the QX200 

system (Bio-Rad). RT and PCR amplification were performed in an ICycler PCR instrument (Bio-Rad) 

with the following steps: 1 cycle [25°C/3mn, 50°C/60min, 95°C/10min], and 40 cycles [95°/30sec, 

55°C/1mn] and a termination step of 98°C/10min. All cycles were performed at a ramp rate of 2°C/sec. 

The determination of the limit of detection (LoD) was based on the calculation of the limit of blank (LoB). 

LoB is defined as the maximal number of positive droplets obtained from pre-pandemic RNA samples 

negative for SARS-CoV-2, calculated according to a modified version of the procedure described by 

Armbruster and Pry(23). The LoB defined for RdRP-IP4 (n=3), and N (n=4) were derived from the analysis 

of 110 ddPCR replicates from 65 different negative RNA samples with a mean droplet count of 16188 

±1317 performed on 12 SARS-CoV-2-negative human nasopharyngeal specimens collected during the 

pre-COVID-19 era. The LoD was established for each SARS-CoV-2 target gene analyzed following the 

same guidelines and was set at 5 droplets for both tests. 
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Ethics: 

Our study is classified as standard care and was approved by the Ethics Committee CPP Sud-

Mediterranée 2027 under ID 2020-A00897-32. No additional human samples were collected for the study. 

The patients were informed and consent was obtained orally. 

Statistical analysis: 

The sample size was determined to provide a more accurate estimation of the proportion.  The expected 

incidence of air samples containing a positive viral load at one meter from the patient is 5%. We wanted 

a confidence interval greater than or equal to 1%, i.e. a precision of the order of ± 4% around this 

incidence.  Thus, for an alpha risk of 5%, i.e. a confidence interval of 95%, 150 patients must be included 

according to the exact Clopper-Pearson method.  

The data collected were described using the number and percentage (%) for the qualitative variables. The 

median and interquartile range (IQR) were used for the quantitative variables.  

The proportions of patients with positive ddPCR on air samples (1 or 3 meters) or positive qPCR on 

surface samples were estimated with 95% confidence intervals (CI) (Clopper–Pearson exact method). 

Associations between environmental contamination and patient characteristics were analyzed using the 

Chi-squared test or Fisher's exact test for categorical variables, and the Mann–Whitney test for 

quantitative variables. Surface contamination was defined by at least one positive RT-qPCR result.  In a 

second analysis, the number of contaminated surfaces was considered as an ordinal variable with 0, 1 

and 2 or 3 surfaces. All factors with P<0.10 in the univariate analysis of surface contamination were 

included in a multivariate ordinal Logistic Regression. To account for missing data, the multivariate model 

was conducted using multiple imputations through chained equations with 10 imputations obtained after 

10 iterations. The variables considered in the imputation models were all included in the univariate 

analyses. Results were aggregated by pooling the estimates obtained on each imputed dataset according 

to Rubin's rules. All tests were two-sided, with P<0.05 considered significant. Analyses were performed 

using R Version 4.0.3. 
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Results:  

A total of 150 patients were enrolled in the study during the defined period. Of these, 26% were female, 

with a median age of 65 [54-73] years old. The median time between the first symptoms and inclusion 

was 10 [7-13] days. Fifty-three patients (35%) had diabetes mellitus, 70 (46%) had arterial hypertension, 

only 7 (5%) had chronic obstructive pulmonary disease, and 11 (7%) were immunocompromised. The 

mean respiratory rate at inclusion was 26 [23-30] per minute, 65 patients had cough (44%), 15 (10%) had 

sputum, 13 (9%) had diarrhea and 63 (43%) were febrile. The median cycle threshold (Ct) of the RT-

qPCR performed on respiratory samples at inclusion was 26 [22-30]. Patients received different types of 

respiratory support at inclusion: high-flow nasal cannula oxygenation (n=60, 41%), non-invasive 

ventilation (n=19, 13%), conventional oxygen (n=36, 24%), invasive mechanical ventilation (n=45, 30%). 

Only 2 patients (1.4%, 95%CI: 0.2% to 5.0%) had positive ddPCR on air samples taken at 1 meter from 

the mouth. Five patients (3.6%, 95%CI: 1.2% to 8.2%) had positive ddPCR on air samples at 1 meter or 

3 meters from their mouth. Seventy-one patients (53.3%, CI95%: 44.5% to 62.0%) had at least one 

surface positive using a qPCR. The qPCR performed on the external part of the face mask of HCW was 

positive for anyone of the HCW (nurse, assistant-nurse or physician) in only 6 patients (4.4%, CI: 1.6% to 

9.4%). This corresponded to 2 masks worn during clinical examination (physician), 1 during nursing care 

and 2 during personal hygiene care. Risk factor analysis could not be performed due to the low level of 

air contamination. 

We highlight a significant association in univariate analysis between, the threshold of RT-qPCR performed 

in the patient's respiratory sample in the last 48h before inclusion and at least one contaminated surface 

(p<0.001). Also, the threshold of RT-qPCR (p<0.0001) and diarrhea (p=0.027) were associated with the 

number of contaminated surfaces in univariate analysis (table 3). The effects of the RT-qPCR threshold 

(odds-ratio, OR= 0.87, 95%CI: 0.81 to 0.93, p<0.0001) and diarrhea (OR= 3.28, 95%CI: 1.09 to 9.88, 

p=0.037) were confirmed in the multivariate model adjusted for cough (table 4). 
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Discussion :  

In this multicenter prospective study conducted in ICUs during the first wave and including patients 

admitted for ARF, we found a higher frequency of positive surface samples than air samples. In our work, 

2 factors were associated with the risk of surface contamination, the threshold of RT-PCR in the 

respiratory sample performed in the 48 hours before environmental sampling and the presence of 

diarrhea. In our study, the small number of events did not allow us to investigate risk factors associated 

with air contamination. 

Our results contribute to the ongoing and crucial debate on the attributable proportion of airborne or 

contact transmission for SARS-CoV-2. The presence of viruses on the surfaces can be perceived as the 

accumulation over time of viruses present in the air and eventually ending up on the ground due to gravity. 

Our study suggests the importance of the contact route in intensive care patients due to fomites. However, 

it is difficult to know whether this contamination occurs directly or indirectly through the hands of 

healthcare workers.  

Our multivariate analysis suggested that surface contamination was also significantly associated with 

diarrhea. From a meta-analysis, the authors suggested that the pooled prevalence of all gastrointestinal 

symptoms was 17.6% and the pooled prevalence of stool samples positive for viral RNA was 48.1%(24). 

The authors also suggested that stool excretion persisted while the respiratory samples were 

negative.(24) This well-documented shedding suggests direct or indirect dissemination around the 

patient, which may explain the frequency of positive specimens.  This result is interesting because 

diarrhea is a symptom that has often been overlooked in the literature, with the most common preventive 

measures focusing on the risk of respiratory contamination. 

Similarly, our work suggests less frequent contamination of air samples, despite the use of digital droplet 

PCR to improve SARS-CoV-2 detection. These results confirm low contamination and are consistent with 

most studies published to date(25, 26). Although used as a surrogate marker, mask contamination was 
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rare in our study, reaching less than 5% of sampled masks. This finding is consistent with our results on 

air samples and increases our confidence in our data because two different detection techniques were 

used for air and mask sampling. Numerous studies conducted during the pandemic have attempted to 

answer the question of airborne contamination(27, 28), with surprisingly inconsistent results. For instance, 

a review of the literature suggested that only 10% of the samples collected were positive(29) and in rare 

cases this corresponded to the presence of a viable virus(30), whereas a recent study conducted in the 

ICU and involving only 20 patients detected viral RNA in 67% of the air samples, of which 28% had a 

viable virus (31). 

In fact, the results of studies conducted in the ICU are contradictory, suggesting percentages of positive 

air samples ranging from 0 to 67%. These discrepancies should prompt us to discuss the numerous 

confounding factors that complicate the interpretation of the results(32). Indeed, airborne dissemination 

seems to differ depending on the circulating variants(33). It is also possible that the frequency of positive 

air samples may vary according to the time period of each study. Recent studies have also suggested a 

correlation between the precocity of symptoms (34) and air contamination (31). Indeed, in a recent study, 

67% of air samples were positive. However, the median delay between symptom onset and air sampling 

in this study was 3 days, which was 3 times shorter than in our study. Several authors have also suggested 

that negative air sampling in the ICU may be explained by the fact that patients are often admitted late in 

the course of the disease (43). Another confounding factor, often neglected in the literature, is related to 

the sampling technique and the volume of air sampled. We sampled air volumes that are relevant to the 

volume of air inspired by a healthcare worker in the event of prolonged care of one hour. In addition, our 

sampling technique is quite different from the techniques used in other works, as several authors with 

frequent positive air samples used an impaction sampling method (35). We believe that airborne 

contamination should not be discussed as a binary outcome since it is now known that SARS-CoV-2 can 

spread by the respiratory route. In our opinion, the question should focus on the risk of exposure. Since 

no HCW could breathe all the air in a patient's room, we chose to sample 600L of air, which is one hour 
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of human tidal volume (500mL, 20/mn, for 1 hour). In our work, the ventilation technique did not seem to 

be associated with a risk of environmental contamination. This fundamental question is still very much 

debated in the literature, with some suggesting (36) that there is no correlation between the ventilation 

technique used and others suggesting that contamination is more frequent when high flow nasal oxygen 

is used. (32). Indeed, closed-circuit ventilation of a certain number of patients seems to completely reduce 

the risk of air contamination, except in the case of accidental circuit leakage. Several authors have argued 

that the probability of airborne detection probably depends on the percentage of nonventilated patients 

included in the study(37) . Finally, other confounding factors (38) could alter the results of airborne 

specimens, such as: factors related to external conditions (humidity, temperature, wind speed, chemical 

composition of the air) and others related to sampling methods (type of impactors, type of culture media, 

sampling conditions).  In fact, like all viruses, SARS-CoV-2 is sensitive to humidity, heat and UV (39), 

characteristics that change daily and are rarely taken into account when interpreting the results of clinical 

studies. Similarly, the influence of ancillary treatments, such as air renewal or ventilation systems, modify 

airborne viral concentrations and introduce additional confounding factors. 

Our study had both strengths and limitations. One of the main strengths is the standardized sampling 

strategy, which has been approved in many previous works (40) and gives us a clinical experience that 

helps to avoid bias. Secondly, sampling was performed without any air treatment, which could have 

caused turbulence and altered the results. Third, surfaces were used as a surrogate for cumulative 

airborne contamination because airborne virus particles eventually settle on surfaces after a variable 

amount of time in the air. Our work found that diarrhea and HCW manipulation due to patient diarrhea 

were associated with surface contamination. This highlights that surface contamination is not only a 

surrogate for cumulative airborne virus particles, but also takes into account the "contact route" of virus 

shedding. Finally, there was no opportunity to reduce the patient's viral load, as the study was conducted 

at a time when antiviral medication was not available. Our results can be considered as the "natural history 

of SARS-CoV-2 shedding during Covid-19" in patients requiring ICU admission. However, there are 
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several limitations. First, despite a large number of samples (1200 qPCR) our study is limited to 150 

patients in the pandemic context. Second, this work was done during the first waves and does not consider 

the latest variants of interest. We included patients infected with the wild strain, the alpha variant and, in 

rare cases, the delta variant. However, this does not allow us to draw conclusions about the risks of 

airborne contamination at this stage of the pandemic. Third, we included only patients admitted to the ICU 

and did not evaluate patients admitted to other wards. In fact, the risk and airborne contamination could 

differ depending on the time elapsed between the first symptoms and sampling (34). Fourth, we collected 

only 3 surface samples on a given day, which limits the possibility of detecting contamination. In addition, 

sampling was performed at a single time point during the illness, which did not allow us to look for 

longitudinal contamination. Fifth, even if we analyzed more than 1000 samples for viral detection, data 

from 150 patients should be taken with caution in a pandemic reaching near to one billion contaminations. 

Sixth, a major limitation lies in the absence of viral culture performed to assess the viability of positive 

samples by RT-PCR. Indeed, in the absence of viral culture, we cannot confirm the infectious nature of 

our samples. However, based on the literature data on viability of SARS-CoV-2 on surfaces(10) and the 

high Ct of our samples, the hypothesis of a very low contamination by "respiratory route" in this specific 

ICU population seems plausible. Moreover, during the first waves, all ventilation systems were turned off 

to reduce the risk of nosocomial contamination, and windows were left open in most of the bedrooms of 

Covid-19 patients to improve air renewal and reduce the risk of HCW contamination. We recently learned 

that this decision has had an impact on viral spread in patient rooms due to uncontrolled airflow, such as 

an outside breeze or airflow from an open door(38).  Finally, because no vaccine was available during the 

study period, we have no data on the risk of environmental contamination around SARS-CoV-2-infected 

patients with prior SARS-CoV-2 vaccination. 

Table 1: Patient’s characteristics 

Demographic data  
Women 40 (26%) 
Age (years) 65 [54-73] 
Covid-19 data  
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Vaccination against SARS-CoV-2 0 
Ct of SARS-CoV-2 PCR on respiratory sample 26 [22-30] 
Symptoms duration before environmental sampling 10 [7-13] 
Respiratory Rate 26 [23-30] 
Fever 63 (42%) 
Cough 65 (43%) 
Sneezing 1 (1%) 
Sputum 15 (10%) 
Diarrhea 13 (9%) 
Comorbidities  
Diabetes mellitus  53 (35%) 
Arterial hypertension 70 (46%) 
COPD 7 (5%) 
Immunosuppression 6 (4%) 
Respiratory support  
Non invasive Ventilation 9 (6%) 
Invasive Mechanical Ventilation 45 (30%) 
High Flow Nasal Cannula Oxygneation 60 (40%) 
Conventional face mask oxygenation 36 (24%) 
Nebulization 5 (3%) 
Air Stream determinant in patient’s room  
Active ventilation system  0 
Open window 81 (74%) 
Closed door 150 (100%) 

 

Table 2: Results of SARS-CV-2 positive PCR in environmental sampling around Covid-19 patients 

admitted to the ICU 

Environmental sampling n/N % (95%CI) 
Air Sampling : 600L, 100L/m, during 6 minutes, at the top of the 
patient’s head 

  

              Air sample at 3m 3/139 2.1% (4.5 to 6.2) 
              Air sample at 1m 2/141 1.4% (0.2 to 5.0) 
At least one of the two air samples positive 5/139  3.6% (1.2 to 8.2) 
Surface sampling : at least 8h after biocleaning, eSwab   

              External face of oxygen device used by patient 
31/132 

23.5% (16.5 to 
31.6) 

              Line of intravenous infusion 
44/131 

33.6% (25.6 to 
42.4) 

Table or computer at least 2 meters from the patient’s head 
17/132 

12.9% (7.8 to 
19.8) 

At least one of the three surface positive 
71/133 

53.3% (44.5 to 
62.2) 

External surface of HCW face mask   
Doctor 2/119 1.7% (2.0 to 5.9) 
Nurse 2/132 1.5% (1.8 to 5.4) 
Care assistant 2/121 1.7% (2.0 to 5.8) 

At least one of the three masks positive 6/135 4.4% (1.6 to 9.4) 
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Table 3: Results of univariate analysis focusing on surface contamination with SARS-CoV-2 around  

Covid patients admitted to the ICU for acute respiratory failure. 

Parameter OR [IC95%] p 

Women 1.17 [0.56-2.45] 0.68 

Age 1.02 [0.99-1.04] 0.22 

Evolution of Covid before ICU admission   

   Symptoms duration before environmental sampling 0.96 [0.9-1.03] 0.24 

   Ct of SARS-CoV-2 PCR on respiratory sample 0.87 [0.81-0.93] <0.0001 

Comorbidities 1.22 [0.63-2.35] 0.56 

Arterial hypertension 1.26 [0.66-2.42] 0.49 

Diabetes mellitus  1.78 [0.88-3.58] 0.11 

COPD 0.97 [0.2-4.77] 0.97 

Immunosuppression 0.72 [0.05-9.56] 0.80 

Ongoing treatment against cancer 1.16 [0.16-8.62] 0.88 

Any ongoing treatment before Covid onset 0.93 [0.42-2.09] 0.86 

Oral Steroids before Covid onset 0.5 [0.14-1.77] 0.28 

Renin-Angiotensin System Blockers drugs before Covid onset 1.72 [0.66-4.5] 0.27 

Clinical presentation   

   Respiratory Rate 1.00 [0.97-1.03] 0.89 

   Cough 0.57 [0.29-1.1] 0.095 

   Sputum 1.31 [0.43-4.04] 0.63 

   Fever 0.74 [0.38-1.43] 0.37 

   Diarrhea, 3.46 [1.15-10.39] 0.027 

   Other associated infection 0.38 [0.09-1.53] 0.17 

Respiratory management in the ICU   

   Non invasive ventilation 1 0.30 

   High Flow Nasal Cannula 1.00 [0.40-2.52] 0.99 

   Invasive Mechanical Ventiilation 1.43 [0.67-3.06] 0.35 

   Enclosed succion system 1.59 [0.72-3.54] 0.26 

   Heated humidifier 1.80 [0.75-4.32] 0.19 

   Heat and moisture exchange filter 0.4 [0.1-1.62] 0.20 

   Spontaneous Ventilation 0.69 [0.36-1.35] 0.28 

   Oxygenotherapy 0.73 [0.38-1.41] 0.35 

   Nebulisation 0.68 [0.11-4.37] 0.69 

Room management   

   Open window 0.57 [0.22-1.43] 0.23 

   Negative pressure in patient’s room 2.32 [0.11-51.35] 0.59 

   Air renewal device 2.35 [0.11-50.44] 0.58 
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Table 4: Results of multivariate analysis focusing on surface contamination with SARS-CoV-2 

around  Covid patients admitted to the ICU for acute respiratory failure. 

Parameter OR [IC95%] p 

Ct of SARS-CoV-2 PCR on respiratory sample 0.87 [0.81-0.93] <0.0001 

Diarrhea 3.28 [1.09-9.88] 0.037 

Cough 0.58 [0.28-1.21] 0.15 
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Take home messages: In Covid patients admitted to the ICU for acute respiratory failure, viral dispersion 

around patients reach more than 50% of the surface while less than 5% of air samples were positive 

arguing for a important contribution of the « contact route » of transmission, i.e. through fomites. Two 

factors are associated with surface contamination: the viral load in respiratory samples and the presence 

of diarrhea. 
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