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Abstract 

Objective:  

Although there are methods to identify regions of interest (ROIs) from echocardiographic 

images of myocardial tissue, they are often time-consuming and difficult to create when 

image quality is poor. Further, while myocardial strain from ultrasound (US) images can be 

estimated, US alone cannot obtain functional information, such as oxygen saturation (sO2). 

Photoacoustic (PA) imaging, however, can be used to quantify sO2 levels within tissue non-

invasively.  

Methods:  

Here, we leverage deep learning methods to improve segmentation of the anterior wall of the 

left ventricle and apply both strain and oxygen saturation analysis via segmentation of murine 

US and PA images.  

Results:  

Data revealed that training on US/PA images using a U-Net deep neural network can be used 

to create reproducible ROIs of the anterior wall of the left ventricle in a murine image dataset. 

Accuracy and Dice score metrics were used to evaluate performance of the neural network on 

each image type. We report an accuracy of 97.3% and Dice score of 0.84 for ultrasound, 

95.6% and 0.73 for photoacoustic, and 96.5% and 0.81 for combined ultrasound and 

photoacoustic images.  

Conclusion:  

Rapid segmentation via such methods can assist in quantification of strain and oxygenation.  

 

  



Introduction 
 

Although methods exist to extract myocardial boundaries in ultrasound images semi 

automatically [1], these methods are often still time-consuming and dependent on image 

quality, as obtaining high quality ultrasound images depends on the skill of the technician [2]. 

Furthermore, standard ultrasound cannot obtain metabolic information from tissue, such as 

oxygenation, a key aspect of myocardial tissue health which is useful for determining the 

extent of ischemic injury after infarction [3]. Photoacoustic imaging is an emerging 

technology that combines both optics and acoustics, combining the contrast and specificity of 

optical imaging with the penetration depth of ultrasound [4]. Applying segmentation methods 

to dual-modality ultrasound and photoacoustic cardiac image data opens the possibility of 

quickly and accurately quantifying large image data sets, potentially reducing intra-user 

variability. Additionally, these segmentations can be used for evaluating cardiac tissue health 

via metrics such as strain and oxygenation. For example, Mukaddim et al.[5] and Liu et al.[6] 

demonstrated that estimation of oxygen saturation via optical imaging can be used to diagnose 

myocardial ischemia in real time. 

 

Here, we report the implementation of a convolutional deep neural network, UN et an 

architecture that has been used to train on limited biomedical image data sets with impactful 

results [7−9], and use it to delineate regions of the myocardium in preclinical ultrasound and 

photoacoustic data sets with great efficiency compared to manual segmentation alone. 

 

Results show that the segmentation algorithm works best on ultrasound images followed by 

the combined ultrasound and photoacoustic images and photoacoustic images alone. From the 

automatic segmentations generated by this algorithm, we estimate radial strain and 

oxygenation in the anterior myocardium of the left ventricle from animals with and without 

ischemic injury. 

 

Materials and methods 
 

Dataset 

Murine data were acquired on a Vevo LAZR-X system (FUJIFILM Visual Sonics) using a 

linear array 5−30 MHz frequency (MX250) transducer and 750nm/850nm excitation 

wavelengths to obtain oxy-and deoxyhemoglobin  information from each mouse throughout 

one cardiac cycle. The data set consists of 759(645 × 555 pixels) long-axis B-mode 

electrocardiogram-gated kilohertz visualization (EKV) ultrasound (US) and photoacoustic 

(PA) images, which can be combined into overlayed ultrasound and photoacoustic (USPA) 

images from 27 three-month-old male BALB/cJRj mice. Of the 27 mice, 17 were sham and 

10 underwent a left coronary artery permanent ligation procedure as described previously [3], 

with images acquired 7d after surgery. From the data set, a trained sonographer created 759 

manually segmented binary masks of the anterior portion of the left ventricle which served as 

the ROIs. Both the images and ROIs were split into 80% training (21 mice, 606 images) and 

20% validation sets (6 mice, 153 images). Images in the training set were from14 sham mice 

and 7 myocardial infarction (MI) mice while images in the validation set were from 3 sham 

mice and 3 myocardial infarction (MI) mice. The authors confirm that Institutional Animal 

Care and Use Committee approval was obtained for the research procedures. Region of 

interest generation 



Binary masks of the ROIs were generated manually on MATLAB (Natick, MA, USA) using 

the draw polygon function on the ultrasound images in which the ventral part of the 

myocardium was identified and isolated along the anterior wall of the left ventricle from base 

to apex. 

 

Implementation details 

 

 Ultrasound, photoacoustic, and combined ultrasound/photoacoustic images along with the 

generated ROIs were scaled to 325×275 pixels to prevent heavy computational load and 

served as input to the deep neural network. The neural network was trained on a computer 

with an NVIDIAT500GPU (4GB memory) in PyCharm using the PyTorch frame-work and 

UN et deep neural network architecture. First, within the same algorithm, the neural network 

was trained on the EKV ultrasound image training set with manually generated binary masks 

and subsequently tested on the EKV ultrasound image validation set to generate predicted 

ROIs for15 epochs.  

 

The EKV ultrasound images were then sharpened by using the insharpen function in 

MATLAB as a preprocessing step before feeding into the neural network again. We varied the 

strength of the sharpening effect with sharpening strength (s) set to 2, 3, and 4 (Fig.1). Wet 

hen compared the U-Net-Generated predicted ultrasound ROIs from the validation set to the 

ultrasound ROIs generated from manual segmentation, both with and without sharpening. 

Training with the U-Net deep neural network on the photoacoustic and combined 

ultrasound/photoacoustic images with and without sharpening was also accomplished using 

the same masks generated from the ultrasound set to generate predicted masks for both image 

types. Since sharpening did not improve training on the PA and USPA data, only results from 

training on the unsharpened PA and USPA images are reported. Accuracy (th e number of 

correct predictions over the total number of predictions) and Dice score (measuring 

segmentation overlap ranging from 0 to 1 [9]) metrics were used to evaluate algorithm 

performance of the US (sharpened), PA (unsharpened), and USPA (unsharpened) data. 

 

 

Cross validation 

Cross validation on our data set was performed using a combination of the k-fold and leave-

one out methods on a subsample of the dataset [10]. This subsample consisted of 400 

manually segmented binary masks of the anterior portion of the left ventricle which served as 

the manual ROIs. Both the images and ROIs were split into 77% training (9 mice,309 images) 

and 23% validation sets (3 mice, 91 images). Because of an imbalance in the number of 

mages within each sample, we used a more stratified approach in which data was partitioned 

so that at least one sample (data from one animal) was swapped in the test set while 

maintaining the total test set size to 21%−23% of the dataset form = 3 samples/mice. The 

deep neural network was then trained and tested with these various combinations of partitions 

in the test set to obtain a report of accuracy and Dice 

The deep neural network was then trained and tested with these various combinations of 

partitions in the test set to obtain a report of accuracy and Dice scores. From these results, the 

dataset with the highest accuracy and Dice score was used to calculates train and sO2% within 

the manual and predicted ROIs. 

 

 



 

Strain calculation 

We calculated Green Lagrangian radial strain (Err) for the validation set for n = 6 mice (3 

sham, 3MI) in MATLAB by measuring the thickness at the apical (t1), mid (t2, t3), and basal 

(t4) regions between the endocardium and epicardium of the manually segmented and 

predicted ROIs at end diastole and peak systole (Fig.3A), using the equation: where rPS is the 

radial thickness at peak systole and rED is the radial thickness at end diastole. The difference 

between the manually segmented and predicted radial strain was also calculated. 

 
Oxygen saturation calculation 

 

We calculated mean myocardial tissue oxygen saturation (sO2) within the regions segmented 

manually and automatically (predicted) on the photoacoustic images through a custom 

MATLAB script in which each RGB pixel value was mapped to arrange of 0 to 100 through 

implementation of a look up table. We then averaged the mapped values to obtain the mean 

tissues O2 within each segmentation. 

 

 

Statistical analysis 

An ANOVA multiple comparisons test with Tukey correction was used to compare radial 

strain and means O2% between the manual and predicted segmentations for all sham and MI 

mice in the test set. Levels of significance for the ANOVA multiple comparisons test are 

shown as p<0.01**, p<0.001***, p<0.0001****, and for no significance as p>0.05(ns). We 

used unpaired-t-tests to investigate differences between calculated radial strain and means O2 

from the manual and predicted ROIs for the sham and MI mice combined. The threshold for 

significant difference for the t-tests and ANOVA multiple comparisons test was set top <0.05. 

 

 

Results 

The results of our study show that our predicted ROIs matched up well with manually 

segmented ROIs, especially with sharpened ultra-sound data. The green contours represent the 

outline of the manual ROIs while the yellow contours represent the outline of the predicted 

ROIs, or ROIs that were generated as predicted by the deep neural network. Comparison 

between running th neural network before and after applying sharpening to the EKVB-mode 

ultrasound images is shown in Figure1, in which training on US images with sharpening 

strengths=3 produced the best accuracy and Dice score (Table1). The accuracy and Dice score 



before sharpening on the EKVB-mode images was 97.35% and 0.783. After applying 

sharpening, the accuracy and Dice score post-training were improved, as shown in Table1. 

 

Results from running cross-validation are shown in Table 2 while accuracy and Dice score 

values from running the neural network algorithm on each dataset (US, PA, and USPA) are 

reported in Table 3. 

 

A comparison of some of the manually segmented and predicted ROIs on each dataset type is 

shown in Figure 2. The radial strain ratio (Fig.3) values for the manual and predicted ROIs in 

the validation set are shown in Supplemental Table1 while the difference between sham and 

MI mice radial strain (Fig.3B) and sO2 (Fig.4B ) are shown. Scatter and Bland-Altman plots 

showing the differenced average of the radial strain are shown in Figure 3 (C,D), respectively. 



Mean tissues O2% values extracted from the manual and predicted ROIs in the validation PA 

images are shown in Figure 4 (A, B) for both sham and MI animals. Figure 4C 

showsthemeansO2% values of all 153 PA images in the validation set within manual and 

predicted ROIs while a Bland Altman plot showing the difference and aver-age of the means 

O2% values is shown in Figure 4D. Furthermore, segmentation with the U-Net took 

approximately 0.1−0.2 s/image compared to 45s/image manual segmentation, an over 200-

fold improvement. 

 

 

 

 
 

Discussion 

In this study, we have proposed a method to automatically segment the anterior portion of the 

cardiac left ventricle in ultrasound, photoacoustic, and combined ultrasound/photoacoustic 

data to help streamline the process of evaluating cardiac tissue health metrics. The average 

accuracy and Dice scores from applying cross-validation were higher for the US and USPA 

data compared to the PA data, suggesting that U-Net performs better on US image data 

compared to PA alone. Furthermore, we demonstrate the utility of the automatic 

segmentations to obtain physiological parameters including cardiac radial strain and oxy- gen 

saturation, both of which can be useful for evaluating tissue health. For example, evaluation 

of cardiac tissue in an infarcted heart versus a healthy heart from these segmentations reveals 

reduced strain and oxygen saturation near the apex downstream of the coronary artery occlusion.  

 

 



 

 

 

To further improve segmentation accuracy and speed, the use of a computer cluster could be 

employed. Other potential improvements could include pre-and post-processing methods such as data 

augmentation and artifact removal, regularization methods such as dropout, applying transfer learning 

(i.e., training on US data first, then apply transfer learning to the PA data or vice versa), or further 

expanding the data set size. For example, by employing regularization, the deep neural network is 

better equipped to make predictions with higher accuracy and Dice score on new inputs or with data it 

has never seen before [11]. This can help in the problem of overfitting where the deep learning model 

can generalize to new data instead of memorizing the data it is trained on. The implications of this 

study are wide spread—not only is this deep learning method capable of improving segmentation and 

analysis time of murine cardiac image datasets but it has the potential to eventually be applied toward 

larger and more clinically relevant data in which physicians must make time-sensitive decisions. 



 

Conclusion 
 

Here, we show how deep learning can be used to segment myocardium from both preclinical 

ultrasound and photoacoustic murine image data. Our results were comparable to manually 

segmented data with a reduction in segmentation time by over 200-fold. Overall, this study 

lays the ground work for improving analysis of cardiac images to accurately and efficiently 

monitor cardiac health. 
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