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Abstract

Few spatio-temporal models allow temporal non-stationarity. When model-
ing environmental data recorded over the last decades of the 20th century
until now, it seems not reasonable to assume temporal stationarity, since it
would not capture climate change e�ects. In this paper, we propose a space-
time max-stable model for modeling some temporal non-stationarity of the
spatial extremal dependence. Our model consists of a mixture of max-stable
spatial processes, with a rate of mixing depending on time. We use maximum
composite likelihood for estimation, model selection, and a non-stationarity
test. The assessment of its performance is done through wide simulation
experiments. The proposed model is used to investigate how the rainfall in
the south of France evolves with time. The results demonstrate that the
spatial extremal dependence is signi�cantly non-stationary over time, with a
decrease in the strength of dependence.
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1. Introduction

In recent years, climate change has signi�cantly impacted the nature of
environmental extreme events. This requires the construction of statisti-
cal models, able to represent time-varying extreme events. In this paper,
we focus on studying the temporal non-stationarity of the spatial extremal
dependence. Indeed, assuming it is stationary when modeling environmen-
tal extreme events, recorded over a long time is questionable. We consider
max-stable processes which provide suitable models for representing extremal
dependence structures for spatial extremes (De Haan, 1984; De Haan and
Ferreira, 2006). Di�erent spatial max-stable models were presented in the
literature (Smith, 1990; Schlather, 2002; Kabluchko et al., 2009; Opitz, 2013),
and in all of them, the extremal dependence was assumed to be temporal sta-
tionary. These models have been applied to various variables, e.g. rainfall,
snow, and so on, see for example Padoan et al. (2010); Blanchet and Davi-
son (2011); Gaume et al. (2013); Fawcett and Walshaw (2014); Saunders
et al. (2017). Few papers deal with space-time max-stable models, see e.g.
Davis et al. (2013); Huser and Davison (2014); Embrechts et al. (2016); Buhl
and Klüppelberg (2016); Abu-Awwad et al. (2021), in which a stationary
spatio-temporal dependence structure is assumed, considering a short-range
temporal dependence.
The �rst paper which addresses the issue of the temporal non-stationarity of
the spatial dependence structure was presented by Nicolet et al. (2016). The
authors studied the impact of climate change on the dependence structure of
extreme snowfall in the French Alps. They used an approach based on the
data, called moving time windows, to estimate the extremal dependence. For
each window, the range and smooth parameters of the Brown-Resnick model
were estimated by �tting its theoretical extremal function using the least
square method. The results detected a signi�cant trend in spatial extremal
dependence, where the snowfall extremes become less spatially dependent
with time. Although this approach was able to detect the temporal trend
in the spatial extremal dependence, it did not allow modeling of that trend.
Afterward, Blanchet et al. (2018) studied the spatial dependence of extreme
rainfall over West Africa. They investigated the temporal evaluation of the
spatial extremal dependence using the moving time windows approach rather
than modeling its trend. They �tted a stationary Brown-Resnick model for
each time window using the pairwise maximum likelihood estimator. In Nico-
let et al. (2018), a Brown-Resnick max-stable model with a temporal linear
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trend in the range and smooth parameters of the spatial extremal dependence
is proposed. It allows to consider some covariates to model the trends. The
authors applied it on the extreme snow depth data of the French Alps, to
assess the e�ect of climate change on its spatial dependence. They concluded
that extremal dependence has a strong negative trend over time.
In this paper, we propose a novel space-time max-stable model for model-
ing the temporal nonstationarity in spatial extremal dependence. The idea
behind constructing this model came from the notion that one possible way
to create a non-stationary model is to form a mixture of max-stable models
(Huser and Genton, 2016). This approach may provide a more realistic and
accurate representation of extreme events. Our model represents a mixture
of two spatial max-stable processes, with mixing proportion varying across
time. It is a �exible model, as it can combine any two max-stable models,
with time-varying mixing proportion modeled using any function (linear or
non-linear) to construct the best space-time model representing the data.
Throughout this paper, we assumed that the time-varying mixing propor-
tion was modeled by a function representing a linear trend. For statistical
inference, the maximum composite likelihood estimator (MCLE) was used to
estimate the parameters of the proposed model. We assess its performance
through several simulation experiments.
Moreover, statistic hypothesis tests are essential tools in statistics for model
validation, in particular for complex models like max-stable models. Abu-
Awwad et al. (2020) proposed two test statistics for the value of the mixing
proportion parameter of a max-mixture model. Following this path, we pro-
pose a test statistic on the values of time-varying mixing proportion parame-
ters of our proposed model, intending to validate the existence of a temporal
trend. We performed extensive simulations to calculate the empirical power
of our proposed test statistic.
Afterward, we use the proposed space-time max-stable model to study the
time variation on the extreme rainfall in the south of France, where the
majority of extreme rainfall occurs in this area as a result of this area be-
ing a�ected by the disturbances of the Mediterranean Sea and the Atlantic
Ocean. This area was studied also by Oesting and Naveau (2020).
The rest of the paper is organized as follows. In Section 2 we present our
proposed space-time max-stable model, with its two measures of extremal
dependence: time-varying extremal function and time-varying F-madogram.
Section 3 reviews the maximum composite likelihood estimator (MCLE) for
statistical inference and its associated model selection criterion. In Section 4
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we present several simulation experiments to evaluate the performance of the
estimator and the test statistic. We detail the application of our proposed
model to study the extreme rainfall over the south of France in Section 5.
Lastly, the discussion and conclusion are enclosed in Section 6.

2. Time-varying max-stable mixture model

Let us begin with a short review on principles and de�nitions of max-
stable processes, which are the base for the construction of the proposed
model.
Let {Zi(s), s ∈ S ⊂ Rd}, d ≥ 1 and i = 1, 2, · · · be independent and identical
distributed replicates of a spatial process Z(s), assume there exist continuous
functions An(s) > 0 and Bn(s) ∈ R, so that

n∨
i=1

Zi(s)−Bn(s)

An(s)

D−→ X(s), s ∈ S, n → ∞, (1)

where
∨

represents the max-operator. The limiting process X(s) is as-
sumed to have non-degenerate marginals, such a process is called a max-
stable process (De Haan and Pereira, 2006). The univariate marginal dis-
tribution of X(s) is a generalized extreme value distribution, i.e X(s) ∼
GEV (µ(s), σ(s), ξ(s)) with distribution function de�ned for all x ∈ R as:

P(X(s) ≤ x) = exp[−(1 + ξ(s)
x− µ(s)

σ(s)
)−1/ξ(s)], σ(s) > 0, µ(s), ξ(s) ∈ R

(2)
where µ(s), σ(s), and ξ(s) are the location, scale, and shape parameters,
respectively for location s. When the marginal distributions of the pro-
cess {X(s), s ∈ S} are unit Fréchet distributions with distribution function
P(X(s) ≤ x) = exp[−1/x], x > 0 (corresponding to X(s) ∼ GEV (1, 1, 1) for
all s ∈ S), the process is named simple max-stable process (Ribatet, 2017;
Ribatet et al., 2016). It has a spectral representation, which is presented by
De Haan (1984) as follows

X(s) =
∞∨
i=1

ζiYi(s), s ∈ S (3)

where ζi, i ≥ 1 is a Poisson point process on R+ with intensity ζ−2dζ and
the Yi(s), i ≥ 1 are independent copies of a stochastic process Y (s) ≥ 0 with
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E[Y (s)] = 1.
The multivariate max-stable model for any set of m spatial locations S =
{s1, · · · , sm} ⊂ S, is given by

P
{
X(s1) ≤ x1, · · · , X(sm) ≤ xm

}
= exp

{
−VS(x1, · · · , xm)

}
(4)

where

VS(x1, · · · , xm) = E
{
max

[Y (s1)

x1

, · · · , Y (sm)

xm

]}
, (5)

is called the exponent measure that satis�es homogeneity of order -1, i.e
VS(bx1, · · · , bxm) = b−1VS(x1, · · · , xm), b > 0.
Various max-stable models were presented, and each has an explicit formula
for the exponent measure according to the choice of the process Y (s), for
instance, the Smith model (Smith, 1990), the Schlather model (Schlather,
2002), the Brown-Resnick model (Kabluchko et al., 2009) and the Extremal-
t model (Opitz, 2013).
Here, we propose a space-time max-stable model to deal with the issue of
temporal nonstationarity in spatial extremal dependence. The idea of the
model is to mix two max-stable models, with mixing proportion varying over
time. Let X1(s) and X2(s) be two independent simple max-stable processes
de�ned on the same space S. For any π(t) ∈ [0, 1], and t = 1, · · · , T , consider
the spatio-temporal process:

X(s, t) = max
{
π(t)X1(s), (1− π(t))X2(s)

}
. (6)

It is a simple space-time max-stable process with bivariate distribution de-
�ned as

P
(
X(s, t) ≤ x1, X(s′, t) ≤ x2

)
= exp

{
−V mix

S,t (x1, x2)
}

with
V mix
S,t (x1, x2) = π(t)V 1

S
(x1, x2) + (1− π(t))V 2

S
(x1, x2), (7)

it is the exponent function for the time-varying max-stable mixture model,
it summarizes the extremal dependence of X(s) and X(s′) at time t. In (7),
S = {s, s′}, V 1 and V 2 denote the exponent measures of X1(s) and X2(s)
respectively, and π(t) is a temporaly varying proportion, which determines
which of the processes X1(s) and X2(s) is dominant at time t.
Figure 1 shows a realization of such a process on a regular 50 × 50 grid
over the [0, 1]2. The �rst mixing component is an Extremal-t process with
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degree of freedom equals to 5 and exponential correlation function ρ(h) =
exp(−∥h∥/ϕ1), with range ϕ1 = 0.6, the second one is an isotropic Smith
process with covariance matrix Σ = ϕ2 Id2, ϕ2 = 0.4. Twelve time points are
considered and the mixing proportion has a linear trend with π(t1) = 0 and
π(t12) = 1.
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Figure 1: Realization of a time-varying max-stable mixture process on logarithm scale
for twelve-time points. Here, an Extremal-t process with degree of freedom equals 5 and
exponential correlation function ρ(h) = exp(−∥h∥/ϕ1), ϕ1 = 0.6, is mixed with an isotropic
Smith process with a covariance matrix Σ = ϕ2 Id2, ϕ2 = 0.4. The mixing proportion has
a linear trend, with π(t1) = 0 and π(t12) = 1.
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If π(t) is constant over time, then the prosess is temporaly stationary. On
the contrary, if π(t) depends on time, the model is non stationary in time.
For example, one could consider logit{π(t)} = Y T

t β where Yt is a vector of
covariates at time t and β represents its associated vector of parameters. It is
worth mentioning that the logit function is used to ensure that π(t) remains
between 0 and 1.
The de�nition of the model makes it �exible and may be more suitable for
modeling environmental events under climate change. It accommodates the
state of change from one model to another with time and allows using any
function for the mixing proportion (linear or nonlinear).

2.1. Measures of extremal dependence

In this subsection, we present two measures of extremal dependence for
the proposed model: Extremal coe�cient function and F-madogram.

2.1.1. Time-varying extremal coe�cient function

The extremal coe�cient function captures information about the strength
of the extremal dependence for stationary max-stable processes (Schlather
and Tawn, 2003). Let X(s) and X(s′) be simple max-stable processes at
locations s and s′ respectively, let h = s−s′ be the spatial lag. The extremal
coe�cient function θ(h) is

θ(h) = −x logP
{
X(s) ≤ x,X(s′) ≤ x

}
= VS(1, 1) (8)

The extremal coe�cient takes values in [1, 2], θ(h) = 1 when X(s) and X(s′)
are completely dependent, while θ(h) = 2 when they are independent. For
each max-stable model, there is a theoretical formula for the extremal coef-
�cient as a function of the spatial lag h (Ribatet, 2013).
Below, we calculate the extremal coe�cient θmix(h, t) for the time-varying
max-stable mixture model. It depends on the spatial lag h and the time
point t ∈ T , it may capture changes in the extremal dependence over time.

Proposition 1. Let {X1(s), s ∈ S} and {X2(s), s ∈ S} be two simple max-
stable processes with extremal coe�cient function θ1(h) and θ2(h), respec-
tively, let π(t) ∈ [0, 1], t ∈ T . Then, at any time point t ∈ T and any
spatial lag h = s − s′, s, s′ ∈ S, the extremal coe�cient of the time-varying
max-stable mixture process {X(s, t), s ∈ S, t ∈ T } de�ned by (6), is given by

θmix(h, t) = π(t)θ1(h) + (1− π(t))θ2(h). (9)
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Proof of Proposition 1. Recall that, the exponent measures VS for any max-
stable process is homogeneous of order -1, and V 1

S
(1, 1) = θ1(h), V 2

S
(1, 1) =

θ2(h), respectively. Since at each time point t, the spatial process is station-
ary, we have for any x, using (7)

θmix(h, t) = V mix
S,t (1, 1)

= π(t)V 1
S
(1, 1) + (1− π(t))V 2

S
(1, 1)

= π(t)θ1(h) + (1− π(t))θ2(h),

which is the announced result.

Figure 2 represents a surface plot for the extremal coe�cient of the process
shown in Figure 1. It shows the temporal evaluation for the spatial extremal
coe�cient. For display purposes, we considered twelve distances of equal
length, from 0 to the maximum pairwise distance of 1.414.
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Figure 2: Surface plot for the extremal coe�cient of the process which is shown in Figure
1.

2.1.2. Time-varying spatial F-madogram

Cooley et al. (2006) proposed the F-madogram as a measure of spatial
extremal dependence for stationary spatial max-stable processes with unit
Fréchet margins. It is de�ned as

VF (h) =
1

2
E
[∣∣F (X(s))− F (X(s′))

∣∣] (10)
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where F (X(s)) and F (X(s′)) are the marginal distributions function of X(s)
and X(s′), respectively, and h refers to the spatial lag between the locations
s and s′. We have VF (h) ∈ [0, 1

6
], where 0 ocurs if X(s) and X(s′) that are

completely dependent and 1
6
occurs if to they are independent.

The F-madogram has a strong link with the extremal coe�cient:

VF (h) =
1

2
− 1

θ(h) + 1
(11)

For more detail about the theoretical properties of F-madogram, we refer to
Cooley et al. (2006) and Naveau et al. (2009).
As a consequence, the F-madogram of the time-varying max-stable mixture
process {X(s, t), s ∈ S, t ∈ T } de�ne by (6) is given by:

Vmix
F (h, t) =

1

2
− 1

θmix(h, t) + 1
(12)

where Vmix
F (h, t) ∈ [0, 1

6
] and θmix(h, t) = π(t)θ1(h) + (1− π(t))θ2(h)

The surface plot for the F-madogram of the process which shown in Figure
1 is presented in Figure 3. It shows the temporal evolution of the spatial
F-madogram. We consider twelve distances as in Figure 2.
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3. Statistical inference

3.1. Maximum composite likelihood estimator (MCLE)

Owing to the computational intractable issues of the full likelihood in-
ference for max-stable models, the Maximum composite likelihood estima-
tor (MCLE) is the standard inference approach nowadays for these models
(Lindsay, 1988; Padoan et al., 2010; Varin et al., 2011; Castruccio et al., 2016;
Huser et al., 2019). Consider a parametric form for π(t), e.g. π(t) = at + b
and let us denote by Ψ the vector of the parameters of our spatio-temporal
model, then the MCLE can be de�ned as

Ψ̂ = arg maxP(Ψ) (13)

where

P(Ψ) =
T∑
t=1

m−1∑
j=1

m∑
j′=j+1

Wjj′ log f(xtj, xtj′ ; Ψ) (14)

with T is the number of time points, m is the number of locations, f is
the bivariate density function associated with the model de�ned in (6), and
Wjj′ ≥ 0 are weights that specify the contributions of each pair.
Under some regularity conditions, satis�ed for standard max-stable models,
Ψ̂ is strongly consistent and asymptotically normal distributed (Padoan et al.,
2010; Davison and Gholamrezaee, 2012)

Ψ̂
D−→ N (Ψ,H(Ψ)−1 J (Ψ)H(Ψ)−1) as T → ∞. (15)

where H(Ψ) = E
[
−∇2P(Ψ)

]
is named the sensitivity matrix and J (Ψ) =

V
[
∇P(Ψ)

]
is named the variability matrix. By estimating the matrices

H(Ψ) and J (Ψ), one can assess the variance of the estimated parameters.

3.2. Model selection

The model selection criterion that is associated with the MCLE is the
Composite Likelihood Information Criterion (CLIC) (Varin and Vidoni, 2005)

CLIC = −2P(Ψ̂) + 2 tr(Ĥ(Ψ̂)−1 Ĵ (Ψ̂)) (16)

where Ψ̂ is the vector of the estimated parameters using MCLE, tr is the trace
of a matrix, Ĥ(Ψ̂) and Ĵ (Ψ̂) are the empirical estimations of the sensitivity
matrix and variability matrix, respectively, which are de�ned by

Ĥ(Ψ̂) = −
T∑
t=1

m−1∑
j=1

m∑
j′=j+1

Wjj′
∂2log f(xtj, xtj′ ; Ψ̂)

∂Ψ∂Ψ⊺
(17)
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and

Ĵ (Ψ̂) =
T∑
t=1

{
m−1∑
j=1

m∑
j′=j+1

Wjj′
∂logf(xtj, xtj′ ; Ψ̂)

∂Ψ

}
×{

m−1∑
j=1

m∑
j′=j+1

Wjj′
∂logf(xtj, xtj′ ; Ψ̂)

∂Ψ

}⊺ (18)

For comparison among di�erent models, the lowest value of CLIC indicates
the best-�tting model.

4. Simulation study

In this section, we �rst assess the performance of the maximum composite
likelihood estimator (13) to estimate the parameters of our proposed model
(6). We assume that the time-varying mixing proportion π(t) has a linear
trend over time. To ensure that the mixing proportion remains between 0
and 1 and to avoid the use of any transformation functions (such as logit,
probit, etc.), we express the mixing proportion at any time t as:

π(t) = πB + (t− tB) ∗
πE − πB

tE − tB
(19)

where πB and πE are the mixing proportions at the beginning and the end
of the time, respectively. The term πE−πB

tE−tB
gives the slope of the linear trend

of the mixing proportion.
Depending on the considered time-varying mixing proportion π(t) (19), and
assuming we have n time observations of the process (t1, · · · , tn ∈ [tB, tE]),
we propose a Z-test statistic derived from the central limit theorem for the
MCLE with the aim of validation the trend in the mixing proportion. For
this purpose, we consider testing H0 : πB = πE against H1 : πB ̸= πE, the
test statistic is de�ned as

ZπB ,πE
=

π̂B − π̂E√
V̂ ar(π̂B) + V̂ ar(π̂E)− 2Ĉov(π̂B, π̂E)

D−→ N (0, 1) as n → ∞.

(20)
For that, the second matter in this section is to assess the performance of
the proposed test statistic.
Throughout this section, we consider two time-varying max-stable mixture
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models de�ned in (6), assuming that the mixing proportion π(t) as in (19).
The details of the considered models are below, where Ψ is the vector that
gathers the model parameters that will be estimated.

� I: It combines a Brown-Resnick model with semivariogram γ(h) =
(∥h∥/ϕ1)

α1 , ϕ1 > 0, 0 < α1 ≤ 2 and an Isotropic Smith model with
a covariance matrix Σ = ϕ2 Id2. The model parameters are Ψ =
{πB, πE, ϕ1, α1, ϕ2}⊺.

� II: It combines an Extremal-t model with a Gaussian correlation func-
tions ρ(h) = exp(−(∥h∥/ϕ1)

2), ϕ1 > 0, which a has degree of freedom
df1 ≥ 1 and an Extremal-t model with an exponential correlation func-
tions ρ(h) = exp(−∥h∥/ϕ2), ϕ2 > 0, which a has degree of freedom
df2 ≥ 1. The model parameters are Ψ = {πB, πE, ϕ1, df1, ϕ2, df2}⊺.

4.1. Setup of the simulation

We consider that the size of the simulated data from models I and II
should be close to the size of the data in the application section (see Section
5). Therefore, we �xed the number of locations m = 40 and consider T = 50
time points. The coordinates of these locations are generated randomly and
uniformly over [0, 1]2. The simulations are carried out using the function
rmaxstab of the R package SpatialExtremes (Ribatet, 2022). We consider
several parameters for the time-varying mixing proportions πB and πE. The
parameters of model I are �xed to ϕ1 = 0.2, α1 = 1, and ϕ2 = 0.7, while the
parameters of model II are �xed to ϕ1 = 0.4, df1 = 2, ϕ2 = 0.1, and df2 = 6.
The simulations for each model are repeated 200 times in order to compute
the empirical performance metrics.

4.2. Performance of MCLE

To assess the e�ciency of the maximum composite likelihood estimator
(MCLE) to estimate the parameters of our proposed model, we investigate
its ability to recover the true parameters of the two simulated models, I
and II. We consider several parameters of the time-varying mixing propor-
tion (πB, πE) ∈ {(0, 1), (0.2, 0.9), (0.5, 0), (0.8, 0.6)}. For each, we used (13)
assuming equal weights to estimate the parameters. Then, we created box-
plots of the errors of the estimated parameters (Ψ̂−Ψ) for models I and II as
shown in Figure 4 and Figure 5, respectively. Also, we computed the per-
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Figure 4: Boxplots display (Ψ̂ − Ψ) of the estimated parameters vector Ψ̂ =

{π̂B , π̂E , ϕ̂1, α̂1, ϕ̂2}⊺ of the model I by MCLE. The true values of the parameters are
ϕ1 = 0.2, α1 = 1, ϕ2 = 0.7, and (πB , πE) ∈ {(0, 1), (0.2, 0.9), (0.5, 0), (0.8, 0.6)}. The
number of simulations equals 200. The red horizontal line shows the zero value.

formance metrics: the mean estimate, the root mean square error (RMSE),
and the mean absolute error (MAE) as follows

RMSE =

√√√√N−1

N∑
i=1

(Ψ̂i −Ψ)2 and MAE = N−1

N∑
i=1

|Ψ̂i −Ψ| (21)

where N is the number of simulations and Ψ̂i is the ith estimation. The
performance metrics of the MCLE for models I and II are displayed in Table
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Figure 5: Boxplots display (Ψ̂ − Ψ) of the estimated parameters vector Ψ̂ =

{π̂B , π̂E , ϕ̂1, d̂f1, ϕ̂2, d̂f2}⊺ of the model II by MCLE. The true values of the parameters are
ϕ1 = 0.4, df1 = 2 , ϕ2 = 0.1, df2 = 6, and (πB , πE) ∈ {(0, 1), (0.2, 0.9), (0.5, 0), (0.8, 0.6)}.
The number of simulations equals 200. The red horizontal line shows the zero value.

1 and Table 2, respectively. Regarding model I, Figure 4 shows that MCLE
works well in all cases. The parameters are well estimated, without large
variances except for ϕ2, which has a relatively large variance. The medians
of the errors in the estimations are equal to zero in most cases, indicating
good performance. Furthermore, the estimates are unbiased, as the mean
estimates are approximately equal to the true values, as explained in Table
1. Also, the estimation of ϕ2 is always less accurate than the estimations of
ϕ1 and α1 (the RMSE and MAE are higher), this accuracy decreases when
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Table 1: The mean estimate, RMSE, and MAE of the maximum composite likelihood
estimator (MCLE) for 200 simulations of model I with parameters ϕ1 = 0.2, α1 = 1,
ϕ2 = 0.7, and (πB , πE) ∈ {(0, 1), (0.2, 0.9), (0.5, 0), (0.8, 0.6)}.

Performance metrics of MCLE

True parameters Mean estimate RMSE MAE

πB = 0 0.024 0.057 0.024
πE = 1 0.956 0.083 0.044
ϕ1 = 0.2 0.199 0.029 0.023
α1 = 1 1.010 0.133 0.107
ϕ2 = 0.7 0.746 0.207 0.150

πB = 0.2 0.209 0.118 0.094
πE = 0.9 0.880 0.108 0.086
ϕ1 = 0.2 0.200 0.028 0.023
α1 = 1 1.003 0.137 0.109
ϕ2 = 0.7 0.732 0.222 0.172

πB = 0.5 0.533 0.107 0.082
πE = 0 0.023 0.037 0.023
ϕ1 = 0.2 0.230 0.067 0.048
α1 = 1 0.970 0.193 0.154
ϕ2 = 0.7 0.755 0.171 0.127

πB = 0.8 0.802 0.120 0.095
πE = 0.6 0.602 0.137 0.111
ϕ1 = 0.2 0.201 0.021 0.017
α1 = 1 0.994 0.119 0.099
ϕ2 = 0.7 0.759 0.334 0.260

the mixing proportion for the �rst mixing model remains higher than the
second mixing model with time (case when πB = 0.8 and πE = 0.6). From
the results of MCLE for the parameters of model II in Figure 5, the medians
of the errors in the estimates are near zero. However, there are some outliers,
especially in the estimations of the parameters of the second mixing model
ϕ2 and df2. In general, despite the complexity of the model, the results
are satisfactory without any strong bias as explained in the mean estimate
metric in Table 2. Also, the estimation of ϕ2 and df2 is less accurate than
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Table 2: The mean estimate, RMSE, and MAE of the maximum composite likelihood
estimator (MCLE) for 200 simulations of model II with parameters ϕ1 = 0.4, df1 = 2,
ϕ2 = 0.1, df2 = 6, and (πB , πE) ∈ {(0, 1), (0.2, 0.9), (0.5, 0), (0.8, 0.6)}.

Performance metrics of MCLE

True parameters Mean estimate RMSE MAE

πB = 0 0.040 0.069 0.040
πE = 1 0.961 0.061 0.039
ϕ1 = 0.4 0.470 0.169 0.089
df1 = 2 2.720 2.179 0.923
ϕ2 = 0.1 0.131 0.116 0.063
df2 = 6 8.026 6.472 3.466

πB = 0.2 0.169 0.119 0.102
πE = 0.9 0.884 0.083 0.068
ϕ1 = 0.4 0.445 0.126 0.077
df1 = 2 2.488 0.134 0.783
ϕ2 = 0.1 0.144 0.133 0.077
df2 = 6 7.769 6.451 3.762

πB = 0.5 0.502 0.148 0.109
πE = 0 0.047 0.117 0.047
ϕ1 = 0.4 0.402 0.195 0.128
df1 = 2 2.853 3.503 1.198
ϕ2 = 0.1 0.144 0.131 0.061
df2 = 6 7.988 5.325 2.599

πB = 0.8 0.767 0.104 0.080
πE = 0.6 0.554 0.143 0.109
ϕ1 = 0.4 0.453 0.151 0.081
df1 = 2 2.397 1.182 0.639
ϕ2 = 0.1 0.163 0.188 0.100
df2 = 6 7.420 7.022 4.215

the estimation of ϕ1 and df1 (the RMSE and MAE are higher), this accuracy
decreases when the mixing proportion for the �rst mixing model still the
higher for all time points (case when πB = 0.8 and πE = 0.6), this is similar
to what appeared in the results of model I.
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4.3. Performance of the proposed test statistic ZπB ,πE

We investigate the performance of the proposed test statistic ZπB ,πE
in

detecting a trend in the mixing proportion. We test whether the null hy-
pothesis H0 : πB = πE rejects in all the considered cases of πB and πE. For
each of the considering models I and II, we examine three cases with a true
πB ∈ {0.2, 0.5, 0.8}. In all cases, a true πE takes all the values in the set
{0, 0.1, · · · , 1}. We compute the empirical power of the test, i.e. empirical
probability of rejecting H0, based on 200 simulations. We test the hypoth-
esis at three signi�cance levels α ∈ {0.1, 0.05, 0.01}. The results concerning
models I and II are summarized in Figure 6 and Figure 7, respectively. In
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Figure 6: Empirical power of the test, based on 200 simulations of the model I with
ϕ1 = 0.2, α1 = 1, ϕ2 = 0.7, πB is 0.2,0.5 and 0.8 (for the top row, middle row, and bottom
row respectively) and πE ∈ {0, 0.1, · · · , 1}. The red horizontal dashed lines represent the
signi�cance level α = 0.1, 0.05, 0.01.

general, the results show that the performance of the proposed statistic is
satisfactory. The test is unbiased (the empirical power greater than α). Also,
the empirical power of the test is higher at α = 0.1, which suggests that we
have a good chance of correctly rejecting the null hypothesis when it is false.
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Figure 7: Empirical power of the test, based on 200 simulations of the model II with
ϕ1 = 0.4, df1 = 2, ϕ2 = 0.1, df2 = 6, πB is 0.2,0.5 and 0.8 (for the top row, middle row,
and bottom row respectively) and πE ∈ {0, 0.1, · · · , 1}. The red horizontal dashed lines
represent the signi�cance level α = 0.1, 0.05, 0.01.

It means our test is good at detecting the trend in the mixing proportion
when it exists, even at this slightly higher signi�cance level.

5. Rainfall over the south of France

This section is devoted to studying the e�ect of climate change on the
dependence structure of rainfall in the south of France.

5.1. Data set description

Our data represents daily precipitation levels measured by millimeters
and recorded at 40 monitoring stations located in the south of France. The
distances between the stations range approximately from 21 km to 696 km.
The data covered the rainfall period (September-November) through the time
duration 1970-2023, so each station has 91*54=4914 observations. It was
supplied by Météo-France with high quality, with no missing data. Figure 8

18



shows the study area and the geographic locations of the monitoring stations.
To explore the raw data, Figure 9 displays the daily precipitation levels for
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Figure 8: Left panel: France map; the black rectangle determines the studied area (south
of France). Right panel: zoom in on the studied area showing the geographical locations
of 40 monitoring stations.

September, October, and November through the last 20 years (2004-2023)
recorded at four stations chosen to be one on the north, east, south, and
west of the studied region. The red dots represent the autumnal precipita-
tion maxima. Visually, it is hard to detect a time trend in the time series
from year to year, and this is suitable for our assumption that there is no
trend in the marginal distribution. Furthermore, the maxima appear some-
what scattered, which means there is no shifting in the date of occurrence
of the maximum precipitation level within autumn over the years. However,
from these exploratory plots, it is unclear whether the spatial dependence of
precipitation changes with time or not, where we will see that in the following
subsections.

5.2. Work�ow of Modeling

In this work, we consider the autumnal maxima of the daily rainfall, for
that maxima are taken over 91 days of each season, resulting in 54 blocks.
Generalized Extreme Value distribution (GEV) was �tted to each location
separately using a Maximum Likelihood Estimator (MLE). We assessed the
goodness of �t using the Kolmogorov-Smirnov test per location, where it
exhibited a good �t with a mean p-value of 0.858. That indicates the marginal
distributions are compatible with the max-stable processes, similar to what
was found by Oesting and Naveau (2020), where they studied the same area.
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Figure 9: Daily rainfall recorded at four stations for September, October, and November
per Autumn 2004-2023 in the solid blue curves. The red dots represent the Autumnal
rainfall maxima. The names of the stations are provided on the top side.
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Since we focus on the spatial dependence of {X(s), s ∈ S} and in order
to �t the max-stable models to the maxima, the univariate distributions
are transformed to unit Fréchet distributions. In this paper, we used the
parametric transformation according to the following formula

X(s) → −1

log
{
F
[
X(s);µ(s), σ(s), ξ(s)

]} (22)

where F
[
.;µ(s), σ(s), ξ(s)

]
is the GEV cumulative distribution function with

parameters µ(s), σ(s) and ξ(s).
To explore the existence of anisotropy spatial extremal dependence, we make
a graphical test like in Bacro et al. (2016) and Ahmed et al. (2017). We cal-
culated the empirical F-madogram from the data. Then, we divided the dis-
tances according to their direction into four directional sectors: (−π/8, π/8],
(π/8, 3π/8], (3π/8, 5π/8] and (5π/8, 7π/8], where 0, π/4, π/2 and 3π/4 rep-
resent the north, east, south and west direction, respectively. Afterward,
we plotted smooth lines for the empirical F-madogram associated with the
distances in each direction with their 95% con�dence intervals, as shown in
Figure 10. We notice from Figure 10 that the V̂F (h) lines have the same
behavior, with low location variability, so we can assume that the spatial
extremal dependence is anisotropy.
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Figure 10: Empirical F-madogram of the autumnal maxima (1970-2023). Gray circles
represent the empirical values for all the pairs. The red, blue, pink, and black lines
represent the smooth values of the empirical F-madogram using the pairs in the directional
sector (−π/8, π/8], (π/8, 3π/8], (3π/8, 5π/8] and (5π/8, 7π/8], respectively. The shaded
bands represent the 95% con�dence interval around the smooth lines

In the following subsections, we will proceed to �t several max-stable
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models to the autumnal maxima. For comparison purposes later, we begin
to �t stationary max-stable models. Then, we will �t stationary max-stable
mixture models to determine if they can better represent the extreme de-
pendence structure of the autumnal maxima compared to the stationary
max-stable models. After that, a moving time window approach will used
as a premier check of the existence of a trend in the mixing proportion. At
last, we will �t the proposed time-varying max-stable mixture model. All
the models are �tting using MCLE (13) and assuming equal weights.

5.2.1. Fitting stationary max-stable models

We �tted six stationary max-stable models to the rainfall maxima under
the assumption of temporal stationarity. The models are described below.

� M1: Isotropic Smith model with a covariance matrix Σ = ϕ Id2. The
model parameter is Ψ = ϕ.

� M2: Schlather model with an powered exponential correlation function
ρ(h) = exp(−(∥h∥/ϕ)α), ϕ > 0 and 0 < α ≤ 2. The model parameters
are Ψ = {ϕ, α}⊺.

� M3: Brown-Resnick model with semivariogram γ(h) = (∥h∥/ϕ)α, ϕ > 0
and 0 < α ≤ 2. The model parameters are Ψ = {ϕ, α}⊺.

� M4: Extremal-t model with an exponential correlation functions ρ(h) =
exp(−∥h∥/ϕ), ϕ > 0 and degree of freedom df ≥ 1. The model param-
eters are Ψ = {ϕ, df}⊺.

� M5: Extremal-t model withWhittle-Matérn correlation function ρ(h) =
(21−α/Γ(α))(∥h∥/ϕ)αKα(∥h∥/ϕ), ϕ > 0, α > 0 and degree of freedom
df ≥ 1. The model parameters are Ψ = {ϕ, α, df}⊺.

� M6: Extremal-t model with Gaussian correlation functions ρ(h) =
exp(−(∥h∥/ϕ)2), ϕ > 0 and degree of freedom df ≥ 1. The model
parameters are Ψ = {ϕ, df}⊺.

The results are summarized in Table 3, where the best-�tting model corre-
sponds to the lowest value of CLIC. Table 3 shows that the Extremal-t model
with an exponential correlation function is the best-�tting model in this case.
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Table 3: Summary of the �tted stationary max-stable models based on the autumnal
maxima of rainfall over south of France. The bold row correspond to the best-�tting
model

Models ϕ α df CLIC

M1 565.673 - - 362790.8
M2 27.990 1.869 - 364902.2
M3 14.083 0.658 - 362295.1
M4 119.331 - 4.903 362229.3

M5 102.141 0.562 4.740 362235.4
M6 67.814 - 3.707 362326.4

5.2.2. Fitting stationary max-stable mixture models

Here, we have �tted three stationary max-stable mixture models. We
used the model de�ned in (6) and kept π(t) constant over time. Below is a
description of these models.

� MM1: Max-stable mixture model which combine M3 and M1. The
model parameters are Ψ = {π, ϕ1, α1, ϕ2}⊺.

� MM2: Max-stable mixture model which combine M6 and M4. The
model parameters are Ψ = {π, ϕ1, df1, ϕ2, df2}⊺.

� MM3: Max-stable mixture model which combine M5 and M6. Note
that in model M5, a special case of the whittle-matérn correlation func-
tion with α1 = 1 is used. The model parameters areΨ = {π, ϕ1, df1, ϕ2, df2}⊺.

Table 4 summarizes the �tting of the models mentioned above, where the
subscript indeces 1 and 2 in the estimated parameters refers to the parameters
of the �rst and the second mixing models, respectively. The results show
that the best-�tting model is MM2, a mixture between Extremal-t with a
Gaussian correlation function and Extremal-t with an exponential correlation
function. Additionally, this model provides a more accurate representation
of the data than M4, which was the best-�tting model among the max-stable
models in Table 3.
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Table 4: Summary of the �tted stationary max-stable mixture models based on the autum-
nal maxima of rainfall over south of France. The bold row correspond to the best-�tting
model

Models π ϕ1 α1 df1 ϕ2 df1 CLIC

MM1 0.485 64.497 1.029 - 188.684 - 362259.5
MM2 0.230 134.627 - 2.684 107.804 6.075 362222.6

MM3 0.628 90.358 - 4.389 38.614 6.274 362230.3

5.2.3. Moving time window

In Section 5.2.2, we determined that the max-stable mixture model MM2
was the best �t to represent the extremal dependence of the data under the
assumption of temporal stationary. In our proposed model, de�ned in (6),
we allow the mixing proportion π(t) to vary with time, resulting in a time-
varying extremal dependence. To check for the possibility of the existence of
a time-varying extremal dependence, we used an approach based on the data
itself, similar to the one used in Nicolet et al. (2016) and Nicolet et al. (2018).
This approach motivates us to model a trend in the mixing proportion π(t)
and provide results that may be comparable with those obtained by �tting
our proposed non-stationary model.
Recall that, in Section 5.2.2, we �t the model MM2 for the whole temporal
period under study (1970-2023). Here, we need to keep the estimations of
the parameters of the two mixing models in MM2 �xed, then re-estimate the
mixing proportion π on 21-year moving time windows from (1970-1990) to
(2003-2023). For that, we can obtain the extremal coe�cient function for
each window by applying (9) and using the estimated π for that window.
The left panel in Figure 11 displays the temporal evaluation of the estimated
mixing proportion considering the 21-year time windows with its uncertainty
intervals. It is clear that π̂ has a negative trend, which enhances the interest
in modeling a trend in the mixing proportion. The temporal evaluation of
the extremal functions is displayed in the right panel of Figure 11. It shows a
positive temporal trend for the extremal function, implying that the extremal
dependence decreases in time. For more clarity, we will explain the �rst and
last time windows (1970-1990 and 2003-2023 respectively). For each, we
estimate the empirical pairwise extremal coe�cient using a madogram-based
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Figure 11: The left panel shows the temporal evaluation of the estimated mixing proportion
π̂ for the model MM2 considering the 21-year time windows from (1970-1990) to (2003-
2023) which are represented by the blue dots, where its 95% con�dence region showed
by the blue shaded area. The X-axis represents the center of the 21-year time window.
The right panel displays the temporal evaluation of the extremal functions. The blue
curves represent the extremal functions for the oldest time windows, while the red curves
represent those for the most recent ones.

approach (Naveau et al., 2009) as follows:

θ(h) =
1 + 2VF (h)

1− 2VF (h)
(23)

where VF (h) represents the F-madogram de�ned as in (10). The empirical
pairwise extremal coe�cient estimates represent the gray points in Figure 12,
and the black ones represent the binned estimates (the number of bins equal
to 200). Then, using π̂ and (9), we plot the theoretical extremal function for
the model MM2 for each of the two considered windows. It is indicated in
Figure 12 by the blue and red curves for the �rst and the last time windows,
respectively. After that, we calculate the range of dependence hd which
is de�ned as θ(hd) = 1.9 (Nicolet et al., 2016). For the �rst window (1970-
1990), the value of hd is 213.94 km, while it is 135.196 km for the last window
(2003-2023). That con�rms the existence of a negative temporal trend in the
extremal dependence.
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Figure 12: Extremal coe�cient function for the �rst (1970-1990) and the last (2003-2023)
windows in the left and right panels, respectively. Gray circles indicate the empirical
pairwise estimates of the extremal coe�cient; black ones are binned estimates (the number
of bins equals 200). The blue and red curves show the theoretical extremal function of the
model MM2 for the two considering time windows, respectively. The range of extremal
dependence hd is 213.94 km for the �rst window and 135.196 km for the last window.

5.2.4. Fitting time-varying max-stable mixture models

Following our results in Section 5.2.3, we �t our model as de�ned in (6).
We assume that π(t) has a linear trend as in (19). We consider three di�erent
time-varying max-stable mixture models, MMM1-MMM3, described below.

� MMM1: A non-stationary version of the model MM1 (see Section
5.2.2). The model parameters are Ψ = {πB, πE, ϕ1, α1, ϕ2}⊺.

� MMM2: A non-stationary version of the model MM2 (see Section
5.2.2). The model parameters are Ψ = {πB, πE, ϕ1, df1, ϕ2, df2}⊺.

� MMM3: A non-stationary version of the model MM3 (see Section
5.2.2). The model parameters are Ψ = {πB, πE, ϕ1, df1, ϕ2, df2}⊺.

The results of �tting the considered models are summarized in Table 5. Re-
call that, the subscript index 1 and 2 in the estimated parameters refer to
the parameters of the �rst and the second mixing models, respectively. The
CLIC value in Table 5 indicates that the best-�tting model for the autumnal
maxima of rainfall over the south of France is MMM2. It is a time-varying
mixture between the Extremal-t model with a Gaussian correlation function
and the Extremal-t model with an exponential correlation function. This
result is consistent with the initial check of the data using the moving time
windows approach in Section 5.2.3. That is because the best-�tting model
MMM2 is the non-stationary version of the model MM2 with a negative linear

26



Table 5: Summary of the �tted time-varying max-stable mixture models based on the
autumnal maxima of rainfall over south of France. The bold row correspond to the best-
�tting model

Models πB πE ϕ1 α1 df1 ϕ2 df1 CLIC

MMM1 0.624 0.263 72.946 1.045 - 202.005 - 362258.9
MMM2 0.449 0.001 146.709 - 2.596 106.875 6.249 362215.8

MMM3 0.753 0.299 97.708 - 3.829 51.310 7.674 362242.7

trend for the mixing proportion π(t). Figure 13 shows the temporal evolu-
tions of the estimated mixing proportion π̂(t) and its associate's extremal
function for the model MMM2.
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Figure 13: The left panel shows the temporal evaluation of the estimated mixing proportion
π̂(t) for the model MMM2 considering the time points from 1970 to 2023. The right panel
displays the temporal evaluation of the extremal functions for the model MMM2. The
blue curves represent the extremal functions for the most ancient time points, while the
red curves represent those for the most recent ones.

The left panel of Figure 13 shows that the extremal dependence is rep-
resented by a mixture of two models in the early years, while it changes
gradually to a single model in the most recent years. As a result, the ex-
tremal function exhibits a positive trend over time as can be observed in
the right panel of Figure 13. Therefore, the range of extremal dependence
decreases in time, as shown in Figure 14. It appears that the range of depen-
dence hd in 2023 is approximately equal to half its value in 1970, where it
changed from 229.05 km to 114.87 km over time. This is relatively consistent
with the results obtained by the moving time windows approach.
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Figure 14: Theoretical extremal functions of the model MMM2 for the �rst time point
(1970) and the last ones (2023) in the left and right panels, respectively. The range of
extremal dependence hd is 229.05 km for the �rst time point and 114.87 km for the last
time point.

It is worth noting that we did additional work to show that our proposed
model is better to represent the autumnal maxima of rainfall over the south
of France. We �tted the Extremal-t model with an exponential correlation
function assuming that the range parameter has a linear trend over time i.e.
ϕ(t) = ϕ0+λt. The estimations of the parameters are ϕ0 = 179.14, λ = −1.9,
and the degree of freedom df = 5.06. The CLIC value is 362221.9, which is
larger than the CLIC of our proposed mode.
Finally, we consider the best-�tting model MMM2, we perform the proposed
statistical test ZπB ,πE

to compare the mixing proportion at the beginning
time point πB with the mixing proportion at the end time point πE. We
test whether the null hypothesis H0 : πB = πE has to be rejected. We found
|ZπB ,πE

| = 1.844 and p-value = 0.065. So that, it is reasonnable to consider
that there is a linear trend in π (πB ̸= πE).

6. Discussion and conclusion

The impact of climate change on environmental extreme events makes
the existing models, which assume the temporal stationarity of the spatial
extremal dependence like max-stable models, not reasonable for modeling
such data. In this work, we have addressed this problem by proposing a
novel space-time max-stable model, which represents a mixture of two max-
stable processes with mixing proportions varying with time. This allows us to
model the temporal nonstationarity in the spatial extremal dependence. In
particular, we assumed that the mixing proportion is modeled by a function
representing a temporal linear trend. We have performed statistical inference
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using the maximum composite likelihood (MCLE). Also, we proposed a test
statistic to validate the existence of a temporal linear trend in the mixing
proportion. The simulation study has shown the e�ciency of MCLE in esti-
mating the parameters of the model, and the proposed test statistic performs
well even when considering a relatively large signi�cance level (α = 0.1).
We have applied the proposed model to study the extreme rainfall in the
south of France over the period (1970-2023), to investigate the impact of cli-
mate change on its spatial extremal dependence. Various models have been
�tted to the data, and the best-�tting model was chosen using CLIC. We
�nd that the spatial extremal dependence is nonstationary with time, as the
test statistic to validate the trend in the mixing proportion is statistically
signi�cant. This led to a negative trend in the range of extremal dependence,
where its value in 2023 is approximately equal to half its value in 1970. This
result is coherent with recent studies (Nicolet et al., 2016; Blanchet et al.,
2018; Nicolet et al., 2018) showing that the strength of spatial dependence
decreases in recent years for extreme events.
Although the complexity of the proposed model, it is �exible. As one can
�nd the best space-time model to represent the studied data by changing the
mixing max-stable models, the time-varying function of the mixing propor-
tion (linear or nonlinear), or both.
As known, it is di�cult to determine if a dependence structure of some data
is asymptotically dependent or asymptotically independent (Wadsworth and
Tawn, 2012), in future work, we plan to use the same framework of the
proposed model in this paper for addressing this problem. We will mix a
max-stable model with an inverted max-stable model using a time-varying
mixing proportion. Such a model may be more �exible and appropriate for
modeling the environmental data under the status of climate change.
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