

- Manipulation de Données Structurées et Interaction avec des Outils Externes grâce aux LLMs :
 - L'Avenir de l'IA Générative dans les Systèmes d'Information ?

Laure Soulier

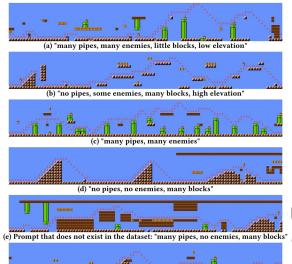
29 mai 2024

Modèles de langue et lA générative

L'IA générative

Ecris un texte de 5 phrases sur Jian-Yun Nie

Jian-Yun Nie est un chercheur et professeur émérite en informatique. Il est connu pour ses contributions significatives dans le domaine du traitement de l'information et de la recherche d'information. Ses travaux portent notamment sur l'exploration de textes, la recherche d'informations multilingues et la fouille de données. En tant que chercheur de renommée mondiale, Jian-Yun Nie a publié de nombreux articles scientifiques et a participé à des conférences internationales. Ses recherches ont eu un impact important dans le domaine de l'informatique et continuent d'influencer de nouvelles avancées technologiques.



Pour en avoir un aperçu, voici l'extrait généré pour le prompt « bande sonore épique (e) Prompt that does not exist in the dataset: "many pipes, no enemies, many blocks" utilisant des instruments orchestraux. Le morceau fait monter la tension, crée un sentiment d'urgence. Un chœur a cappella chante à l'unisson, ce qui crée un sentiment de puissance et de force » :

© openAl, Midjourney, https://www.blogdumoderateur.com/musiclmnouvel-outil-ia-google-generer-musique/ And (Sudhakaran et al 2023)

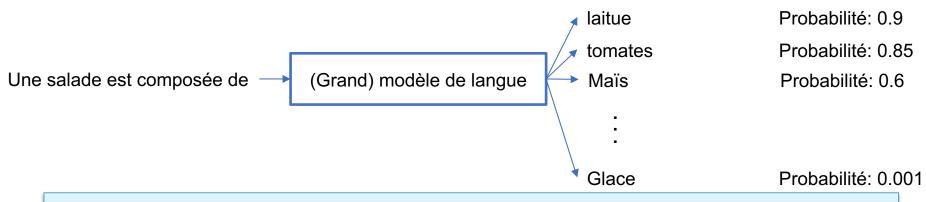
(f) Failure case: "Many pipes, no enemies, some blocks'

00:04

(Grands) Modèles de Langue

Principe:

- Modeliser la probabilité d'une séquence $x_1, x_2, ..., x_n$
- Les items peuvent être des mots, des caractères, des ngrams/bouts de mots, etc

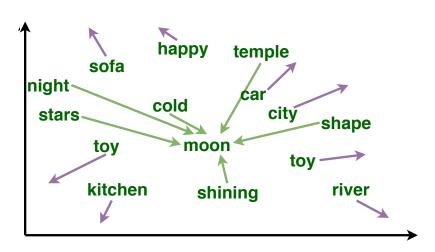


Etant donné une séquence $x_1, x_2, ..., x_{n-1}$, quelle est la probabilité du prochain item x_n ? $P(x_n|x_1, x_2, ..., x_{n-1})$

Sémantique, representation, espace latent

Apprentissage de représentations

→ Algorithme Word2Vec



he curtains open and the moon shining in on the barely ars and the cold , close moon " . And neither of the wrough the night with the moon shining so brightly , it made in the light of the moon . It all boils down , wr surely under a crescent moon , thrilled by ice-white sun , the seasons of the moon ? Home , alone , Jay pla m is dazzling snow , the \underline{moon} has risen full and cold un and the temple of the moon , driving out of the hug in the dark and now the moon rises , full and amber a bird on the shape of the moon over the trees in front But I could n't see the moon or the stars , only the rning , with a sliver of moon hanging among the stars they love the sun , the moon and the stars . None of the light of an enormous moon . The plash of flowing w man 's first step on the moon; various exhibits, aer the inevitable piece of moon rock . Housing The Airsh

oud obscured part of the moon . The Allied guns behind

2000

2012

2014

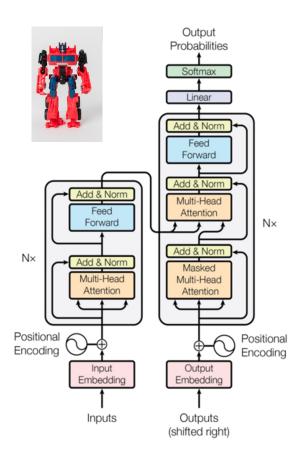
2017

Modèle pionnier de Bengio

Word2Vec. FastText, ... Doc2Vec. FastSent, ... Représentations contextuelles Transformer networks Bert, T5, GPT, ...

(Grands) Modèles de Langue

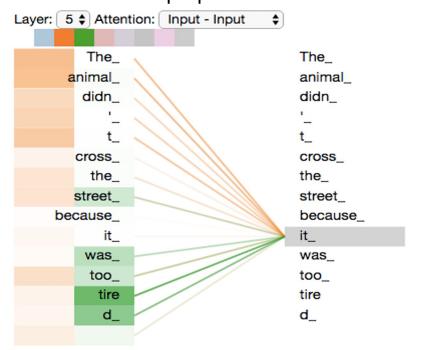
Transformer (2017)



Un encoder-decoder avec :

- Environ 65 millions de paramètres (maintenant plus)
- Plusieurs blocs successifs
- Des têtes parallèles

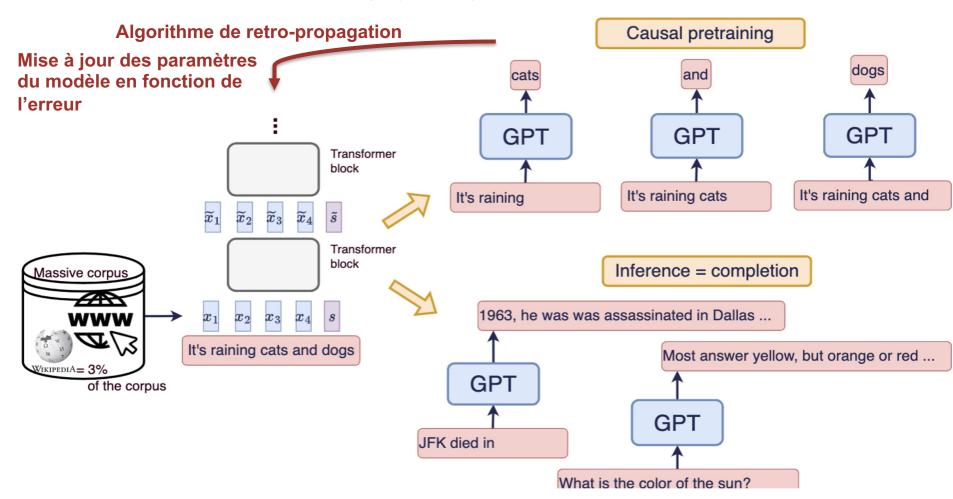
... qui estime des representations contextuelles des items avec l'attention propre



Distinguer Washington/city de Washington/man

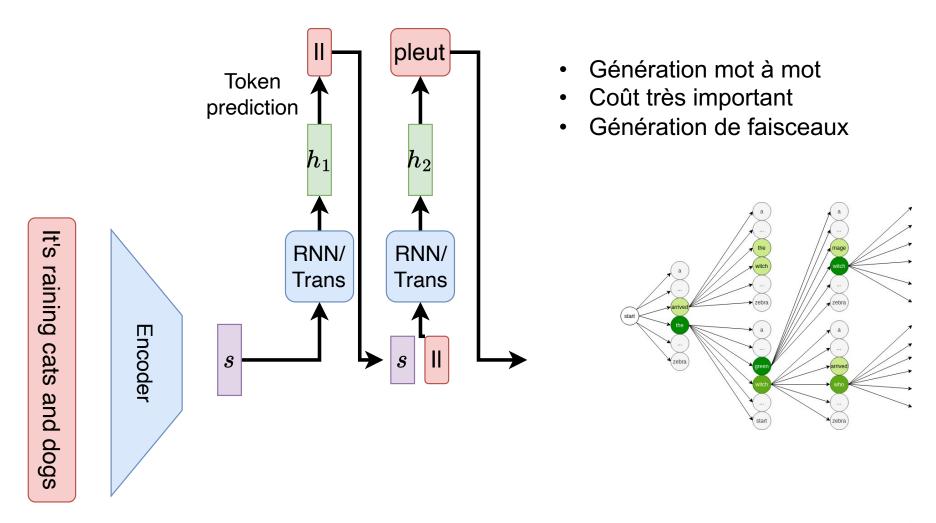
Entraîner et utiliser les grands modèles de langue

Entrainer un transformer (e.g. GPT)



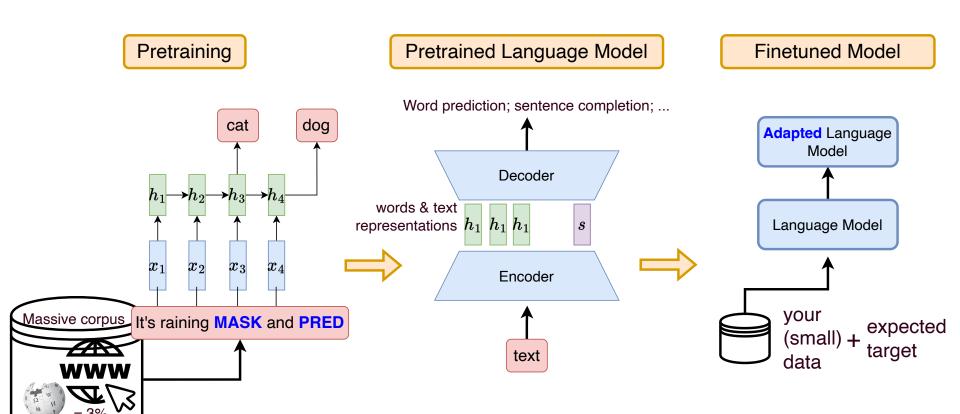
IA Générative

→ Exploiter les architectures précédentes pour écrire du texte



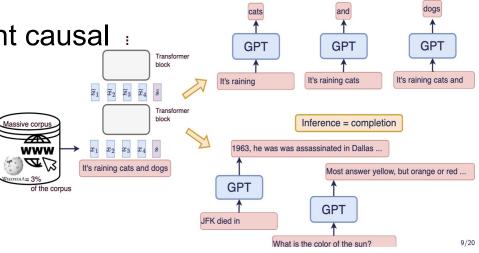
Nouveau paradigme d'apprentissage

- 1. Nouvelle tâche
 - → Peu de données
 - Choix de la taille des modèles
- 2. Modèle de langue
 - → Connaissances générales
- 3. Adaptation pour une tâche
 - → Traduction
 - Détection d'entités nommées
 - → ...



Entraînement de ChatGPT

→ Etape 1: Pré-entraînement causal



Causal pretraining

Un modèle gigantesque

Plus...

→ de mots en entrée [500 =>2k, 32k]

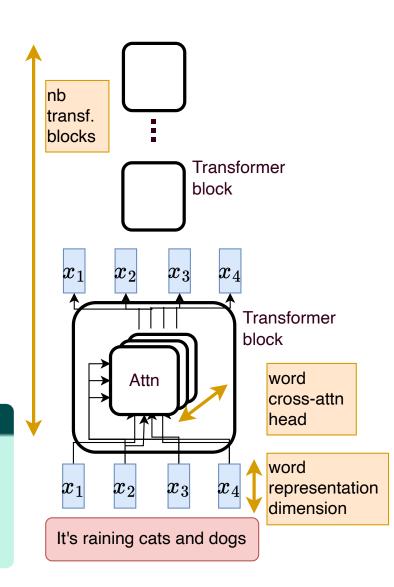
→ de dimensions pour les mots [500-2k =>12k]

→ de têtes d'attention [12 => 96]

→ de blocks/couches [5-12 => 96]

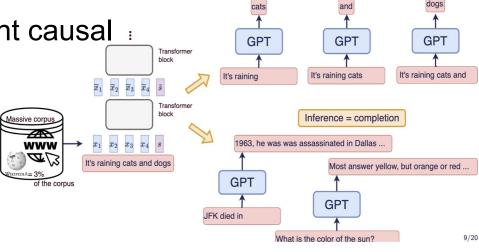
175 Milliards de paramètres... Ca fait quoi?

- $1.75 \cdot 10^{11} \Rightarrow 300 \text{ Go} + 100 \text{ Go}$ (stockage des données en inférence) $\approx 400 \text{Go}$
- GPU NVidia A100 = 80Go de mémoire (=20k€)
- Coût pour (1) entrainement: 4.6 Millions d'€



Entraînement de ChatGPT

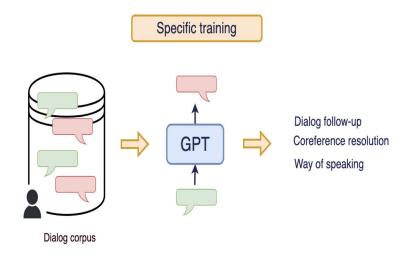
→ Etape 1: Pré-entraînement causal :

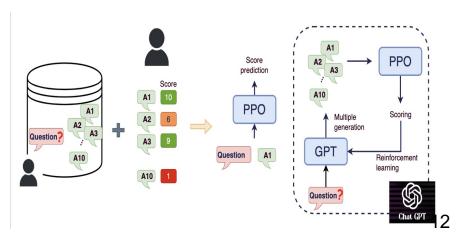


→ Etape 2: Suivi de dialogue

→ Etape 3: Alignement des réponses avec le feedback humain (RLHF)

Causal pretraining





Suivi de dialogue + tâches spécifiques

→ Affinage en questions/réponses, raisonnements, ...

Instruction finetuning

Please answer the following question.

What is the boiling point of Nitrogen?

Chain-of-thought finetuning

Answer the following question by reasoning step-by-step.

The cafeteria had 23 apples. If they used 20 for lunch and bought 6 more, how many apples do they have?

Multi-task instruction finetuning (1.8K tasks)

Inference: generalization to unseen tasks

Q: Can Geoffrey Hinton have a conversation with George Washington?

Give the rationale before answering.

-320.4F

The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9.

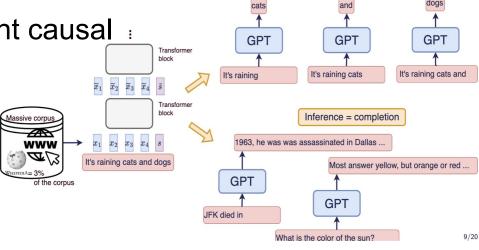
Language model

Geoffrey Hinton is a British-Canadian computer scientist born in 1947. George Washington died in 1799. Thus, they could not have had a conversation together. So the answer is "no".

Importance du prompt

Entraînement de ChatGPT

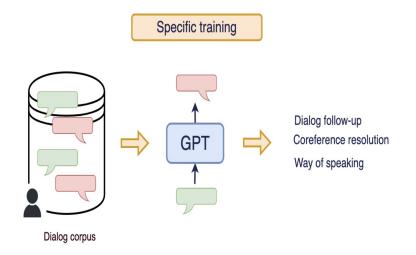
→ Etape 1: Pré-entraînement causal :

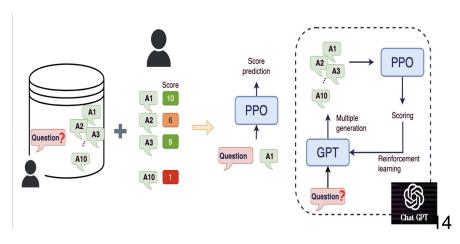


→ Etape 2: Suivi de dialogue

→ Etape 3: Alignement des réponses avec le feedback humain (RLHF)

Causal pretraining



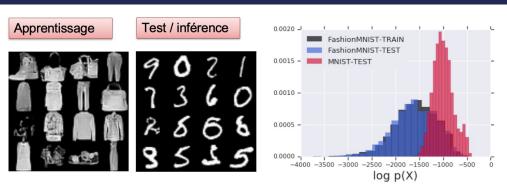


Apprentissage en contexte

- → Apprentissage en context / In-context learning
 - Mentionner des exemples dans le prompt

Limites générales

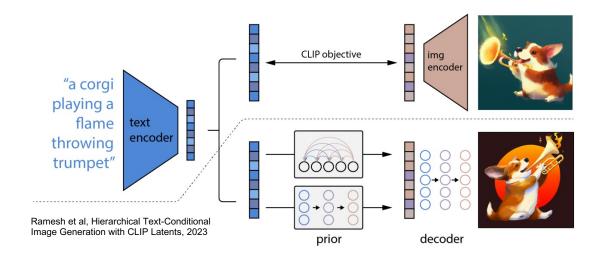
- → Manque de véracité / fiabilité
 - → Vérité vs Vraisemblance -Génération d'hallucinations
- → Incapacité à s'auto-évaluer
- → Biais des données
- → Manque de stabilité/prédictibilité
 - → How old is Obama VS how old is Obama?
- → Manque d'explicabilité/interprétabilité
- → Manque de transparence

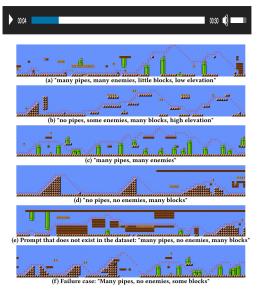


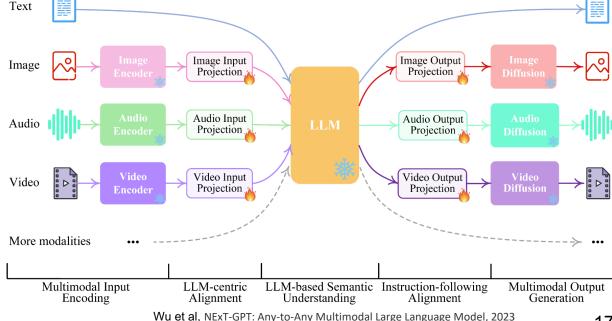
Foundation Model Transparency Index Scores by Major Dimensions of Transparency, 2023 Source: 2023 Foundation Model Transparency Index

	Meta	BigScience		stability.ai	Google	ANTHROP\C	cohere	Al21 labs	Inflection	amazon	
	Llama 2	BLOOMZ	GPT-4	Stable Diffusion	2 PaLM 2	Claude 2	Command	Jurassic-2	Inflection-1	Titan Text	Average
Data	40%	60%	20%	40%	20%	0%	20%	0%	0%	0%	20%
Labor	29%	86%	14%	14%	0%	29%	0%	0%	0%	0%	17%
Compute	57%	14%	14%	57%	14%	0%	14%	0%	0%	0%	17%
Methods	75%	100%	50%	100%	75%	75%	0%	0%	0%	0%	48%
Model Basics	100%	100%	50%	83%	67%	67%	50%	33%	50%	33%	63%
Model Basics Model Access	100%	100%	67%	100%	33%	33%	67%	33%	0%	33%	57%
Capabilities	60%	80%	100%	40%	80%	80%	60%	60%	40%	20%	62%
Risks Mitigations Distribution	57%	0%	57%	14%	29%	29%	29%	29%	0%	0%	24%
Mitigations	60%	0%	60%	0%	40%	40%	20%	0%	20%	20%	26%
<u>ট্</u> Distribution	71%	71%	57%	71%	71%	57%	57%	43%	43%	43%	59%
Usage Policy	40%	20%	80%	40%	60%	60%	40%	20%	60%	20%	44%
Feedback	33%	33%	33%	33%	33%	33%	33%	33%	33%	0%	30%
Impact	14%	14%	14%	14%	14%	0%	14%	14%	14%	0%	11%
Average	57%	52%	47%	47%	41%	39%	31%	20%	20%	13%	

IA générative et multimodalité





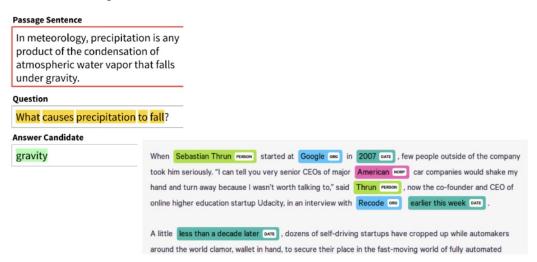


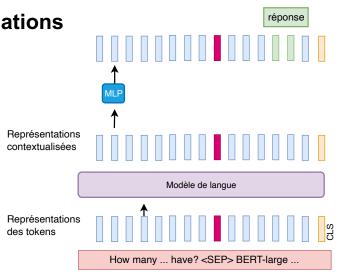
© Midjourney, (Sudhakaran et al 2023) https://www.blogdumoderateur.com/musiclm-nouvel-outil-ia-google-generer-musique/

(from) Data-to-text

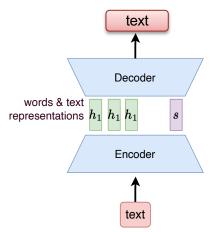
Différentes tâches pour différents problèmes

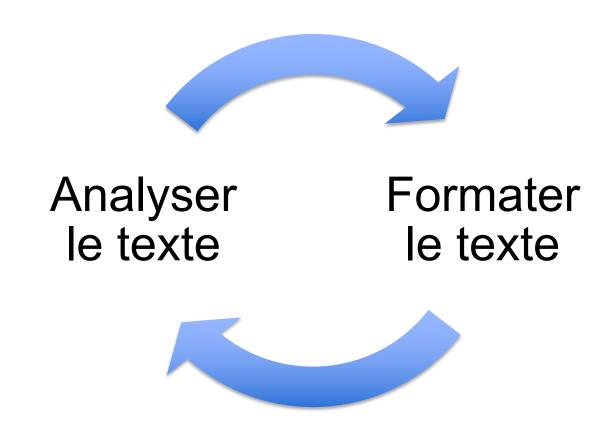
• Analyser le texte : sélectionner/extraire les informations





• Formater le texte : mise en forme / interfaçage avec l'humain





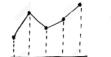
Résumé de documents Extraction d'informations Extraire les informations saillantes

Analyser

Formater

Résumé de structures complexes

Formater



Rendre les informations lisibles

Résumé de structures complexes

Extraire les informations saillantes

Analyser

Formater

Rendre les informations lisibles

Cas des données financières

OFFICIAL PERFORMANCE (net) OFFICIAL PERFORMANCE (gross) INTERNAL PERFORMANCE

Fund	Benchmark	Excess		Allocation	Selection	FX rates	CGT Prov	Residual
3,38%	5 3.4%	-1,96%						
3,48%	5,34%	-1,86%	MANAGEMENT EFFECTS	-0,81%	-1,42%	0,46%	-0,01%	-0,08%
3.10%	5.32%	-2 24%						

Report Currency:

Reference Benchmark : MSCL China A, NR EUR

SECURITY LEVEL - BIGGEST CONTRIBUTORS TO EXCESS RETURN

Company Name	Grouping	Perf	Var(W)	Effect
China Pacific Insu	Financials	13,43	3,15	0,25
Shanxi Lu'an Envir	Energy	14,82	2,12	0,21
Anhui Conch Cement	Materials	13,41	2,56	0,20
China Minsheng Ban	Financials	10,61	3,58	0,18
Jizhong Energy Res	Energy	13,61	2,20	0,18
Jiangsu Yueda Inv	Industrials	11,78	2,24	0,14
Poly Real Estate G	Financials	9,14	3,50	0,13
Xinjiang Ba Yi Iro	Materials	16,69	0,89	0,10
China Nonferrous	Materials	13,84	0,96	0,08
China Baoan Group	Industrials	17,34	0,61	0,07

SECTOR LEVEL - BEST ALLOCATION DECISIONS

Grouping	Var(W)	Segm. Perf	Effect
Health Care	-2,24	-5,53	0,25
Consumer Discretionary	-4,65	3,12	0,11
Energy	2,51	9,23	0,10
Industrials	0,19	5,23	0,01
Utilities	0,29	1,67	-0,01

SECTOR LEVEL - BEST SELECTION DECISIONS

Grouping	PF Perf	BM Perf	Effect
Financials	9,58	8,69	0,22
Information Technology	-1,93	-2,63	0,07
Telecommunication Services	-0,89	-2,01	0,01
Utilities	0,32	1,67	-0,04
Health Care	-7,92	-5,53	-0,08

SECURITY LEVEL - BIGGEST DETRACTORS FROM EXCESS RETURN

Company Name	Grouping	Perf	Var(W)	Effect
Nari Tech Dev Co	Industrials	-6,48	3,26	-0,39
Shandong Denghai S	Consumer Staples	-8,32	1,76	-0,26
Zte Corp	Information Technology	-9,38	1,66	-0,25
Mesnac Co.Ltd	Industrials	-9,17	1,54	-0,22
Yunnan Baiyao Grp	Health Care	-6,82	1,70	-0,22
Jiangsu Aoyang Tec	Materials	-14,77	0,49	-0,22
Fujian Septwolves	Consumer Discretionary	-7,86	1,46	-0,20
Tiangjin Tasly Phar	Health Care	-9,11	1,05	-0,17
Xi An Aero-Engine	Industrials	-3,10	1,83	-0,16
Ping An Insurance	Financials	13,27	-1,96	-0,15

In January (30/12/2011 to 20/1/2012), Flexifund Equity China A rose in value by 3.48% compared to a gain of 5.34% for its index in Euro terms. Both asset allocation and stock selection detracted from relative performance, as the market focused on oversold or cyclical themes, due to better global risk appetite and more positive economic news.

_		4.1		
From a sect	tor allocation i	perspective.	I I	

		~
7,37	11,15	-0,35
-2,19	3,12	-0,28
-4,59	-3,23	-0,12
8,22	9,23	-0,10
	7,37 -2,19 -4,59	7,37 11,15 -2,19 3,12 -4,59 -3,23

Cas du journalisme sportif

4TD		7	
	Toronto Raptors	S ((4-2)

Player	MIN	ORTG	USG%	PTS	FG	3PT	FT	OREB	DREB	то	AST	BLK	STL	PF
Pascal Siakam F	46	132.0	20.4	26	10-17	3-6	3-4	2	8	2	3	1	1	2
Kawhi Leonard F	41	115.7	23.5	22	7-16	1-5	7-8	1	5	2	3	1	2	4
Marc Gasol C	27	93.3	12.8	3	0-5	0-2	3-4	3	6	1	4	0	0	4
Kyle Lowry G	42	137.3	23.2	26	9-16	4-7	4-6	2	5	3	10	0	3	5
Danny Green G	18	-	2.5	0	0-0	0-0	0-0	0	1	1	3	0	1	1
Fred VanVleet G	34	132.5	22.7	22	6-14	5-11	5-5	1	1	1	0	0	1	1
Serge Ibaka C	22	118.7	28.5	15	7-12	0-1	1-2	2	1	1	2	0	0	4
Norman Powell G	11	-	12.4	0	0-2	0-1	0-0	0	1	1	0	0	0	2
Game Total	240	-	-	114	39-82	13-33	23-29	11	28	12	25	2	8	23

Golden State Warriors (2-4)

Player	MIN	ORTG	USG%	PTS	FG	3PT	FT	
Draymond Green F	44	92.9	19.0	11	5-10	1-4	0-2	
Andre Iguodala F	32	117.1	25.0	22	9-15	3-6	1-5	
Kevon Looney C	27	109.4	13.2	6	3-7	0-0	0-0	
Stephen Curry G	42	113.3	23.7	21	6-17	3-11	6-6	
Klay Thompson G	32	160.6	25.0	30	8-12	4-6	10-10	
DeMarcus Cousins C	19	117.3	27.6	12	4-9	0-1	4-7	
Shaun Livingston G	16	92.0	16.7	6	3-5	0-0	0-0	
Quinn Cook G	13	73.2	10.3	2	1-3	0-2	0-0	
Alfonzo McKinnie F	10	-	4.4	0	0-1	0-1	0-0	
Andrew Bogut C	3	-		0	0-1	0-0	0-0	
Jonas Jerebko F	2	-	-	0	0-0	0-0	0-0	
Game Total	240	-	-	110	39-80	11-31	21-30	

The **Toronto Raptors** defeated the host **Golden State** Warrior, **114-110**, in Game 6 of the NBA Finals at ORACLE Arena on Thursday. [...]

AST

13

BLK

STL

PF

The Raptors (4-2) were lead by Kyle Lowery, as he accrued 26 points, seven rebounds, 10 assists and three steals. [...]

[...]

OREB

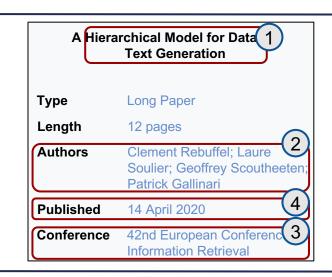
DREB

15

TO

8

Data-to-text : générer du texte à partir de données structurées



A hierarchical Model for Data-To-Text Generation (Rebuffel et al.) will be published at ECIR 2020

Content selection

Macro-planning

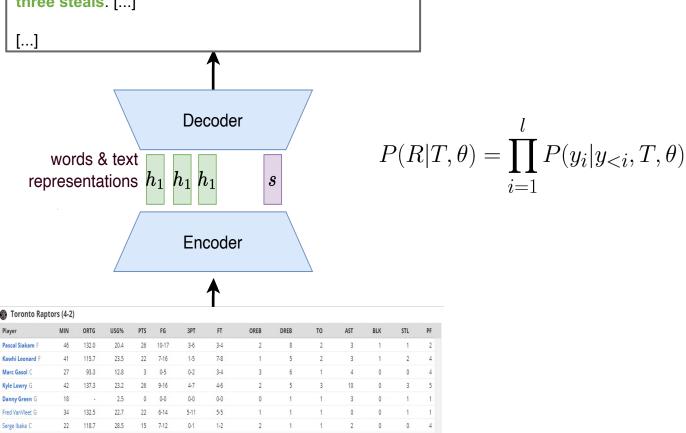
Surface Realisation

Sentence aggregation

Data abstraction/interpretation

Data-to-text : générer du texte à partir de données structurées

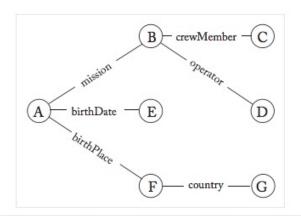
The Raptors (4-2) were lead by Kyle Lowery, as he accrued 26 points, seven rebounds, 10 assists and three steals. [...]



Encodage des données structurées : linéarisation

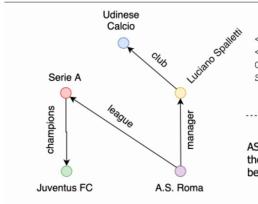
Country	PTS
Germany	2
Argentina	0

[(0, Country, Germany), (0, PTS, 2), (1, Country, Argentina), (1, PTS, 0)]



Input: A (birthPlace F (country G)) (birthDate E) (mission B (operator D) (crewMember C)

Encodage des données structurées : linéarisation



<S> Serie A <P> champions <O> Juventus F.C.
<S> Luciano Spalletti <P> club <O> Udinese
Calcio <S> A.S. Roma <P> manager <O> Luciano
Spalletti <S> A.S. Roma <P> league <O> Serie A

AS Roma play in the Serie A league where Juventus FC are the champions. Their manager is Luciano Spalletti who has been associated with Udinese Calcio.

Domain train

Inform arrive_by : 11:51

Request num_people

train inform arriveby = 11:51 | train request
people = ?

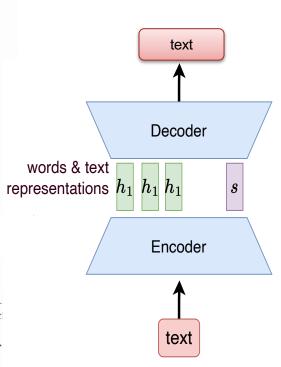
The closest arrival time i can give you is 11:51, is that ok? And how many tickets would you like?

Table Title: Cristhian Stuani **Section Title**: International goals

No.	Date	Venue	Opponent	Result
2	13 November 2013	Amman International Stadium, Amman, Jordan	Jordan	5-0

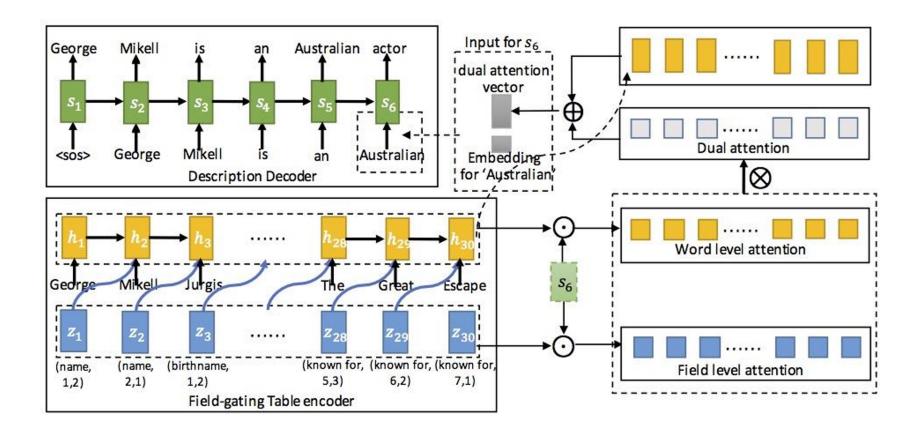
<page_title> Cristhian Stuani </page_title>
<section_title> International goals </section_title>
 <cell> 2. <col_header> No. </col_header> </cel
<cell> 13 November 2013 <col_header> Date </col_header
</cell> <cell> Amman International Stadium, Amman,
Jordan <col_header> Venue </col_header> </cell> <cell>
Jordan <col_header> Opponent </col_header> </cell> <cell> 5-0 <col_header> Result </col_header> </cell>

On 13 November 2013 Cristhian Stuani netted the second in a 5–0 win in Jordan.



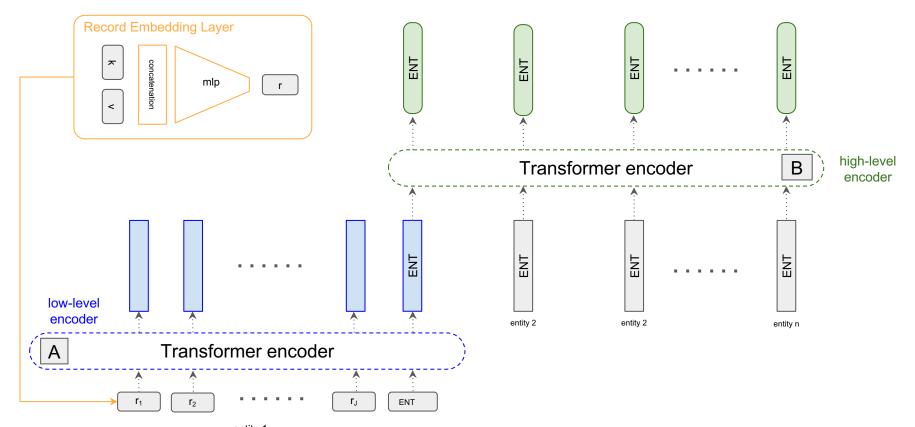
Encodage basé sur la structure

- Attention duale :
 - Scores d'attention sur les mots et les champs de la table



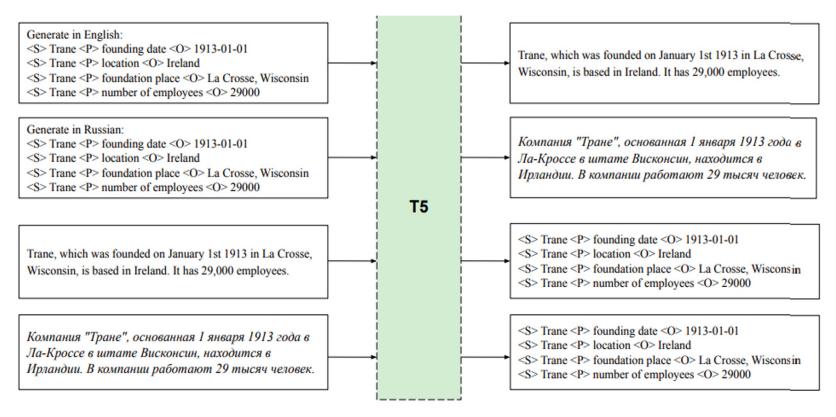
Encodage basé sur la structure [Rebuffel et al., ECIR 2021]

- Encodage hiérarchique :
 - Encodage d'une case du tableau
 - Encodage d'une ligne du tableau (token [ENT])
 - Encodage du tableau



Dualité des modèles Transformers

- Passage D2T et T2D possible avec le même modèle
 - T5 pré-entraîné + affiné sur la tâche
 - Sérialisation des triplets : <S> Sujet <R> Relation <O> Object
 - Concaténation des triplets dans l'ordre d'apparition



Génération en DTT: cas des omissions & des hallucinations

Deux catégories de pathologies en DTT

Attribute	Value
Birthplace	Utah, America
Position	forward (soccer player)

Omissions

Contenu attendu mais manquant dans le texte généré

A soccer player, who plays as a forward.

Hallucinations

- Texte généré contient du texte divergent de la table
- Textes de références souvent divergents

A Utah forward, from the national team.

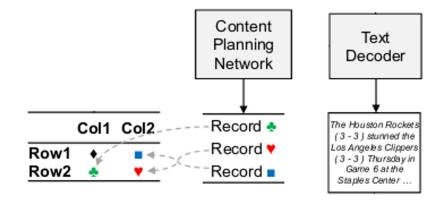
Explication :

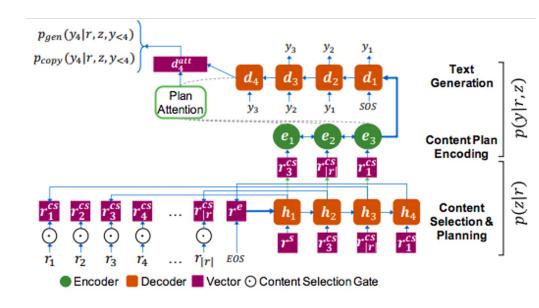
Procédure d'apprentissage force le modèle à copier les « comportements » des données d'entraînement

Améliorer le décodage avec la planification

- Deux étapes de décodage
 - Génération d'un plan (séquence ordonnée de clés-valeurs)
 - Génération du texte final

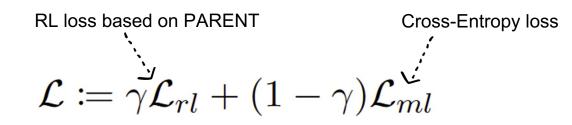
Variante : génération séquentielle d'un élément du plan et de la phrase associée



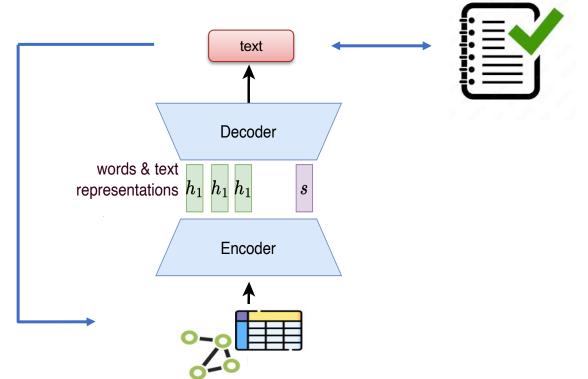


Améliorer le décodage par apprentissage par renforcement [Rebuffel et al., INLG 2020]

Injecter une métrique dans l'apprentissage du modèle



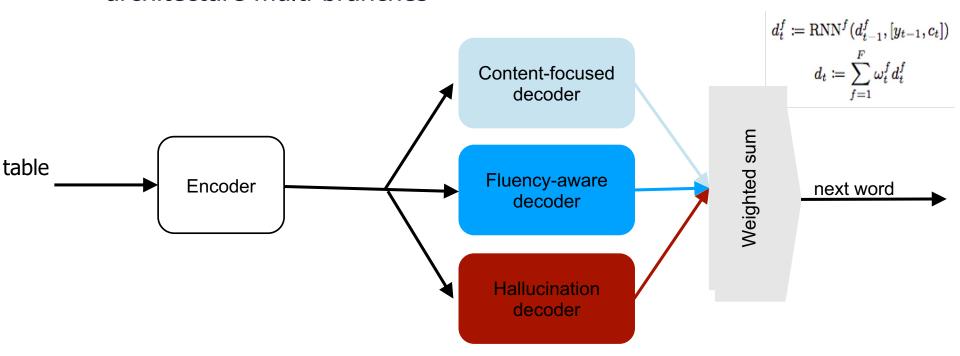
PARENT : métrique d'appariement entre le texte généré et les données structurées (n-grams, co-occurrences)



Amélioration du décodage par des facteurs [Rebuffel et al., DMKD 2022]

Intuitions

- Un mot : associé soit à du contenu, soit à de l'hallucination
- Pour chaque mot, on peut contrôler différents facteurs via une architecture multi-branches



- Entraînement : chaque mot est associé à la branche correcte (contenu ou hallucination)
- Génération : l'humain contrôle le niveau des facteurs

Amélioration du décodage par débruitage [Le Bronnec et al., en cours]

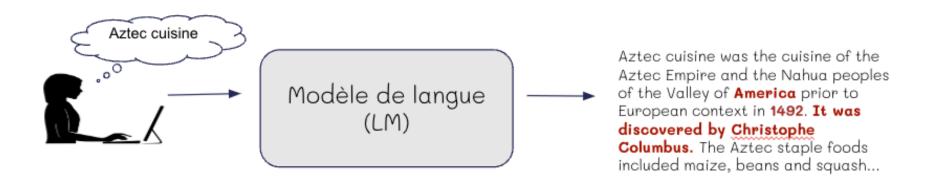
- Construire des données bruitées
 - Hallucination (texte non référencé)
 - Absence de factualité sur des valeurs
 - Ajouts d'attributs

Donnée structurée (entrée)	Texte attendu	Texte bruité
<h> AMC_Matador <r> bodyStyle <t> Coupé</t></r></h>	The AMC Matador's body style is Coupé	The Alc Matador is a Spanish bourgeois coupe.
name[Clowns] eatType[coffee shop] food[Fast food] customer rating[high] area[riverside] near[Clare Hall]	Clowns is a coffee shop which offers fast food and has high customer ratings, and may be found near Clare Hall in the riverside area	Cats and coffee shop, and the fast food place, Clowns, is located near Clare Hall. It is in the riverside area. It has a high customer rating.

- Apprentissage contrastif
 - Maximiser la probabilité du texte attendu
 - Minimiser la probabilité du texte bruité

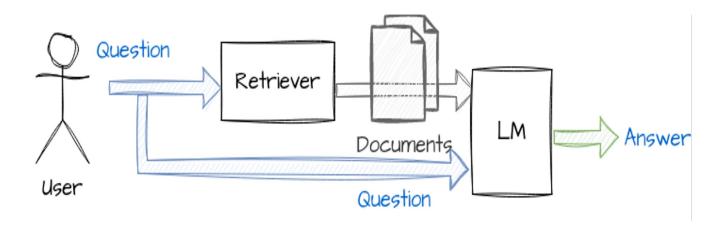
Augmenter les modèles de langue avec des outils externes pour améliorer la factualité

Générer avec des LLMs : le dilemme de la factualité et des connaissances paramétriques



- Génération dépendante de la formulation de la requête
- Génération dépendante des connaissances paramétriques du modèle

Génération assistée par la recherche d'information (RAG : retrieval-augmented generation)



Retrieval-Augmented Generation (RAG) [1]

Améliorer les connaissances en fournissant des documents en entrée

Retrieval-Augmented Language Model (REALM) [2]

Intégrer l'ordonnancement dans le pré-entraînement du LLM

Retrieval-Enhanced Transformer (RETRO) [3]

Scalabilité à un grand nombre de documents (chunck-based attention)

- Comment contraindre le LLM à extraire le contenu des documents ?
- Est-ce nécessaire d'utiliser le moteur de recherche à chaque question ?

^[1] Guu et al (2020), REALM: Retrieval-Augmented Language Model Pre-Training

^[2] Lewis et al (2020) Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

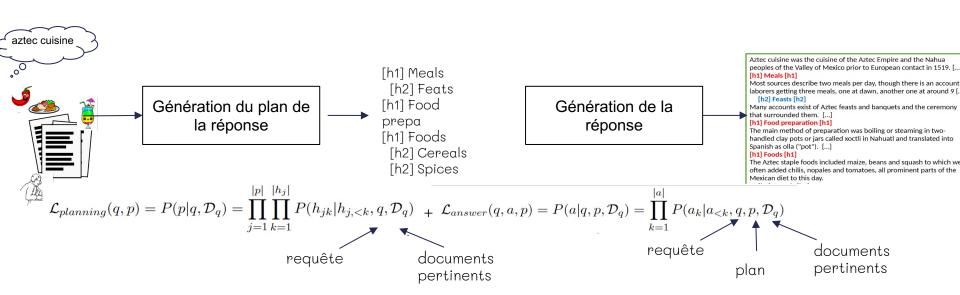
^[3] Borgeaud et al (2022) Improving Language Models by Retrieving from Trillions of Tokens

Contraindre le RAG par la planification [Djeddal et al., ECIR 2022]

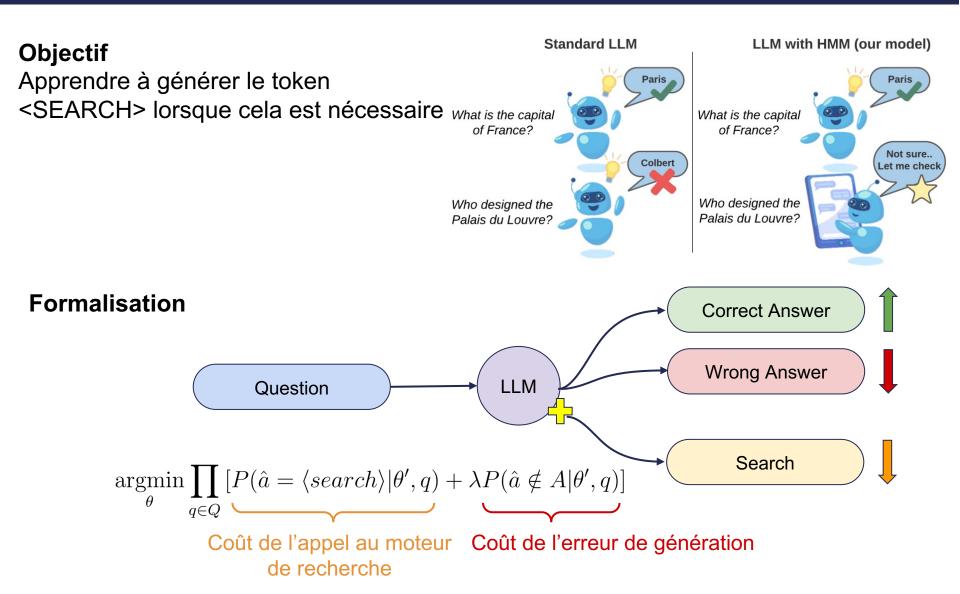
Planification de la structure de la réponse (~ planification du Data-to-text)

Etape 1 : Génération d'un plan intermédiaire à partir des documents

Etape 2 : Génération de la réponse à partir du plan



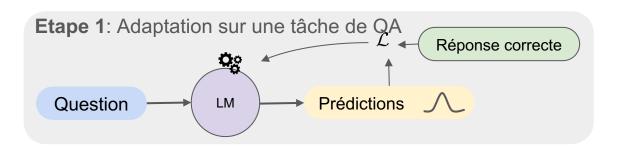
Apprendre à s'auto-évaluer [Erbacher et al., ECIR 2023]

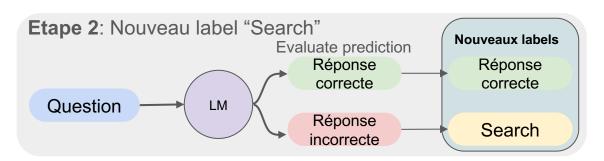


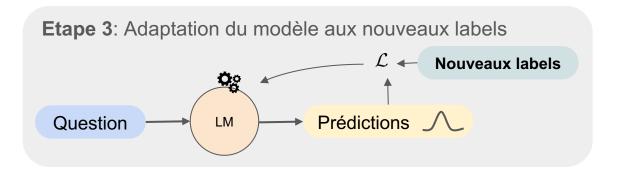
Apprendre à s'auto-évaluer [Erbacher et al., ECIR 2023]

Apprendre une fonction de filtrage qui :

- Laisse inchangé
 les Correct Answer
- Masque les Wrong Answer avec Search

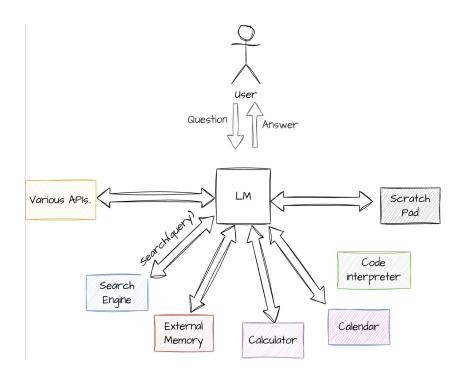






Cas générique du RAG

Apprendre aux LLMs à appeler des outils externes



The New England Journal of Medicine is a registered trademark of [QA("Who is the publisher of The New England Journal of Medicine?") → Massachusetts Medical Society] the MMS.

Out of 1400 participants, 400 (or [Calculator(400 / 1400) $\rightarrow 0.29$] 29%) passed the test.

The name derives from "la tortuga", the Spanish word for $[MT("tortuga") \rightarrow turtle]$ turtle.

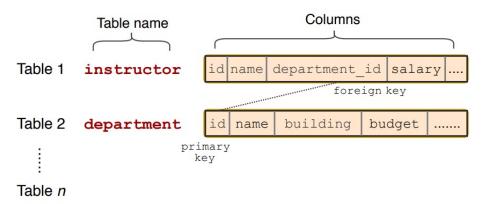
The Brown Act is California's law [WikiSearch("Brown Act") → The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies.] that requires legislative bodies, like city councils, to hold their meetings open to the public.

Vers les systèmes d'information : text-to-SQL

Les bases de données parmi les outils externes possibles

Générer des requêtes SQL à partir de questions

<u>Annotators check database schema</u> (e.g., database: college)



Annotators create:

Complex question What are the name and budget of the departments with average instructor salary greater than the overall average?

Complex SQL SELECT T2.name, T2.budget FROM instructor as T1 JOIN department as T2 ON T1.department_id = T2.id GROUP BY T1.department_id HAVING avg(T1.salary) >

(SELECT avg(salary) FROM instructor)

Easy

What is the number of cars with more than 4 cylinders?

```
SELECT COUNT(*)
FROM cars_data
WHERE cylinders > 4
```

Meidum

For each stadium, how many concerts are there?

```
SELECT T2.name, COUNT(*)
FROM concert AS T1 JOIN stadium AS T2
ON T1.stadium_id = T2.stadium_id
GROUP BY T1.stadium id
```

Hard

Which countries in Europe have at least 3 car manufacturers?

```
SELECT T1.country_name
FROM countries AS T1 JOIN continents
AS T2 ON T1.continent = T2.cont_id
JOIN car_makers AS T3 ON
T1.country_id = T3.country
WHERE T2.continent = 'Europe'
GROUP BY T1.country_name
HAVING COUNT(*) >= 3
```

Extra Hard

What is the average life expectancy in the countries where English is not the official language?

```
SELECT AVG(life_expectancy)
FROM country
WHERE name NOT IN
(SELECT T1.name
FROM country AS T1 JOIN
country_language AS T2
ON T1.code = T2.country_code
WHERE T2.language = "English"
AND T2.is_official = "T")
```

Figure 3: SQL query examples in 4 hardness levels.

Vers les systèmes d'information : text-to-SQL

Les bases de données parmi les outils externes possibles

- Générer plusieurs requêtes SQL
- Estimer la probabilité du programme en fonction de la tâche et de l'exécution
- Trier les requêtes SQL

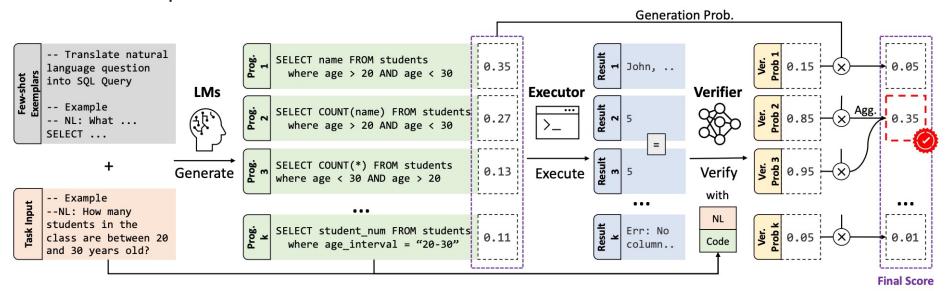
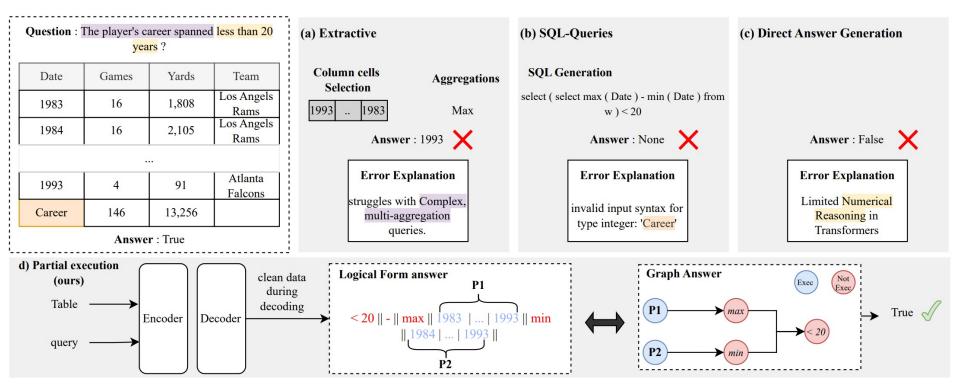


Figure 1: The illustration of LEVER using text-to-SQL as an example. It consists of three steps: 1) *Generation*: sample programs from code LLMs based on the task input and few-shot exemplars; 2) *Execution*: obtain the execution results with program executors; 3) *Verification*: using a learned verifier to output the probability of the program being correct based on the NL, program and execution results.

Vers les systèmes d'information : text-to-SQL-to-execution

Les bases de données parmi les outils externes possibles

- Le LLM génère la réponse à partir de la requête SQL
- Décomposition de la requête
- « Exécution hybride » : 1) auto-évaluation de la capacité de répondre sur des parties du graphe, 2) exécution SQL des parties non répondues



Conclusion

Deux thèmes clés

- → Représentation des connaissances
 - → Limite des LLMs par rapport aux connaissances paramétriques
 - → Besoin de spécialiser/contrôler les LLMs pour une tâche dédiée
 - → Emergence de la construction de systèmes de systèmes ?
- → Génération texte : champ applicatif énorme
 - → De nombreuses tâches sont abordées avec des LLMs
 - → Mais auto-évaluation encore difficile

Merci de votre attention