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Spin-phonon interactions are one of the mechanisms limiting the lifetime of spin qubits made in semiconductor
quantum dots. At variance with other mechanisms such as charge noise, phonons are intrinsic to the device and
can hardly be mitigated. They set, therefore, fundamental limits to the relaxation time of the qubits. Here we
introduce a general framework for the calculation of the spin (and charge) transition rates induced by bulk (3D)
and strongly confined 1D or 2D phonons. We discuss the particular case of hole spin-orbit qubits described by
the six bands k · p model. We next apply this theory to a hole qubit in a silicon-on-insulator device. We show that
spin relaxation in this device is dominated by a band mixing term that couples the holes to transverse acoustic
phonons through the valence band deformation potential d , and we optimize the bias point and magnetic field
orientation to maximize the number of Rabi oscillations Q that can be achieved within relaxation time T1. Despite
the strong spin-orbit coupling in the valence band, the phonon-limited Q can reach a few tens of thousands. We
next explore the effects of phonon confinement in 1D and 2D structures and the impact of the encapsulation
materials on the relaxation rates. We show that the spin lifetimes can depend on the structure of the device over
micrometer-long length scales and that they improve when the materials around the qubit get harder. Phonon
engineering in semiconductor qubits may therefore become relevant once the extrinsic sources of relaxation
have been reduced.

DOI: 10.1103/PhysRevB.102.075415

I. INTRODUCTION

Spins in semiconductor quantum dots are considered as an
attractive platform for quantum computing [1,2]. Silicon [3,4]
has, in particular, garnered much interest as a host material
for spin qubits because it can be isotopically purified in order
to get rid of the nuclear spins that have undesirable hyperfine
interactions with the electron spins. As a matter of fact, very
long electron spin lifetimes T1 have been measured on donors
[5] and electrostatically defined quantum dots in silicon [6].
This promoted the demonstration of high fidelity single and
two qubit gates in this material [7–13].

Among other specific features of silicon, intrinsic spin-
orbit interactions are known to be weak in the conduction
band [4]. This decouples the electron spins from electrical and
charge noise as well as phonons and further enhances spin
lifetimes. However, this hinders the electrical manipulation of
electron spins through electric dipole spin resonance (EDSR)
[14,15]. Artificial spin-orbit coupling needs, therefore, to be
engineered for that purpose using, e.g., micromagnets next to
the qubits [7,9,16].

This fostered the interest in hole qubits that can be ef-
ficiently tuned and manipulated electrically owing to the
much stronger spin-orbit coupling in the valence band [17].
Electrically driven Rabi oscillations with frequencies up to
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hundreds of MHz have been reported in hole qubits made of
silicon [18–20] and germanium [21,22]. Two qubit gates have
also been demonstrated recently [23]. Modeling shows that
hole spins couple to electric fields mostly through “direct”
spin-orbit interactions in the heavy-hole/light-hole/split-off
valence band manifold [17,24–26], with little contributions
from “remote” coupling to other bands [27].

One of the downsides of the strong spin-orbit interactions
in the valence band is the increased device-to-device variabil-
ity and the shorter spin lifetimes resulting from the enhanced
coupling to the electrical fluctuations and phonons. It is,
therefore, essential to understand the fundamental limits of
hole spin-orbit qubits. In this work, we address specifically the
coupling between hole spins and phonons. Phonons are indeed
intrinsic to the qubits and are much more difficult to mitigate
than other scattering mechanisms such as charge noise, which
can, in principle, be reduced thanks to a better design of
the devices. Recent works have also shown that phonons
can dominate the relaxation, especially at high temperature
[28,29] and magnetic field. Most studies so far have focused
on spin-phonon coupling in electron quantum dots [29–33],
while those on hole quantum dots have made use of simplified
strain Hamiltonians or have considered specific geometries
[28,34–38]. We focus here on one-phonon processes but give
equations that account for the full set of deformation poten-
tials and are applicable to any geometry.

We also discuss two important issues that are also relevant
for electron spin qubits. First, we investigate how the spin
lifetime depends on the dimensionality of the phonon band
structure [39]. We highlight the differences between bulklike
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(3D) and strongly confined 2D and 1D phonons. We show that
the transition from the 1D or 2D regime to the 3D regime takes
place in “large” micrometer size structures because qubits
usually couple to low energy phonons that can probe the
structure over very long length scales. Second, we explore
as a consequence the impact of the encapsulation materials
on the spin lifetimes. We show, as a general trend, that the
relaxation rate decreases when the qubits are embedded in
harder materials.

The paper is organized as follows: In Sec. II, we present the
framework for the calculation of phonon-induced relaxation
rates, then discuss the case of hole spin-orbit qubits described
by the six bands k · p model [40–42] and the extension to
strongly confined 1D and 2D phonons. In Sec. III, we apply
this theory to a hole spin-orbit qubit on silicon-on-insulator
(SOI) such as the one measured in Ref. [19] and modeled in
Refs. [25] and [26]. We identify the dominant contributions
to the relaxation and the optimal operation point for this
qubit. We then analyze in Sec. IV the impact of phonon
confinement and of the encapsulation materials on the qubit
lifetime.

II. THEORY

In this section, we introduce the general framework for the
calculation of the phonon-limited relaxation time, then discuss
the application to a prototypical 3D phonon band structure
and to the six bands k · p model for hole spin-orbit qubits.
We next extend the formalism to strongly confined 2D and
1D phonon band structures and highlight, in particular, the
different dependences of the relaxation time on the Larmor
frequency. We finally discuss the numerical calculation of the
acoustic phonon band structure in complex, realistic qubit
structures.

A. General framework for 3D phonons

We consider a qubit based on two eigenstates |0〉 and |1〉 of
a Hamiltonian H0 (with energies E0 and E1, respectively). In

a spin-orbit qubit, these two states form a Kramers-degenerate
doublet at zero magnetic field (either the ground or an excited
one), but the following theory applies to any pair of states.
This qubit interacts with a thermal bath of bulk acoustic
phonons with energies h̄ωαq, where α is a branch index and q
is a 3D wave vector. We assume that the qubit and phonons are
coupled by a Hamiltonian �H[εi j (r)] that depends linearly
on the local strains εi j (r) (i, j ∈ {x, y, z}). These strains can
be calculated from the displacement field u(r) of the phonons
[43,44]:

εi j (r) = 1

2

(
∂ui(r)

∂r j
+ ∂u j (r)

∂ri

)
. (1)

The displacement field operator in branch α further reads:

uαq(r, t ) = Aαq(r, t )ĉαq , (2)

where ĉαq is the unit phonon polarization vector and:

Aαq(r, t ) =
√

h̄

2ρ�ωαq
eiq·r(aαqe−iωαqt + a†

α,−qeiωαqt
)
, (3)

with ρ the density of the host material, � the volume of the
system, and a†

αq the phonon creation operators. The strain
tensor that derives from Eq. (2) is therefore:

εαq(r, t ) = iqAαq(r, t )εαq, (4)

where

εαq = 1

2

⎡
⎢⎢⎣

2ĉxq̂x ĉxq̂y + ĉyq̂x ĉxq̂z + ĉzq̂x

ĉyq̂x + ĉxq̂y 2ĉyq̂y ĉyq̂z + ĉzq̂y

ĉzq̂x + ĉxq̂z ĉzq̂y + ĉyq̂z 2ĉzq̂z

⎤
⎥⎥⎦, (5)

with ĉ ≡ ĉαq and q̂ the unit vector along q.
Assuming E1 > E0, the rate of transitions 
3D

01 from state
|0〉 to state |1〉 due to phonon absorption is given by Fermi’s
golden rule [33–35]:


3D
01 = 2π

h̄

∑
α

∫
d3q ρq

h̄q2Nαq

2ρ�ωαq
|〈0|eiq·r�H (εαq)|1〉|2δ(E1 − E0 − h̄ωαq), (6)

where ρq = �/(2π )3 is the density of states in reciprocal space, and Nαq = 1/(eβ h̄ωαq − 1) is the thermal population of phonons
with energy h̄ωαq (with β = 1/(kBT ) and T the temperature). This equation accounts exclusively for one-phonon processes and
is, therefore, valid only at low temperature [28,29]. The rate of transitions 
3D

10 from state |1〉 to state |0〉 due to spontaneous and
stimulated phonon emission is given by the same expression with Nαq replaced by Nαq + 1. Therefore, the total relaxation rate

3D

ph = T −1
1 = 
3D

01 + 
3D
10 reads:


3D
ph = 1

8π2ρ h̄ω
coth

(
h̄ω

2kBT

) ∑
α

∫
d3q q2|〈0|eiq·r�H (εαq)|1〉|2δ(ω − ωαq) . (7)

Only phonons matching the Larmor frequency ω = (E1 − E0)/h̄ couple to the qubit as highlighted by the delta function. This
equation can be transformed as:


3D
ph = 1

8π2ρ h̄ω
coth

(
h̄ω

2kBT

) ∑
α

∫
Sα (ω)

d2q
q2

|vαq| |〈0|eiq·r�H (εαq)|1〉|2 , (8)
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where Sα (ω) is the surface ωαq = ω and vαq = ∇qωαq is the
group velocity of the phonons. The integration can be finalized
once a model has been chosen for the phonon and electronic
band structures of the qubit.

B. Model 3D phonon band structure

In the following, we consider a prototypical, isotropic
3D phonon band structure with one longitudinal acoustic
(LA) branch ωlq = vl q and two degenerate transverse acous-

tic (TA1 and TA2) branches ωt1q = ωt2q = vt q, where vl

and vt1 = vt2 = vt are the longitudinal and transverse sound
velocities. We specify the orientation of the phonon wave
vector by the azimuthal and polar angles θ and ϕ so that
q̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ ). The polarization vector of
the LA branch ĉl = q̂ can, therefore, be characterized by the
angles (θl = θ , ϕl = ϕ), while the polarization vectors ĉt1 and
ĉt2 of the TA branches can be characterized by the angles
(θt1 = θ + π/2, ϕt1 = ϕ) and (θt2 = π/2, ϕt2 = ϕ + π/2), re-
spectively. Then,


3D
ph = ω3

8π2h̄ρ
coth

(
h̄ω

2kBT

) ∑
α∈l,t1,t2

1

v5
α

∫ π

0
dθ sin θ

∫ 2π

0
dϕ |〈0|eiqα q̂(θ,ϕ)·r�H[εα (θ, ϕ)]|1〉|2, (9)

where vαqα = ω, and

εl (θ, ϕ) = 1

2

⎡
⎣2 sin2 θ cos2 ϕ sin2 θ sin 2ϕ sin 2θ cos ϕ

sin2 θ sin 2ϕ 2 sin2 θ sin2 ϕ sin 2θ sin ϕ

sin 2θ cos ϕ sin 2θ sin ϕ 2 cos2 θ

⎤
⎦ (10a)

εt1 (θ, ϕ) = 1

2

⎡
⎣ sin 2θ cos2 ϕ 1

2 sin 2θ sin 2ϕ cos 2θ cos ϕ
1
2 sin 2θ sin 2ϕ sin 2θ sin2 ϕ cos 2θ sin ϕ

cos 2θ cos ϕ cos 2θ sin ϕ − sin 2θ

⎤
⎦ (10b)

εt2 (θ, ϕ) = 1

2

⎡
⎣− sin θ sin 2ϕ sin θ cos 2ϕ − cos θ sin ϕ

sin θ cos 2ϕ sin θ sin 2ϕ cos θ cos ϕ

− cos θ sin ϕ cos θ cos ϕ 0

⎤
⎦ . (10c)

In the single band effective mass approximation for silicon, we recover the expressions of Ref. [33] for the phonon-induced
relaxation rate. We further discuss the case of hole qubits within the six bands k · p model in the next subsection.

C. Application to the six bands k · p model

In the six bands k · p model, the hole wave functions are expanded as [40–42]:

ψ (r) = FX↑(r)uX↑(r) + FX↓(r)uX↓(r)

+ FY ↑(r)uY ↑(r) + FY ↓(r)uY ↓(r)

+ FZ↑(r)uZ↑(r) + FZ↓(r)uZ↓(r), (11)

where the F ′
iσ s are envelope functions and the u′

iσ s are the Bloch functions at 
. They are bonding combinations of atomic pX ,
pY , or pZ orbitals with spin σ =↑ or ↓ along Z (the X ‖ [100], Y ‖ [010], Z ‖ [001] axes being the cubic axes).

Alternatively the u′s (hence the F ′s) can be mapped by a unitary transform onto the eigenstates |J, mJ〉 of J2 and Ju, where
J = L + S is the total angular momentum of the Bloch functions and u is an arbitrary quantization axis. Actually, any six
bands (J = 3/2 & J = 1/2 multiplets) or four bands (J = 3/2 multiplet) flavor of the k · p model for the valence band can
be put in the form of Eq. (11) [40–42]. In the {|X ↑〉, |Y ↑〉, |Z ↑〉, |X ↓〉, |Y ↓〉, |Z ↓〉} basis set, the Hamiltonian �H (ε)
is [42,45,46]:

�H (ε) =
[
�Hs(ε) 03×3

03×3 �Hs(ε)

]
, (12)

where the 3 × 3 up or down spin sub-block �Hs(ε) reads:

�Hs(ε) =
⎡
⎣lεXX + mεYY + mεZZ nεXY nεXZ

nεXY mεXX + lεYY + mεZZ nεY Z

nεXZ nεY Z mεXX + mεYY + lεZZ

⎤
⎦ (13)

with

l = a + 2b ; m = a − b ; n = d
√

3 . (14)
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a ≡ av is the hydrostatic deformation potential, b the uniaxial
deformation potential, and d the shear deformation potential
of the valence band [47]. The above model accounts for spin
relaxation due to “direct” spin-orbit interactions within the
valence band manifold [17,24,48]. Even if �H is diagonal
in spin, it can drive relaxation between textured spin states
such as the mixed heavy- and light-hole states encountered in
spin-orbit qubits.

We next write:

〈r|0〉 =
∑

i∈{X,Y,Z}

∑
σ∈{↑,↓}

aiσ (r)uiσ (r) (15a)

〈r|1〉 =
∑

i∈{X,Y,Z}

∑
σ∈{↑,↓}

biσ (r)uiσ (r) (15b)

and assume that the extension of the envelope functions aiσ (r)
and biσ (r) is much smaller than the typical wavelength of the
phonons at the Larmor frequency. We can then complete the
integration of Eq. (9) in the dipole approximation for the phase
factor eiq·r (see Appendix A) and get:


3D
ph = ω3

8π h̄ρ
coth

(
h̄ω

2kBT

)

×
∑
α=l,t

(
ω2

v7
α

9∑
n=1

An�
A
nα + 1

v5
α

2∑
n=1

Bn�
B
nα

)
, (16)

where the �′s depend on material parameters and the A′
ns and

B′
ns can be expressed as a function of the following moments

of the hole envelopes:

Si j =
∫

d3r [a∗
i↑(r)b j↑(r) + a∗

i↓(r)b j↓(r)] (17a)

Rk
i j =

∫
d3r [a∗

i↑(r)b j↑(r) + a∗
i↓(r)b j↓(r)]rk (17b)

T kk′
i j =

∫
d3r [a∗

i↑(r)b j↑(r) + a∗
i↓(r)b j↓(r)]rkrk′ (17c)

and

Omn
i jkl = Rm

i jR
n∗
kl − 1

2

(
T mn

i j S∗
kl + T mn∗

kl Si j
)
. (18)

Namely,

A1 =
∑

i

Oii
iiii (19a)

A2 =
∑
i �= j

Oii
ii j j + Oii

j jii (19b)

A3 =
∑
i �= j

Oii
j j j j (19c)

A4 =
∑

i �= j �=k

Oii
j jkk (19d)

A5 =
∑
i �= j

Oii
i ji j + Oii

i j ji + Oii
jii j + Oii

ji ji (19e)

A6 =
∑

i �= j �=k

Oii
jk jk + Oii

jkk j (19f)

A7 =
∑
i �= j

Oi j
iii j + Oi j

ii ji + Oi j
i jii + Oi j

jiii + c.c. (19g)

A8 =
∑

i �= j �=k

Oi j
i jkk + Oi j

jikk + c.c. (19h)

A9 =
∑

i �= j �=k

Oi j
ik jk + Oi j

ki jk + Oi j
ikk j + Oi j

kik j

+ Oi j
jkik + Oi j

k jik + Oi j
jkki + Oi j

k jki , (19i)

where c.c. stands for complex conjugate, and

B1 =
∑

i

SiiS
∗
ii (20a)

B2 =
∑
i �= j

Si j (S
∗
i j + S∗

ji ) . (20b)

The sums over i, j, k run over {X,Y, Z}. The �A
nl parame-

ters for the longitudinal phonons are:

�A
1l = 140a2 + 224ab + 176b2

105
(21a)

�A
2l = 140a2 + 56ab − 88b2

105
(21b)

�A
3l = 140a2 − 112ab + 80b2

105
(21c)

�A
4l = 140a2 − 112ab + 8b2

105
(21d)

�A
5l = 12d2

35
(21e)

�A
6l = 4d2

35
(21f)

�A
7l = 28ad + 8bd

35
√

3
(21g)

�A
8l = 28ad − 16bd

35
√

3
(21h)

�A
9l = 4d2

35
(21i)

while the �A
nt parameters for transverse phonons are

�A
1t = 72b2

35
(22a)

�A
2t = −36b2

35
(22b)

�A
3t = 48b2

35
(22c)

�A
4t = −12b2

35
(22d)

�A
5t = 16d2

35
(22e)

�A
6t = 2d2

7
(22f)

�A
7t = 2

√
3bd

35
(22g)

�A
8t = −4

√
3bd

35
(22h)

�A
9t = 3d2

35
. (22i)

075415-4



HOLE-PHONON INTERACTIONS IN QUANTUM DOTS: … PHYSICAL REVIEW B 102, 075415 (2020)

Finally, the �B
nl and �B

nt parameters are

�B
1l = 24b2

5
(23a)

�B
2l = 4d2

5
, (23b)

�B
1t = 36b2

5
(24a)

�B
2t = 6d2

5
. (24b)

The TA1 and TA2 branches have been summed up in the
transverse phonon parameters �A

nt and �B
nt . The two Bn terms

are “band mixing” terms whose prefactor scales with the
phonon strains (∝q2/ω ≡ ω) and density of states (∝ω2)
at the Larmor frequency. They result from the zeroth order
expansion eiq·r ∼ 1 in Eq. (8) (homogeneous component of
the strain) and are ruled by the overlap between the different
envelope functions. The nine An terms are dipolelike terms
that follow from the first-order expansion of eiq·r in Eq. (8).
They show, therefore, an additional ∝q2 ≡ ω2 dependence.
Although the An terms also mix bands, we point out that
the Bn terms do not exist in one-band models where the
envelopes of different states are, by design, orthogonal. Note
that the An and Bn terms are also dependent on ω (see
next section). We will sort the different contributions in
Sec. III A.

D. Model 2D and 1D phonon band structures

The 3D model discussed up to now is suitable for “large”
enough structures where the phonons (yet not necessarily the
electrons or holes) are weakly confined (bulklike dispersion).
In confined structures such as nanowires or thin films, the
vibrational modes may, however, be more adequately de-
scribed by a 1D or 2D phonon band structure [39,49–51].
The integration over ϕ and/or θ in Eq. (9) is then replaced
by a sum over phonon subbands. In general, many subbands
can contribute to the relaxation rate. Yet the splitting between
phonon subbands increases with lateral confinement so that
only the 1D or 2D acoustic branches will ultimately couple
to the qubit once the phonons get confined enough. The
conditions in which this strongly confined regime is achieved
will be explored in Sec. IV A.

We can derive expressions similar to Eq. (16) in the
strongly confined regime by making simple assumptions for
the acoustic phonon wave functions. Namely, we assume
that the displacements are homogeneous in the thickness of
the film (2D) or in the cross section of the nanowire (1D).
This corresponds to a choice of periodic Born-von-Karman
instead of free-standing boundary conditions at the surface
of the film or wire or equivalently to a sampling of the 3D
phonon band structure at q⊥ = 0, where q⊥ is the compo-
nent of the wave vector perpendicular to the film or wire.
The relevance and validity of this approximation will be
discussed in Sec. IV A. We then reach the following expres-
sions for the relaxation rate in thin films (see Supplemental

Material [52]):


2D
ph = ω2

4h̄ρL
coth

(
h̄ω

2kBT

)

×
∑
α=l,t

(
ω2

v6
α

∑
n

An�
A
nα + 1

v4
α

∑
n

Bn�
B
nα

)
, (25)

where L is the thickness of the film, and in nanowires:


1D
ph = ω

2h̄ρS
coth

(
h̄ω

2kBT

)

×
∑
α=l,t

(
ω2

v5
α

∑
n

An�
A
nα + 1

v3
α

∑
n

Bn�
B
nα

)
, (26)

where S is the cross sectional area of the wire. The A′
ns, B′

ns,
and �′s depend on the dimensionality and on the crystallo-
graphic orientation of the nanostructure. They are given for
(100), (110), and (111) films, and for [100], [110], and [111]
oriented wires in the Supplemental Material [52].

With respect to bulk phonons [Eq. (16)], the relaxation
rate is inversely proportional to the characteristic size of the
system, and the dependence on ω is reduced by one power
each time the phonons get confined in an additional direction.
This results from the scaling of the phonon density of states
with dimensionality. We emphasize, however, that the net
dependence on the relaxation rates on the Larmor frequency ω

is typically two orders of magnitudes stronger than suggested
by Eqs. (16), (25), and (26), because the A′

ns and B′
ns also

depend on ω. Indeed, they vanish at zero magnetic field if
|0〉 and |1〉 form a Kramers degenerate pair linked by time-
reversal symmetry (as is the case in a spin-orbit qubit) and
increase as ω2 ∝ B2 once a magnetic field B breaks time-
reversal symmetry.

Also, Eqs. (16), (25), and (26) can actually be used to cal-
culate the transition rates between any pair of states (provided
the dipole approximation applies at the transition energy), in
order to set up master equations for spin and charge relaxation
in the system for example [36,53]. The coth term shall be
replaced with N (ω) = 1/(eβ h̄ω − 1) for absorption rates and
by N (ω) + 1 for emission rates.

E. Numerical phonon band structures

Real qubit devices are often made of nanostructured stacks
of materials with complex phonon band structures. In order
to validate the above models and address, e.g., the impact
of encapsulation materials on the relaxation rates, we have
developed a numerical approach to the acoustic phonon band
structure based on continuum elasticity theory [43,44,50]. The
latter is expected to hold at small strains in semiconductor het-
erostructures with characteristic sizes around 10 nm [54,55].
Nonlocal and surface effects have been shown to change the
bending rigidity of 10 nm × 10 nm Si and SiO2 beams by
less than 10% [56]. We consider, in particular, 1D structural
models with arbitrary cross section and materials. This cross
section is meshed and the dynamical matrix is computed from
a finite-element discretization of the continuum elasticity
theory.
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FIG. 1. Schematics of the hole qubit device on silicon-on-
insulator: a silicon nanowire channel (red) with width W = 30 nm
and height H = 10 nm lies on top of the buried oxide (blue). Top
gates (orange) with length Lg = 30 nm and spacing Sg = 30 nm
partly cover the silicon nanowire (over 20 nm). The gate stack is
made of 2 nm of SiO2 and 2 nm of HfO2 (green). The central front
gate defines the hole quantum dot. An isodensity surface of the
confined hole ground-state wave function is depicted in yellow. The
device axes are defined on the figure.

The relaxation rate is still calculated from Fermi’s golden
rule:


ph = 1

2h̄ω
coth

(
h̄ω

2kBT

)

×
∑

α

∑
q∈{qα}

1

|vαq| |〈0|�H[ε̃αq(r)]|1〉|2 , (27)

where α run over all 1D subbands, {qα} are the solutions of
ωαqα

= ω (if any), and

[ε̃αq(r)]i j = 1

2

(
∂ ũi(r)

∂r j
+ ∂ ũ j (r)

∂ri

)
(28)

with

ũ(r) = 1√
ρ(y, z)

c(y, z)eiqx (29)

and c ≡ cαq the eigenvector of the dynamical matrix (nor-
malized so that

∫
dydz |c(y, z)|2 = 1). The 1D wave vector is

aligned along the x axis. Note that we do not make the dipole
approximation on the phase factor here. The convergence of
Eq. (27) is discussed in Appendix B.

III. APPLICATION TO HOLE-SPIN QUBITS ON
SILICON-ON-INSULATOR

In this section, we apply the models introduced in Sec. II
to a hole spin-orbit qubit on silicon-on-insulator. The device,
represented in Fig. 1, is the same as the one modeled in
Ref. [25] and is similar to the one measured in Ref. [19]. It is
made of a [110]-oriented silicon nanowire channel with width
W = 30 nm [(11̄0) facets] and height H = 10 nm [(001)
facets] lying on top of a 25-nm-thick buried oxide and silicon
substrate. A 30 nm long central gate partly overlapping the
nanowire controls an electrostatically defined quantum dot.
The two other gates on the left and right mimic neighboring

TABLE I. Density ρ (g/cm3) and elastic constants c11, c12, and
c44 (GPa) of the different materials considered in this work [59–63].
The anisotropic (aniso) elastic constants of silicon are those mea-
sured in this material [59]. They give rise to anisotropic phonon
bands with two nondegenerate transverse acoustic branches in bulk.
The isotropic (iso) elastic constants have been modified in order
to get isotropic phonon bands with degenerate transverse acoustic
branches consistent with the model 3D phonon band structure (vl =
9000 m/s and vt = 5400 m/s). The elastic models for amorphous
SiO2 and Si3N4 are isotropic (c11 − c12 = 2c44).

Material ρ c11 c12 c44

Si (aniso) [59] 2.329 166.0 64.0 79.6
Si (iso) 2.329 188.6 52.8 67.9
SiO2 [60] 2.200 77.5 15.7 30.9
Si3N4 [61,62] 2.500 193.0 65.0 64.0
Diamond [63] 3.500 1076.0 125.0 577.0

qubits. The gate stack is made of 2 nm of SiO2 and 2 nm
of HfO2. The whole device is embedded in Si3N4. The qubit
can be further controlled using the substrate as a back gate,
which allows us to tune separately the chemical potential and
the electric field in the dot. We bias the central front gate
at Vfg = −0.1 V and ground the other front gates in order to
confine holes. Rabi oscillations can be electrically driven by a
radio-frequency signal on the central front gate.

The potential landscape in the device is computed with
a finite volumes Poisson solver and the qubit states (chosen
as the topmost valence band states) with a finite differences
discretization of the six bands k · p model [25]. For the
model phonon band structures, the group velocities are vl =
9000 m/s and vt = 5400 m/s. The numerical phonon band
structures are computed with the elastic constants listed in Ta-
ble I. The deformation potentials of the valence band of silicon
are a = 2.38 eV, b = −2.1 eV, and d = −4.85 eV [57,58].
The amplitude of the magnetic field is adjusted so that the
Larmor frequency of the qubit sticks to ω/(2π ) = 10 GHz.
At that frequency, the wavelength of bulk acoustic phonons
is greater than λt = 2πvt/ω = 540 nm, hence is much longer
than the dot size (∼30 nm) and within the range of valid-
ity of the dipole approximation. The temperature is set to
T = 100 mK. The results are, however, weakly dependent on
temperature T � 100 mK, as 1 < coth(h̄ω/2kBT ) < 1.017 in
this range (base cryostat temperature was T � 15 mK in
Refs. [18] and [19]). Also, the splitting between the ground
qubit states and the first excited orbital states is always larger
than 2 meV in this device (Fig. 8 of Ref. [25]). From the
scaling laws given in Ref. [28], we do not expect significant
two-phonon corrections at such low temperatures, although
we did not compute them explicitly at this stage.

As discussed in Ref. [25], the Larmor and Rabi frequencies
of this device are strongly dependent on the orientation of
the magnetic field and on the back gate voltage Vbg. This
is a fingerprint of the action of the spin-orbit coupling on
the holes, which (in the absence of strains) have a dominant
heavy-hole character along the strong confinement axis z =
[001] [17,24,48]. In particular, the Rabi frequency exhibits a
dip at back gate voltage Vbg � −0.15 V where the hole wave
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FIG. 2. (a)–(c) Contribution of the different terms of Eq. (16) to the relaxation rate as a function of the Larmor frequency ω (Vbg =
−0.15 V). The relaxation is dominated by (a) the homogeneous band mixing Bn terms, (b) the transverse acoustic phonons, and (c) the
shear deformation potential d . The above conclusions are valid in a wide range of back gate voltages Vbg, as shown in panels (d) and (e). The
orientation of the magnetic field is θ = 45◦, ϕ = 0 in all panels and its amplitude is adjusted so that the Larmor frequency is ω/(2π ) = 10 GHz
in panels (d), (e).

functions show an approximate inversion center that hampers
the action of spin-orbit coupling (the hole spins decouple
from the gate electric field). This will be further investigated
in Sec. III B. We first discuss which terms do play a role
in Eq. (16), then the optimal bias point and magnetic field
orientation for this qubit.

A. Which terms do play a role ?

As the nanowire is embedded in other materials, we assume
that the phonons are weakly confined in silicon and thus
make use of the 3D model [Eq. (16)] for the calculation of
the relaxation time. The actual impact of dimensionality and
encapsulation materials will be investigated in Secs. IV A and
IV B. Equation (16) contains many different terms that can
be categorized as a function of (i) their nature [An (dipole) or
Bn (homogeneous band mixing) terms], (ii) the polarization of
the phonons (LA or TA), and (iii) the deformation potentials
involved. In order to sort Eq. (16) into these categories, the
relaxation rate 
3D

ph is plotted as a function of the Larmor
frequency ω of the qubit in Figs. 2(a)–2(c) (Vbg = −0.15 V)
and decomposed (a) into An and Bn contributions, (b) LA
and TA contributions, and (c) a, b, and d contributions (the
other deformation potentials being set to 0). It is clear from
Fig. 2 that the band mixing Bn terms dominate the relaxation

through the coupling to TA phonons by the shear deformation
potential d . The B2�

B
2t ∝ d2 term of Eq. (16) actually makes

the largest contribution to the relaxation rate, followed by
the B1�

B
1t ∝ b2 term. This implies that we can make the

approximation eiq·r ∼ 1 in Eq. (8) and drop all dipole An terms
arising from the first-order expansion of this phase factor.
This is opposite to electrons in the single band effective mass
approximation, whose relaxation is exclusively ruled by such
dipole terms. The action of spin-orbit coupling within the
valence band is, indeed, very dependent on the heavy- and
light-hole balance and is, therefore, sensitive to band mixing
by phonons. This will be further discussed in Sec. III B. We
also emphasize that the dipole terms can be dominant for
charge relaxation between states whose main envelopes are
orthogonal.

The relaxation rate is ∝ω4 at low Larmor frequency and
∝ω5 at large Larmor frequency. The ∝ω5 behavior results
from the ∝ω3 prefactor of the Bn terms (phonon strains and
density of states) and from the ∝ω2 dependence of the Bn

terms themselves. Indeed, as discussed in Sec. II D, the Bn

terms vanish at zero magnetic field when |0〉 and |1〉 are
time-reversal symmetrics one of each other and increase as
ω2 once a finite magnetic field breaks time-reversal symmetry.
Accordingly, the (however negligible) An term show a ∝ω7

behavior (owing to the additional q2 ∝ ω2 dependence of the
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FIG. 3. (a) Johnson-Nyquist (
jn), phonon-induced (
3D
ph ), and total relaxation rate as a function of back gate voltage Vbg. 
jn is computed

for a resistance R = 200 � on the central front gate. (b) Rabi frequency fR, phonon-induced relaxation rate 
3D
ph , and quality factor Q1 = fR/
3D

ph

as a function of Vbg. (c) Relaxation rate 
3D
ph , (d) Rabi frequency fR, and (e) quality factor Q1 = fR/
3D

ph as a function of the orientation of the
magnetic field characterized by the azimuthal and polar angles θ and ϕ defined on Fig. 1 (and consistent with Refs. [19], [25], and [26]),
at Vbg = −0.2 V. The Larmor frequency is ω/(2π ) = 10 GHz in all plots. The orientation of the magnetic field is θ = 45◦, ϕ = 0 in panels
(a) and (b). Note that panel (d) looks different from Ref. [25] because it is plotted at constant Larmor frequency instead of constant magnetic
field amplitude.

dipole terms). At small magnetic field, the relaxation rate
departs from the ∝ω5 behavior due to the coth[h̄ω/(2kBT )]
prefactor that accounts for the larger population of acoustic
phonons at the Larmor frequency (enhancement of absorption
and stimulated emission processes).

The contributions of LA and TA phonons to the relaxation
rate are plotted as a function of back gate voltage in Figs. 2(d)
and 2(e). The conclusions drawn above remain valid over the
whole range of investigated back gate voltages. We discuss
in more detail the dependence of 
3D

ph on Vbg in the next
section.

B. Optimal operation point

The total relaxation rate is plotted as a function of Vbg in
Fig. 3(a). We have added for comparison the relaxation rate

jn due to Johnson-Nyquist noise on the central front gate
(zero-point and thermal fluctuations in the circuit connected
to that gate) [32,64]:


jn = 4π
R

R0
|〈0|Dfg|1〉|2ω coth

(
h̄ω

2kBT

)
, (30)

where R is the resistance connected to the gate, R0 = h/e2,
and Dfg(r) = ∂Vt (r)/∂Vfg is the derivative of the total potential
Vt (r) in the device with respect to the front gate voltage Vfg.
We assume R = 200 �.

The relaxation rate 
3D
ph is plotted along with the Rabi

frequency fR in Fig. 3(b). The Rabi oscillations are driven by
a radio-frequency modulation δVfg = 1 mV on the front gate.
The quality factor Q1 = fR/
3D

ph is also plotted on that figure.

It gives the number of Rabi oscillations that can be achieved
within one relaxation time T1 = 
−1

ph . We have only accounted
for phonons in this figure, which therefore provides an upper
limit to the quality factor of the qubit. Other mechanisms for
relaxation (Johnson-Nyquist and charge noise...) are indeed
extrinsic to the qubit and are, in principle, more amenable to
optimization (e.g., by the reduction of circuit impedances for
Johnson-Nyquist noise). Multiphonon and photon processes
(relevant at high enough temperature) [28,29] and additional
mechanisms for spin-orbit coupling neglected in this study
(through remote coupling to the conduction bands in partic-
ular [27]) may also degrade this figure of merit. The impact
of Johnson-Nyquist noise on the quality factor and coherence
time is discussed in Appendix C.

The relaxation rate shows modulations as a function of
Vbg that mimic those of the Rabi frequency. In particular,

3D

ph displays a dip near Vbg = −0.15 V where the hole wave
functions feature an approximate inversion center [25]. This
hampers the action of spin-orbit coupling and decouples the
holes from the radio-frequency electric field from the front
gate. The Rabi oscillations are therefore slow but the holes
get also decoupled from Johnson-Nyquist and charge noise at
that point.

The dip in 
3D
ph is not, however, as marked as the dip in

the Rabi frequency and 
jn. This follows, in particular, from
the fact that the band mixing terms cannot be cast as the
action of an effective electric field due to phonons; only the
hydrostatic ∝a terms can be so. The decrease of the relaxation
rate at large positive or negative back gate voltage is due to the
strong lateral confinement in the static electric field of the gate
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[25,26]. Although the lifetime is longer at large |Vbg|, the Rabi
frequency is smaller, which slightly lowers the quality factor.

The phonon-limited lifetimes are typically shorter (yet still
>5 ms) than expected in electron qubits [15,32,33] owing to
the strong spin-orbit coupling in the valence band. This is
however balanced by much larger Rabi frequencies, allowing
for significant quality factors. Hole qubits are also much
more sensitive to Johnson-Nyquist noise than electron qubits
[15,32]. As a matter of fact, electrical and charge noise is
presumably dominating decoherence and relaxation in present
hole qubit devices [18]. The phonon-limited quality factor is
maximal near Vbg = −0.2 V. As suggested by Fig. 3(a), the
position of the optimal bias point for manipulation will move
further away from Vbg = −0.15 V when increasing electrical
and charge noise (see Appendix C). Anyhow, the qubit may be
brought back to the “sweet spot” Vbg = −0.15 V in between
manipulations, where the lifetime is longest [17,38].

The Rabi frequency, relaxation rate 
3D
ph , and quality factor

are also strongly dependent on the magnetic field orientation
[Figs. 3(c)–3(e)]. The orientational dependence of fR has been
discussed in detail in Refs. [25] and [26] and is the fingerprint
of the mostly heavy-hole character of the qubit states and of
the symmetries of the device. Following the lines of Ref. [26],
we reach the following expressions for the dominant B1 and
B2 terms [Eqs. (20b)] near the “sweet spot” Vbg = −0.15 V, at
the leading order in the channel height H :

B1 = m2
0H4

2h̄2γ 2
2

(κμBB)2 sin2 θ (31a)

B2 = 2B1 , (31b)

where m0 is the free electron mass, γ2 = 0.339 is a valence
band Luttinger parameter, κ = −0.42 is the Zeeman coeffi-
cient of the holes, and μB is Bohr’s magneton [27]. B1 and
B2 behave, as expected, as ω2 ∝ B2. At this order in H , they
do not depend on the width W of the channel, hence on lat-
eral confinement. In this respect, phonon-induced relaxation
behaves differently than Johnson-Nyquist relaxation and Rabi
oscillations, which do require lateral confinement [26]. This
results from the fact that strains can couple directly heavy- and
light-hole Bloch functions, at variance with a radio-frequency
electric field. Actually, the ∝B sin θ in-plane magnetic field
mixes the majority, heavy |3/2,+3/2〉 component of |1〉 with
a light |3/2,+1/2〉 envelope, which can then be coupled
by the phonons to the majority |3/2,−3/2〉 component of
|0〉 through the strain Hamiltonian �H (ε) [Eq. (12)]. The
magnetic mixing between the |3/2,+3/2〉 and |3/2,+1/2〉
envelopes of |1〉 is inversely proportional to the splitting
between the confined heavy- and light-hole subbands, which
gives rise to the H4/γ 2

2 dependence in Eqs. (31) (as in a
quantum well). The relaxation rate is hence maximal near θ =
π/2; the dependence on θ on Fig. 3(c) is even strengthened
because the effective g factor of heavy holes is minimal at
θ = π/2, so that larger magnetic fields are needed to reach
the target Larmor frequency ω/(2π ) = 10 GHz. The quality
factor is weakly dependent on ϕ and is significant in a wide
band of θ ′s. It peaks near θ = 30◦ and θ = 150◦, close to the
reference orientation chosen in Figs. 3(a) and 3(b). Note that
fR ∝ sin θ when θ → 0 or π so that Eqs. (31) suggest that
Q1 → ∞ (although this is irrelevant since fR → 0). Higher-

order contributions to Eq. (31) give rise to a finite 
ph and to
the dependence on ϕ clearly visible on Fig. 3(c), ensuring that
Q1 → 0 when θ → 0 or π as shown in Fig. 3(e).

IV. EFFECTS OF PHONON CONFINEMENT
AND ENCAPSULATION MATERIALS

In this section, we discuss the effects of phonon confine-
ment [39] on the relaxation rate, as well as the impact of
encapsulation materials. We highlight how the lifetime of the
qubit depends on its vibrational environment over long length
scales.

A. Phonon confinement

In Sec. II, we have derived the relaxation rate for bulk
phonons [Eq. (16)], strongly confined 2D [Eq. (25)], and
strongly confined 1D [Eq. (26)] phonons. In this section, we
validate the 3D, 2D, and 1D expressions on numerical calcu-
lations of the phonon band structure and address their range
of validity. We discuss the impact of phonon confinement on
the relaxation rate of the qubit.

For that purpose, we consider the same qubit as in Fig. 1
but coupled to the phonon band structure of a square [110]-
oriented wire with varying side ly = lz or of a rectangular
[110]-oriented wire with side lz = H = 10 nm and varying ly.
In the first case (square wire), we expect a transition from a
1D regime at small ly = lz to a 3D regime at large ly = lz and
in the second case (rectangular wire) a transition from a 1D
regime at small ly to a 2D regime at large ly. The relaxation
rates are computed with Eq. (27).

We consider either (i) free-standing boundary conditions
(no stress perpendicular to the surfaces) or (ii) periodic
Born-von-Karman boundary conditions at the surface of the
wires. For periodic boundary conditions, the resulting phonon
band structure is nothing else than the bulk band structure
sampled at wave vectors q = (q, 2πny/ly, 2πnz/lz ) (in the
device axes frame), where q is the 1D wave vector of the
wire and ny, nz are integers. Each pair (ny, nz ) defines a set
of three subbands (sampled in the bulk LA, TA1, and TA2
branches). The acoustic branches (ωαq → 0 when q → 0) of
the wire are the ny = nz = 0 subbands. In this approximation,
the displacements are homogeneous in the cross section of
the wire. The other 1D subbands have finite ωα0. In the
strongly confined regime (only the three acoustic branches
of the wire couple to the qubit), the relaxation rate shall
therefore exactly match the expressions for 
1D

ph or 
2D
ph that

were established under these assumptions. On the opposite,
in the weakly confined regime (many subbands couple to the
qubit), the relaxation rate shall tend to 
3D

ph . This provides
a numerical test of these expressions and allows for a clear
investigation of the transition from one regime to an other.
Freestanding boundary conditions are more relevant for truly
confined phonons with inhomogeneous displacements in the
wire cross section. Also, the phonon band structure of a
freestanding wire shows specific features [50,51]: There are,
in particular, four branches whose ωαq → 0 when q → 0 (one
linear longitudinal and one linear torsional mode, and two
parabolic flexural modes). This reflects the translational and
rotational invariances of the elastic energy of a freestanding
structure. We will discuss the contributions of each mode to
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FIG. 4. Phonon band structures of a ly = 30 nm × lz = 10 nm
silicon nanowire with (a) periodic boundary conditions and (b) free-
standing boundary conditions and of a ly = 600 nm × lz = 600 nm
silicon wire with (c) periodic boundary conditions and (d) free-
standing boundary conditions. The isotropic elastic constants of
silicon were used in this calculation (Table I). The gray dash-dotted
line is the Larmor frequency of the qubit ω/(2π ) = 10 GHz. The
linear torsional (To) and parabolic flexural (Fx1 and Fx2) modes of
the free-standing nanowire are clearly visible in panel (b).

the relaxation rate and the relevance of the 1D formula in this
context.

The phonon band structure of a ly = 30 nm × lz = 10 nm
wire is plotted as an illustration in Figs. 4(a) and 4(b), for both
periodic and freestanding boundary conditions. We use the
isotropic model for the elastic constants of silicon (Table I). In
the freestanding case, the phonon band structure is computed
with the numerical finite-differences approach outlined in
Sec. II E. The two parabolic flexural modes, as well as the
torsional and longitudinal branches, are clearly visible on
this figure. The phonon band structures of a ly = 600 nm ×
lz = 600 nm wire with freestanding and periodic boundary
conditions are likewise plotted in Figs. 4(c) and 4(d). The
energy and wave vector range where the flexural branches are
parabolic decreases with increasing wire size and the acoustic
group velocities outside this range get closer to those of the
bulk LA and TA phonons. The number of subbands below
the Larmor frequency is larger with freestanding than with
periodic boundary conditions (with the appearance of, e.g.,
breathing modes), but the subbands are much more degenerate
in the latter case.

For periodic boundary conditions, the relaxation rate in the
square wires is plotted as a function of ly = lz in Fig. 5(a),
and the relaxation rate in the rectangular wires is plotted as a

function of ly in Fig. 5(c). Both LA and TA contributions are
displayed. The numerical data are compared with the models
for the 1D and 2D or 3D phonon band structures.

First of all, the transitions from the 1D to 3D regime, and
from the 1D to the 2D regime, are clearly visible in these
figures. As expected, the analytical expressions of Sec. II
reproduce very well the numerical data in these different
regimes. In the 1D regime, the relaxation rate is inversely
proportional to the cross-sectional area S = lylz of the wire
[Eq. (26)], as the overlap between the squared acoustic
phonon and qubit wave functions scales as 1/S. The relaxation
rate in the 1D regime can hence be much larger than in the
3D regime depending on S (and on the Larmor frequency ω).
The transition from the 1D to the 3D regime occurs in the
range ly = lz � 1000 nm, which is comparable to the typical
wavelength of the 3D phonons involved in the relaxation but
very large with respect to the size of the qubit itself. This
results from the fact that the splitting between the 1D phonon
subbands remains greater that the Larmor frequency (10 GHz)
over a wide range of dimensions, so that only the 1D LA
and TA branches can contribute to scattering until ly = lz �
500 nm. The introduction of a new subband gives rise to a
peak in the relaxation rate (due to the Van-Hove singularity in
the density of states of a parabolic subband), until the number
Nph of subbands at the Larmor frequency is large enough to
reach the 3D limit. Indeed, at wide enough ly = lz, Nph � 1 is
approximately given by:

Nph � S

(2π )2

∑
α∈{l,t1,t2}

π

(
ω

vα

)2

, (32)

where vl , vt1 = vt2 = vt are the longitudinal and transverse
sound velocities in bulk silicon. The ∝S dependence of Nph

balances the ∝1/S dependence of the squared phonon am-
plitudes, so that the relaxation rate becomes independent on
S (see Appendix B for a discussion on the nature of the
convergence). The same conclusions hold for the 1D to 2D
transition, which also occurs around ly = 1000 nm.

The relaxation rates are plotted for freestanding boundary
conditions in Figs. 5(b) and 5(d). The equations for 
1D

ph and

2D

ph still hold surprisingly well in the strongly confined regime
despite the differences between periodic and freestanding
phonon band structures (Fig. 4). The transition from the 1D
to 2D or 3D regime takes place at significantly smaller lateral
dimensions (�500 nm) due to the larger density of low energy
subbands. In the 1D limit, the qubit mostly couples to the
longitudinal and flexural modes of the wire. We emphasize,
though, that the qubit was placed near the highly symmetric
central position of the square or rectangular wire where the
effects of boundary conditions are expected to be minimal.

Irrespective of the choice of boundary conditions, Fig. 5
clearly highlights the effect of phonon confinement on the
relaxation rate in the qubit. 
ph can be strongly dependent on
the geometry far away from the qubit as the spin couples to
very long wave length energy acoustic phonons that can probe
the device over hundreds of nanometers. We further support
this conclusion in the next section by studying the impact of
the encapsulation materials on the relaxation in the qubit.
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FIG. 5. Relaxation rate 
ph computed in a qubit embedded (from a vibrational point of view) in (a) a square nanowire (NW) with sides
ly = lz and periodic boundary conditions, (b) the same square nanowire with free-standing boundary conditions, (c) a rectangular nanowire with
side lz = 10 nm, varying ly, and periodic boundary conditions, and (d) the same rectangular nanowire with free-standing boundary conditions.
For periodic boundary conditions, the phonon band structure is sampled from the bulk LA and TA branches and the corresponding contributions
are displayed separately. The semianalytical results for 
1D

ph , 
3D
ph [panels (a),(b)] and 
2D

ph [panels (c), (d)] are also plotted as solid lines. The
transitions from the 1D to 3D regimes [panels (a),(b)] and from the 1D to 2D regimes [panels (c), (d)] are clearly visible. All data were
computed with the isotropic model for the elastic constants of silicon (see Table I). The back gate voltage is Vbg = −0.2 V, and the orientation
of the magnetic field is ϕ = θ = 45◦.

B. Impact of encapsulation materials

As discussed previously, the qubits are usually embedded
in complex stacks of materials, which can have a significant
impact on the long-wavelength acoustic phonons that couple
to the spins. In particular, the velocity and degree of con-
finement of the phonons is highly dependent on the hardness
of the materials around the channel. In order to explore this
issue, we compute the phonon band structure of the device of
Fig. 1 modeled as a rectangular silicon nanowire with sides
W = 30 nm and H = 10 nm embedded in a homogeneous
material with varying elastic constants. We apply periodic
boundary conditions over the cross section in a supercell with
sides ly = lz = Lcell = 1 μm.

We use both the standard (anisotropic) elastic constants of
silicon and the isotropic modification giving rise (in bulk) to a
LA branch with velocity vt = 9000 m/s and to two degenerate
TA branches with velocity vt = 5400 m/s, consistent with
the analytical 3D model of Sec. II (see Table I). The elastic
constants of the encapsulation material are rescaled by a factor
κ with respect to those of silicon but the density is the same.

The relaxation rate 
ph is plotted as a function of κ

in Fig. 6(a). The horizontal dotted line is the relaxation
rate computed in a freestanding W = 30 nm × H = 10 nm
nanowire. As expected, 
ph tends to this limit when κ → 0
(encapsulation material much softer than silicon). The relax-
ation rate then decreases continuously as the encapsulation
material becomes harder and harder. The results obtained with

the isotropic and anisotropic models for the elastic constants
are very close, which shows that the moderate anisotropy of
silicon does not have much impact on the relaxation.

In order to get further insights into these trends, we plot
in Figs. 7(a)–7(c) the 1D phonon subband structure com-
puted at κ = 0.1, κ = 1, and κ = 10 (isotropic model). The
horizontal dash-dotted line on these plots is the Larmor fre-
quency of the qubit ω/(2π ) = 10 GHz. The longitudinal and
transverse sound velocities (drawn from the three branches
whose ωαq → 0 when q → 0) are plotted as a function of κ

in Figs. 7(d), and the number of 1D subbands that cross the
Larmor frequency of the qubit is plotted in Fig. 7(e).

The sound velocities v � venc = √
κvSi are defined by the

encapsulation material that fills 99.97% of the supercell (vSi

and venc being, respectively, the sound velocities in silicon and
in the encapsulation material). Accordingly, the density of 1D
phonon subbands is essentially proportional to 1/v2

enc, so that
the number Nph of phonon subbands at the Larmor frequency
is given by Eq. (32) with vα replaced by venc,α (and S by L2

cell).
Nph therefore behaves as 1/κ . This trend is clearly visible
in Figs. 7(a)–7(c): The number of phonon subbands that
cross the Larmor frequency increases with decreasing κ . For
κ = 1, the phonon wave functions are simply the bulk wave
functions delocalized over the whole supercell. As a conse-
quence, the relaxation rate scales as 
3D

ph ∝ 1/v5
enc ∝ κ−5/2

near κ = 1 [Eq. (16) using venc as input]. When decreasing
κ � 1, Nph increases continuously; yet all the subbands do
not contribute equally to the relaxation rate. Indeed, many
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FIG. 6. (a) Phonon-induced relaxation rate as a function of the hardness of the encapsulation material. From a vibrational point of view,
the system is modeled as a W = 30 nm × H = 10 nm silicon nanowire (NW) embedded in a material whose elastic constants are rescaled by a
factor κ with respect to those of silicon. Periodic boundary conditions are applied over a supercell with side Lcell = 1 μm. Data are plotted for
both isotropic and anisotropic elastic models (see Table I). The freestanding limit, as well as the semianalytical results for 
3D

ph and 
1D
ph (with

rescaled phonon velocities, see main text) are displayed for comparison. The back gate voltage is Vbg = −0.2 V, and the orientation of the
magnetic field is ϕ = θ = 45◦. (b) Phonon-induced relaxation rate as a function of back gate voltage for different encapsulation materials, that
are either soft (freestanding limit, SiO2), comparable (Si, Si3N4), or harder (diamond) than silicon (θ = 45◦, ϕ = 0). The Larmor frequency is
ω = 10 GHz in all panels.

FIG. 7. (a)–(c) Phonon band structures computed for κ = 0.1, κ = 1, and κ = 10 (isotropic elastic constants). (d) The transverse and
longitudinal acoustic velocities (drawn from the branches ωαq → 0 when q → 0) as a function of κ . The group velocities are defined by the
encapsulation material that fills 99.97% of the supercell and behave, therefore, as venc = √

κvSi. (e) The number of phonon branches Nph that
match the Larmor frequency ω/(2π ) = 10 GHz of the qubit. The dash-dotted line is Eq. (32) using the sound velocities venc as input. (f) The
phonon band structure computed at κ = 0.001 and Lcell = 100 nm (Lcell being reduced here due to computational limitations). The diameter
of the dots is proportional to the density of elastic energy Uel in the silicon core [65]. The solid color lines are the longitudinal, torsional, and
flexural modes of a freestanding W = 30 nm × H = 10 nm silicon nanowire. At such small κ , most of the low-energy phonons propagate
in the encapsulation material (phonon depletion effect) and do not couple efficiently to the qubit; yet the phonon modes of the freestanding
nanowire emerge behind the quasicontinuum of states of the encapsulation material.
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low-energy subbands mostly propagate in the encapsulation
material at small κ and are, therefore, weakly coupled to the
qubit (phonon depletion effect [66–68]). When κ → 0, the LA
and two TA branches of the silicon nanowire actually emerge
behind the quasicontinuum of subbands propagating in the
encapsulation material and are the only ones that efficiently
scatter the hole [see Fig. 7(f)]. The relaxation rate hence
saturates at the freestanding limit. On the contrary, when
the encapsulation material is hardened (κ � 1), the splitting
between phonon subbands increases until the qubit can only
couple to the LA and two TA subbands whose ωαq → 0 when
q → 0 [Fig. 7(c)]. These three subbands are highly dispersive
(with group velocities that scale as

√
κ) and tend to relocalize

in the silicon core at finite q [69]. In this regime, 
ph behaves
as 1/(v3

encL2
cell ) ∝ κ−3/2, as expected from Eq. (26) for the

1D phonons model. The relaxation rate remains, however,
significantly larger than Eq. (26) due to the finite phonon
reconfinement in the silicon core at small wave vector q ∝ √

κ

[69]. The residual relaxation rate also becomes dependent on
Lcell, being sensitive to details of the structure over the scale
of the phonon wavelength [70].

In Fig. 6(b), we compare the relaxation rates computed in
Si nanowires embedded in different materials, as a function of
the back gate voltage. The elastic constant of these materials
are given in Table I. They are not all meant to be realistic
encapsulation materials for a silicon nanowire qubit but have
been chosen as representatives of “soft” and “hard” materials.
We have also neglected built-in strains as well as disorder
and (if relevant) piezoelectric scattering in these materials.
We recover the trends discussed above: The softer the encap-
sulation material, the shorter the phonon-limited lifetime. In
particular, the bulk relaxation rate 
3D

ph [Eq. (16)] typically
overestimates the lifetime as the encapsulation materials (such
as SiO2) are usually softer than silicon. Phonon engineering in
semiconductor qubits may, therefore, ultimately improve their
performances, once all other extrinsic sources of scattering
have been mitigated [71].

V. CONCLUSIONS

We have derived the phonon-limited lifetime in hole spin-
orbit qubits within the six bands k · p framework, accounting
for the complete set of deformation potentials of the valence
band. The resulting expressions for the one-phonon transition
rates can actually be applied to both spin and charge relaxation
in a hole quantum dot. We have extended these expressions
to strongly confined 1D and 2D phonon band structures and
highlighted the different dependences on the Larmor fre-
quency of the qubit. We have then applied this theory to a hole
spin-orbit qubit on silicon-on-insulator similar to Refs. [19]
and [25]. We have shown that phonon-induced spin relaxation
in this qubit is dominated by a band mixing term that couples
the hole to transverse acoustic phonons through the valence
band deformation potential d . We have next optimized the
bias point and magnetic field orientation looking for the best
quality factor Q1 = fRT1 (the number of Rabi oscillations
that can be performed within one relaxation time T1). When
only phonons are accounted for in the relaxation, Q1 can
reach a few tens of thousands despite the strong spin-orbit
coupling in the valence band. Hole spin-orbit qubits are,

however, very sensitive to electrical and charge noise, which
calls for a careful design of the devices and of the electronics
around. We have also discussed the impact of confinement
and encapsulation materials on the phonon-limited lifetimes.
Indeed, the qubit couples to low-energy phonons that probe
the device over very long length scales. The lifetime does, in
particular, increase when the materials around the qubit get
harder. This may be evidenced experimentally at magnetic
fields large enough so that phonons dominate over electrical
and charge noise relaxation. Phonon engineering might, there-
fore, ultimately improve the performances of semiconductor
qubits.
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APPENDIX A: THE DIPOLE APPROXIMATION

If the extension of the qubit wave functions is significantly
smaller than the wavelength of the phonons involved in the
relaxation, we can make the following (dipole) approximation
for the phase factor:

eiq·(r−r′ ) ≈ 1 + iq · (r − r′) − 1
2 [q · (r − r′)]2

≈ 1 + iq · r − iq · r′ + (q · r)(q · r′)

− 1
2 [(q · r)2 + (q · r′)2] . (A1)

The matrix element in Eq. (9) can then be expanded as:

|〈0|eiq·r�H (εαq)|1〉|2

≈ S̃S̃∗ + i
∑

k

qk (R̃kS̃∗ − R̃∗
k S̃)

+
∑
k,k′

qkqk′

[
R̃kR̃∗

k′ − 1

2
(T̃kk′ S̃∗ + T̃ ∗

kk′ S̃)

]
, (A2)

where qk is the component of q on axis k ∈ {x, y, z}, and
S̃, R̃k, T̃kk′ are defined as:

S̃ = 〈0|�H |1〉 =
∑
i, j

�Hi jSi j (A3a)

R̃k = 〈0|�Hrk|1〉 =
∑
i, j

�Hi jR
k
i j (A3b)

T̃kk′ = 〈0|�Hrkrk′ |1〉 =
∑
i, j

�Hi jT
kk′

i j , (A3c)

with �H ≡ �Hs(εαq), and Si j , Rk
i j and T kk′

i j given by Eq. (17).

APPENDIX B: CONVERGENCE OF THE NUMERICAL
RELAXATION RATE CALCULATIONS

Equation (27) is expected to diverge when ω approaches
the edge of a parabolic phonon subband with vα0 = 0. This is
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FIG. 8. Rabi frequency fR, total relaxation rate 
 = 
3D
ph + 
jn,

and quality factor Q1 = fR/
 as a function of the back gate voltage
Vbg (θ = 45◦, ϕ = 0, ω/(2π ) = 10 GHz). The Johnson-Nyquist re-
laxation rate was computed for a resistance R = 200 � and scales
∝R.

a known pitfall of Fermi golden rule, whose transition rates
are proportional to the phonon density of states, which then
behaves as 1/

√
ω − ωα0.

In order to understand the implications of this result, we
consider (as in Sec. IV A) a qubit embedded in a homogeneous
nanowire with cross-sectional area S. When S increases, the
density of phonon subbands also increases ∝S [Eq. (32)],
but the effective width of each ∝1/(S

√
ω − ωα0) peak in

the relaxation rate decreases as 1/S2. Therefore, 
ph does
only converge “in measure” to 
3D

ph when S → ∞. In order
to smooth out the convergence, we have introduced a cutoff
|q| > 2π/λmax in Eq. (27), where λmax = 5.431 cm is very
large with respect to all dimensions of the system. This cutoff
was enforced in Sec. IV.

From a practical point of view, the van-Hove singularities
in the vibrational DoS may also be smoothed by phonon
scattering (disorder and phonon-phonon interactions). The
mean free path of low-energy acoustic phonons can, however,
remain very long at low temperature [39].

APPENDIX C: FIGURES OF MERIT OF THE QUBIT
IN THE PRESENCE OF JOHNSON-NYQUIST NOISE

We plot in Fig. 8 the Rabi frequency fR, the total relaxation
rate 
 = 
3D

ph + 
jn and the quality factor Q1 = fR/
 as a
function of the back gate voltage Vbg. This figure is the
counterpart of Fig. 3(b) including the Johnson-Nyquist contri-
bution computed for a resistance R = 200 �. As discussed in
the main text, Johnson-Nyquist noise increases the relaxation
rate away from Vbg = −0.15 V and moves the optimal Q1

farther from that point (because the Rabi frequency is also
zero at Vbg = −0.15 V where the qubit decouples from the
electrical noise).

Phonons and Johnson-Nyquist noise also induce deco-
herence. The Johnson-Nyquist decoherence rate is 
2,jn =
T −1

2,jn = 
jn/2 + T ∗−1
2,jn , where:

T ∗−1
2,jn = 2π

h̄

R

R0
|D11 − D00|2kBT , (C1)

with D00 = 〈0|Dfg|0〉 and D11 = 〈1|Dfg|1〉. As for phonons,
the decoherence rate is simply 
2,ph = T −1

2,ph = 
ph/2 be-

FIG. 9. Phonon 
2,ph, Johnson-Nyquist 
2,jn and total decoher-
ence rate 
2 = 
2,ph + 
2,jn as a function of back gate voltage (θ =
45◦, ϕ = 0, ω/(2π ) = 10 GHz).

cause the longitudinal spectral function S(ω) of phonons
is “super-ohmic” [S(ω = 0) = 0] and T ∗−1

2 ∝ S(0) in the
Bloch-Redfield theory [32,36,38] (Strictly speaking, S(0) =
0 for one-phonon processes in 3D but not necessarily for
two-phonon processes [72], which may give rise to a finite
dephasing time).

The phonon 
2,ph, Johnson-Nyquist 
2,jn and total deco-
herence rate 
2 = 
2,ph + 
2,jn are plotted as a function of
back gate voltage in Fig. 9. The quality factor Q2 = fR/
2 is
plotted as a function of Vbg in Fig. 10.

It is clear from Figs. 8 and 10 that the qubit is limited by
relaxation rather than decoherence with the above assump-
tions. This results from the fact that the spectral densities of
both phonons and Johnson-Nyquist noise are small or even
zero at low frequency and temperature. The situation will be
opposite in the presence of a charge noise with a 1/ωα tail, as
decoherence will be much faster [73]. The modeling of charge
noise in such qubits goes, however, far beyond the present
work. Hole spin qubits being sensitive to electrical and charge
noise owing to the strong spin-orbit coupling in the valence
band, this calls for a careful design of devices and electronics
around.

FIG. 10. Quality factor Q2 = fR/
2 as a function of back gate
voltage (θ = 45◦, ϕ = 0, ω/(2π ) = 10 GHz).
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