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Abstract

From a dynamic perspective, the existing literature on renewable re-
sources in a Ramsey economy is puzzling. On the one hand, the central
planner�s solution leads to the occurrence of limit cycles around the lower
steady state (Wirl, 2004); on the other hand, limit cycles arise in a market
economy around the higher steady state (Bosi and Desmarchelier, 2018).
To reconcile these �ndings, we study the competitive equilibrium of a
discrete-time Ramsey-Cass-Koopmans model with a renewable resource,
where preferences are represented by two di¤erent utility functions with
Constant Static Elasticity of Substitution (CSES) and Constant Intertem-
poral Elasticity of Substitution (CIES). In the CSES case, we recover the
dynamics highlighted by Wirl (2004), while, in the CIES case, the ones
obtained by Bosi and Desmarchelier (2018). Moreover, this conclusion
is robust under two alternative regeneration processes for the resource
(power and logistic laws). In other words, the dynamics seems to depend
more on the preference structure than on the market structure (central
planner versus market economy).

Keywords: Ramsey model, reproduction law, pollution, two-period
and limit cycles.

JEL codes: C61, E32, 044.

1 Introduction

Nature provides a wide range of services essential to life and human wellbeing.
Following Sandifer et al. (2015), contact with nature brings both psychological
and physiological health bene�ts, develop recreational, cultural and spiritual
wellbeing, and promotes social interaction. Nature also supplies food, medicines
and raw materials. From an economic perspective, most of these positive e¤ects

�The authors acknowledge the �nancial support of the LABEX MME-DII (ANR-11-LBX-
0023-01).

yUniversité Paris-Saclay, Univ Evry, CEPS, France. E-mail: stefano.bosi@universite-paris-
saclay.fr.

zUniversité de Lorraine, Université de Strasbourg, CNRS, BETA, 54000, Nancy, France.
E-mail: david.desmarchelier@univ-lorraine.fr.

xUniversité Paris-Saclay, Univ Evry, CEPS, France; Thang Long University, TIMAS, Viet-
nam. E-mail: thai.hahuy@univ-evry.fr.

1



are externalities even when economic agents are aware of the bene�ts of nature.
Their economic decisions (consumption, production) a¤ects nature which a¤ects
their wellbeing in turn. Larger economic activities stress more nature and reduce
more the stock of renewable resources such as forests. Agents�wellbeing lowers
in turn and a¤ects their consumption demand. A lower demand entails a lower
production and promotes the regeneration of ecosystems with a positive impact
on welfare at the end. These cycles take place because of the role nature plays
in human wellbeing: from a formal view, dynamics reproduce the predator-prey
model introduced by Lotka (1907) and Volterra (1928).
Understanding the complex interactions between species, as in the predator-

prey model, is essential for ecologists in suggesting conservation programs.
Recognizing the cyclical properties of actions and feedbacks between nature (re-
newable resources) and economic activities is just as important to recommend
economic policies serving environmental quality and wellbeing. Our paper aims
to explore these complex dynamics based on the interaction between economic
activities and nature in a standard Ramsey-Cass-Koopmans framework with a
renewable resource.
Our study is not the �rst attempt to understand the role of natural resources

in dynamic economies. Surprisingly, early work focused solely on the optimal
depletion of a resource by a central planner.1 They study how economic de-
cisions (consumption and production) change the resource dynamics, how the
latter a¤ects the social welfare. For instance, Beltratti et al. (1994) propose a
model where a renewable resource enters the utility function. Consumption im-
pairs the resource dynamics driven by a bell-shaped regeneration process. The
central planner maximizes what they call a "sustainable preference", that is a
discounted utility increased by a term re�ecting the concern for generations in
the distant future. Beltratti et al. (1994) observe that the optimal solution leads
to a saddle point with a positive resource level in the long run (resource preser-
vation). Ayong Le Kama (2001) is also concerned with intergenerational equity,
with three notable di¤erences from Beltratti et al. (1994): (1) the resource en-
ters not only the utility function as a good, but also the production function as
an input; (2) instead of consumption, polluting production harms resource dy-
namics; (3) the central planner maximizes an undiscounted intertemporal utility
with the Green Golden Rule à la Chichilnisky et al. (1995) (a generalization of
the bliss point à la Ramsey (1928), representing the maximal utility in the long
run, jointly given by consumption and resource). Ayong Le Kama (2001) recov-
ers the main result of Beltratti et al. (1994): when the environmental impact of
production is small, the economy converges to the Green Golden Rule (a unique
saddle-point solution in the long run). Wirl (2004) introduces a resource in the
utility function as in Beltratti et al. (1994) and maximizes a discounted social
optimum as in Ayong Le Kama (2001): endogenous cycles can occur through a
Hopf bifurcation. Interestingly, he proves the existence of two steady states (low
and high resource level): the highest one is always saddle-path stable while the
lowest loses its stability when a limit cycle arises around through a supercritical

1 In their seminal contribution, Dasgupta and Heal (1974) consider an exhaustible resource.
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Hopf bifurcation.
Wirl (2004) shows that endogenous cycles likely occur when a resource en-

ters the utility function but he considers only the central planner�s solution and,
in fact, ignores the additional external e¤ects of a natural resource in a market
economy. These e¤ects reinforce the mechanism behind cycles. More perti-
nently, Bosi and Desmarchelier (2018) study the welfare impact of a resource in
a market economy and show how these externalities contribute to endogenous
�uctuations. Not only they revisit Wirl (2004) from a market perspective, but
also introduce non-separable preferences. Their utility, a composite CIES func-
tion, allows for both positive and negative e¤ects of resource on the marginal
utility of consumption. Even if they recover two steady states à la Wirl (2004),
they prove that the lowest one is always unstable, while a Hopf bifurcation can
only take place around the highest when consumption and nature are substitutes
(negative e¤ect of resource on marginal utility of consumption). Surprisingly,
that is the converse of Wirl (2004): cycles arise only around the highest steady
state instead of the lowest.
At �rst sight, the di¤erence between Bosi and Desmarchelier (2018) and

Wirl (2004) rests on their alternative approaches: a market economy instead
of a central planner. However, a deeper insight reveals the role of separable
preferences in Wirl (2004) whose utility function cannot be reduced to a partic-
ular case of the non-separable form in Bosi and Desmarchelier (2018). Then, an
intriguing question arises: is it possible to �nd Wirl�s main result (limit cycles
around the lower steady state) in a market economy with a separable function
as a special case of utility in Bosi and Desmarchelier (2018)? It is important
to understand whether endogenous cycles are a robust feature of the Ramsey
model with renewable resources.
Our aim is to solve this robustness puzzle. While both Wirl (2004) and Bosi

and Desmarchelier (2018) are continuous-time models, we consider a discrete-
time version of the Ramsey model where preferences are represented by two
distinct utility functions: (1) Constant Static Elasticity of Substitution (CSES);
(2) Constant Intertemporal Elasticity of Substitution (CIES). Preferences (1)
allows for separability between consumption and resource à la Wirl (2004) as
a special case, while preferences (2) are the same of Bosi and Desmarchelier
(2018).
Interestingly, we recover the main result by Wirl (2004) (a Neimark-Sacker

bifurcation2 only around the lower steady state) in the more general CSES case.
Therefore, what matters is the form of preferences, not regime (planners versus
market). Also noteworthy and, in some respect, unsurprisingly, we recover Bosi
and Desmarchelier (2018) under a CIES speci�cation: limit cycles only arise
around the higher steady state.
If the choice of the utility function matters for �uctuations, intriguing is

also the role of the regeneration process. Beltratti et al. (1994) claims that this
process should be bell-shaped. In this respect, they introduce a logistic law, a
process widely used in ecology. This function is also considered by Ayong Le

2The discrete-time equivalent of the Hopf bifurcation.
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Kama (2001), Wirl (2004) and by Bosi and Desmarchelier (2018). However, a
power law is also bell-shaped and well-suited to represent a regeneration process
of a renewable resource.
Bosi and Ha-Huy (2023) is a discrete-time Ramsey model with positive pro-

ductive externalities from a renewable resource where two regeneration processes
generate rich dynamics but richer under the power law. Indeed, while cycles of
period two through a �ip bifurcation are possible under both these laws, only
the power law promotes the occurrence of limit cycles through a Neimark-Sacker
bifurcation. Our paper focuses instead on externalities on preferences but com-
pares the stability properties of both these regeneration processes with those
obtained in Bosi and Ha-Huy (2023).
To sum up, we bridge and compare di¤erent segments of the existing litera-

ture on renewable resources from a uni�ed perspective, combining two kinds of
utility function with two types of regeneration process in a discrete-time Ramsey
framework.
The paper is organized as follows. Section 2 introduces the fundamentals of

the model. Section 3 presents the competitive equilibrium, while section 4 dis-
cusses the existence of an optimal solution. Section 5 develops the model when
the regeneration process is a power law, while Section 6 when the regeneration
process is a logistic law. Section 7 sums up and discusses the results. Section 8
concludes.

2 Fundamentals

In this section, we set up the model by specifying technology, preferences with
a taste for nature, and alternative reproduction processes for nature.

2.1 Production

There is a large number of small price-taker producers, sharing the same technol-
ogy: F (Kjt; Ljt) = AK

�
jtL

1��
jt , where Kjt and Ljt represent, respectively, the

capital and the labour demands of �rm j in period t, with, as usual, � 2 (0; 1).
Let rtand wt be, respectively, the real interest rate and the wage rate at date

t. The pro�t is given by AK�
jtL

1��
jt � rtKjt � wtLjt and zero-pro�t conditions

hold at equilibrium:

rt = �Ak
��1
t and wt = (1� �)Ak�t

where kt � Kjt=Ljt denote the capital intensity, the same across the �rms.

2.2 Preferences

As in Wirl (2004) and Bosi and Desmarchelier (2018), nature enters the utility
function and consumer maximizes the intertemporal utility

P1
t=0 �

tu (ct; Nt)

under a sequence of budget constraints ct+~kt+1� (1� �) ~kt � rt~kt+wtlt where
~kt denotes the individual wealth. � 2 (0; 1) and � 2 (0; 1) are the discount factor
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and the capital depreciation rate respectively. We consider a market economy
where consumers take the sequence (Nt)

1
t=1 as given. In other terms, nature is

a pure externality.
Notice that, here, ~kt refers to individual consumer�s capital supply, while

Kt �
P

j Kjt represents the �rms�aggregate demand. To keep things as simple
as possible, labour supply is inelastic, there is no population growth and the
size of population is normalized to one: Lt �

P
j Ljt = 1. Thus, the individual

capital coincides with the aggregate one: ~kt = Kt, and

~kt =

P
j KjtP
j Ljt

=

P
j ktLjtP
j Ljt

= kt

The aggregate production is given by Yt =
Pn

j=1AK
�
jtL

1��
jt = Ak�t

Pn
j=1 Ljt =

Ak�t . The worker supplies one unit of labor: lt = 1.
Assumption 1 The utility function u is C2, strictly increasing (uc (ct; Nt) >

0 and uN (ct; Nt) > 0) and strictly concave in ct.

Remark 1 The utility function can be separable: u (ct; Nt) = v (ct) + w (Nt);
for instance, equal to u (ct; Nt) = ln

�
c�t N

1��
t

�
= � ln ct+(1� �) lnNt+1, that is

a function with zero cross derivatives: u12 = 0. However, the cases where nature
a¤ects the marginal utility of consumption are more interesting. Consumption
and nature are substitutable or complementary goods if u12 < 0 and u12 > 0,
respectively.

Here, non-separability is formalized with two utility functions:
(1) CSES (Constant Static Elasticity of Substitution)

u (c;N) �
�
�c

��1
� +N

��1
�

� �
��1

(1)

with elasticity �,
(2) CIES (Constant Intertemporal Elasticity of Substitution)

v (gt) �
g
1� 1

!
t

1� 1
!

(2)

where ! > 0 is the constant elasticity of intertemporal substitution of the com-
posite good gt = g (ct; Nt).
Consider the CSES utility (1), where � denotes the constant elasticity of sub-

stitution between consumption and nature, and � > 0 the taste for consumption.
The relative taste for nature is given by 1 � ~� where ~� � �= (1 + �) 2 (0; 1) is
the relative propensity to consumption. Utility (1) is equivalent to

~u (c;N) �
h
~�c

��1
� + (1� ~�)N

��1
�

i �
��1

(3)

and, in the case of a unit elasticity (� ! 1), to a Cobb-Douglas:3

~u (c;N) � c~�N1�~� (4)
3 Indeed, the Marginal Rate of Substitution of (1) and (3) becomes the MRS of (4) when

� ! 1.
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We observe that, when � ! +1, (3) becomes linear:

~u (c;N) � ~�c+ (1� ~�)N (5)

In this respect, a separable utility between c and N can be viewed as a particular
case of (1).
The homogeneity properties of (3) entails "cc + "cN = 0, that is

"cN =
1

�

1

1 + �
�
c
N

���1
�

= �"cc > 0 (6)

Thus, always "cc < 0 and "cN > 0 in the case of a CSES utility. In other
terms, the CSES utility cannot capture negative cross e¤ects: ucN (c;N) < 0
(negative impact of nature on the marginal utility of consumption), but only
weak substitutability (� 2 (0; 1)).
Consider now the CIES utility (2) and assume a Cobb-Douglas composite

good gt = g (ct; Nt) � c1��t N�
t with 0 < � < 1.

Let

� � �

1� � 2 (0;1) and ' �
1 + �!

! + �!
2
�

�

1 + �
;1
�

(7)

and de�ne an equivalent utility function:

u (ct; Nt) �
(ctN

�
t )
1�'

1� ' (8)

We observe that, ! > 0 (positive elasticity of intertemporal substitution) is
equivalent to restriction

' >
�

1 + �
� � (9)

Lemma 2 The utility function u is strictly increasing. Under the parameter
restriction (9), it is also strictly concave. Nature has a positive e¤ect on the
marginal utility of consumption (ucN > 0) if and only if ' < 1.

According to Lemma 2, we consider two intervals: (1) If � < ' < 1, positive
cross e¤ects (ucN > 0); (2) If 1 < ' <1, negative cross e¤ects (ucN < 0).
As above, we introduce the partial elasticities:

"cc � cucc (c;N)

uc (c;N)
= �' < 0 (10)

"cN � NucN (c;N)

uc (c;N)
= � (1� ') > 0 (< 0), ' < 1 (> 1) (11)

The utility function (8) is the same considered by Bosi and Desmarchelier
(2018). This function allows for both positive and negative e¤ects of nature on
marginal utility of consumption but, importantly, it is non-separable.
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It is interesting to compare the dynamics arising in Wirl (2004) and Bosi
and Desmarchelier (2018). Both the articles consider a continuous-time Ramsey-
Cass-Koopmans framework with a renewable resource (nature) in the utility and
show the existence of two steady states with low and high resource levels. How-
ever, there are two main di¤erences: Wirl (2004) focuses on a planned economy
with separable preferences, while Bosi and Desmarchelier (2018) on a market
economy with non-separable preferences. Wirl (2004) shows that limit cycles
can emerge only around the lower steady state (through a Hopf bifurcation),
while Bosi and Desmarchelier (2018) prove that they can only around the higher
steady state (through a Neimark-Sacker bifurcation, which is the discrete-time
equivalent of the Hopf). Separability seems to play the key role in making this
dynamic di¤erence.
As we will see, CSES preferences generate cycles à la Wirl (2004), while

CIES preferences, cycles à la Bosi and Desmarchelier (2018). According to (5),
linearly separable preferences are a particular case of CSES preferences. In
this respect, we conjecture that a CSES utility, compatible with separability,
allows for dynamics à la Wirl (2004), while a CIES utility, incompatible with a
separability, promotes cycles à la Bosi and Desmarchelier (2018).
The rest of the paper will address and deepen this issue to bridge the out-

comes.

2.3 Regeneration process

Nature regenerate on its own through a general reproduction process. We plau-
sibly conceive an accumulation process driven by two forces: a reproduction
mechanism stricto sensu, say �, which depends on the state of nature, and a
pollution e¤ect, say �t, which always dampens natural accumulation:

Nt+1 �Nt = �(Nt)��t (12)

The pollution e¤ect depends on human activities, for instance: (1) on pro-
duction (�t = bYt = bAk�t ) or, alternatively, (2) on consumption (�t = bCt =
bct).
In the following, as in Wirl (2004) and Bosi and Desmarchelier (2018), we

consider laws of natural reproduction where pollution comes from production.4

More explicitly, we study two alternative rules of nature accumulation: (1)
power law; (2) generalized logistic.
(1) Power law:

Nt+1 = aN
"
t � bAk�t (13)

with a; b > 0 and 0 < " < 1, where a is the regeneration rate and b is the
pollution rate.
In a world with no humans, kt = 0 and Nt+1 = aN"

t . The natural dynamics

Nt = a
1�"t
1�" N"t

0

4The reader interested in a Ramsey-Cass-Koopmans model where pollution comes from
consumption rather than from production, is refereed to Heal (1982).
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converge to the steady state in the long run:

lim
t!1

�
a
1�"t
1�" N"t

0

�
= a

1
1�"

For instance, if a = " = 1=2 and N0 = 1=16, we obtain N1 = 1=4. The red
curve in Figure 1 represents these dynamics.
(2) Generalized logistic law:

Nt+1 �Nt = aN"
t

�
�N �Nt

�
� bAk�t (14)

with 0 < a < 1, 0 � " � 1 and b; �N > 0.
In a world with no humans, kt = 0 and Nt+1 �Nt = aN"

t

�
�N �Nt

�
.

When " = 0, we obtain a linear law Nt+1 � Nt = a
�
�N �Nt

�
and the

natural dynamics Nt = (1� a)tN0 +
h
1� (1� a)t

i
�N converge to the steady

state limt!1Nt = �N in the long run. For instance, if a = 1=2 and N0 = 1=16
and �N = 1=4, we �nd N1 = 1=4. The blue curve in Figure 1 represents the
dynamics of a linear law. In the example we consider, power and linear laws
generate close trajectories.

0 1 2 3 4 5 6
0.0

0.1

0.2

t

N

Fig. 1 Power and linear laws

When " = 1, we get the pure logistic law, often considered in biology to
represent population dynamics. This law is also considered by Wirl (2004) and
Bosi and Desmarchelier (2018).
It is interesting to compare processes (13) and (14). We observe that (13) is

equivalent to Nt+1 �Nt = aN"
t �Nt � bAk�t . Thus, both processes write

Nt+1 �Nt = �i (Nt)� bAk�t (15)

with i = P;L, where �P (Nt) � aN"
t � Nt and �L (Nt) � aN"

t

�
�N �Nt

�
are

both strictly concave:

�00P (Nt) = a" ("� 1)N"�2
t < 0

�00L (Nt) = a" ("� 1)N"�2
t

�
�N �Nt

�
� 2a"N"�1

t < 0

8



with �P (0) = �L (0) = 0, �0P (0) = �
0
L (0) = +1 and

�P

�
a

1
1�"

�
= �L

�
�N
�
= 0

As we will see, both these laws of nature accumulation add a third dimension
to the basic two-dimensional Ramsey-Cass-Koopmans (RCK) model. However,
even if these processes look similar, non-linear dynamics might di¤er in some
respect.
This issue, that is the role of natural law in promoting cycles, has been also

tackled by Bosi and Ha-Huy (2024) in a discrete-time Ramsey-Cass-Koopmans
model where nature generates positive productive externalities. Considering
logistic and power laws to represent the natural regeneration, they �nd that
both these processes promote the occurrence of two-period cycles through a �ip
bifurcation. However, they show also that limit cycles (through a Neimark-
Sacker bifurcation) never take place under a logistic law but only under a power
law. In the following, we will study how the choice of a regeneration law a¤ects
the local dynamics depending upon the preferences we consider (CSES versus
CIES).

3 General equilibrium

Proposition 3 The dynamic general equilibrium is driven by the following
three-dimensional system with two predetermined state variables, kt and Nt,
and one non-predetermined choice variable, ct:

uc (ct; Nt)

uc (ct+1; Nt+1)
= �

�
1� � + �Ak��1t+1

�
(16)

ct + kt+1 � (1� �) kt = Ak�t (17)

Nt+1 �Nt = �i (Nt)� bAk�t (18)

jointly with the transversality condition5 limt!1 �
tuc (ct; Nt) kt+1 = 0.

This system is a two-dimensional RCK block augmented with a regeneration
process of nature. The sequence of natural externalities (Nt)

1
t=0 directly a¤ects

the intertemporal smoothing by distorting the consumption-saving arbitrage
(Euler equation). The magnitude of its impact depends on complementarity
or substitutability between consumption and nature. Bosi et al. (2018) have
considered a similar mechanism where the negative externalities of pollution
Pt replace in the utility function the positive externalities of nature Nt. They
have shown how the cross e¤ects ucN (ct; Nt) ? 0 (complementarity and substi-
tutability) promote the occurrence of cycles.

5The transversality condition holds when the initial condition ~k0 lies in a neighborhood
of a stable steady state or a stable cycle, or inside an unstable cycle because the sequences

(ct)
1
t=0 and

�
~kt
�1
t=0

are uniformly bounded.
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Remark 4 Clearly, if the utility function is separable u (ct; Nt) = v (ct) +
w (Nt), the cross e¤ect vanishes ucN (ct; Nt) = 0 and we recover the basic Ram-
sey model independent on the natural reproduction process: v0 (ct) =v0 (ct+1) =
�
�
1� � + �Ak��1t+1

�
with ct + kt+1 = (1� �) kt + Ak�t . Conversely, the repro-

duction process remains a¤ected by human activities according to (18), that is
by capital accumulation (kt)

1
t=0.

4 Market ine¢ ciency

The planner internalizes the positive externalities of nature and maximizes the
welfare, that is the representative agent�s intertemporal utility function:

max

1X
t=0

�tu (ct; Nt) (19)

under a sequence of resource constraints instead of budget constraints:

ct + kt+1 � (1� �) kt = Ak�t (20)

As above, the population of consumers is normalized to one and kt = Kt. The
planner faces also a sequence of natural resource constraints:

Nt+1 �Nt = �i (Nt)� bAk�t (21)

where the reproduction law depends on the model: i = P;L.
The existence of an optimal path is far from being trivial, because of the con-

vex term �bAk�t in the law of natural reproduction appearing in the Lagrangian
function.

Proposition 5 There exists an optimal solution to program (19) under con-
straints (20) and (21).

The rest of the paper is organized in two parts. First, we assume that the
natural regeneration process is driven by a power law; second, by a logistic
law. In each part, we will develop two subcases depending on the explicit
utility function we consider: the CSES (i.e. (1)) and the CIES (i.e. (8)) utility
functions.

5 Power law

The dynamic system (16)-(18) becomes:

uc (ct; Nt)

uc (ct+1; Nt+1)
= �

�
1� � + �Ak��1t+1

�
(22)

ct + kt+1 = (1� �) kt +Ak�t (23)

Nt+1 = aN"
t � bAk�t (24)

10



5.1 Steady state

Let us introduce a positive upper bound for the TFP:

�A � (�)��
h
(1� ") (a")

"
1�"

a

b

i1��
where, for notational simplicity, we set

 � �

1� � (1� �) � � (25)

Notice that  = � when � = 1 (full capital depreciation).
Assumption 2 A � �A.
In the proof of the next proposition, we will see that Assumption 2 ensures

the existence of at least one steady state.

Proposition 6 (multiple steady states) (1) If A < �A, there are two steady
states (k; c;N1) and (k; c;N2) with 0 < N1 < N2, where

k = (�A)
1

1�� > 0 (26)

c =

�
1

�
� �
�
k > 0 (27)

and the stationary levels of nature Ni are multiple solutions to equation

aN" = bAk� +N (28)

(2) If A = �A, these two steady states coincide: N1 = N2 > 0.
(3) If A > �A, there is no steady state.

Remark 7 We observe that (26)-(27) is precisely the Modi�ed Golden Rule
(MGR) of the standard Ramsey model: the regeneration process of nature has
no impact on capital intensity and consumption level in the long run, which
are unique and positive. However, the stationary levels of nature N1 and N2
in equation (28) depend on the MGR through the impact of pollution on the
regeneration process: � = bAk�.

5.2 Local dynamics

We introduce the second-order partial elasticities:

"cc �
cucc (c;N)

uc (c;N)
and "cN �

NucN (c;N)

uc (c;N)
(29)

As usual, �1="cc is the intertemporal elasticity of substitution in consump-
tion while "cN captures the e¤ect of nature on the marginal utility of consump-
tion.
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Let us also de�ne some relevant blocks:

B � b



k

N
> 0, C � 1

�
� � > 0 and E � "

�
1 +

B

�

�
> 0 (30)

jointly with the most important expression involving the cross e¤ects:

� � 1� �
"cN

�


C (31)

Lemma 8 System (22)-(24) is locally approximated around a steady state by
the linear form:

Xt+1 = JXt (32)

where

Xt �
�
dkt+1
k

;
dct+1
c
;
dNt+1
N

�T
and

J �

264
1
� �C 0�

B + �
�C

�
"cN
"cc

1� � "cN"cc (1� E) "cN"cc
�B 0 E

375 (33)

denotes the Jacobian matrix.

Local dynamics depends on the location of the eigenvalues �1, �2 and �3 with
respect to the unit circle in the Argand plane. The degree of stability depends
on the number of eigenvalues inside the unit circle (with modulus less than one).
The characteristic polynomial is given by P (�) = (�� �1) (�� �2) (�� �3) =
�3 � T�2 + S� � D where T = �1 + �2 + �3, S = �1�2 + �1�3 + �2�3 and
D = �1�2�3 are the trace, the sum of principal minors of order two and the
determinant of the Jacobian matrix. The sign of the characteristic polynomial
when � = �1; 0; 1 tells us about the location of the eigenvalues in the Argand
plane. This method is well suited when the dynamic system is three-dimensional.

Lemma 9 The characteristic polynomial at �1, 0 and 1 is given by

P (�1) = �1� T � S �D = (1 + E)

�
�
"cN
"cc

� 21 + �
�

�
� 2BC "cN

"cc
(34)

P (0) = �D = � 1
�
E �BC "cN

"cc
(35)

P (1) = 1� T + S �D = (1� E) � "cN
"cc

(36)

In order to know the sign of these values, we speci�es the utility function by
considering �rst a Constant Static Elasticity of Substitution (CSES) allowing
only for positive cross e¤ects and, then, a Constant Intertemporal Elasticity of
Substitution (CIES) allowing for both negative and positive cross e¤ects.
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5.3 CSES preferences (positive cross e¤ects)

Focus now on (1) and consider expressions (30) and (31) with, now, � > 0 since
"cN > 0. We notice that the steady states (k; c;Ni) do not depend on preference
parameters � and � .
These two parameters only enter �. Indeed, according to (6),

� = �

�
1 + �

� c
N

���1
�

�
1� �
�

[1� � + (1� �)��]

Since c=N does not depend on (�; �), � varies from 0 to 1 as � and � vary
in their ranges from 0 to 1.
In other terms, we can analyze the bifurcations with respect to � indepen-

dently on the other parameters.

Lemma 10 The characteristic polynomial P (�) takes the following values at
� = �1; 0; 1:

P (�1) = 2BC � (1 + E)
�
� + 2

�
1 +

1

�

��
(37)

P (0) = BC � E
�

(38)

P (1) = � (E � 1) (39)

Let us introduce the following critical values:

"� � 1� � + (1� �)��
� + 1

and b� � � 1 + "
"� � "

(a")
1

1�"

(�A)
1

1��

jointly with the �ip bifurcation value:

�F � 2
1 + �

�

�
"�B (N1)

� (1 + ") + "B (N1)
� 1
�

(40)

where B (Ni) � bk= (Ni) and N1 is the lower steady state.

Proposition 11 (cycles of period two) If " < "� and b is in a neighborhood
of b�, then there exists a critical value �F > 0 such that cycles of period two
generically arise around the lower steady state (c; k;N1) through a �ip bifurca-
tion at � = �F .
If " > "�, there is no room for cycles of period two through a �ip bifurcation.

Focus now on the Neimark-Sacker bifurcation and its critical value:

�N �
E

�
�BC +

E
� �BC � 1 + � � �E
�BC � (1� �)E (41)

13



Proposition 12 (limit cycles) Limit cycles generically arise around the lower
steady state N1 through a Neimark-Sacker bifurcation at � = �N provided that

(E � 1) 1� �
�

�BC � 4 < �N < (E � 1)
1� �
�

�BC (42)

There are no limit cycles around the higher steady state N2.

Proposition 13 (locally determinacy) When the system undergoes a Neimark-
Sacker (NS) bifurcation, the equilibrium trajectory around the lower steady state
(k; c;N1) is locally determinate.

Remark 14 The unstable manifold associated to �1 is one-dimensional, while
the center manifold associated to �2 and �3 is two-dimensional. The predeter-
mined pair

�
�kt; �Nt

�
in a neighborhood of the steady state (k; c;N1) de�nes a

line
��
�kt; ct; �Nt

�
: ct 2 R

	
in R3 which generically crosses the center manifold

at ct = �ct. In other terms, the non-predetermined variable ct takes a value �ct
that neutralizes the unstable manifold.
When the NS bifurcation is supercritical (subcritical), the limit cycle is at-

tractive (repulsive). Then, there exists a unique equilibrium trajectory starting
from

�
�kt; �ct; �Nt

�
inside the limit cycle and converging to the cycle (to the steady

state (k; c;N1)) along a spiral lying on the two-dimensional center manifold.

5.4 CIES preferences (positive or negative cross e¤ects)

Lemma 15 The consumer�s programs max
P1

t=0 �
tv (gt) and max

P1
t=0 �

tu (ct; Nt)
are equivalent (they have the same solutions under the sequence of budget con-
straints).

Therefore, in the following, we maximize the new intertemporal utility
P1

t=0 �
tu (ct; Nt).

We are especially interested in the sign of the cross e¤ect ucN (ct; Nt) � @uc (ct; Nt) =@Nt,
that is the impact of nature on the marginal utility of consumption uc (ct; Nt) �
@u (ct; Nt) =@ct.
Let us de�ne some relevant blocks:

A1 � �

�
1

�
� �
�
1� �
'

> 0 (43)

A2 �
�
1

�
� �
�
1� '
'

b



k

N
> 0, ' < 1 (positive cross e¤ects) (44)

B5 � "+
"

�

b



k

N
> 0

Lemma 16 The characteristic polynomial P (�) takes the following values at
� = �1; 0; 1:

P (�1) = 2�A2 � (1 +B5)
�
A1 + 2

1 + �

�

�
(45)

P (0) = �A2 �
B5
�

(46)

P (1) = A1 (B5 � 1) (47)

14



We observe that � does not a¤ect A1 nor A2 nor B5. In the following, we
will consider the solutions to P (�1) = 0 and P (0) = 0 associated to the steady
states (k; c;N1) and (k; c;N2):

�Fi �
1 +B5 (Ni)

A2

�
A1
2
+
1 + �

�

�
and �0i �

1

�

B5 (Ni)

A2

Proposition 17 If nature has a positive e¤ect on the marginal utility of con-
sumption (� < ' < 1) and �02 < � < �F2, then the eigenvalues associated to
(k; c;N2) are real with �1 < �1 < 0 < �2 < 1 < �3 (equilibrium determinacy
with saddle-path stability).

Proposition 18 (saddle-node bifurcation) When A crosses �A from above,
two steady states appear through a saddle-node bifurcation (generically).

Proposition 19 (two-period cycles) Under positive cross e¤ects (� < ' <
1), a two-period cycle generically arises around Ni though a �ip bifurcation at
� = �Fi with �F1 > �F2.
Under negative cross e¤ects (' > 1), there is no room for �ip bifurcations.

Remark 20 We observe that, di¤erently from Proposition 11, where two-period
cycles arise only around the lower steady state N1 (when " < "� and b is in a
neighborhood of b�), now both the steady states can experience a �ip bifurcation.
However, as � increases, two-period cycles �rst arise around the higher steady
state, then around the lower one (�F2 < �F1).

Let us introduce the following critical value:

�+N �
B5 �D+

N

�A2
(48)

where

D+
N �

1

2

�
T � 1 +

q
(T � 3)2 + 4A1 (1�B5)

�
(49)

Proposition 21 (limit cycles) (1) There is no room for limit cycles around
the lower steady state N1 through a Neimark-Sacker (NS) bifurcation.
(2) Limit cycles generically arise around the higher steady state N2 through

a NS bifurcation at � = �+N .

Proposition 22 (local determinacy) When the system undergoes a Neimark-
Sacker (NS) bifurcation (� crosses the critical value �+N ), that is a limit cycle
arises around the higher steady state (k; c;N2), the equilibrium trajectory around
this steady state is locally determinate.

Interestingly and entirely, the dynamic explanation of local equilibrium unique-
ness (Remark 14) still applies to this case.
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6 Logistic law

The dynamic system (16)-(18) becomes:

uc (ct; Nt)

uc (ct+1; Nt+1)
= �

�
1� � + �Ak��1t+1

�
(50)

ct + kt+1 = (1� �) kt +Ak�t (51)

Nt+1 �Nt = aN"
t

�
�N �Nt

�
� bAk�t (52)

6.1 Steady state

Proposition 23 (multiple steady states) Let 0 < " � 1 and, if " = 1,

a" >
bA (�A)

�
1��

�N2
(53)

where  is still given by (25).
Capital and consumption of steady state are still given by (26) and (27)

(Modi�ed Golden Rule).
Consider the function

' (N) � aN" � bAk�

�N �N

and let N� be the unique solution to '0 (N) = 0 in the admissible range
�
0; �N

�
.

A steady state is a positive solution Ni to ' (N) = 0.
(0) If ' (N�) < 0, there are no steady states.
(1) If ' (N�) = 0, there is a unique steady state (N = N�).
(2) If ' (N�) > 0, there are two solutions N1 and N2 with N1 < N� < N2.

Moreover,
N1 <

"

1 + "
�N < N2 (54)

6.2 Local dynamics

We de�ne the second-order elasticities as in (29). In the case of a logistic law,
expressions for B and C in (30) and for � in (31) remains the same. However,
now, a more complicated expression

~E � 1 + B
�

�
"� N

�N �N

�
(55)

replaces E in (30). (54) implies

~E (N2) < 1 < ~E (N1) (56)

Lemma 24 System (50)-(52) is locally approximated around a steady state by
the linear system (32), but now the Jacobian matrix is given by (33) with ~E
instead of E.
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Remark 25 Surprisingly, the Jacobian matrix has the same form of the Jaco-
bian matrix (33) of the power law, but expression (55), replaces E. We recover
also the same characteristic polynomial with ~E instead of E. In particular,
expressions (34), (35) and (36) where, now, ~E replaces E, and the dynamic
analysis follows analogous lines.

6.3 CSES preferences (positive cross e¤ects)

Reconsider the CSES utility (1).

Lemma 26 The characteristic polynomial evaluated at �1, 0 and 1 is still given
by the values (37), (38) and (39) where, now, the expression ~E replaces E.

Remark 27 We observe also that the steady states (k; c;Ni) do not depend on
preference parameters � and � . These two parameters only enter �. Indeed,
according to (6),

� = �

�
1 + �

� c
N

���1
�

�
1� �
�

[1� � + (1� �)��]

Since c=N does not depend on (�; �), � varies from 0 to 1 as � and � vary in
their ranges from 0 to 1.

We can compute the critical value �F (that is �F or �F ), such that a �ip
bifurcation takes place.

Proposition 28 (cycles of period two) Cycles of period two generically arise
around the steady state Ni when � crosses the �ip bifurcation value

�Fi � 2
B (Ni)C

1 + ~E (Ni)
� 21 + �

�

provided that
B (Ni)C

1 + ~E (Ni)
>
1 + �

�
(57)

Since B (Ni)C > 0, inequality requires 1+ ~E (Ni) > 0 as a necessary condi-
tion.

Remark 29 Condition (57) depends on the steady state Ni we are considering
and, therefore, changes. But it could hold in both steady states. Indeed, since
B (N2) < B (N1) and, according to (56), ~E (N2) < ~E (N1), the e¤ect of the
steady state on the LHS of (57) is ambiguous.

Let us introduce a new critical value

�N �
~E

�
�BC +

~E
� �BC � 1 + � � � ~E
�BC � (1� �) ~E

(58)

According to Remark 27, we can �x � and � , that is �, as we wish without
a¤ecting the RHS of (58).
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Proposition 30 (limit cycles) Consider a parametric con�guration such that

N� =
"

1 + "
�N (59)

with two steady states: N1 < N� < N2 (notice that (59) holds when N1 =
N2). Limit cycles generically arise around the lower steady state N1 through a
Neimark-Sacker bifurcation at � = �N provided that�

~E � 1
� 1� �

�
�BC � 4 < �N <

�
~E � 1

� 1� �
�

�BC (60)

There are no limit cycles around the higher steady state N2.

Notice that, according to Remark 27, we can always move � and � , that is
�, without a¤ecting the steady states N�, N1 and N2. Therefore, � can cross
�N (independent of � and �), while (59) and N1 < N� < N2 remain true.

Proposition 31 (locally determinacy) Under the assumptions of Proposi-
tion 30, when the system undergoes a Neimark-Sacker (NS) bifurcation, the
equilibrium trajectory around the lower steady state (k; c;N1) is locally determi-
nate.

6.4 CIES preferences (positive or negative cross e¤ects)

Reconsider expressions A1 and A2 given by (43) and (44) with, now,

~B5 � ~E � 1 + 1

�

�
"� N

�N �N

�
b



k

N
(61)

instead of B5. As above, A1 > 0, while A2 > 0 if and only if ' < 1 (positive
cross e¤ects).

Lemma 32 The values of the characteristic polynomial evaluated at �1, 0 and
1 become (45), (46) and (47) where, now, ~B5 � ~E replaces B5. Moreover,
~B5 (N2) < 1 < ~B5 (N1).

Proposition 33 (saddle-node bifurcation) Let ' < 1 (positive cross ef-
fects) and

1

A2

1

�
< � <

1

A2

�
A1 + 2

1 + �

�

�
(62)

When the saddle-node bifurcation takes place giving rise to two steady states,
in the neighborhood of the bifurcation point, N1 is less stable than N2. More
precisely, the eigenvalues associated to N1 are all real and ranked as follows:
�1 < �1 < 0 < 1 < �2 < �3 (two eigenvalues outside the unit circle), while the
eigenvalues associated to N2 are also real, but ranked as follows: �1 < �1 <
0 < �2 < 1 < �3 (two eigenvalues inside the unit circle).
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Notice that A1 and A2 don�t depend on �, that is inequalities (62) are ex-
plicit. We observe that the economic system experiences dumping �uctuations
in both the steady states because �1 < �1 < 0. Su¢ cient conditions for the
occurrence of persistent cycles are provided in the next proposition.

Proposition 34 (two-period cycles) If ' < 1 (positive cross e¤ects), cycles
of period two (through a �ip bifurcation) generically arise around N1 at � =
�F (N1) > 0. Cycles of period two (through a �ip bifurcation) can also arise
generically around N2, provided that �F (N2) > 0, that is

2


b

N2
k
+
1

�

�
"� N2

�N �N2

�
> 0 (63)

Notice that, if (63) holds, we don�t know whether �F (N2) < �F (N1).
Let

�+N �
1

A2

 
~B5
�
�D+

!
where

D+ �
1

2

"
T � 1 +

r
(T � 3)2 + 4A1

�
1� ~B5

�#

Proposition 35 (limit cycles) Limit cycles generically arise through a Neimark-
Sacker (NS) bifurcation around N2 when � crosses the critical value �

+
N , provided

that
4 (T + 1) > A1

�
1� ~B5

�
(64)

There is no room for limit cycles around N1.

In order to understand the role of the cross e¤ects (the impact of nature on
the marginal utility of consumption), let us consider the case when the capital
share in total income is close to one (in a way, the model is close to a AK
framework as in Bosi and Ha-Huy (2024)).

Corollary 36 Let � be close to 1.
Under negative cross e¤ects (' > 1), limit cycles generically arise around

N2 through a NS bifurcation at � = �
+
N > 0.

Under positive cross e¤ects (' < 1), there are no limit cycles.

Proposition 37 (local determinacy) We know that a limit cycle generically
arises around N2 when � crosses the critical value �

+
N . In this case, the equilib-

rium trajectory around the steady state is locally unique.

As above, the dynamic interpretation of local equilibrium uniqueness (Re-
mark 14) still applies to this case.
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7 Interpretations

The following table sums up our results.

Regeneration process Power law Logistic law
Bifurcation Flip NS Flip NS
Steady state N1 N2 N1 N2 N1 N2 N1 N2
CSES utility / ucN > 0 Y U Y N Y Y Y N
CIES utility / ucN > 0 Y Y N Y Y Y N Y
CIES utility / ucN < 0 N N N Y U U N Y

NS means Neimark-Sacker bifurcation. Y denotes the possibility of the bifur-
cation we are focusing on for some parameter con�guration. N means that any
parameter con�guration rules out the bifurcation. U stands for "uninformative":
we are not able to establish the bifurcation occurrence from the characteristic
polynomial.
From this table, the following conclusions can be roughly drawn.
(1) Under a CSES utility (with necessarily positive cross e¤ects), two-period

and limit cycles arise around the lower steady state whatever the regeneration
process. Limit cycles are impossible around the higher steady state.
(2) Under a CIES utility with positive cross e¤ects, two-period cycles arise

around both the steady states whatever the regeneration process.
(3) Under a CIES utility with negative cross e¤ects, there is no room for

two-period cycles (at least under the power law). Surprisingly and contrarily to
the CSES case, limit cycles arise only around the higher steady state whatever
the regeneration process. To put it di¤erently, we recover Wirl (2004) under a
CSES utility and Bosi and Desmarchelier (2018) under a CIES utility. The kind
of preferences seems to play the key role instead of the regime (central planner
versus market economy). Our conclusions are robust regarding the regeneration
process of nature (power versus logistic law).

8 Conclusion

Literature on the Ramsey model with renewable resource is puzzling. On the
one hand, Wirl (2004) considers a central planner and separable preferences
in consumption and resource, and he highlights the occurrence of limit cycles
only around the lower steady state. On the other hand, Bosi and Desmarchelier
(2018) study a market economy with non-separable (CIES) preferences and they
observe the possibility of limit cycles only around the higher steady state.
In the spirit of Wirl (2004) and Bosi and Desmarchelier (2018), we have

built a Ramsey-Cass-Koopmans model with a renewable resource in the utility,
but, di¤erently from Wirl (2004), we have used discrete time and focused on
competitive equilibrium.
To compare and bridge their contributions, we have introduced two kind of

preferences: a CSES utility turning out to be separable in the limit, as in Wirl
(2004), and a non-separable CIES utility, as in Bosi and Desmarchelier (2018).
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Under a CSES utility, we have recovered the limit cycles only around the
lower steady state as in Wirl (2004); under a CIES utility, the limit cycles only
around the higher steady state as in Bosi and Desmarchelier (2018).
We have shown the robustness of these conclusions under di¤erent natural

regeneration processes (logistic and power laws).
To conclude, we observe that dynamics of a Ramsey-Cass-Koopmans model

with a renewable resource in the utility depend more on the preference structure
than on the market structure (centralized versus decentralized economy).

9 Appendix

Proof of Lemma 2
The utility function is strictly increasing:

uc (c;N) =
(cN�)

1�'

c
> 0

uN (c;N) = �
(cN�)

1�'

N
> 0

Consider the Hessian matrix:

H �
�
ucc ucN
ucN uNN

�
with

ucc (c;N) = �' (cN
�)
1�'

c2
< 0

ucN (c;N) = � (1� ') (cN
�)
1�'

cN
> 0, ' < 1

uNN (c;N) = � (�� 1� '�) (cN
�)
1�'

N2
< 0, ' >

�� 1
�

Since ucc < 0, the Hessian matrix H is negative de�nite (the utility is strictly
concave) if and only if detH = uccuNN � u2cN > 0 or, equivalently, (9) holds.
Clearly, (9) implies ' > (�� 1) =�, that is uNN < 0.
Proof of Proposition 3
By maximizing the Lagrangian function

1X
t=0

�tu (ct; Nt) +
1X
t=0

�t

h
rt~kt + wtlt � ct � ~kt+1 + (1� �) ~kt

i
we obtain the Euler equation �t=�t+1 = 1 � � + rt+1 where �t = �tuc (ct; Nt),
jointly with the budget constraint and the regeneration rule, now binding, and
the transversality condition: limt!1 �t~kt+1 = 0.
The second-order conditions for utility maximization are also satis�ed. In-

deed, since the consumer takes the sequences (Nt)
1
t=0 and (rt)

1
t=0 as given, the
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concavity of u with respect to the sequence (ct)
1
t=0 imply the concavity of La-

grangian with respect to the sequence (ct)
1
t=0. Hence, the �rst-order conditions

turn out to be not only necessary but also su¢ cient for maximization.
Focus now on the general equilibrium. Since lt = 1, ~kt = kt, rt = �Ak

��1
t

and wt = (1� �)Ak�t , the budget constraint becomes a binding resource con-
straint: ct + kt+1 � (1� �) kt = rtkt + wt = Ak�t .
Using Yt = Ak�t , we obtain the system (16)-(18).
Proof of Proposition 5
We observe that, for i = P;L, there exists N̂ such that 0 � Nt � N̂ for any

t. Moreover, since 0 � kt+1 � Ak�t , there exists k̂ such that 0 � kt � k̂, for
every t � 0. Therefore, the sequences (ct)1t=0, (kt)

1
t=0 and (Nt)

1
t=0 are uniformly

bounded and they belong to a compact set with respect to the product topology.
This implies the existence of an optimal path (ct; kt; Nt)

1
t=0 (see also the proof

of Proposition 1 in Bosi and Ha-Huy (2023)).
Proof of Proposition 6
At the steady state, system (22)-(24) simpli�es:

1 = �
�
1� � + �Ak��1

�
(65)

c = Ak� � �k (66)

N = aN" � bAk� (67)

Solving (65)-(66), we recover the Modi�ed Golden Rule (26)-(27). Equation
(67) yields equation (28).
Let us write equation (28) as

h (N) = � +N (68)

with h (N) � aN". Since " 2 (0; 1), h is a strictly concave function with
h0 (0+) = +1 and h0 (+1) = 0. The LHS and the RHS of (68) have the same
slope at N = N� solution to h0 (N) = 1, that is at

N� � (a")
1

1�"

Thus, h (N) crosses the line � + N if and only if h (N�) � � + N� or,
equivalently,

� � a (1� ") (a")
"

1�"

that is A � �A.
Clearly, if A < �A, then h (N) crosses the line � + N twice at N1; N2 > 0;

if A = �A, then the line � + N is tangent to h (N) and the two steady states
coalesce in a single point: N1 = N2 > 0. If A > �A, then h (N) and the line
�+N have no intersection.
Proof of Lemma 8
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We linearize system (22)-(24) around an arbitrary steady state:

� �
C

dkt+1
k

+
"cc
"cN

dct+1
c

+
dNt+1
N

=
"cc
"cN

dct
c
+
dNt
N

dkt+1
k

=
1

�

dkt
k
� C dct

c

dNt+1
N

= �Bdkt
k
+ E

dNt
N

More compactly, we obtain (32).
Proof of Lemma 9
The trace, the sum of principal minors of order two and the determinant of

the Jacobian matrix (33) are given by:

T = 1 +
1

�
+ E � � "cN

"cc
(69)

S =
1

�
+BC

"cN
"cc

+ E

�
1 +

1

�
� � "cN

"cc

�
(70)

D =
1

�
E +BC

"cN
"cc

(71)

Replacing in P (�) = �3 � T�2 + S��D and evaluating at �1, 0 and 1, we
get expressions (34), (35) and (36).
Proof of Lemma 10
In the CSES case "cN="cc = �1 and the trace, the sum of principal minors

of order two and the determinant (69), (70) and (71) become

T = 1 +
1

�
+ E + � (72)

S =
1

�
+ E + �E +

E

�
�BC (73)

D =
E

�
�BC (74)

The values P (�1), P (0) and P (1) are given by (34), (35) and (36), and
become expressions (37), (38) and (39).
Proof of Proposition 11
We observe that

P (�1) = 2

�
BC � (1 + E)

�
1 +

1

�

��
� (1 + E) �

= 2
1 + �

�

�
B

�
("� � ")� (1 + ")

�
� (1 + E) �

Thus, if " > "�, then P (�1) < 0 for any � > 0 (no �ip bifurcation).
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Let " < "�. De�ne

E (N) � "+
"

�
B (N)

P�1 (N; �) � 2
1 + �

�

�
B (N)

�
("� � ")� (1 + ")

�
� [1 + E (N)] �

and reconsider
N� = (a")

1
1�" 2 (N1; N2)

because of Assumption 2. Clearly,

B (N1) > B (N�) > B (N2)

P�1 (N1; 0) > P�1 (N
�; 0) > P�1 (N2; 0)

When P�1 (N�; 0) is su¢ ciently close to 0, that is

B (N�) � � 1 + "
"� � "

or, equivalently, b � b�, we have

P�1 (N1; 0) > 0 > P�1 (N2; 0)

Since N1 does not depend on � and P�1 (N1; �) decreases continuously with �
from P�1 (N1; 0) to�1, there exists a critical value �F such that P�1 (N1; �F ) =
0, that is (40). Since B (N1) > B (N�), this value is positive.
Proof of Proposition 12
Without loss of generality, let �1 be a real eigenvalue and �2 and �3 be

nonreal (conjugate) eigenvalues.
A Neimark-Sacker bifurcation generically occurs when the modulus of these

nonreal eigenvalues crosses one, that is �2�3 = 1. Accordingly, we recompute
(T; S;D):

D = �1�2�3 = �1 (75)

S = �1�2 + �1�3 + �2�3 = �1 (�2 + �3) + 1 (76)

= �1 (T � �1) + 1 = D (T �D) + 1 (77)

Therefore, a Neimark-Sacker bifurcation occurs at �N solution to S = D (T �D)+
1 or, equivalently, according to expressions (72)-(74):

1

�
+ E + �E +

E

�
�BC =

�
E

�
�BC

��
1 +

1

�
+ E + � � E

�
+BC

�
+ 1

Solving for �, we �nd (41).
Moreover, the eigenvalues �2 and �3 have to be nonreal. Let us compute

them. Noticing that

�2 + �3 = T �D

�2 +
1

�2
= T �D

�22 � (T �D)�2 + 1 = 0
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we get

�2 =
T �D
2

�

s�
T �D
2

�2
� 1

�3 =
T �D
2

+

s�
T �D
2

�2
� 1

These values are nonreal if and only if jT �Dj < 2 or, equivalently, (42)
holds.
Let us prove that the Neimark-Sacker bifurcation can arise only around N1.

At the steady state, bAk� = aN" �N and

k

N
=
aN"�1 � 1
bAk��1

Since, according to the proof of Proposition 6, N1 < N� < N2 and " < 1,
we have

k

N1
=
aN"�1

1 � 1
bAk��1

>
aN�"�1 � 1
bAk��1

>
aN"�1

2 � 1
bAk��1

=
k

N2

Replacing

N� � (a")
1

1�"

k = (�A)
1

1��

we �nd
k

N1
> �



b

1� "
"

>
k

N2

and, according to (30),

E1 � "+
"

�

b



k

N1
> "+

"

�

b



�
�


b

1� "
"

�
> "+

"

�

b



k

N2
� E2

that is E1 > 1 > E2. Since �N > 0 and

(E2 � 1)
1� �
�

�BC < 0

the inequality on the RHS of (42) is violated, meaning that a Neimark-Sacker
bifurcation never arises around N2.
Proof of Proposition 13
The dynamic system has two predetermined variables, kt and Nt, and one

non-predetermined variable, ct. When the NS bifurcation occurs two nonreal
(conjugate) eigenvalues cross the unit circle, say, without loss of generality, �2
and �3. At the critical bifurcation point, we have �2�3 = 1 and, therefore,
D = �1�2�3 = �1, a real eigenvalue.
Let us show that j�1j > 1. In this case, the equilibrium is locally determinate.
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According to (42), since �N > 0, a necessary condition for a NS bifurcation
is

(E � 1) 1� �
�

�BC > 0 (78)

or, equivalently, according to (74),

D >
1

�
+ E � 1 (79)

We know from the proof of Proposition 12 that E > 1 at N = N1. Therefore,
(79) implies D > 1=� > 1, that is �1 > 1.
Proof of Lemma 15
Clearly, maximizing

P1
t=0 �

tv (g (ct; Nt)) is equivalent to maximizing

p
1X
t=0

�tv (g (ct; Nt)) =
1X
t=0

�t [pv (g (ct; Nt))]

where p � 1 + � 2 (1;1) is a positive constant.
According to (7) and (9),

! =
1� �
'� �

We observe that
1� 1

!
= (1 + �) (1� ') (80)

and that

pv (g (ct; Nt)) = (1 + �)
g (ct; Nt)

1� 1
!

1� 1
!

= (1 + �)

�
c1��t N�

t

�1� 1
!

1� 1
!

(81)

Replacing (9) and (80) in (81), we obtain

pv (g (ct; Nt)) =
(ctN

�
t )
1�'

1� ' � u (ct; Nt)

Proof of Lemma 16
The Jacobian matrix (33) becomes

J �

24 1
� �B1 0

�B2 �B3B4 1 + �B1B2 B3 (B5 � 1)
�B4 0 B5

35
where

B1 �
1

�
� �, B2 �

1� �
'

, B3 � �
1� '
'

, B4 �
b



k

N
and B5 � "+

"

�

b



k

N
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The trace, the sum of the principal minors of order two and the determinant
are given by

T =
1 + �

�
+ �B1B2 +B5

S =

�
1 + �

�
+ �B1B2

�
B5 +

1

�
�B1B3B4

D =
1

�
B5 �B1B3B4

Replacing A1 � �B1B2 and A2 � B1B3B4=�, we obtain

T =
1 + �

�
+A1 +B5 > 2 (82)

S =

�
1 + �

�
+A1

�
B5 +

1

�
� �A2 (83)

D =
1

�
B5 � �A2 (84)

We know that P (�) = �3�T�2+S��D. Then, P (�1) = �1�T �S�D,
P (0) = �D, P (1) = 1 � T + S � D. Replacing (82), (83) and (84), we �nd
(45), (46) and (47).
Proof of Proposition 17
Let

B5 (Ni) � "+
"

�

b



k

Ni
(85)

We rewrite (24) at the steady state (N1 or N2) as follows:

k

N
=
aN"�1 � 1
bAk��1

Since, according to the proof of Proposition 6, N1 < N� < N2 and " < 1,
we have

k

N1
=
aN"�1

1 � 1
bAk��1

>
aN�"�1 � 1
bAk��1

>
aN"�1

2 � 1
bAk��1

=
k

N2

Replacing

N� � (a")
1

1�"

k = (�A)
1

1��

we �nd
k

N1
> �



b

1� "
"

>
k

N2

that is

B (N1) =
b



k

N1
> �

1� "
"

>
b



k

N2
= B (N2)
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Using (85), we have

B5 (N1) = "+
"

�

b



k

N1
> "+

"

�

�
�
1� "
"

�
> "+

"

�

b



k

N2
= B5 (N2)

that is B5 (N1) > 1 > B5 (N2).
If ' < 1, then A2 > 0 and �0 < �F . Then, if �0 < � < �F , we have

P (�1) < 0 < P (0). Moreover, B5 < 1 implies P (1) < 0. Since B5 (N2) < 1,
the equilibrium is unique (locally determinate) because there are two eigenvalues
inside the unit circle with two predetermined variables (kt and Nt).
Proof of Proposition 18
According to Proposition 6, when A < �A, there are two steady states

(k; c;N1) and (k; c;N2) with N1 < N2, while, when A > �A, there are no longer
steady states. Therefore, when A crosses �A from below, the two steady states
collide (N1 = N2 = N�) and disappears. At A = �A, we have B5 = 1 or,
equivalently, P (1) = 0, and the economy generically experiences a saddle-node
bifurcation.
Proof of Proposition 19
The bifurcation values �Fi are positive if and only if A2 > 0, that is ' < 1

entailing "cN > 0. We observe that the �ip bifurcation value associated to N1
is higher than the one associated to N2. Indeed,

�F1 �
1 +B5 (N1)

A2

�
A1
2
+
1 + �

�

�
>
1 +B5 (N2)

A2

�
A1
2
+
1 + �

�

�
� �F2

because B5 (N1) > 1 > B5 (N2).
Proof of Proposition 21
Without loss of generality, let �1 be a real eigenvalue and �2 and �3 be

nonreal (conjugate) eigenvalues.
A Neimark-Sacker bifurcation generically arise when the modulus of these

nonreal eigenvalues crosses one, that is �2�3 = 1. According to expressions
(75), (76) and (77), a Neimark-Sacker bifurcation occurs at �N solution to S =
D (T �D) + 1 or, equivalently, according to expressions (82)-(84):

D2 � (T � 1)D + ~S � 1 = 0 (86)

where
~S � S �D =

1

�
+B5 (1 +A1)

and T do not depend on �.
Solutions to (86) are

D�
N � 1

2

�
T � 1�

q
(T � 3)2 + 4A1 (1�B5)

�
D+
N � 1

2

�
T � 1 +

q
(T � 3)2 + 4A1 (1�B5)

�
where the RHS does not depend on �.
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Since A1 > 0, these values are real if and only if

B5 < 1 +
1

A1

�
T � 3
2

�2
(87)

Noticing that

DN =
1

�
B5 � �NA2

we de�ne the critical values

��N � 1

�

B5
A2

� D
�
N

A2

�+N � 1

�

B5
A2

� D
+
N

A2

Moreover, the eigenvalues �2 and �3 have to be nonreal. Let us compute
them. Noticing that

�2 + �3 = T �D

�2 +
1

�2
= T �D

�22 � (T �D)�2 + 1 = 0

we get

�2 =
T �D
2

�

s�
T �D
2

�2
� 1

�3 =
T �D
2

+

s�
T �D
2

�2
� 1

These values are nonreal if and only if jT �Dj < 2. Thus, we require

�2 < T �DN < 2 (88)

(1) Let us show that D�
N violates (88) in both the steady states N1 and N2,

that is there is no room for limit cycles at � = ��N through a NS bifurcation
whatever the steady state.
Under (87), since T > 2, the LHS inequality of (88) is satis�ed:

T �D�
N =

1

2

�
1 + T +

q
(T � 3)2 + 4A1 (1�B5)

�
> 0 > �2

Focus on the RHS. T �D�
N < 2 if and only ifq

(T � 3)2 + 4A1 (1�B5) < 3� T
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that is, since A1 > 0, if and only if

T < 3 and B5 > 1 (89)

(1.1) N1 violates T < 3. Indeed, since A1 > 0 and B5 (N1) > 1, according
to (82),

T =
1 + �

�
+A1 +B5 (N1) >

1 + �

�
+B5 (N1) > 2 + 1 = 3 (90)

(1.2) N2 violates B5 > 1. Indeed, B5 (N2) < 1.
Therefore, N1 and N2, both violate (89), that is (88).
(2) Focus now on D+

N and consider restrictions (87) and (88).
We observe that T �D+

N > �2 if and only ifq
(T � 3)2 + 4A1 (1�B5) < T + 5

that is, since T > 0, if and only if (T � 3)2+4A1 (1�B5) < (T + 5)2, that is 4+
4T�A1+A1B5 > 0 or, equivalently, according to (82), 4+� (8 + 3A1 + 4B5 +A1B5) >
0, which is always true since A1; B5 > 0.
We observe that T �D+

N < 2 if and only if

T � 3 <
q
(T � 3)2 + 4A1 (1�B5)

that is, under (87), if and only if

T < 3 or (T > 3 and B5 < 1) (91)

(2.1) Consider N1. According to (90), T > 3 and B5 (N1) > 1. Then, N1
violates (91), that is restrictions (88): there is no room for a NS bifurcation
around N1 at � = �

+
N .

(2.2) Consider N2. We have B5 (N2) < 1. Thus, both restrictions (87) and
(91) are satis�ed. Then, generically, a limit cycle arise around N2 at � = �

+
N .

Proof of Proposition 22
As seen in the proof of Proposition 13, the dynamic system has two predeter-

mined variables, kt and Nt, and one non-predetermined variable, ct. When the
NS bifurcation occurs two nonreal (conjugate) eigenvalues cross the unit circle,
say, without loss of generality, �2 and �3. At the critical bifurcation point, we
have �2�3 = 1 and, therefore, D = �1�2�3 = �1, a real eigenvalue.
Let us show that j�1j > 1. In this case, the equilibrium is locally determinate.
We observe that B5 < 1 when N = N2 (see the proof of Proposition 21).

Then

T � 3 +
q
(T � 3)2 + 4A1 (1�B5) > 0

and, according to (49), �1 = D
+
N > 1.

Proof of Proposition 23
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At the steady state, respectively, equations (50)-(51) give:

Ak��1 =
1

�
(92)

c =
�
Ak��1 � �

�
k (93)

Solving (92) for k and replacing the LHS of (92) in the RHS of (93), we
obtain (26) and (27).
(52) at the steady state is equivalent to ' (N) = 0.
We observe that

' (0) = �bAk
�

�N
< 0

'
�
�N�� = �1

'0 (N) = a"N"�1 � bAk��
�N �N

�2
'00 (N) = a" ("� 1)N"�2 � 2bAk��

�N �N
�3 < 0

because 0 < " � 1.
Let N� be the unique solution to '0 (N) = 0, that is to

a"N"�1 =
bAk��
�N �N

�2
provided that '0 (0+) > 0. This is always true if " < 1. If " = 1, we require

a" >
bAk�

�N2

that is (53).
Thus, ' (N) = 0 has no solution if ' (N�) < 0, one solutionN� if ' (N�) = 0,

two solutions N1 < N� < N2 if ' (N�) > 0.
We know that '00 (N) < 0. In the case of two steady states, we have

'0 (N1) > '
0 (N�) = 0 > '0 (N2)

Focus on N1. Then,

'0 (N1) = aN
"
1

"

N1
� bAk��

�N �N1
�2 > 0 (94)

Since ' (N1) = 0, we obtain

aN"
1 =

bAk�

�N �N1
and, replacing in (94),

N1 <
"

1 + "
�N
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Similarly, we get
N2 >

"

1 + "
�N

Proof of Proposition 24
We linearize system (50)-(52) around an arbitrary steady state:

� �
C

dkt+1
k

+
"cc
"cN

dct+1
c

+
dNt+1
N

=
"cc
"cN

dct
c
+
dNt
N

dkt+1
k

=
1

�

dkt
k
� C dct

c

dNt+1
N

= �Bdkt
k
+ ~E

dNt
N

More compactly, we obtain (33) with, now, ~E instead of E.
Proof of Lemma 26
According to Lemma 24, the Jacobian matrix is given by (33) with ~E instead

of E. Moreover, as in the proof of Lemma 10, "cN="cc = �1 implies that the
values of P (�) at �1, 0 and 1 are precisely given by (37), (38) and (39) with,
now, ~E instead of E.
Proof of Proposition 28
The �ip bifurcation value �Fi is solution to:

P (�1) = 2B (Ni)C �
h
1 + ~E (Ni)

i�
� + 2

1 + �

�

�
= 0

(57) implies �Fi > 0.
Proof of Proposition 30
Without loss of generality, let �1 be a real eigenvalue and �2 and �3 be

nonreal (conjugate) eigenvalues.
A Neimark-Sacker bifurcation generically arise when the modulus of these

nonreal eigenvalues crosses one, that is �2�3 = 1. According to expressions
(75), (76) and (77), a Neimark-Sacker bifurcation occurs at �N solution to S =
D (T �D)+1 or, equivalently, according to expressions (72)-(74) with ~E instead
of E:

1

�
+ ~E + � ~E +

~E

�
�BC =

 
~E

�
�BC

! 
1 +

1

�
+ ~E + � �

~E

�
+BC

!
+ 1

Solving for �, we �nd (58).

�N �
~E

�
�BC +

~E
� �BC � 1 + � � � ~E
�BC � (1� �) ~E

Moreover, the eigenvalues �2 and �3 have to be nonreal. Let us compute
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them. Noticing that

�2 + �3 = T �D

�2 +
1

�2
= T �D

�22 � (T �D)�2 + 1 = 0

we get

�2 =
T �D
2

�

s�
T �D
2

�2
� 1

�3 =
T �D
2

+

s�
T �D
2

�2
� 1

These values are nonreal if and only if jT �Dj < 2 or, equivalently, (60)
holds.
Let us prove that the Neimark-Sacker bifurcation can arise only around N1.
Consider a parametric con�guration such that

N�

�N �N� = "

that is (59) holds.
Notice that, when N1 = N� = N2, it is the case, because

N1
�N �N1

=
aN1+"

1

bAk�
<
aN�1+"

bAk�
=
1

"

�
N�

�N �N�

�2
<

N2
�N �N2

=
aN1+"

2

bAk�

since ' (Ni) = 0 and ' (N�) = 0 with 0 � N1 � N� � N2.
In this case,

N1
�N �N1

<
N�

�N �N� = " <
N2

�N �N2
Let

~Ei � 1 =
B

�

�
"� Ni

�N �Ni

�
Then, ~E1 > 1 > ~E2. Since �N > 0 and�

~E2 � 1
� 1� �

�
�BC < 0

the inequality on the RHS of (60) is violated, meaning that a Neimark-Sacker
bifurcation never arises around N2.
Proof of Proposition 31
The dynamic system has two predetermined variables, kt and Nt, and one

non-predetermined variable, ct. When the NS bifurcation occurs two nonreal
(conjugate) eigenvalues cross the unit circle, say, without loss of generality, �2
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and �3. At the critical bifurcation point, we have �2�3 = 1 and, therefore,
D = �1�2�3 = �1, a real eigenvalue.
Let us show that j�1j > 1. In this case, the equilibrium is locally determinate.
According to (60), since �N > 0, a necessary condition for a NS bifurcation

is �
~E � 1

� 1� �
�

�BC > 0

or, equivalently, according to (74) with ~E instead of E,

D >
1

�
+ ~E � 1 (95)

We know that, under the Assumptions of Proposition 30 that ~E > 1 at
N = N1. Therefore, (95) implies D > 1=� > 1, that is �1 > 1.
Proof of Lemma 32
Reconsider the utility function (8) with � > 0 and ' > �= (1 + �). According

to (10) and (11), we obtain "cN="cc = � (1� 1='). Replacing in (69), (70) and
(71) with ~E instead of E, we �nd

T = 1 +
1

�
+ ~E + ��

1� '
'

S =
1

�
� �BC 1� '

'
+ ~E

�
1 +

1

�
+ ��

1� '
'

�
D =

1

�
~E � �BC 1� '

'

Using expressions (30) for B and C, and expression (31) for �, we get ex-
pressions (82), (83) and (84) for the trace, the sum of principal minors of order
two and the determinant where expressions A1 and A2 are precisely given by
(43) and (44) but, now, (61) replace B5.
Focus on the sign of

~B5 � 1 �
1

�

�
"� N

�N �N

�
b



k

N
(96)

that is of

"� N
�N �N

at N1 and N2.
Consider the regeneration process of nature (52). At the steady state,

! (N) � aN"
�
�N �N

�
= bAk�. ! is a bell-shaped function. We have shown

that N1 < N� < N2, where N� is solution to '0 (N) = 0. Since k does not
depend on N , N1 is located on the upward-sloping branch and N2 on the
downward-sloping branch of !.
We observe that

!0 (N) � a"N"�1 � �N �N
�
� aN"
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and !0 (N) > 0 if and only if

" >
N

�N �N
Put is di¤erently,

N1
�N �N1

< " <
N2

�N �N2
(97)

Therefore, according to (96), ~B5 (N1)� 1 > 0 and ~B5 (N2)� 1 < 0.
Proof of Proposition 33
When a saddle-node bifurcation takes placeN1 = N2 = N�. Then, according

to Lemma 32, ~B5 (N1) = ~B5 (N2) = 1 and

P (�1) = 2

�
�A2 �A1 � 2

1 + �

�

�
P (0) = �A2 �

1

�

P (1) = 0

We notice also that A1; A2 > 0 and they don�t depend on �. Inequalities
(62) are equivalent to P (�1) < 0 and P (0) > 0. Moreover, when N1 and N2
are distinct but in a neighborhood of N�,

P (1)jN=N2
= A1

h
~B5 (N2)� 1

i
< 0 < A1

h
~B5 (N1)� 1

i
= P (1)jN=N1

By continuity, when N1 and N2 are close enough, the corresponding charac-
teristic polynomials are also close, they cross the vertical line � = �1 below zero
and the vertical line � = 0 above zero. Moreover, P (�)jN=N2

crosses the vertical
line � = 1 below zero, while P (�)jN=N1

, above. Since lim�!�1 P (�) = �1
and lim�!1 P (�) = 1, we have that the curve P (�)jN=N2

crosses once each
interval (�1; 0), (0; 1) and (1;1), while the curve P (�)jN=N1

crosses once the
interval (�1; 0) and generically twice the interval (1;1). The proposition fol-
lows.
Proof of Proposition 34
We introduce the following critical value:

�F �
1 + ~B5
2A2

�
A1 + 2

1 + �

�

�
solution to P (�1) = 0. If ' < 1, then A2 > 0 and we have P (�1) > 0 if and
only if � > �F .
We can specify �F in the two steady states:

�F (Ni) �
�
2


b

Ni
k
+
1

�

�
"� Ni

�N �Ni

��
A1 + 2

1+�
�

2
�
1
� � �

�
1�'
'

with i = 1; 2.
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The ratio on the right is positive and does not depend on N .
According to (97), we have �F (N1) > 0, but �F (N2) can be negative.
Proof of Proposition 35
According to the proof of Proposition 12, a NS bifurcation generically occurs

if and only if

S = D (T �D) + 1 (98)

jT �Dj < 2 (99)

We observe that S = D + T +
�
~B5 � 1

�
A1 � 1.

(98) becomes:

D (T �D) + 1 = D + T +
�
~B5 � 1

�
A1 � 1 (100)

As before, let us choose � as bifurcation parameter and remark that only D
depends on �. Solving (100) for D gives:

D� � 1

2

"
T � 1�

r
(T � 3)2 + 4A1

�
1� ~B5

�#

D+ � 1

2

"
T � 1 +

r
(T � 3)2 + 4A1

�
1� ~B5

�#
The corresponding critical values for � are:

��N =
1

A2

 
~B5
�
�D�

!

�+N =
1

A2

 
~B5
�
�D+

!

Notice that at N = N2, we have ~B5 < 1 and

(T � 3)2 + 4A1
�
1� ~B5

�
> 0 (101)

then, the two critical values ��N and �+N are real. When N = N1, ~B5 > 1 and
we require the additional restriction (101) holds.
Focus on condition (99), which is equivalent to �2 < T �D < 2.
T �D� < 2 is equivalent to

T � 3 +
r
(T � 3)2 + 4A1

�
1� ~B5

�
< 0 (102)

A necessary condition is 4A1
�
1� ~B5

�
< 0, that is ~B5 > 1. According to

Lemma 32, this holds only when N = N1. Thus, no NS bifurcation for N = N2
at � = ��N .
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Moreover, since ~B5 (N1) > 1,

T (N1) =
1 + �

�
+A1 + ~B5 (N1) > 3

and, therefore,

T (N1)� 3 +
r
[T (N1)� 3]2 + 4A1

h
1� ~B5 (N1)

i
> 0

which violates (102) (notice that ��N 2 R always requires (T � 3)
2
+4A1

�
1� ~B5

�
>

0).
Thus, no NS bifurcation for N = N1 at � = �

�
N .

Summing up, � = ��N is not a NS bifurcation point.
Focus now on �+N . Condition (99) is equivalent to �2 < T �D < 2.
T �D+ < 2 is equivalent to

(T � 3)�
r
(T � 3)2 + 4A1

�
1� ~B5

�
< 0 (103)

If ~B5 > 1, then

T =
1 + �

�
+A1 + ~B5 > 3

and

(T � 3)�
r
(T � 3)2 + 4A1

�
1� ~B5

�
> 0

According to Lemma 32, �+N cannot a NS bifurcation point for N1.
If ~B5 < 1, (103) always holds. Therefore, when N = N2, T �D+ < 2 holds.
�2 < T �D+ is equivalent to

T + 5 >

r
(T � 3)2 + 4A1

�
1� ~B5

�
that is to

T + 5 > 0 and 4 (T + 1) > A1
�
1� ~B5

�
or, equivalently, to (64) since ~B5 < 1 and, hence, T + 5 > T + 1 > 0.
Therefore, if (64) holds, the system undergoes a NS bifurcation at � = �+N

and a limit cycle arises around the steady state N2.
Proof of Corollary 36
We know from Proposition 35 that there are no limit cycles around N1.
Consider N2. When � is close to one, A1 � 0, T � 1 + 1=� + ~B5 and

D+ �
1

2
(T � 1 + jT � 3j)

Focus on the term jT � 3j.
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If T � 3 < 0, then D+ � 1 and

�+N �
1

A2

 
~B5
�
� 1
!

If T � 3 > 0, then D+ � T � 2 and

�+N �
1� �
�

~B5 � 1
A2

We observe also that

T � 3 � 1 + �

�
+ ~B5 � 3 < 0, ~B5 < 2�

1

�

Notice also that 2� 1=� < �.
(1) If ~B5 (N2) < 2� 1=�, then T � 3 < 0 and ~B5 < �, that is ~B5=� � 1 < 0

and

�+N (N2) �
1

A2

"
~B5 (N2)

�
� 1
#
> 0, A2 < 0, ' > 1

Thus, generically, limit cycles around N2 through a NS bifurcation if ' > 1
(negative cross e¤ects). Conversely, no limit cycles around N2 when ' < 1
(positive cross e¤ects).
(2) If 2� 1=� < ~B5 (N2), then T � 3 > 0 and

�+N (N2) �
1� �
�

~B5 (N2)� 1
A2

> 0, A2 < 0, ' > 1

since ~B5 (N2) < 1 (Lemma 32).
As above, generically, limit cycles around N2 if ' > 1 (negative cross e¤ects).

Conversely, no limit cycles when ' < 1 (positive cross e¤ects).
Summing up, we have the corollary.
Proof of Proposition 37
As seen in the proof of Proposition 22, the dynamic system has two predeter-

mined variables, kt and Nt, and one non-predetermined variable, ct. When the
NS bifurcation occurs two nonreal (conjugate) eigenvalues cross the unit circle,
say, without loss of generality, �2 and �3. At the critical bifurcation point, we
have �2�3 = 1 and, therefore, D = �1�2�3 = �1, a real eigenvalue.
Therefore, the eigenvalue �1 associated to N2 is equal to D+ when � =

�+N . Let us show that jDj > 1 in this case, that is the equilibrium is locally
determinate around N2. Indeed, D+ > 1 is equivalent to

T � 3 +
r
(T � 3)2 + 4A1

�
1� ~B5

�
> 0

which always holds since ~B5 < 1 when N = N2.
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