

Generation of induced pluripotent stem cell lines IRMBi003-A and IRMBi003-B from a healthy donor to model Alzheimer's disease

C. Clua Provost, L. Auboyer, Anne Rovelet-Lecrux, C. Monzo, E. Schob, F. Andreux, C. Quittet, S. Lehmann, D. Wallon, C. Crozet

▶ To cite this version:

C. Clua Provost, L. Auboyer, Anne Rovelet-Lecrux, C. Monzo, E. Schob, et al.. Generation of induced pluripotent stem cell lines IRMBi003-A and IRMBi003-B from a healthy donor to model Alzheimer's disease. Stem Cell Research, 2023, 73, pp.103250. 10.1016/j.scr.2023.103250. hal-04597795

HAL Id: hal-04597795 https://hal.science/hal-04597795v1

Submitted on 3 Jun 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SEVIER

Contents lists available at ScienceDirect

Stem Cell Research

provide cell sources for the generation of isogenic cell lines with various

journal homepage: www.elsevier.com/locate/scr

Generation of induced pluripotent stem cell lines IRMBi003-A and IRMBi003-B from a healthy donor to model Alzheimer's disease

C. Clua Provost^{a,1}, L. Auboyer^{b,1}, A. Rovelet-Lecrux^c, C. Monzo^a, E. Schob^a, F. Andreux^a, C. Quittet^a, S. Lehmann^a, D. Wallon^d, C. Crozet^a,^{*}

^a Institute for Neurosciences of Montpellier, Univ Montpellier, INSERM U1298, Montpellier, France

^b Institute for Regenerative Medicine and Biotherapy (IRMB), Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France

^c Normandie Univ, UNIROUEN, INSERM U1245, Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, F 76000 Rouen, France

^d Normandie Univ, UNIROUEN, INSERM U1245, Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, F 76000 Rouen, France

ABSTRACT

Induced Pluripotent Stem Cell (iPSC) lines derived from healthy individuals are helpful and essential tools for disease modelling. Here, we described the reprogramming of skin fibroblasts obtained from a healthy 59-year-old individual without Alzheimer's disease. The generated iPSC lines have a normal karyotype, expressed pluripotency markers, and demonstrated the ability to differentiate into the three germ layers. The iPSC lines will be used as controls to study Alzheimer's disease mechanisms.

Resource Table.		(continued)			
Unique stem cell line	IRMBi003-A	Cell line repository/bank	https://hpscreg.eu/cell-line/IRMBi003-A and http		
identifier	IRMBi003-B		s://hpscreg.eu/cell-line/IRMBi003-B		
Alternative name(s) of stem cell line	CT1 and CT4	Ethical approval	DC-2015–2363 regional scientific ethical committee CPP Sud Med IV. Informed consent was obtained from		
Institution	INM, Univ Montpellier, INSERM, Montpellier, France		the patient.		
Contact information of distributor	Carole CROZET carole.crozet@inserm.fr				
Type of cell line	iPSC				
Origin	Human				
Additional origin info	Age: 59 years' old	1 Resource utility			
	Sex: Male	1. Resource attinty			
Cell Source	Fibroblasts				
Clonality	Clonal	The reported cell lines may be used as healthy reference cell lines for <i>in vitro</i> studies or disease modelling for Alzheimer's disease (AD). The may also be genetically modified by gene editing to generate isogen			
Method of reprogramming	Sendai virus Cytotune 2.0 kit (Thermofisher Scientific Inc.), hOCT4, hSOX2, hC-MYC, hKLF4				
Genetic Modification	NO	cell lines with mutations related to the pathology (Table 1).			
Type of Modification	N/A				
Associated disease	N/A				
Gene/locus	N/A	2. Resource details			
Method of modification	N/A				
Name of transgene or resistance	N/A	This paper details th	e generation of two iPSC clones (CT1 and CT4)		
Inducible/constitutive system	N/A	from a healthy male without AD. They could be used as healthy control iPSC lines for AD studies to perform comparative analysis with AD iPSC cell lines (Auboyer et al., 2019a; Auboyer et al., 2019b). They may also			
Date archived/stock date	07/26/2023				

* Corresponding author.

E-mail address: carole.crozet@inserm.fr (C. Crozet).

¹ Co-first author.

https://doi.org/10.1016/j.scr.2023.103250

Received 5 August 2023; Received in revised form 24 October 2023; Accepted 10 November 2023 Available online 11 November 2023

(continued on next column)

1873-5061/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mutations of interest and known to be involved in the physiopathology of AD.

Skin fibroblasts were obtained from a 59-year-old man without diagnosed disease. Fibroblasts were reprogrammed into iPSC using integration-free Sendai viruses (Life Technologies) carrying gene sequences of the four Yamanaka factors: OCT3/4, SOX2, KLF4 and c-MYC. Several iPSC colonies with normal morphology (Fig. 1A) were picked for expansion. The disappearance of the Sendai virus was successfully established by RT-PCR analysis with Sendai virus specific primers (Fig. 1B), in selected iPS colonies after at least 10 passages. The transgenes and viral sequences were also absent in the negative controls, nontransduced human healthy fibroblasts (hF Ct) and clones (CT1 and CT4) of interest, but present in freshly transduced (7 days) fibroblasts with the Sendaï viruses (hF Ct Sendaï). Expression of endogenous pluripotency factors OCT4, SOX2 and NANOG was confirmed by RT-qPCR analysis (Fig. 1C). Immunofluorescence labelling validated the expression of the embryonic stem cell specific marker SSEA4 and of the two pluripotency factors OCT4 and SOX2 (Fig. 1D). Pluripotency of the two clones was assessed following in vitro directed differentiation of iPS colonies during 7 days (Fig. 1E), followed by immunofluorescence staining of ectodermal and endodermal markers, respectively BIII-tubulin and PAX6, HNF3beta/FOXA2 and SOX17, or RT-PCR for mesodermal markers, Brachyury and αSmooth muscle actin (Fig. 1E). CT1 and CT4 clones presented a normal karyotype 46,XY after 33 passages for CT1, and 35 passages for CT4. Genomic stability was also assessed by detection of recurrent genetic abnormalities using the iCS-digital $^{\rm TM}$ PSC analysis provided as a service by Stem Genomics (https://www.stemgenomics.co m/), as described previously (Assou et al., 2020) and no evidence of recurrent genomic abnormalities was detected (Fig. 1F). The short tandem repeat (STR) profile established the 100 % identity of the iPSC line to parental cells (available upon request) and clones were shown to be mycoplasma free (Supplementary data).

3. Materials and methods

3.1. iPSC generation

Fibroblasts were amplified in 10 % FBS (Lonza), DMEM, 1 % NEAA, 0.1 mM β -mercaptoethanol, 1 mM glutamine and 1 % penicillin/streptomycin (Gibco). Fibroblasts were reprogrammed using the Cytotune-iPSC 2.0 Sendai Reprogramming kit (Life Technologies) (KOS MOI = 5, hc-Myc MOI = 5, hklf4 MOI = 3). After 7 days, the freshly transduced cells were transferred on feeders (mytomycin-inactivated CF1 mouse

Table 1

Characterization and validation.

embryonic (E12.5) fibroblasts), (Charles River) on 0.1 % Gelatin (Sigma Aldrich) coated dishes in KODMEM/F-12 with 20 % KO serum, 1 % NEAA, 0.1 mM β -mercaptoethanol, 1 mM glutamax, 1 % penicillin/ streptomycin (Gibco) and 5 ng/mL bFGF (Miltenyi Biotec). Several iPSC clones were passaged and expanded.

3.2. Pluripotent stem cell cultures

IPSC were first maintained on a feeder layer and they then adapted on 0.1 % Geltrex (Gibco)) coated dishes and maintained in mTeSR Plus medium (Stemcell Technologies). Colonies were mechanically passaged every 4–7 days into clumps. Cells were cultivated in a humidified incubator at 37 °C, 5 % CO₂. The iPSC lines were frozen in liquid nitrogen in Cryostor and 10 μ M of Rock Inhibitor (Stemcell Technologies).

3.3. PCR analysis

Total RNA was extracted from fibroblasts and iPSCs (P20) with the RNAeasy micro kit (Qiagen). cDNA were obtained using the SuperscriptIII kit (Invitrogen). Disappearance of the Sendai virus vectors and expression of mesodermal markers was assessed by PCR using specific primers (Table 2). PCR products were analysed on 2 % agarose gel and the picture was acquired using Ebox Vilber System. For the expression of the endogenous genes of pluripotency, quantitative PCR analysis was performed using the Light Cycler LC480 device (Roche Diagnostics) using SYBRGreen I Master Kit (Roche Diagnostics). The relative quantification was calculated using the 2- $\Delta\Delta$ Ct method with non-transduced fibroblasts as controls and GAPDH as housekeeping gene (Primers are listed in Table 2) using H9 human embryonic stem cell mRNA as reference and positive control.

3.4. In vitro directed differentiation

IPS cells (p24) were dissociated as single cells (Gentle Dissociation Reagent, Stemcell Technologies) and differentiated into each germ layers (mesoderm, endoderm, ectoderm) in parallel with StemMACS Trilineage Differentiation Kit (Miltenyi). After 7 days, cells were fixed for immunocychemistery.

3.5. Immunofluorescence

iPSC colonies (p22) or EB were fixed on coverslips in 4 % PFA during 15 min and washed 3 times with DPBS (Gibco). Cells were permeabilized

Classification	Test	Result	Data
Morphology	Photography Bright field	Normal	Fig. 1A
Phenotype	Qualitative analysis (Immunocytochemistry)	Positive for OCT4, SOX2, SSEA4	Fig. 1D
	Quantitative analysis (RT-qPCR)	Expression of pluripotency markers: OCT4, SOX2, NANOG	Fig. 1C
Genotype	Karyotype and resolution	46XY, Resolution: 400	Fig. 1F
	Recurrent genomic abnormalities	No recurrent genetic abnormalities detected	
Identity	Microsatellite PCR (mPCR) OR	Not performed	NA
	STR analysis	Matched to parental STR	Available with
			authors
Mutation analysis (IF	Sequencing	NA	NA
APPLICABLE)	Southern Blot OR WGS	NA	NA
Microbiology and virology	Mycoplasma	Mycoplasma testing by luminescence.	Supplementary
		Negative	data
Differentiation potential	In vitro directed differentiation	Expression of PAX6, BIII-tubulin, SOX17 and FOXA2 by	Fig. 1E
		immunocychemistry. Expression of Brachyury and α SMA by RT-PCR.	
List of recommended germ	mRNA (RT-PCR) and protein (IF) levels, at least 2	Ectoderm: PAX6, TUBB3/TUJ1	Fig. 1E
layer markers	markers need to be shown per germ layer	Endoderm: SOX17, FOXA2,	
		Mesoderm: BRACHYURY, αSMA	
Donor screening (OPTIONAL)	HIV $1 + 2$ Hepatitis B, Hepatitis C	NA	NA
Genotype additional info	Blood group genotyping	NA	NA
(OPTIONAL)	HLA tissue typing	NA	NA

3

Table 2

Reagents details

	Antibodies used for immunocytochemistry/flow-cytometry			
	Antibody	Dilution	Company Cat #	RRID
Pluripotency Markers	Mouse anti- OCT3-4 (C-10)	1:500	Santa Cruz Biotechnology Cat# sc-5279	RRID: AB_628051
	Rabbit anti- SOX2	1:100	Cat# \$C-3279 Bethyl Cat#301-739A	RRID: AB_1211354
	Mouse anti- SSEA4 (MC-	1:500	Thermo Fisher Scientific Cat#	RRID: AB_2536687
Differentiation Markers	813–70) Mouse anti- Beta-Tubulin	1:200	MA1-021 STEMCELL Technologies	RRID:AB 2,313,773
	III, Clone TUJ1 Rabbit anti- PAX6	1:20	Cat#60052 Thermo Fisher Scientific Cat#	RRID: AB_2543470
	Rabbit anti- HNF3beta/ FOXA2	1:75	Millipore Cat# 07–633	RRID: AB_390153
	Mouse anti- SOX17	1:75	R&D Systems Cat# MAB1924	RRID: AB_2195646
Secondary antibodies	Donkey Anti- Mouse IgG, Alexa Fluor 555-conjugated	1:1000	Molecular Probes Cat# A21424	RRID: AB_141780
	Goat anti- Rabbit IgG, Alexa Fluor 488-conjugated	1:1000	Molecular Probes Cat# A- 11008	RRID: AB_143165
	Donkey anti- Rabbit IgG, Alexa Fluor 488-conjugated	1:1000	Molecular Probes Cat# A21206	RRID: AB_2535792
	Donkey anti- Goat IgG, Alexa Fluor 555- conjugated	1:1000	Thermo Fisher Scientific Cat# A21432	RRID: AB_2535853
	Donkey anti- Mouse IgG, Alexa Fluor 488-conjugated Primers	1:1000	Molecular Probes Cat# A21202	RRID: AB_141607
	Target	Size of band	Forward/Reverse	primer (5'-3')
Transgenes from SeV vector (PCR)	SeV	181 bp	Forward: GGA TCA CTA GGT GAT ATC GAG C Reverse: ACC AGA CAA GAG	
	с-Мус	532 bp	Forward: TAA CTC AGG CTT GTC G Reverse: TCC ACA	G ACT AGC
	GAPDH	300 bp	Forward: CTG GCC CCA CCA TGG Reverse: CAT CAC TCC CGG	G TCT TCA GCC ACA GTT
Mesodermal markers (PCR)	BRACHYURY/ TBXT	218/ 392/ 395 bp	Forward: ACC CAC GCG GTG AC Reverse: CAA TTG	G TTC ATA G TCA TGG
	αSMA	222 bp	Forward: TTC AAT GCC ATG TA Reverse: GAA GGA ACG CTC AG	I GTC CCA A ATA GCC
Pluripotency Markers (qPCR)	OCT4	150 bp	Forward: TGT AC TCC CTT TC Reverse: TCC AGG CCT AGC	T CCT CGG TTT TCT TTC
	SOX2	144 bp	Forward: ATG CA GAC GTG A Reverse: CTT TTG CAT TTC	C CGC TAC CAC CCC TCC
	NANOG	354 bp	Forward: TGC CTC AGA CTG TC	C ACA CGG

Table 2 (continued)

	Antibodies used for immunocytochemistry/flow-cytometry			
	Antibody	Dilution	Company Cat # RRID	
House-Keeping Genes (qPCR)	GAPDH	NA	Reverse: TGC TAT TCT TCG GCC AGT TG Forward: CGC TCT CTG CTC CTC CTG TT Reverse: CCA TGG TGT CTG AGC GAT GT	

with 0.5 % Triton X-100 (Sigma Aldrich), 3x10min for nuclear staining or 3 min in 0.3 % Triton X-100 for the other immunostainings. Nonspecific binding sites were blocked with 0.2 % Bovine Serum Albumin (MP BIOMEDICALS) in DPBS (1 h, RT). Primary and secondary antibodies were diluted (Table 2) in 0.2 % BSA–DPBS solution, and applied overnight at 4 °C and 1 h, RT respectively. Nuclei were labelled with DAPI (Life technologies) in DPBS. Cells were washed twice in DPBS and water. Coverslips were mounted with Fluorsave (Millipore). Samples were imaged with AxioObserver Zeiss.

3.6. Karyotype and recurrent genomic instability

Genomic stability tests and Karyotypes were performed by StemGenomics at passage 33 (CT1) and passage 35 (CT4), (https://www.stemgenomics.com/).

3.7. Short tandem repeat analysis

Microsatellite analyses were performed on DNA extracted from parental fibroblasts and iPSCs, using the following short tandem repeats: D1S439, D9S1784, D14S986, D19S913, D5S818, D13S317, D7S820, D16S539, vWA, Th01, TPOX, CSF1PO) + amelogenin.

3.8. Mycoplasma testing

Absence of mycoplasma contamination was assessed on cell culture supernatants (p25) using the MycoAlert® Mycoplasma Detection assay (Lonza).

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Crozet reports financial support was provided by Fondation pour la Recherche Médicale. CLUA-PROVOST reports financial support was provided by Alzheimer Foundation.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2023.103250.

References

Assou, S., Girault, N., Plinet, M., Bouckenheimer, J., Sansac, C., Combe, M., Mianné, J., Bourguignon, C., Fieldes, M., Ahmed, E., Commes, T., Boureux, A., Lemaître, J.-M., De Vos, J., 2020. Recurrent genetic abnormalities in human pluripotent stem cells: definition and routine detection in culture supernatant by targeted droplet digital PCR. Stem Cell Rep. 14, 1–8.

Auboyer, L., Monzo, C., Wallon, D., Rovelet-Lecrux, A., Gabelle, A., Gazagne, I., Cacheux, V., Lehmann, S., Crozet, C., 2019a. Generation of induced pluripotent stem cells (IRMBi001-A) from an Alzheimer's disease patient carrying a G217D mutation in the PSEN1 gene. Stem Cell Res 34, 101381.

Auboyer, L., Monzo, C., Wallon, D., Rovelet-Lecrux, A., Gabelle, A., Gazagne, I., Cacheux, V., Lehmann, S., Crozet, C., 2019b. Generation of induced pluripotent stem cells (iPSCs) IRMBi002-A from an Alzheimer's disease patient carrying a D694N mutation in the APP gene. Stem Cell Res 37, 101438.