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Abstract— We fabricated Si Quantum Dot (QD) devices using 

relatively minor adaptations of a standard SOI CMOS process 

flow. We demonstrated that the spin of confined charges could be 

controlled via a local electrical-field excitation, owing in the case 

of electrons to a geometrically-enabled tuning of the valley 

splitting and inter-valley spin-orbit coupling. We discuss 

improvement paths such as extending the spin coherence time by 

using epi-layers of nuclear-spin-free 28Si (99.992%) as a device 

template, and developing novel 3D architectures compatible with 

topological quantum error correction schemes.    

I. SOI CMOS-DERIVED SPIN QUBITS 

     We aim to engineer a device for the coherent manipulation 
of information encoded as a quantum superposition of basis 
states, i.e. a quantum bit (qubit). In particular, the qubit state is 
mapped to the spin of a charged particle confined in a Quantum 
Dot (QD) [1]. We focus on QDs defined in a silicon lattice [2]. 
A popular way of isolating charges starts with forming a 2-
Dimensional Electron Gas (2DEG) at the interface of a 
heterojunction (Si/SiGe), and obtain lateral confinement 
through depletion-mode Field-Effect Gates [3]-[7]. Alternately, 
charges can be confined at MOS interfaces [8],[9]. In our case 
(Fig.1), we accumulate holes or electrons below MOS Gates 
wrapping around mesa-etched Si NanoWires (NW) [10],[11]. 
In fact, the main difference versus a standard SOI NWFET 
process flow is the spacer width preventing doping between 
densely patterned Gates (pitch 65nm), forming 1D 
arrangements of nearest neighbor-coupled QDs. Coherent 
control and dispersive readout of hole spin qubits were recently 
demonstrated in such CMOS-compatible devices [12],[13]. 

II. CORNER DOTS AND SPIN-VALLEY-ORBIT MIXING 

     Surprisingly, we also observed spin transitions in MOS 

Gate-confined electrons using only E-field excitations [14], 

without resorting to co-integrated micro-magnets [15]. The 

underlying mechanism is based on the interplay between Spin-

Orbit Coupling (SOC) and the multi-valley structure of the Si 

Conduction Band, and is enhanced by the “Corner Dot” device 
geometry [16]. By offering the ability to break and restore the 

confinement symmetry at will, the SOI Back-Gate permits fast 

programming in valley mode, and information storage in spin 

mode (Fig. 2) [17].  
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Fig. 1. (a) Simplified process flow of the SOI MOS QD devices with self-aligned 
reservoir doping. (b) Top view SEM micrograph and (c) transverse cross-
sectional TEM view of a two-Gate device. (d) Potential wells are formed below 
the field-effect Gates, with the wide spacers protecting the inter-Gate regions 
from doping, thus enabling to define a potential barrier between the QDs. 
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Fig. 2. (Left) Energy diagram showing the Zeeman splitting of the two low-
lying valleys in two Vb configurations. Depending on the relative values of the 

valley splitting (DV) and the Zeeman energy (EZ=|g|.µB.B) at a given magnetic 
field B, the qubit can be encoded by a superposition of (long-lived, E-field 

insensitive) spin or (short-lived, E-field addressable) valley states. (Right) DV 
vs. applied back-Gate voltage Vb in an SOI corner dot device, including the 
impact of local surface roughness variability (rms: 0.4nm) [17].  

     This functionality could alleviate the trade-off between fast 

manipulation and long coherence time, thereby improving the 

outlook for compact, scalable and fault-tolerant quantum logic 

circuits. Considering the valley-splitting-dependent resonance 

frequency for driving coherent oscillations of the qubit, it is 

probable that separate back-Gates should be defined in order 

to calibrate each device to a common operating point. 
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III. ISOTOPICALLY PURE 28SI THIN FILMS  

     Hyperfine interactions with nuclear spins in the host crystal 
can limit the coherence time of an electron spin qubit. The 
most abundant Si isotope (28Si: 92.23%) carries no nuclear 
spin, but 29Si (4.67%) does. Increasing the relative 28Si content 
by has led to some of the best performing single and two-qubit 
gates [5],[8],[9]. We have grown epilayers with a 28Si isotopic 
purity greater than 99.992% on 300 mm natural abundance 
silicon (natSi) crystals. The quality of the mono-crystalline 
isotopically purified epilayer conforms to the same drastic 
quality requirements as the natural epilayers used in our pre-
industrial CMOS facility [18]. Fig. 3 shows the 29Si 
concentration depth profile in a 28Si/natSi/28Si stack and its 
diffusion for various annealing conditions, indicating thermal 
budget restrictions may be needed during device processing 
(e.g. dopant activation, wafer bonding), in the case where a 
natSi seed should remain in the top SOI film. 
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Fig. 3. SIMS data (symbols) 
and simulation results 
(lines) of 29Si concentration 
depth profile vs. annealing 
conditions in a 28Si 10nm / 
natSi 10nm / 28Si 10nm / bulk 
natSi stack [18]. 

IV. 3D ARCHITECTURES FOR FAULT-TOLERANT COMPUTING 

     The surface code scheme [19] is nowadays one of the 
preferred approaches to Quantum Error Correction (QEC) due 
to its relatively high error threshold. It topologically requires 
that each individually addressable qubit should be coupled to 
four adjacent qubits, and hence naturally leads to 2D arrays of 
coupled QDs. Note that such an arrangement is no longer 
compatible with a conventional transistor geometry or process 
flow. Recent architecture proposals have emerged, relying on 
crossbar addressing of the QDs and tunnel junctions in order to 
reduce the number of I/Os [20],[21]. Our proposed 3D 
architecture features two stacked layers of active Si. A large 
2D array of QDs is tunnel-coupled by Si pillars to charge-
sensing QDs on a lower tier, in order to enable fast 
initialization and readout [22].  

 

Fig. 4. (a) 3D array of coupled Si QDs and (b) 3D elementary cell composed 
of six dots; four Data Dots, one Measurement Dot and one Sensing Dot 
connected to the top tier by a crystalline Si pillar. The topology is designed 
for the implementation of surface code, with an auxiliary bottom tier for 
sensing and fast initialization of the charge occupancy in the top tier [22]. 
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