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The use of quantiles forms the basis of the overwhelming majority of current risk man-
agement procedures. Yet, alternative instruments of risk protection that are not (unlike
quantiles) based solely on the frequency of tail observations and instead take their severity
into account while adhering to axiomatic requirements have seen increasing interest in the
past decade. The current state of development of risk measures beyond quantiles is dis-
cussed with a particular focus on three prominent classes: (i) Expected Shortfall (ES) and
extremiles, part of the class of spectral and distortion risk measures, (ii) expectiles, which
constitute a particular case of generalized M-quantiles, and (iii) systemic risk measures in-
cluding Marginal Expected Shortfall (MES). A structured overview of their strengths and
weaknesses with respect to axiomatic theory, estimation properties, and ease-of-use by risk
practitioners will be given. In addition, challenges arising in the asymptotics and mathe-
matical developments will be discussed and the use of each of the ES, extremile, expectile
and MES risk measures will be illustrated with real data applications to storm losses in
China, tornado losses in the United States, and financial returns series.

1.1 Introduction

Tail risk assessment is concerned with the analysis of rare events that carry potential serious
impacts on healthcare systems, the environment or the economy. This includes geohazards
and disaster risk, asset/investment risk, systemic risk and emerging risks such as climate,
epidemiological, and cybersecurity risks, that are crucial in finance and insurance. The risk
of a random positionX is usually quantified by a risk measure ξpXq, where ξ maps a relevant
space of random variables to R. Of practical interest are law-invariant risk measures in the
sense that ξpXq “ ξpY q if the random variables X and Y have the same distribution: all
the risk measures we consider throughout this chapter are law-invariant.

In banking and finance, choosing an appropriate risk measure is of great importance.
An influential article by [6] provides a meaningful axiomatic foundation for coherent risk
measures. In this chapter, we adopt the convention that the financial position of interest X
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2 Risk measures beyond quantiles

is a real-valued random variable, and a positive value of X denotes a loss (e.g. X represents
negative log-returns). A position Y is then said to be riskier than X if ξpY q ě ξpXq. The
risk functional ξ is said to be coherent if it satisfies the following four requirements:

• Translation invariance, or equivalently ξpX ` aq “ ξpXq ` a for all a P R;

• Positive homogeneity, which amounts to ξpλXq “ λξpXq for all λ ě 0;

• Monotonicity, namely, Y ď X with probability 1 implies that ξpY q ď ξpXq;

• Subadditivity, in the sense that ξpX ` Y q ď ξpXq ` ξpY q.

An additional important requirement imposed by [1] is comonotonic additivity, meaning
that ξpX ` Y q “ ξpXq ` ξpY q for comonotonic random variables X and Y . Coherent and
comonotonically additive risk measures that are also continuous (see Chapter 4 in [34]) are
exactly obtained from spectral risk measures of the form

ξϕ “ ξϕpXq :“

ż 1

0

ϕptq qt dt,

where ϕ P L1r0, 1s is an admissible risk spectrum (i.e. non-negative, non-increasing in the

L1´sense, with
ş1

0
ϕptqdt “ 1, see Definitions 2.3 and 2.4 in [1]), and qτ :“ inftx P R :

F pxq ě τu, τ P p0, 1q, is the τth quantile of X, with F being its distribution function, see
Theorems 4.64 p.189 and 4.87 p.200 in [34]. When ϕ is piecewise continuous, [40] show that
spectral risk measures belong to the Wang [61] family of distortion risk measures

ξg “ ξgpXq :“

ż 1

0

q1´t dgptq,

where g is a concave, non-decreasing function on r0, 1s, with gp0q “ 0 and gp1q “ 1. This,
in turn, makes it possible to write spectral/distortion risk measures as Choquet integrals.

Arguably, the most common risk measure used in all fields of application is Value-at-Risk
at level τ pVaRτ q for τ P p0, 1q. A main issue with VaRτ ” qτ in insurance and financial
market sectors is its failure to be subadditive in general [1]. It is also often criticized for
being unable to account for the size of losses beyond the level τ [16]. A better alternative
to VaRτ in both of these respects is Expected Shortfall at level τ pESτ q defined by [3] as

ESτ :“
1

1 ´ τ

ż 1

τ

qt dt.

When the distribution of X is continuous, this is also known as the τ -Conditional Value-
at-Risk, which gives the expectation of X conditional on X ą qτ [55]. Being a spectral risk
measure generated by the risk aversion function ϕτ ptq “ 1

1´τ 1pt ě τq, ESτ is coherent and
comonotonically additive. It is preferred to VaRτ by practitioners who are concerned with
exposure to a catastrophic event, and by major regulators, including the EU, UK, Australia
and Canada, which will be requiring the use of ES97.5%, rather than VaR99%, in alternative
internal models from 1 January 2025. In the EU, this is codified by Article 325ba(1) of
Regulation (EU) No 2019/876, which is a revision of the Capital Requirements Regulation
(EU) No 575/2013, implementing the latest Basel Committee on Banking Supervision rules.

The Expected Shortfall was criticized though for its conservatism and non-robustness
due to its dependency only on the tail event [15, 46], although the debate is very much
open about the relevance of robustness in the context of risk measurement [47, 48, 49]. An
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alternative measure which may steer an advantageous middle course between the potential
optimism of VaRτ and pessimism of ESτ is the τth expectile

eτ :“ argmin
θPR

E
␣

|τ ´ 1pX ď θq|pX ´ θq2 ´ |τ ´ 1pX ď 0q|X2
(

which is well-defined, finite and unique as soon as E|X| ă 8. This concept was first intro-
duced by [52] and has been considered as a risk measure by [51]. Being an L2´minimizer
formulated in a way that is analogous to the L1´formulation of the τth quantile [45],

qτ P argmin
θPR

E t|τ ´ 1pX ď θq||X ´ θ| ´ |τ ´ 1pX ď 0q||X|u ,

the expectile is easy to compute [23]. Its link with Expected Shortfall, as suggested by [59],
inspired [21] to introduce a coherent expectile-based form of Expected Shortfall as

XESτ :“
1

1 ´ τ

ż 1

τ

et dt

obtained by substituting the expectile eτ in place of the quantile qτ in the standard form
ESτ . While expectile-based risk measures have a less natural interpretation and are not
comonotonically additive [2], their adoption as reasonable alternatives to VaRτ and ESτ
has recently attracted a lot of interest, see for instance [8, 9, 19, 27, 50, 54, 64].

Both expectiles and quantiles can be seen as M-quantiles [10]. M-quantiles are related
to M-functionals of location in the same way quantiles are related to the median [44]. The
τth M-quantile of a random variable X is essentially defined as

θψτ :“ argmin
θPR

E t|τ ´ 1pX ď θq|ψpX ´ θq ´ |τ ´ 1pX ď 0q|ψpXqu

based on a suitable loss function ψ. The quantiles qτ are obtained for the absolute loss
function ψpxq “ |x|, whereas the expectiles eτ result from using the quadratic loss function
ψpxq “ x2. Other loss functions may be considered, such as the class of Huber loss functions

ψcpxq :“
x2

2c
1p|x| ă cq `

´

|x| ´
c

2

¯

1p|x| ě cq, for c ą 0,

or the Lp´loss functions ψppxq :“ |x|p, for p ě 1, which interpolate between the absolute
value (for p “ 1) and quadratic (for p “ 2) loss functions above. Interestingly, the only M-
quantiles that are coherent risk measures are the expectiles [9]. Perhaps one of the strongest
arguments in favor of the use of expectiles in practice is given by [7, 57, 64] who proved
that expectiles above the mean are the only coherent law-invariant measure of risk which
is also elicitable, namely, they benefit from a straightforward backtesting methodology,
see [8, 30, 31, 37]. While quantiles and expectiles are elicitable functionals, the Expected
Shortfall and distortion risk measures different from the Value-at-Risk and the mean are
not elicitable. However, non-elicitability does not preclude backtesting since spectral risk
measures are actually jointly elicitable with quantiles [33]. This bolstered the interest in
a novel risk measure which belongs to the class of spectral risk measures, enjoys various
intuitive meanings and affords a reasonable alternative to VaRτ , eτ and ESτ in terms of
reactivity to heavy tails, namely, the τth extremile of X defined by [17] as

xτ :“

ż 1

0

Jτ ptq qt dt “

ż 1

0

qt dKτ ptq “

ż 1

0

q1´t dgτ ptq

for the risk spectrum Jτ p¨q “ K 1
τ p¨q and distortion function

gτ ptq “

"

trp1´τq if 0 ă τ ď 1{2,

1 ´ p1 ´ tqrpτq if 1{2 ď τ ă 1,
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with Kτ ptq “ 1 ´ gτ p1 ´ tq and rpτq “ logp1{2q{ logpτq. Extremiles are determined by
tail expectations rather than tail probabilities. Similarly to expectiles, they define a least
squares analog of quantiles since

qτ P argmin
θPR

EtJτ pF pXqqp|X ´ θ| ´ |X|qu,

with equality if F is increasing, and xτ follows by substituting squared deviations in place
of the absolute deviations:

xτ “ argmin
θPR

EtJτ pF pXqqp|X ´ θ|2 ´ |X|2qu.

Interestingly, xτ is always, for τ Ò 1, more conservative than both qτ and eτ , while remaining
less pessimistic than ESτ , for any heavy-tailed distribution [17].

The univariate risk measures described above ignore the interconnection between finan-
cial institutions. Following [4], widespread failures and losses of financial firms can impose
an externality on the rest of the economy causing systemic risk. Statistical and economet-
ric approaches have been proposed to measure such a global risk by [11] for U.S. financial
institutions and [32] for European institutions, culminating in the definition of the SRISK
measure. A key component of the SRISK measure for a financial firm is its contribution to
a global stock market decline that happens once or twice a decade. This can be measured
as the firm’s Marginal Expected Shortfall (MES): if X denotes the loss return on the firm’s
equity and Y that of the entire market, the MES is equal to EpX|Y ą tq for a high threshold
t reflecting a substantial market decline, typically a tail τth quantile of the distribution of
Y as a threshold [4, 11, 13, 32]. The use of the τth expectile as an alternative threshold for
quantifying the MES has also been explored by [19, 25], where the asymptotic connection
between quantile- and expectile-based MES is unraveled and used as a basis for estimating
each tail risk measure from the other. Alternative measures of contagion have been pro-
posed in the literature, including the CoVaR [5], that is, the VaR of the financial system
conditional on institutions being under stress. However, none of these measures apart from
the MES have yet been treated from the point of view of extreme value theory.

This chapter is structured as follows. Section 1.2 further motivates the consideration of
different risk measures, serving different purposes, through disaster losses data and financial
returns data. Then Sections 1.3, 1.4 and 1.5 review the properties of, as well as estimation
results and extreme value inference about, spectral risk measures, M-quantiles, multivariate
and systemic risk measures. The special cases of tail ES, extremile, expectile and MES will be
illustrated in each section using the data in Section 1.2. Section 1.6 concludes and discusses
open questions related to estimation and inference of these alternative risk measures.

1.2 Empirical motivation

The China weather losses data consists of Total Damages Adjusted Cost, in billion USD,
provided by the EM-DAT1 international disaster database. The dataset comprises n “ 166
records of storms, tornadoes, tropical cyclones and hailstorms. The corresponding sample
mean, maximum and standard deviation are 817,025,934 USD, 11,447,148,000 USD, and
1,534,618,214 USD, respectively, and the data is highly right-skewed (Figure 1.1(A)). The
test of Theorem 5.2.12 in [26] comfortably concludes the heaviness of the upper tail at the

1EM-DAT (Emergency Events Database), CRED / UCLouvain, 2023, Brussels, Belgium – www.emdat.be
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three significance levels 0.01, 0.05 and 0.10 (Figure 1.1(B)). The plot of the bias-reduced Hill
estimator of [12] points towards an estimate of the tail index around 0.71 (Figure 1.1(C)),
which suggests a very heavy upper tail with an infinite variance. We also consider US tornado
monetary losses, in billion USD, provided by the NOAA’s Severe Weather Database2. We
focus on the re-insurance perspective of the loss amounts in excess of 15 million USD,
which results in a sample of size n “ 243 with mean, maximum and standard deviation
being 133,760,934 USD, 2,800,100,000 USD, and 330,588,800 USD, respectively. The data
is again right-skewed (Figure 1.1(D)) and heavy-tailed (Figure 1.1(E)), with a bias-reduced
Hill estimate of the tail index around 0.57 (Figure 1.1(F)).

Besides, our financial data consists of, first, weekly loss returns (minus log-returns)
on the equity price of American International Group (AIG) from July 3rd, 2000, to June
30th, 2010. During the 2007-2008 financial crisis, the US government bailed out AIG to
avoid jeopardizing the financial integrity of its trading partners, including Goldman Sachs,
Morgan Stanley and T. Rowe Price: compared with the weekly loss returns of the latter
three financial institutions over the same time period, whose tail indices were found to be
less than 1{2 in [13], AIG’s returns appear to have a heavier tail, with a bias-reduced Hill
estimate around 0.56 (Figure 1.1(G)-(I)). We also consider the weekly loss returns of a value-
weighted market index, extracted from [13] over the same time period, by aggregating three
US market indices. The tail heaviness of this dataset was checked empirically in [19] with a
Hill estimate around 0.37, which is in line with our bias-reduced Hill estimate around 0.39.

For the four motivating datasets described above, Figure 1.2 displays the empirical ver-
sions of the quantile qτ , the expectile eτ , the extremile xτ , and the two Expected Shortfall
forms ESτ and XESτ , against the security level τ ě 0.90. First, it may be seen that both
spectral risk measures, that is, the sample ES (blue) and extremile (red) in this order, pro-
vide globally more conservative risk appraisal compared to their M-quantile competitors,
namely the sample quantile (orange) and expectile (green). In particular, the sample ex-
pectile somewhat surprisingly appears to be the smallest when comparing the sample risk
measures at the same level τ . By contrast, the expectile-based form of Expected Shortfall
(cyan) is overall much more reactive to the magnitude of extremes than the expectile. Of
course, a meaningful comparison requires in practice the use of a different asymmetry level
τ for each risk measure. Second, and perhaps most importantly, the sample versions of the
quantile-based risk measures qτ and ESτ are the only ones to be piecewise constant func-
tions of τ . This awkwardly results in the same risk measurement for substantially different
security levels τ . In this respect, the other three competing risk measures based on expectiles
and extremiles enjoy a smooth evolution as functions of τ . Finally, and importantly, none
of the pure empirical risk measures we examine here are capable of extrapolating beyond
the range of the data, when τ ě 1´ 1{n. As such, having to resort to extreme value theory
for a finer risk assessment is inevitable.

1.3 Spectral risk measures: From Expected Shortfall to extremiles

According to [1], if ϕ is a non-negative, non-increasing function on r0, 1s which integrates
to 1, the spectral risk measure of X with risk spectrum ϕ is defined as

ξϕ “ ξϕpXq “

ż 1

0

ϕptq qt dt.

2NOAA (National Oceanic and Atmospheric Administration) – https://www.spc.noaa.gov/wcm/\#data



6 Risk measures beyond quantiles
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FIGURE 1.1
For the China storm losses data (top panels), US tornado losses data (middle panels), and
AIG financial returns data (bottom panels), from left to right: histogram and rug plot of the
data, plot of p-values for the tail heaviness test (blue line) along with the three significance
levels 0.01, 0.05 and 0.10 in horizontal lines, and plot of the bias-reduced Hill estimator in
solid line, with a first stable region indicated in dashed line. The middle and right plots are
graphed as functions of the sample fraction k{n, where k represents the effective sample
size of top observations needed for extreme value estimation.

Sufficiently regular spectra induce distortion risk measures: when ϕ is the derivative of a
smooth function, clearly

ξϕ “

ż 1

0

q1´t dgptq, with ϕptq “ g1p1 ´ tq.

The motivation for the introduction of distortion risk measures was the calculation of in-
surance premiums [61]. Important examples include Expected Shortfall as well as the Dual
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(C) AIG financial returns
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FIGURE 1.2
The sample versions of the quantile qτ , the expectile eτ , the extremile xτ , and the Expected
Shortfall forms ESτ and XESτ , as functions of τ ě 0.9, for the China storm losses data (A),
the US tornado losses data (B), AIG loss returns (C) and the aggregated market index
loss returns (D), along with a rug plot of the data on the y´axis (for more clarity we only
display the positive part of the latter two’s rug plots).

Power and Proportional Hazard risk measures; the Dual Power and Proportional Hazard
measures are respectively called MINVAR and MAXVAR by [14] in the context of studying
acceptability indices. Unlike in the standard setting, the motivation for the use of spec-
tral risk measures in extreme value analysis is not pricing insurance contracts (as it would
be overly pessimistic and thus unwise to calculate premiums solely on the basis of infre-
quent, catastrophic events) but rather the degree of freedom they offer in weighting the
most extreme observations, with a view on gathering specific information about disaster
risk reflected by the extreme value behavior of a risk variable.

General extreme value adaptations of spectral risk measures The recent liter-
ature has considered two extreme value constructions of spectral/distortion risk measures:

1. The excess-of-loss construction in [60]: a pre-specified spectral/distortion risk measure
is applied to the distribution of maxpX ´R, 0q, where R is a high retention level;
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2. The conditional construction in [28, 29]: let g be a distortion function and consider, for
every τ P p0, 1q, the distortion risk measure induced by the function gτ defined as

@t P r0, 1s, gτ ptq :“ g

ˆ

min

ˆ

1,
t

1 ´ τ

˙˙

“

$

&

%

g

ˆ

t

1 ´ τ

˙

if t ď 1 ´ τ,

1 otherwise.

Considering the distortion risk measure of X with distortion function gτ then essentially
corresponds to applying standard spectral/distortion risk measures to the distribution
of X above its τth quantile, that is, the distribution of X|tX ą qτu.

The estimation of these extreme value versions has been considered under the assumption
that the data is generated from independent copies of a random variable X having a heavy
right tail. More precisely, we assume that the tail quantile function U : t ÞÑ q1´1{t of X
satisfies the following standard second-order regular variation condition:

C2pγ, ρ,Aq For all x ą 0,

lim
tÑ8

1

Aptq

ˆ

Uptxq

Uptq
´ xγ

˙

“ xγ
ż x

1

sρ´1ds

where γ ą 0, ρ ď 0 and A has constant sign and converges to 0 at infinity. Equivalently

@x ą 0, lim
tÑ8

1

Ap1{F ptqq

ˆ

F ptxq

F ptq
´ x´1{γ

˙

“
x´1{γ

γ2

ż x

1

sρ{γ´1ds

by Theorem 2.3.9 p.48 in [26], where F “ 1 ´F . The function A, such that |A| is regularly
varying with index ρ, determines how close the extremes of X are to pure Pareto extremes:
the further away ρ is from 0, the closer the extremes of X typically are to pure Pareto
extremes, and the easier the extreme value estimation problem is. Any standard heavy-
tailed model (Student, Cauchy, Fréchet...) satisfies assumption C2pγ, ρ,Aq.

Because asymptotic results about the estimation of extremal spectral/distortion risk
measures tend to be fairly technical (general results are, for instance, Theorem 3 in [60]
and Theorems 1, 2 and 3 in [28]), we specialize our discussion to the Expected Shortfall,
which is arguably the most important risk measure covered by both of the constructions
we have highlighted above. In the heavy-tailed setting, it is well-known that if γ ă 1{s
then EpXs

1pX ą 0qq ă 8, see Exercise 1.16 p.35 in [26]. As a consequence, the Expected
Shortfall risk measure is well-defined as soon as γ ă 1. Assume here and throughout that the
available data points are independent copies X1, . . . , Xn of a random variable X satisfying
assumption C2pγ, ρ,Aq. Let X1:n ď X2:n ď ¨ ¨ ¨ ď Xn:n be the associated order statistics.
Then an obvious estimator of ESτ is its empirical counterpart

xESτ,n “
1

1 ´ τ

ż 1

τ

pqt,n dt with pqt,n “ Xrnts:n,

visualized in Figure 1.2 for our motivating datasets at level τ ě 0.9. Since our interest here
is in the Expected Shortfall above an extreme level, we take τ “ τn Ò 1 as n Ñ 8. A
different estimation procedure is suggested by the convergence

ESτ
qτ

Ñ
1

1 ´ γ
as τ Ò 1, (1.1)

(see e.g. [60], p.444) which can be used to construct an estimator of ESτn provided one has
access to an estimator of γ. A standard choice for that is the Hill estimator [41]:

pγτn “
1

tnp1 ´ τnqu

tnp1´τnqu
ÿ

i“1

log
Xn´i`1:n

Xrnτns:n
.
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This is the maximum likelihood estimator in pure Pareto models and arguably the most
popular estimator of γ in heavy-tailed models. One then gets the alternative estimator

ĂESτn,n “
pqτn,n

1 ´ pγτn
.

The estimators xESτn,n and ĂESτn,n are both asymptotically normal: one path towards a
proof is to use a weighted Gaussian approximation to the tail empirical quantile process
s P r0, 1s ÞÑ pq1´p1´τnqs, see Theorem 2.4.8 p.52 in [26].

Theorem 1.3.1. Assume C2pγ, ρ,Aq holds. Let τn Ò 1 with np1 ´ τnq Ñ 8.

(i) If γ ă 1{2 and
a

np1 ´ τnqApp1 ´ τnq´1q “ Op1q, then

a

np1 ´ τnq

˜

xESτn,n
ESτn

´ 1

¸

d
ÝÑ N

ˆ

0,
2γ2p1 ´ γq

1 ´ 2γ

˙

.

(ii) If γ ă 1 and
a

np1 ´ τnqApp1 ´ τnq´1q Ñ λ P R, then

a

np1 ´ τnq

˜

ĂESτn,n
ESτn

´ 1

¸

d
ÝÑ N

ˆ

´
λγρ

p1 ´ γqp1 ´ ρqp1 ´ γ ´ ρq
, γ2

"

1 `
1

p1 ´ γq2

*˙

.

While the first result corresponds to Theorem 2 of [28] and to Corollary 5 of [58] in this
form, the second result has not been noted before in the literature and can be viewed as a
corollary of Theorem 2.4.8 p.52 in [26].

The estimators xESτn,n and ĂESτn,n are consistent and asymptotically normal at interme-
diate levels τn, but cannot extrapolate beyond the range of the observations. At extreme
levels τ 1

n, for which np1´ τ 1
nq “ Op1q, the key is to use once again (1.1) in conjunction with

the classical Weissman [62] approximation to obtain

ESτ 1
n

ESτn
«
qτ 1

n

qτn
«

ˆ

1 ´ τ 1
n

1 ´ τn

˙–γ

for all n large enough, which in turn suggests the extrapolated estimators

xES
‹

τ 1
n,n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙–pγτn
xESτn,n and ĂES

‹

τ 1
n,n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙–pγτn
ĂESτn,n.

We call them Weissman-type estimators, after [62] who introduced a similar estimator

pq‹
τ 1
n,n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙–pγτn

pqτn,n

for extreme quantiles qτ 1
n
. They inherit the asymptotic normal distribution of pγτn , at a

slightly slower rate of convergence, see Theorem 3 in [28] and Corollary 6 in [58].

Theorem 1.3.2. Assume C2pγ, ρ,Aq holds with γ ă 1 and ρ ă 0. Assume further that
τn, τ

1
n Ò 1 with np1 ´ τnq Ñ 8,

a

np1 ´ τnqApp1 ´ τnq´1q Ñ λ P R, p1 ´ τ 1
nq{p1 ´ τnq Ñ 0

and
a

np1 ´ τnq{ logpp1 ´ τnq{p1 ´ τ 1
nqq Ñ 8. Then

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

ĂES
‹

τ 1
n,n

ESτ 1
n

´ 1

¸

d
ÝÑ N

ˆ

λ

1 ´ ρ
, γ2

˙

.

If in addition γ ă 1{2, then the same convergence holds true for xES
‹

τ 1
n,n

{ESτ 1
n

´ 1.
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We now return to our four motivating data examples to illustrate and compare xES
‹

τ 1
n,n

and ĂES
‹

τ 1
n,n

with the Weissman estimator pq‹
τ 1
n,n

of VaRτ 1
n
as a benchmark with the extreme

level τ 1
n “ 1 ´ 1{n. For each dataset, we superimpose in Figure 1.3 the plots of xES

‹

τ 1
n,n

,

ĂES
‹

τ 1
n,n

and pq‹
τ 1
n,n

as functions of the effective sample fraction 1´ τn of the top of the sample

used for tail extrapolation in each estimator. The figure also displays the 95% asymptotic

confidence intervals derived from the asymptotic normality of ĂES
‹

τ 1
n,n

in (A)-(D) and of

xES
‹

τ 1
n,n

only in (D) where γ ă 1{2, when ignoring the asymptotic bias by taking λ “ 0.
We eyeball the effective sample fraction threshold for stability of the estimates and take
1 ´ τn “ 11% for China storm losses, 1 ´ τn “ 11% for US tornado losses, 1 ´ τn “ 16%
for AIG loss returns, and 1 ´ τn “ 8% for the market index loss returns, leading to the

final pointwise estimates pq‹
τ 1
n,n

, xES
‹

τ 1
n,n

and ĂES
‹

τ 1
n,n

reported in Table 1.1, along with 95%
asymptotic confidence intervals. We shall return to the question of asymptotic Gaussian
inference and its accuracy in Section 1.6.
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FIGURE 1.3
Extrapolated ESτ 1

n
estimates for (A) China storm losses, (B) US tornado losses, (C) AIG

loss returns, and (D) Aggregated US market index loss returns, with τ 1
n “ 1´1{n: Estimates

ĂES
‹

τ 1
n,n

(rainbow curve, asymptotic 95% confidence intervals in dashed blue), xES
‹

τ 1
n,n

(red
curve, asymptotic 95% confidence intervals in dashed red) and pq‹

τ 1
n,n

(gray curve), against
the sample fraction 1 ´ τn. The dashed magenta line is the sample maximum.

Extremiles as a fresh look upon Dual Power risk measures Yet another way
of constructing extreme value spectral risk measures is to fix a parametric family of such
measures, whose weight shifts towards the right tail as the parameter value converges to the
boundary of the parameter space. This is different from the previous construction, where
the focus was rather to consider a fixed risk measure applied to a transformation of X.
Considering reparametrized probability weighted moment families with this objective in
mind is what gives rise to the concept of extremiles, with the reparametrization contributing
to a better understanding of some of the properties hidden by their Dual Power formulation.

The original motivation for introducing extremiles comes from the observation in [17]
that the τth quantile qτ coincides with the median of the transformed distribution function
Kτ pF q, while the mean of this same transformation induces a coherent and more alert risk
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measure referred to as the τth extremile xτ that has the closed form expression

xτ “
EtX Jτ pF pXqqu

EtJτ pF pXqqu
,

which reduces to xτ “ EtX Jτ pF pXqqu for continuous distributions. This risk measure
depends on all values ofX and puts more weight on extreme realizations, since the weighting
density function Jτ p¨q is increasing for τ ě 1{2 and decreasing for τ ď 1{2. In contrast, qτ
is determined solely by the frequency of tail observations, while ESτ only depends on the
tail event. As visualized in Figure 1.2, the sample extremile, given by the M-estimator

pxτ “

řn
i“1 Jτ pi{nqXi:n
řn
i“1 Jτ pi{nq

“

ş1

0
Jτ prnts{nqXrnts:n dt
1
n

řn
i“1 Jτ pi{nq

,

exhibits a smooth evolution, steering a middle course between the robustness of ordinary
sample quantiles and the severe sensitivity of both empirical Expected Shortfall and extreme
quantiles to tail observations. In fact, for Pareto-type distributions with finite first moment,
the asymptotic connections (see Propositions 3 and 6 in [17])

xτ
qτ

„ Γp1 ´ γqtlog 2uγ ą 1 and
xτ
ESτ

„ Γp2 ´ γqtlog 2uγ ă 1 as τ Ò 1,

where Γ is Euler’s Gamma function, justify the property, from a risk management viewpoint,
that xτ is always more conservative than qτ and less pessimistic than ESτ .

In addition to their duality with quantiles as the mean and the median of the same
transformation of X, extremiles also have an intuitive interpretation as expected maxima
for τ ě 1{2 and expected minima for τ ď 1{2. More specifically for τ ě 1{2, we have

EtmaxpX1, . . . , Xtrpτququ ď xτ ď EtmaxpX1, . . . , Xrrpτqsqu

where X1, X2, . . . are i.i.d. observations from X. In particular, xτ “ EtmaxpX1, . . . , Xrpτqqu

when rpτq ě 1 is a integer.
The estimation of tail extremiles at an intermediate level τ “ τn Ò 1 with np1´τnq Ñ 8

as n Ñ 8, can be done via the M-estimator pxτn or by making use of the asymptotic
equivalence xτn „ Γp1 ´ γqtlog 2uγqτn , to define the alternative estimator

rxτn “ Γp1 ´ pγτnqplog 2qpγτn pqτn,n.

While the asymptotic normality of pxτn has already been established in Theorem 4 of [17],
the next theorem is the first result to provide the limit distribution of rxτn . It follows as a
corollary of Proposition 4 in [17] and Theorem 2.4.8 p.52 in [26]. Let X´ “ minpX, 0q.

Theorem 1.3.3. Assume C2pγ, ρ,Aq holds with E|X´| ă 8. Let τn Ò 1 with np1´τnq Ñ 8.

(i) If γ ă 1{2 and
a

np1 ´ τnqApp1 ´ τnq´1q “ Op1q then, under the additional regularity
assumption that the support of X is an interval, on the interior of which F is twice
differentiable with a positive density f such that

sup
0ătă1

tp1 ´ tq
f 1pqtq

tfpqtqu2
ă 8 and lim

tÑ`8
t

fptq

1 ´ F ptq
“ γ,

one has
a

np1 ´ τnq

ˆ

pxτn
xτn

´ 1

˙

d
ÝÑ

γ
?
log 2

Γp1 ´ γq

ż 8

0

e´ss´γ´1W psqds

where W is a standard Brownian motion.
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(ii) If γ ă 1,
a

np1 ´ τnqApp1 ´ τnq´1q Ñ λ P R and
a

np1 ´ τnqp1 ´ τnq Ñ µ P R, then

a

np1 ´ τnq

ˆ

rxτn
xτn

´ 1

˙

d
ÝÑ N

ˆ

λ

"

1

1 ´ ρ

ˆ

logplog 2q ´
Γ1p1 ´ γq

Γp1 ´ γq

˙

´ C1pγ, ρq

*

´ C2pγqµ,

γ2

#

1 `

ˆ

logplog 2q ´
Γ1p1 ´ γq

Γp1 ´ γq

˙2
+¸

.

Here

C1pγ, ρq “

$

’

’

’

&

’

’

’

%

1

ρ

ˆ

Γp1 ´ γ ´ ρqplog 2qγ`ρ

Γp1 ´ γqplog 2qγ
´ 1

˙

if ρ ă 0,

ş8

0
e´tt´γ plogplog 2q ´ logptqq dt

Γp1 ´ γq
otherwise,

and C2pγq “
γ

2

ˆ

1 ´ γ

log 2
´ 1

˙

.

At the far tail, for extreme levels τ 1
n with np1 ´ τ 1

nq “ Op1q, combining the asymptotic
connection between tail extremiles and quantiles with Weissman’s [62] approximation gives

xτ 1
n

xτn
«
qτ 1

n

qτn
«

ˆ

1 ´ τ 1
n

1 ´ τn

˙–γ

,

which motivates the following extreme value estimators of xτ 1
n
:

px‹
τ 1
n,n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙–pγτn

pxτn,n and rx‹
τ 1
n,n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙–pγτn

rxτn,n.

Their convergence is established in Theorems 3 and 5 of [17].

Theorem 1.3.4. Assume E|X´| ă 8 and C2pγ, ρ,Aq holds with γ ă 1 and ρ ă 0. As-
sume further that τn, τ

1
n Ò 1 with np1 ´ τnq Ñ 8,

a

np1 ´ τnqApp1 ´ τnq´1q Ñ λ P R,
a

np1 ´ τnqp1´τnq Ñ µ P R, p1´τ 1
nq{p1´τnq Ñ 0 and

a

np1 ´ τnq{ logpp1´τnq{p1´τ 1
nqq Ñ

8. Then

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

rx‹
τ 1
n,n

xτ 1
n

´ 1

¸

d
ÝÑ N

ˆ

λ

1 ´ ρ
, γ2

˙

as n Ñ 8.

If γ ă 1{2 and the regularity conditions of Theorem 1.3.3(i) moreover hold, then the same
convergence result holds true for px‹

τ 1
n,n

{xτ 1
n

´ 1.

Figure 1.4 shows the evolution of these two competing estimates with respect to their
quantile analog pq‹

τ 1
n,n

, as functions of the sample fraction 1 ´ τn, for the extreme level

τ 1
n “ 1 ´ 1{n, along with the 95% asymptotic confidence intervals derived from the asymp-
totic normality of rx‹

τ 1
n,n

in (A)-(D) and of px‹
τ 1
n,n

in (D), assuming that λ “ 0. The final

pointwise estimates, obtained from the same effective sample fraction threshold (selected
and described above) for stability of the benchmark pq‹

τ 1
n,n

, are reported in Table 1.1, along

with their asymptotic 95% confidence intervals.
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FIGURE 1.4
Extrapolated xτ 1

n
estimates for (A) China storm losses, (B) US tornado losses, (C) AIG loss

returns, and (D) Aggregated US market index loss returns, with τ 1
n “ 1 ´ 1{n: Estimates

rx‹
τ 1
n,n

(rainbow curve, asymptotic 95% confidence intervals in dashed blue), px‹
τ 1
n,n

(red curve,

asymptotic 95% confidence intervals in dashed red) and pq‹
τ 1
n,n

(gray curve), against the
sample fraction 1 ´ τn. The dashed magenta line is the sample maximum.

1.4 M-quantile risk measures: From L1 to convex optimization

The extremile is obtained as the unique minimizer of an expected loss function depending on
the unknown distribution function of the observations. This is the key reason why extremiles
are not elicitable in the sense of [37]. Of interest, therefore, are risk measures defined as

argmin
θPR

E tW pτ,X ´ θq|X ´ θ|pu

where W is a weighting function formalizing the asymmetrical way in which the left and
right tails of X are taken into account, and p ě 1 encodes how robust the risk measure will
be to extreme observations, with increasing p standing for decreasing robustness. Choosing
W pτ, vq “ |τ´1pv ď 0q| and p “ 1 produces the usual quantiles [45]. This same choice ofW ,
with varying p P r1,8q, generates the class of Lp´quantiles, studied from the extreme value
perspective in [20]. These risk measures are law-invariant and elicitable for any p ě 1 but,
according to [64], only the expectiles, obtained for p “ 2, induce a coherent risk functional.
For this reason, we focus hereafter on the case p “ 2.

Expectile-based Value-at-Risk In the intermediate case when τ “ τn Ò 1 and np1 ´

τnq Ñ 8 as n Ñ 8, a direct, Least Asymmetrically Weighted Squares (LAWS) estimator
of the expectile eτn is given by its empirical version

peτn “ argmin
θPR

n
ÿ

i“1

|τn ´ 1pXi ď θq|pXi ´ θq2.

Its asymptotic normality is proven in Theorem 1 of [21] for heavy-tailed distributions with
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γ ă 1{2. In the more general setting where 0 ă γ ă 1, an indirect, quantile-based estimator
of eτn is obtained from the asymptotic connection eτn „ pγ´1 ´ 1q´γqτn , n Ñ 8, as

reτn “ ppγ´1
τn ´ 1q´pγτn

pqτn .

Its asymptotic normality is established in Corollary 2 of [19].

Theorem 1.4.1. Assume C2pγ, ρ,Aq holds and let τn Ò 1 with np1 ´ τnq Ñ 8.

(i) If γ ă 1{2, E|X´|2 ă 8 and
a

np1 ´ τnqApp1 ´ τnq´1q “ Op1q, then

a

np1 ´ τnq

ˆ

peτn
eτn

´ 1

˙

d
ÝÑ N

ˆ

0,
2γ3

1 ´ 2γ

˙

.

(ii) If γ ă 1, E|X´| ă 8,
a

np1 ´ τnqApp1´ τnq´1q Ñ λ P R and
a

np1 ´ τnq{qτn Ñ µ P R,
then

a

np1 ´ τnq

ˆ

reτn
eτn

´ 1

˙

d
ÝÑ N pbpγ, ρq, γ2r1 ` tp1 ´ γq´1 ´ logpγ´1 ´ 1qu2sq,

with

bpγ, ρq “

ˆ

p1 ´ γq´1 ´ logpγ´1 ´ 1q

1 ´ ρ
´

pγ´1 ´ 1q´ρ

1 ´ γ ´ ρ
´

pγ´1 ´ 1q´ρ ´ 1

ρ

˙

λ

´ γpγ´1 ´ 1qγEpXqµ.

In the extreme case when τ “ τ 1
n with np1 ´ τ 1

nq “ Op1q, combining the asymptotic
proportionality relationship between expectiles and quantiles with the Weissman approxi-
mation yields

eτ 1
n

eτn
„
qτ 1

n

qτn
«

ˆ

1 ´ τ 1
n

1 ´ τn

˙´γ

,

which motivates the class of expectile Weissman-type estimators

e‹
τ 1
n,n

pαq “

ˆ

1 ´ τ 1
n

1 ´ τn

˙–pγτn

eτnpαq

based on the weighted intermediate estimators eτnpαq “ α peτn ` p1 ´ αqreτn , α P R. Such
extrapolated estimators inherit the asymptotic normal distribution of the tail index esti-
mator pγτn , as shown in Theorem 5 of [21]. Of particular interest are the purely indirect
estimator re‹

τ 1
n,n

:“ e‹
τ 1
n,n

p0q and direct estimator pe‹
τ 1
n,n

:“ e‹
τ 1
n,n

p1q, which correspond to
the two special cases α “ 0 and α “ 1, and whose asymptotic normality properties were
established, respectively, for γ ă 1 and γ ă 1{2 in Corollary 3 and Corollary 4 of [19].

Theorem 1.4.2. Assume C2pγ, ρ,Aq holds with ρ ă 0, and let τn, τ
1
n Ò 1 such that np1 ´

τnq Ñ 8,
a

np1 ´ τnqApp1´τnq´1q Ñ λ P R,
a

np1 ´ τnq{qτn Ñ µ P R, p1´τ 1
nq{p1´τnq Ñ 0

and
a

np1 ´ τnq{ logpp1 ´ τnq{p1 ´ τ 1
nqq Ñ 8.

(i) If γ ă 1{2 and E|X´|2 ă 8, then for any α P R,
a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

e‹
τ 1
n,n

pαq

eτ 1
n

´ 1

¸

d
ÝÑ N

ˆ

λ

1 ´ ρ
, γ2

˙

.

(ii) This remains valid for α “ 0 under the weaker assumptions γ ă 1 and E|X´| ă 8.
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For our motivating datasets, the competing estimates pe‹
τ 1
n,n

and re‹
τ 1
n,n

are graphed with

their quantile analog pq‹
τ 1
n,n

in Figure 1.5, as functions of the sample fraction 1 ´ τn, for the

extreme level τ 1
n “ 1 ´ 1{n, along with the 95% asymptotic confidence intervals associated

with re‹
τ 1
n,n

in (A)-(D) and with pe‹
τ 1
n,n

in (D), under the bias condition λ “ 0. The final

pointwise estimates pe‹
τ 1
n,n

and re‹
τ 1
n,n

, selected by using the same effective sample fraction

threshold for stability of pq‹
τ 1
n,n

, are reported in Table 1.1 with their confidence intervals.
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FIGURE 1.5
Extrapolated eτ 1

n
estimates for (A) China storm losses, (B) US tornado losses, (C) AIG loss

returns, and (D) Aggregated US market index loss returns, with τ 1
n “ 1 ´ 1{n: Estimates

re‹
τ 1
n,n

(rainbow curve, asymptotic 95% confidence intervals in dashed blue), pe‹
τ 1
n,n

(red curve,

asymptotic 95% confidence intervals in dashed red) and pq‹
τ 1
n,n

(gray curve), against the
sample fraction 1 ´ τn. The dashed magenta line is the sample maximum.

Expectile-based Expected Shortfall An expectile-based form of ES as XTCEτ :“
EpX|X ą eτ q was first considered by [59]. Despite its straightforward interpretability, this
tail conditional mean does not fulfill the coherence property in general, but the alternative

form XESτ “ 1
1´τ

ş1

τ
et dt is coherent (Proposition 2 of [21]). Moreover, for heavy-tailed

distributions with tail index γ P p0, 1q and E|X´| ă 8, XESτ is asymptotically equivalent
to the intuitive XTCEτ and proportional to the expectile eτ since (Proposition 3 of [21]),

XESτ „ XTCEτ „ p1 ´ γq´1eτ as τ Ò 1.

Given intermediate and extreme levels τn, τ
1
n Ò 1 such that np1´ τnq Ñ 8 and p1´ τ 1

nq{p1´

τnq Ñ 0, this asymptotic connection suggests the extrapolated estimator

XES
‹

τ 1
n,n

pαq “ p1 ´ pγτnq´1 e‹
τ 1
n,n

pαq

for XESτ 1
n
, obtained by replacing the tail index γ with its estimator pγτn and the extreme

expectile eτ 1
n
with its weighted Weissman-type estimator e‹

τ 1
n,n

pαq. A direct, LAWS-based
extrapolated estimator

zXES
‹

τ 1
n,n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙´pγτn

zXESτn
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for XESτ 1
n
follows from the Weissman approximation

XESτ 1
n

XESτn
„
eτ 1

n

eτn
«

ˆ

1 ´ τ 1
n

1 ´ τn

˙´γ

by substituting in pγτn in place of γ and replacing the intermediate value XESτn with its

sample counterpart zXESτn “ 1
1´τn

ş1

τn
pet dt. Its asymptotic normality is given in Theorems 6

of [21], and for zXES
‹

τ 1
n,n

and XES
‹

τ 1
n,n

pαq when γ ă 1{2, we refer to Theorems 7 and 8
of [21]. In the general case 0 ă γ ă 1, the asymptotic normality of the purely indirect,

quantile-based estimator XES
‹

τ 1
n,n

p0q “ p1 ´ pγτnq´1
re‹
τ 1
n,n

follows as an immediate corollary

of Theorem 1.4.2(ii) and Proposition 4 in [21].

Theorem 1.4.3. (i) Under the conditions of Theorem 1.4.2(i),

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

zXES
‹

τ 1
n,n

XESτ 1
n

´ 1

¸

d
ÝÑ N

ˆ

λ

1 ´ ρ
, γ2

˙

,

and for any α P R,
a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

XES
‹

τ 1
n,n

pαq

XESτ 1
n

´ 1

¸

d
ÝÑ N

ˆ

λ

1 ´ ρ
, γ2

˙

.

(ii) This remains valid for α “ 0 under the weaker assumptions of Theorem 1.4.2(ii).

Returning to our four data examples, Figure 1.6 displays the plots of the purely indirect,

quantile-based estimator ĆXES
‹

τ 1
n,n

:“ XES
‹

τ 1
n,n

pα “ 0q, its direct, LAWS-based counterpart

zXES
‹

τ 1
n,n

and the Weissman quantile estimator pq‹
τ 1
n,n

, as functions of the sample fraction

1 ´ τn, for the extreme level τ 1
n “ 1 ´ 1{n, along with the 95% asymptotic confidence

intervals derived from the asymptotic normality of ĆXES
‹

τ 1
n,n

in (A)-(D) and of zXES
‹

τ 1
n,n

in (D), under the bias condition λ “ 0. The final pointwise estimates zXES
‹

τ 1
n,n

and ĆXES
‹

τ 1
n,n

,
chosen by using the same eyeballed effective sample fraction threshold for pq‹

τ 1
n,n

, are reported

in Table 1.1, with their 95% asymptotic confidence intervals.

1.5 Towards multivariate risk assessment: systemic risk measures

The risk measures considered so far only quantify the risk carried by a single random vari-
able. In global economics-oriented examples where there are several players involved, there
is valuable information about the dependence between the risk variables of interest that
even the joint estimation of several univariate risk measures cannot recover. We illustrate
this on the following toy example: consider two random variables X and Y , having respec-
tively a Fréchet distribution with tail index 1{4 (namely, PpX ď xq “ expp´x´4q for x ą 0)
and a Pareto distribution with tail index 1{4 (namely, PpY ď yq “ 1 ´ y´4 for y ą 1), and
whose dependence structure is given by the Gumbel-Hougaard (or logistic) copula

Cθpu, vq “ exp
!

´
“

p´ log uqθ ` p´ log vqθ
‰1{θ

)

, u, v P p0, 1q, θ ě 1.
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FIGURE 1.6
Extrapolated XESτ 1

n
estimates for (A) China storm losses, (B) US tornado losses, (C) AIG

loss returns, and (D) Aggregated US market index loss returns, with τ 1
n “ 1´1{n: Estimates

ĆXES
‹

τ 1
n,n

(rainbow curve, asymptotic 95% confidence intervals in dashed blue), zXES
‹

τ 1
n,n

(red
curve, asymptotic 95% confidence intervals in dashed red) and pq‹

τ 1
n,n

(gray curve), against
the sample fraction 1 ´ τn. The dashed magenta line is the sample maximum.

Risk level China storms US tornadoes AIG Market index
n “ 166 n “ 243 n “ 522 n “ 522

Xn:n 11.44 2.80 1.15 0.20
pq‹
τ 1
n,n

12.38 (1.77, 22.99) 1.47 (0.42, 2.51) 0.59 (0.28, 0.91) 0.12 (0.07, 0.16)

xES
‹

τ 1
n,n

28.09 5.01 1.62 0.19 (0.12, 0.26)

ĂES
‹

τ 1
n,n

35.10 (5.02, 65.17) 3.44 (0.99, 5.88) 1.35 (0.63, 2.06) 0.18 (0.11, 0.24)

px‹
τ 1
n,n

18.85 3.28 1.04 0.14 (0.09, 0.19)
rx‹
τ 1
n,n

24.66 (3.53, 45.80) 2.47 (0.71, 4.22) 0.97 (0.46, 1.49) 0.14 (0.09, 0.20)

pe‹
τ 1
n,n

15.85 2.92 0.71 0.09 (0.05, 0.12)
re‹
τ 1
n,n

18.34 (2.62, 34.05) 1.73 (0.50, 2.97) 0.68 (0.32, 1.04) 0.09 (0.06, 0.13)

zXES
‹

τ 1
n,n

25.04 5.44 1.64 0.15 (0.09, 0.20)

ĆXES
‹

τ 1
n,n

51.97 (7.44, 96.49) 4.06 (1.17, 6.94) 1.54 (0.72, 2.35) 0.14 (0.09, 0.19)

TABLE 1.1
Estimated extreme risk levels of the China storms, US tornadoes, AIG and aggregated
market index datasets at τ 1

n “ 1 ´ 1{n along with 95% asymptotic confidence intervals
(available for the direct estimates only in the aggregated market index data analysis where
the estimated tail index is found to be ă 1{2).

In other words, PpX ď x, Y ď yq “ CθpPpX ď xq,PpY ď yqq. Taking θ “ 1 produces a
random pair pX,Y q having independent components, and θ Ñ 8 yields a perfectly depen-
dent random pair, namely, FXpXq “ FY pY q. In this example, the (extreme) univariate risk
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measures of X and Y seen so far do not depend on the degree of dependence θ between X
and Y , but the Marginal Expected Shortfall of X at level 1 ´ τ , defined as

MESτ “ EpX|Y ą qτ pY qq,

does depend on θ, as Figure 1.7 shows. Moreover, a stronger degree of positive association
between X and Y indeed results in a larger MES risk measure, all other things being equal.
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FIGURE 1.7
Marginal Expected Shortfall values for a random pair pX,Y q whose first (resp. second)
marginal distribution is Fréchet(1{4) (resp. Pareto(1{4)) and whose copula function is the
Gumbel-Hougaard copula Cθ, for θ ě 1. The left (resp. right) panel is a heatmap (resp. sur-
face plot) of the values of MESτ “ EpX|Y ą qτ pY qq as a function of the Y´quantile level
τ ě 1{2 and the dependence parameter θ ě 1.

To incorporate the concept of extremal dependence between two random variables into
an assessment of risk, suppose thatX and Y have continuous survival functions FX “ 1´FX
and FY “ 1 ´ FY . We introduce the bivariate survival copula Cpu, vq “ PpFXpXq ď

u, FY pY q ď vq (u, v P r0, 1s) of X and Y , and we assume the tail dependence condition

J CpRq There is a function R on r0,8s2ztp8,8qu, with Rp1, 1q ą 0, such that

@px, yq P r0,8s2ztp8,8qu, lim
sÑ8

sCpx{s, y{sq “ Rpx, yq.

This condition imposes the existence of a limiting dependence structure in the joint right
tail of X and Y , given by a tail copula R (see [56]). It is arguably a minimal assumption
when it comes to assessing the dependence structure between extreme value estimators.

In this context, when X is positive and heavy-tailed with tail index γX P p0, 1q,

MESτ
qτ pXq

Ñ

ż 8

0

Rpx´1{γX , 1qdx as τ Ò 1,

see Proposition 1 in [13]. On the basis of this convergence and the Weissman approximation,
we get for intermediate and extreme levels τn, τ

1
n Ò 1 that

MESτ 1
n

„
qτ 1

n
pXq

qτnpXq
MESτn «

ˆ

1 ´ τ 1
n

1 ´ τn

˙´γX

MESτn as n Ñ 8.
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Plugging in a
a

np1 ´ τnq-consistent estimator pγX,n of γX and replacing MESτn with its
empirical version

řn
i“1Xi1tYi ą pqτn,npY qu
řn
i“1 1tYi ą pqτn,npY qu

results in an extreme value estimator for MESτ 1
n
. In real-life situations where the profit-loss

variable X is the equity return of a financial firm and Y represents an aggregated return
measure of a financial market, the random variable X is not necessarily positive, but as
shown by [13], its MES is mainly determined by top, and hence positive, realizations of X.
This led [13] to propose the intermediate estimator

zMESτn,n “

řn
i“1Xi1tXi ą 0, Yi ą pqτn,npY qu

řn
i“1 1tYi ą pqτn,npY qu

,

as well as the corresponding extreme value estimator of MESτ 1
n
:

zMES
‹

τ 1
n,n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙´pγX,n

zMESτn,n.

The asymptotic normality of zMES
‹

τ 1
n,n

is established in Theorems 1 and 2 of [13], with

possibly two different intermediate levels τn in pγX,n and zMESτn,n. For the sake of simplicity,
we will use in the sequel the same τn for both of these estimators. An alternative extreme
value estimator for MESτ 1

n
has also been suggested by [13] in their Equation (12) with no

asymptotic theory.
Another option studied by [19, 25] is given by the expectile-based form

XMESτ “ EpX|Y ą eτ pY qq,

which obeys similar asymptotic approximations as the standard quantile-based form MESτ .
Indeed, assuming that condition J CpRq holds and X,Y are heavy-tailed with respective tail
indices γX , γY P p0, 1q, we have as τ Ò 1,

XMESτ

UXp1{FY peτ pY qqq
Ñ

ż 8

0

Rpx´1{γX , 1qdx and
XMESτ
MESτ

Ñ
`

γ´1
Y ´ 1

˘´γX
,

with UX being the tail quantile function of X, see Proposition 2 in [13]. Combining the first
convergence result with the Weissman approximation leads to

XMESτ 1
n

XMESτn
„
UXp1{FY peτ 1

n
pY qqq

UXp1{FY peτnpY qqq
«

ˆ

1 ´ τ 1
n

1 ´ τn

˙´γX

as n Ñ 8.

A direct, LAWS-based estimator of the extreme value XMESτ 1
n
follows then as

{XMES
‹

τ 1
n,n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙´pγX,n

{XMESτn,n,

where {XMESτn,n “

řn
i“1Xi1tXi ą 0, Yi ą peτn,npY qu

řn
i“1 1tYi ą peτn,npY qu

.

The asymptotic proportionality relationship XMESτ „
`

γ´1
Y ´ 1

˘´γX
MESτ as τ Ò 1 also

yields the indirect quantile-based estimator

ČXMES
‹

τ 1
n,n

“

´

pγ´1
Y,n ´ 1

¯´pγX,n
zMES

‹

τ 1
n,n
,
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for a suitable estimator pγY,n of γY .

The three extrapolated estimators zMES
‹

τ 1
n,n

, {XMES
‹

τ 1
n,n

and ČXMES
‹

τ 1
n,n

have the same
asymptotic distribution, dictated by the tail index estimator pγX,n, in view of Theorem 2
in [13] and Theorems 4 and 5 in [19] respectively. The result stated below is essentially a
consequence of Theorem 4.1 in [25], encompassing the results mentioned above. Introduce
the second-order condition:

J C2pR, β, κq Condition J CpRq holds and there are β ą γX and κ ă 0 such that locally
uniformly in y P p0,8q,

sup
xą0

ˇ

ˇ

ˇ

ˇ

sCpx{s, y{sq ´Rpx, yq

minpxβ , 1q

ˇ

ˇ

ˇ

ˇ

“ Opsκq as s Ñ 8.

Theorem 1.5.1. Suppose that X ą 0 with probability 1, UX and UY satisfy condi-
tions C2pγX , ρX , AXq and C2pγY , ρY , AY q with 0 ă γX ă 1{2 and ρX ă 0, and con-
dition J C2pR, β, κq holds. Assume moreover that τn, τ

1
n Ò 1, with np1 ´ τnq Ñ 8,

p1 ´ τ 1
nq{p1 ´ τnq Ñ 0 and

a

np1 ´ τnq{ logpp1 ´ τnq{p1 ´ τ 1
nqq Ñ 8, as well as the bias

conditions np1 ´ τnq1´2κ Ñ 0 and
a

np1 ´ τnq|AXpp1 ´ τnq´1q|γX{p1´ρXq´ε Ñ 0 for some

ε ą 0, and suppose that
a

np1 ´ τnqppγX,n ´ γXq
d

ÝÑ Γ as n Ñ 8.

(i) Then
a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

zMES
‹

τ 1
n,n

MESτ 1
n

´ 1

¸

d
ÝÑ Γ.

(ii) Assume γY P p0, 1q, E|Y´| ă 8,
a

np1 ´ τnqAY pp1´τnq´1q Ñ 0,
a

np1 ´ τnq{qτnpY q Ñ

0, and
a

np1 ´ τnqppγY,n ´ γY q “ OPp1q. Then

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

ČXMES
‹

τ 1
n,n

XMESτ 1
n

´ 1

¸

d
ÝÑ Γ.

(iii) Assume γY P p0, 1{2q and there is δ ą 0 such that E|Y´|2`δ ă 8, and also that
a

np1 ´ τnqAY pp1 ´ τnq´1q Ñ 0 and
a

np1 ´ τnq{qτnpY q Ñ 0. Then

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

{XMES
‹

τ 1
n,n

XMESτ 1
n

´ 1

¸

d
ÝÑ Γ.

All convergences remain valid in the case when X is not necessarily positive, provided
E|X´|1{γX ă 8 and np1 ´ τnq “ opp1 ´ τ 1

nq2κp1´γXqq as n Ñ 8.

We apply the three extrapolated estimators zMES
‹

τ 1
n,n

, {XMES
‹

τ 1
n,n

and ČXMES
‹

τ 1
n,n

to
estimate the two forms of extreme MES for AIG, Citigroup, JPMorgan Chase and Berkshire
Hathaway, where for these four examples X refers to the loss return of each company and
Y is the aggregated market index considered previously in this chapter (the choice of the
frequency of data and time horizon follows the same set-up described in Section 1.2 for
AIG and the market index). It should be noted that inference is feasible so far only in the
case γX P p0, 1{2q for MESτ 1

n
, and in the case pγX , γY q P p0, 1{2q ˆ p0, 1q for XMESτ 1

n
; the

condition γX ă 1{2 does not appear to be satisfied for AIG and Citigroup. The plots of the
three extrapolated estimates are graphed in Figure 1.8 as functions of 1´τn for τ 1

n “ 1´1{n,
along with 95% asymptotic confidence intervals derived from Theorem 1.5.1. We eyeball the
effective sample fraction threshold for stability of the estimates and take 1 ´ τn “ 13% for
AIG, 1 ´ τn “ 12% for Citigroup, 1 ´ τn “ 9% for JPMorgan Chase, and 1 ´ τn “ 17%
for Berkshire Hathaway, leading to the final pointwise estimates and corresponding 95%
asymptotic confidence intervals reported in Table 1.2.
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FIGURE 1.8
Extrapolated MESτ 1

n
and XMESτ 1

n
estimates for (A) AIG, (B) Citigroup, (C) JPMorgan

Chase, and (D) Berkshire Hathaway, with τ 1
n “ 1´1{n: Estimates zMES

‹

τ 1
n,n

(rainbow curve,

asymptotic 95% confidence intervals in dashed blue), {XMES
‹

τ 1
n,n

(black curve, asymptotic

95% confidence intervals in dashed black) and ČXMES
‹

τ 1
n,n

(pink curve, asymptotic 95%
confidence intervals in dashed pink), against the sample fraction 1 ´ τn.

Financial institution pγX,n zMES
‹

τ 1
n,n

{XMES
‹

τ 1
n,n

ČXMES
‹

τ 1
n,n

AIG 0.56 0.73 0.71 0.57
Citigroup 0.50 0.97 0.79 0.77
JPMorgan Chase 0.32 0.27 (0.18, 0.37) 0.23 (0.15, 0.31) 0.22 (0.14, 0.30)
Berkshire Hathaway 0.39 0.13 (0.08, 0.17) 0.10 (0.06, 0.13) 0.11 (0.07, 0.15)

TABLE 1.2
Estimates for AIG, Citigroup, JPMorgan Chase and Berkshire Hathaway at τ 1

n “ 1 ´ 1{n
with n “ 522. The second column reports the bias-reduced Hill estimate pγX,n for each

institution. The third column reports the quantile-based MES estimates zMES
‹

τ 1
n,n

, and the

last two columns report the expectile-based MES estimates {XMES
‹

τ 1
n,n

and ČXMES
‹

τ 1
n,n

. Each
estimate is followed by a 95% asymptotic confidence interval (available when pγX,n ă 1{2).

1.6 Discussion

Much remains to be done if the alternatives to quantiles discussed in this chapter are to be
widely used in day-to-day risk management practice. The main question currently open, in
our view, is how to carry out accurate inference about extreme risk measures in realistic
settings. As far as extreme expectile estimation is concerned, for instance, it appears from
the finite-sample results of [19, 21] that the estimators pe‹

τ 1
n,n

and re‹
τ 1
n,n

suffer from substantial
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finite-sample bias. It was also noted later by [53] that asymptotic Gaussian inference of
extreme expectiles eτ 1

n
using these estimators was a difficult question, due to the fact that

the asymptotic variances of their Gaussian limiting distributions tend to poorly represent
the actual uncertainty in finite samples. One should expect these issues about bias and
inference to be more generally present and detrimental when (M)ES or extremiles are used.

Recently, [36] and then [22] have come up with very accurate bias-corrected versions
and precise approximations to the empirical variances of pe‹

τ 1
n,n

and re‹
τ 1
n,n

, thus enabling to
construct refined bias-reduced and variance-corrected Gaussian confidence intervals for the
tail risk measure eτ 1

n
in heavy-tailed models. They have provided successive corrections for

three sources of approximation errors in the development of the asymptotic normality of
both extrapolated estimators, namely (i) the use of the asymptotic connection between
extreme expectiles and quantiles while ignoring higher-order error terms, (ii) wrongly ne-
glecting correlations between estimators when the asymptotic behavior of one of them domi-
nates, and (iii) incurring variance distortions by applying the delta-method for linearization
purposes. The resulting corrected Gaussian confidence intervals enjoy coverages close to
the nominal confidence level even in moderately large samples [22]. The bias-reduced and
variance-corrected versions of pe‹

τ 1
n,n

(see Section 3 of [22]) and re‹
τ 1
n,n

(see Section 4 of [22]),
obtained for the aggregated market index and JPMorgan Chase data, at the extreme level
τ 1
n “ 1 ´ 1{n, are graphed in Figure 1.9, along with corrected associated 95% confidence
intervals which better account for statistical uncertainty compared to the original, naive
Gaussian confidence intervals we introduced in this chapter. It is noteworthy that at the
moment, the bias-reduced version of re‹

τ 1
n,n

appears to be more stable and hence reliable

than the one built on pe‹
τ 1
n,n

; subject to further improvements in this direction, the approach

developed by [22, 36] could serve as a blueprint for the construction of bias-reduced and
variance-corrected asymptotic Gaussian confidence intervals for extreme ES and extremiles.

A broader question of substantial practical interest is to determine when the so-called
“direct” estimators considered in this chapter, based on extrapolating intermediate risk
measures calculated using the empirical distribution of the data, perform better than “in-
direct” estimators constructed upon asymptotic proportionality relationships warranted by
the extreme value model assumption. From existing Monte-Carlo studies:

• For extreme expectile estimation, [19] and [21] provide evidence that the indirect esti-
mator re‹

τ 1
n,n

is superior in the case of non-negative loss distributions, while the direct

estimator pe‹
τ 1
n,n

seems to be best in the case of real-valued profit-loss distributions.

• For tail extremile estimation, [17] provide evidence that the estimator px‹
τ 1
n,n

of xτ 1
n
is

superior in terms of mean-squared error and bias when γ ă 1{2 compared to rx‹
τ 1
n,n

.

Further, large-scale Monte-Carlo studies are required to reach a definitive conclusion and,
perhaps, find whether “direct” methods are superior in certain situations regardless to which
tail risk measure is estimated. This would be valuable in applications such as financial data
analysis where prior information is often available about what kind of model is reasonable.

Last but not least, this introductory chapter to methodologies for extreme risk assess-
ment alternative to quantiles does not deal with more complex real-life situations where
the data points are serially dependent and/or heterogeneous with or without available co-
variate information that may be high-dimensional. A fully operational inferential theory
that would deal with all these difficulties is not currently available. Various steps have been
made towards solving one of the above challenges: the setting of serially dependent and
stationary observations, without covariates, has been considered by [25] in the extreme ex-
pectile estimation context. The work of [35] gives flexible theory for extreme conditional
expectile estimation, including in popular time series, but their approach is highly sensitive
to model misspecification, makes the strong assumption of a constant tail index, and their
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bootstrap scheme is difficult to calibrate. The recent work of [24] provides fully operational
extreme conditional quantile and expectile estimators based on α´mixing data, although
their approach is, by design, limited to low-dimensional covariates; the work of [63] can
handle moderately high-dimensional covariates but puts a very strong linear constraint on
tail conditional expectiles. Extremile regression for independent, identically distributed and
low-dimensional data is considered in [18]. The integration of low-dimensional covariates
into extreme Marginal Expected Shortfall estimation is discussed in [38, 39]. Dynamic esti-
mation, namely, conditional estimation in time series models where the covariate primarily
consists of lags of the target variable with a view on predicting future risk levels, is addressed
by [42, 43] in strictly stationary, parametric location-scale models.
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FIGURE 1.9
Extrapolated eτ 1

n
estimates for the aggregated US market index (top panels) and JPMorgan

Chase (bottom panels) with τ 1
n “ 1 ´ 1{n. Left: Basic estimates re‹

τ 1
n,n

(rainbow curve,

asymptotic 95% confidence intervals in dashed blue) and pe‹
τ 1
n,n

(red curve, asymptotic 95%

confidence intervals in dashed red), against the sample fraction 1´ τn. Right: Bias-reduced
estimates and variance-corrected confidence intervals. The benchmark Weissman quantile
estimates pq‹

τ 1
n,n

in gray curve and the sample maximum in dashed magenta line.
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