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ABSTRACT
Video-based insect tracking provides vital insights into insect behav-
ior and ecology, enhancing our understanding of their movements
and interactions. Therefore, examining trends in this field over the
last few years is essential. This study aims to conduct a bibliometric
analysis to unveil the growing interest in video-based insect track-
ing with a short review based on documents used for bibliometric
analysis. To achieve this, 453 documents were extracted from Sco-
pus on 12 June 2023. Only documents in English published between
2010 and 2023, resulting in a dataset of 318 documents, were ana-
lyzed. The findings illustrate a consistent growth in video-based
insect research over the last years, with a significant peak in 2021,
comprising 32 documents. The journal PLOS ONE stands out as
the most productive source. The USA exhibited the most signif-
icant interest in video-based insect tracking over the last years.
Keyword analysis reflects the multidisciplinary nature of insect
tracking research. The review demonstrated that video-based in-
sect tracking serves two primary objectives: pose estimation and
trajectory information. However, the main challenge in video-based
insect tracking is to preserve the identity of multiple individuals in
situations involving occlusions or complex interactions.
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1 INTRODUCTION
In recent years, insect tracking through videos has gained signifi-
cant importance across various domains like agriculture, ecology
and robotics. Accurate monitoring and analysis of insect behav-
ior have far-reaching implications, aiding in understanding their
ecological roles, interactions with the environment and develop-
ing effective pest control strategies [7]. This has driven research
towards advanced tracking methods, as traditional manual obser-
vation methods are laborious, time-consuming, and error-prone,
particularly given the unique challenge posed by small-sized, fast-
moving insects with diverse behaviors. Computer vision, image
processing, and machine learning techniques have revolutionized
the field, enabling automated and precise tracking focusing on de-
termining individual insect trajectories and movement patterns.
Such insights reveal valuable information about foraging behavior,
mating dynamics, migration patterns, and habitat preferences. Ad-
ditionally, tracking insects can provide crucial data for studying
the spread of vector-borne diseases [37] and assessing the impact
of pesticides [33]. Researchers have developed a wide range of
methods and algorithms to tackle the challenges in insect tracking.
These techniques leverage computer vision algorithms, machine
learning models, and sophisticated tracking frameworks to analyze
image sequences or videos and extract relevant information about
the insect’s movement. Tracking algorithms [14, 44] employ vari-
ous strategies, such as feature extraction, object detection, motion
estimation, and trajectory prediction for precise insect monitor-
ing. The field of insect tracking has witnessed a surge in research
publications in recent years, indicating the growing interest and
recognition of its importance. Researchers from various domains,
including computer science, biology, entomology, and engineering,
have collaborated to develop innovative solutions and advance our
understanding of insect behavior. Then, a comprehensive biblio-
metric analysis is essential for gauging research trends, identifying
influential authors, relevant publications, and uncovering emerging
research directions [43]. In this paper, we conduct a comprehensive
bibliometric analysis of insect tracking research via video to offer a
thorough overview of the field. Our analysis provides insights into
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current research, guides future investigations, and fosters interdis-
ciplinary collaborations. We outline the paper’s structure: Section
2 details the methodology, Section 3 presents analysis outcomes,
Section 4 offers a short survey, Section 5 shows a discussion based
on our study, and Section 6 provides the conclusion.

2 METHODOLOGY
We follow several steps for the study to conduct a high-quality
bibliometric analysis. Each step is essential, from database selection
to the selection of criteria for filtering retrieved data.

2.1 Database selection
This paper focuses on the Scopus database. It was chosen as one
of the sources for this bibliometric analysis due to its extensive
coverage of scholarly literature, inclusion of high-quality journals
and conference proceedings, advanced search functionalities, and
the ability to extract relevant bibliographic data.

2.2 Search string definition
The database extraction was performed on 12 June 2023. After
multiple attempts, the most relevant search string was identified
as “(track OR tracking) AND (video OR image) AND insect”. This
search string resulted in 453 scientific documents from 1934 to
2023. The term “image” was included in the search string due to the
possibility that some authors may interpret a video as a sequence
of successive images.

2.3 Tools and software selection
To perform in-depth bibliometric analysis, we utilized the “bib-
liometrix” [5] package in R Studio [42], along with the “biblioshiny”
interface, which is a shiny app providing a web interface for “bib-
liometrix”. This powerful combination enabled us to extract valu-
able bibliometric data, including publication trends, citation net-
works, co-authorship patterns, and keyword analysis. In addition to
bibliometrix, we utilized LibreOffice Calc, a spreadsheet program,
for data management and organization.

2.4 Criteria definition
To ensure a more comprehensive understanding of the methods
and results presented in the documents, we limited our analysis
to those published in English. Since the objective of our study is
to evaluate trends over the last years, we conduct our analysis on
documents produced between 2010 and 2023. No filter was applied
to the different document types. The multiple filters applied reduce
the number of documents to explore down to 318. The analysis of
retained documents reveals that articles comprise approximately
73.90% of the corpus, with conference papers accounting for 19.81%
and other document types (such as books and letters) contributing
6.29% to the documents under investigation. This predominance
of articles could be attributed to the in-depth nature of research
studies often found in articles, whereas conference papers may
present more concise or preliminary findings.

2.5 Data Analysis
In this bibliometric analysis, we analyzed several aspects of the
literature, including publication trends, to understand the growth

of research in insect tracking. We identified top authors based on
parameters such as the h-index and the number of published docu-
ments. Additionally, we explored the distribution of publications
across different journals and conferences to understand knowledge
dissemination channels. Citation analysis allowed us to identify
highly cited articles and influential works in the field. We also in-
vestigated the involvement of countries, revealing collaborative
efforts. Finally, a comprehensive keyword analysis helped identify
the main research themes and topics within the insect tracks in the
video. To support this bibliometric analysis, a short survey of video
insect tracking research will be performed using the documents
analyzed for the bibliometric study.

3 RESULTS OF BIBLIOMETRIC ANALYSIS
In this section, we present the results of our bibliometric analysis,
which provides valuable insights into the research landscape of
insect tracking with images. We analyze vital aspects, including
publication trends, citation analysis, keyword analysis, and journal
distribution.

3.1 Publication trends
The distribution of scientific productions in insect-based video
tracking through figure 1 reveals a notable increase in research
output over the years. Between 2010 and 2013, article numbers
remained relatively stable, but from 2014 onwards, there was a
consistent rise, likely due to technological advancements enabling
more sophisticated studies. The slight dip in 2020 was likely due to
the COVID-19 pandemic’s disruptions, but research rebounded in
2021 with a significant increase, reaching a peak of 32 publications,
which reflects the resumption of activities. The positive trend in the
first half of 2023 indicates a promising outlook for future research.

Figure 1: Annual scientific production

3.2 Top authors
The distribution of the most impactful authors through figure 2
in terms of h-index and the number of articles produced provides
valuable insights into the contributions of individual researchers in
the field of video-based insect tracking from 2010 to 2023. Several
authors, such as RA Alzogaray, Anja Brückner, Benjamin Seth Caz-
zolato, Sam Grainger, Enno Merivee, MUST A, David C. O’Carroll,
Steven D. Wiederman, and Eduardo N. Zerba, have achieved an
h-index of 4. This indicates that each of these authors has published
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at least four articles that have received at least four citations each.
These authors have made notable contributions to the field, with
a balance between their impact and productivity. Regarding the
number of articles produced, O’Carroll and Wiederman stand out
with seven publications each, the highest among the authors in the
distribution. This highlights their prolific research output in the
field of insect tracking. We can observe exciting variations by con-
ducting a cross-analysis of the h-index and the number of articles
produced. While some authors with an h-index of 4 have produced
fewer articles, others have demonstrated higher productivity. This
suggests that the impact of an author’s work is not solely dependent
on the number of articles they produce but also on the quality and
influence of those articles.

Figure 2: Most Relevant Authors

3.3 Top institutions
The distribution of top institutions in insect tracking research from
videos through figure 3 between 2010 and 2023 demonstrates a
diverse landscape. The Estonian University of Life Sciences, Univer-
sidade Federal de Viçosa, and Weizmann Institute of Science lead
with 16 articles, showcasing a solid commitment to the field. Aarhus
University closely follows with 15 articles, emphasizing active in-
volvement. Other notable contributors include the University of
Sheffield, Lund University, and Yangtze University, with 13, 11, and
11 articles, respectively. This global distribution underscores collab-
orative, multidisciplinary efforts in understanding insect behavior
and movement.

Figure 3: Most Relevant Institutions

3.4 Source analysis
The distribution of the most impactful sources through figure 4 in
insect tracking, based on their h-index and the number of articles
they have published, reveals exciting insights and highlights the
significance of these sources. The Journal of Experimental Biology
stands out with the highest h-index of 8, indicating its influential
role. This source has also produced 9 articles, demonstrating its
consistent contributions to advancing knowledge in insect tracking.
PLOS ONE follows closely with an h-index of 7 and the highest
number of articles, 13. This suggests a combination of impact and
productivity, making PLOS ONE a prominent platform for dissemi-
nating research in this field. The cross-analysis of the h-index and
the number of articles published by each source allow for a compre-
hensive evaluation of their impact and productivity. While sources
with higher h-indexes are considered more influential regarding
citations, the number of articles published indicates the breadth
and depth of research the source covers.

Figure 4: Most Impactful Sources

3.5 Citation analysis
The distribution of the most cited documents through figure 5
reveals key contributions in insect tracking. Paper [31] stands out
as the most cited document with 265 citations, demonstrating its
significant impact on the research community. References [29]
and [36] also exhibit substantial citation counts, indicating their
importance in the field. Other notable documents include [9] and
[4], which have significantly contributed to the literature with 140
and 138 citations, respectively. These highly cited works reflect
their influence and contributions to the field of insect tracking,
providing valuable insights and serving as fundamental references
for future research in this domain.

3.6 Relevant countries
The analysis of countries’ scientific production and citation in in-
sect tracking through figure 6 and 7 reveals significant findings.
The United States leads in scientific output (331 documents and
1629 citations), indicating its robust research influence. Figure 2
also shows that the USA has established substantial collaborations
with countries such as the United Kingdom, Canada, Brazil, Nether-
lands, and Germany, highlighting the importance of international
cooperation in advancing insect tracking research using images
or videos. These collaborations reflect shared research interests,
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Figure 5: Most Global Cited Documents

complementary expertise, and a robust scientific network. An in-
teresting observation is that China has more research documents
than Germany and France but receives fewer citations, possibly
due to a regional focus, publication practices, language barriers,
or variations in the visibility and accessibility of research outputs.
United Kingdoms has a significant citation relative to its production,
which indicates a strong impact. However, it is essential to note that
citation counts alone do not fully reflect research quality or impact,
as factors like research relevance, methodology, and contributions
also matter and can vary by country. Moreover, citation patterns
can vary depending on the research culture, publication practices,
and language preferences in different countries.

Figure 6: Most Relevant Countries

Figure 7: Countries Collaboration World Map

3.7 Keyword analysis
Analyzing the most frequent keywords (Figure 3) reveals key focus
areas in insect tracking research. Terms like “video recording” and

“image processing” highlight the importance of visual data anal-
ysis and computational techniques. “Automation” and “robotics”
indicate technology integration for automated tracking. Keywords
such as “flight animal”, “flying” and “movement” reflect the interest
in insect locomotion and flight mechanics. “Insecticide” suggests
pest control re- search. “Computer vision”, “algorithms” and “deep
learning” show the use of artificial intelligence for tracking. “So-
cial behavior” and “feeding behavior” indicate studies on insect
interactions and sensory perception. These keywords reflect the
multidisciplinary nature of insect tracking research across biology,
computer science, and behavioral studies.

Figure 8: Keyword Map

4 SHORT SURVEY
Insect tracking methods have witnessed substantial advancements,
driven by integrating computer vision, sensor technologies, and
innovative algorithms. Video-based tracking has been employed
to study various insect species, including fruit flies, drosophila,
dragonflies and damselflies, mosquitoes, and more. This section
comprehensively reviews various tracking techniques employed
in entomological research, providing insights into their strengths,
limitations, and applications.

4.1 Methods for insect tracking
Historically, manual tracking has been a fundamental approach
for observing insect behavior. Researchers emphasized the impor-
tance of meticulous visual observations in understanding insect
movement patterns. However, manual tracking is time-consuming,
subjective, and often impractical for large-scale studies. Transition-
ing tomore advanced techniques, Physical Marker Tracking involves
affixing reflective dots onto insects to enable automated tracking
[41]. This method ensures precise position determination even un-
der challenging conditions. However, the attachment of markers
may inadvertently modify insect behavior, potentially introducing
biases. Acoustic Sensors based tracking represents an innovative
avenue for capturing sounds emitted during various insect activ-
ities [17]. This approach is efficient for insects emitting distinct
acoustic signals, like mating calls. However, it may have limita-
tions in cases where visual confirmation is essential. In the realm
of Radio Frequency Tracking, the attachment of radio transmitters
to insects, coupled with the use of receivers to trace movements via
radio signals, has demonstrated effectiveness [19]. This technique
enables continuous monitoring over expansive areas. However, its
implementation mandates a network of receivers and antennas,
making it resource-intensive. In a non-invasive avenue, Chemical
Marker Tracking has gained prominence by employing harmless
chemicals to mark insects for tracking purposes [16]. This method
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facilitates inconspicuous monitoring without direct physical in-
teraction. Nevertheless, chemical marking could influence insect
behavior and elicit ecological concerns. Most of the previously men-
tioned methods are largely invasive and can disrupt the natural
behavior of insects. With sophisticated cameras and highly effective
image processing algorithms emerging, a noticeable shift towards
video-based tracking methods has been observed. This method uti-
lizes camera systems and image analysis software for automated
insect monitoring. However, processing large video datasets can be
computationally intensive. In our bibliometric analysis, a clear pat-
tern emerges in video-based insect tracking, with studies typically
falling into two distinct categories, each with specific objectives
and methodologies. One category involves precise pose estimation
of insects by tracking their anatomical features. At the same time,
the other focuses on providing trajectory information of insects
from sequential images to reveal movement patterns.

4.2 Pose Estimation
Pose estimation, in this context, refers to determining an insect’s
spatial configuration or posture at any given moment within a
video sequence. Accurate pose estimation enhances our ability
to comprehend complex behaviors, such as mating rituals, flight
patterns, and interactions within insect populations. To this end,
some frameworks [39, 38] are proposed to automatically track bees’
antennae, mandibles, and proboscis. This framework incorporates
information about their kinematics, shape, order, and temporal
correlation between neighboring frames. Similarly, a framework
[27] was developed to detect the positions of 32 key points on a bee.
In [18], they present an approach for continuously estimating poses
in small articulated animals, utilizing multi-view video sequences.
This method includes several key components, like the derivation
of an initial skeleton model, the extraction of root and extremity
points, and the computation of joint kinematics using the Forward
and Backward Reaching Inverse Kinematics (FABRIK) algorithm [1].
Another work presents a model-based method for pose-estimation
of free-flying fruit flies from multi-view high-speed videos [3]. A
deep learning method was used to predict the positions of fruit flies
body parts in image sequences [31]. Three-dimensional techniques
were also applied, as exemplified in [20], which showcases an open-
source toolkit designed for robust markerless 3D pose estimation of
insects. Pose estimation proves to be the most challenging task in
insect tracking based on video. While it has received less attention,
there is substantial room for enhancing existing methodologies. In
recent years, pose estimation models have become more specialized
and tailored to the unique characteristics of different insect species.
For instance, methods designed for tracking bees may differ from
those used for tracking mosquitoes or butterflies due to size, shape,
and behavior variations. Additionally, ongoing research explores
the integration of 3D pose estimation techniques, which provide
richer information about insect orientation and movement in three-
dimensional space.

4.3 Trajectory information
Insect trajectory analysis, vital for behavioral and ecological re-
search, can be categorized into two scenarios: single target and

multiple target tracking. In single-target tracking, researchers fo-
cus on monitoring an individual insect’s movements and behaviors
in detail, suitable for understanding specific insects like pollinators
or disease vectors. Precision is crucial in data collection and analysis.
Conversely, multiple target tracking involves monitoring and ana-
lyzing several insects in a scene simultaneously, providing insights
into group dynamics, swarm behaviors, and collective insect move-
ments. It is valuable for studying social behaviors and community-
level interactions. Four steps were required for multiple target
tracking: acquisition, background and foreground modeling, insect
recognition and trajectory generation.

4.3.1 Acquisition. The acquisition is a pivotal step in video-based
insect tracking, laying the foundation for subsequent image process-
ing and analysis. Researchers utilize two primary methods for video
acquisition: offline and online [30]. The offline approach analyzes
a pre-recorded video sequence, enabling extensive computational
analysis and frame-by-frame processing. This method is advanta-
geous for complex tracking algorithms that require access to past
and future frames and for handling vast amounts of data. This
is evident in the work of [23], which involves performing offline
processing on video sequences captured at 120 fps for phlebotom-
inaes tracking. In contrast, the online method involves real-time
analysis of a live video stream from cameras, ensuring immediate
monitoring of insect behaviors. Online tracking demands real-time
processing to match the camera frame rate and minimize data loss,
making it suitable for relatively more uncomplicated tracking algo-
rithms. As an illustration, [6] employed a camera system coupled
with a Jetson Nano computer, which performs real-time classifica-
tion and insect tracking at 0.33 frames per second. This highlights
the low real-time data processing rate. Key factors, such as frame
rate and camera resolution, are pivotal for accurate and reliable
insect tracking data acquisition. Higher frame rates are essential
for capturing fast movements, while lower rates suffice for slower
behaviors. Camera resolution is crucial for detecting and recog-
nizing small insects. In most cases, 20 to 30 fps at 720p to 1080p
resolution is enough to achieve good results on insects such as bees,
ants, sandflies, and many other insect pollinators [36, 40, 15, 34]. It
is also recommended to ensure that each organism to track consists
of at least 50 pixels within a video [36, 32].

4.3.2 Background and Foreground Modeling. Accurate tracking
of insects in videos requires an effective separation between the
background and foreground elements. The primary objective is to
differentiate between static and dynamic elements within a scene,
enabling the identification and tracking of insects against a chang-
ing background. Various approaches are employed to model the
background in insect tracking. One of the most common techniques
involves statistical methods, like Gaussian Mixture Models (GMMs),
which learn the statistical distribution of pixel intensities over time.
In [23, 22, 24], they used the GMM method for modeling the back-
ground and the detection of foreground objects. After that, they ap-
plied mathematical morphology operations to filter the foreground
and retain only the areas corresponding to sandflies. Indeed, fur-
ther advancements in insect tracking harness the power of machine
learning techniques, including the K-Nearest Neighbors (K- NN)
algorithm, to enhance the modeling of background and foreground
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components. For example, [35] uses a K-NN background subtrac-
tor, and then a median filter and an erosion- based morphological
filter are applied to the segmented image to remove noise for hon-
eybee tracking. The work [21] also developed a tracker based on
background detection and connected regions with a K-NN model.
The methods mentioned previously are considered dynamic ap-
proaches because they can adapt to changes in lighting over time.
However, some studies opt for more straightforward static methods
[15, 32, 8]. For example, they create a reference background image
by performing an average or a median of initial pixel frames be-
fore insects appear. Then, subsequent images are subtracted from
this reference background to highlight the foreground objects. The
choice between dynamic and static tracking methods depends on
tracking needs and lighting conditions. Dynamic methods adapt to
changing light but are computationally intensive. Static methods
are lightweight and work well in stable lighting but may struggle in
variable lighting. Despite the effectiveness of background modeling
techniques, challenges persist, including rapid and unpredictable
lighting variations, occlusions, and robustness concerns for com-
plex backgrounds like vegetation. Additionally, selecting optimal
parameters, model adaptation, and real-time performance remain
challenging.

4.3.3 Insect Recognition. Following successful foreground and back-
ground separation, the next critical step in video- based insect track-
ing is insect recognition, which is essential for preserving individ-
ual identities, especially when tracking multiple species. However,
this step becomes optional in controlled environments with a sin-
gle species. Recognizing insects involves various techniques, from
traditional methods to advanced deep learning, contributing to
tracking accuracy and reliability. Traditional methods often involve
feature extraction techniques like color histogram [13], feature fin-
gerprints [32], and Scale-Invariant Feature Transform (SIFT) [28].
These methods focus on extracting relevant features from the in-
sect’s appearance, such as texture, shape, and edges, allowing for
subsequent classification. However, these techniques can encounter
challenges with variations in insect appearance due to factors like
lighting changes and occlusions. Recent advancements in deep
learning have introduced Convolutional Neural Networks (CNNs)
as a powerful tool for insect recognition. This is reflected in the
significance of pre-trained models, such as YOLO (You Only Look
Once) and ResNet (Residual Neural Network), in insect recognition
cannot be overstated. These models, preloaded with a vast amount
of diverse data, exhibit remarkable capabilities in extracting in-
tricate features from images. YOLO, for instance, offers real-time
object detection and classification, enabling accurate identification
of insects even in complex scenes. On the other hand, ResNet’s deep
architecture facilitates the extraction of intricate hierarchical fea-
tures, making it exceptionally adept at discerning subtle differences
among insect species. In [35], they try to recognize honeybees after
insect segmentation using a deep learning model YOLOv2. The
paper [6] designed a system to recognize and track 8 insect species
using a deep learning model based on YOLOv3, which shows a
good performance. In [11], a model based on ResNet was trained
for ant detection before trajectory prediction. However, it can also
happen that some researchers decide to build their deep-learning
models from scratch to have a model that specifically meets the

needs of the work. For example, the second main step of anTraX al-
gorithm [15] consists of tracklet classification, in which identifiable
single-insect tracklets are labeled with a specific ID by a pre-trained
CNN model. In contrast, other tracklets are marked as unidentified
single-insect tracklets. The work [8] proposes a designed system
to attract moths (Lepidoptera) and insects at night and automat-
ically capture images based on a motion for tracking. However,
moths must be recognized among other insects for counting. For
this task, a CNN model classification was trained for ten classes,
including seven moth species and other insects. A key challenge in
insect recognition is the variability in appearance due to species, life
stages, and environmental conditions. Robust recognition models
that handle such variations are essential, especially considering oc-
clusions, cluttered backgrounds, and changing lighting conditions.
Investigating innovative deep learning frameworks, such as the
YOLO model, known for its rapid and diverse object identification
capabilities [12], presents a potential solution for enhancing the
efficiency of insect tracking in lengthy video sequences.

4.3.4 Trajectory Generation. One common technique involves link-
ing the detected insect positions across consecutive frames to create
trajectories. This method is efficient and well-suited for single-
target tracking scenarios. The predominant method employed to
address multiple insect tracking is the Kalman filter for trajectory
enhancement, predicting an insect’s next-frame position based on
motion dynamics and probabilistic modeling and often combined
with the Hungarian algorithm for accurate position estimation. The
Kalman filter has frequently demonstrated its effectiveness in track-
ing humans in complex conditions [26] and has also found several
applications in tracking insects. In [23], they used the Kalman filter
to predict insect position, and then they assigned each detected
phlebotominae to each track using the Hungarian assignment al-
gorithm. Kalman filter also performs well to generate a trajectory
for ants [11], drosophila [40], and mosquitos [2]. In some instances,
the Hungarian algorithm is employed independently to generate
trajectories by finding the most optimal consecutive positions for
an insect between two images. For example, in [8], the position and
size of individual insects were estimated for each frame, enabling
tracking through the optimal assignment of insects between consec-
utive frames. The Hungarian algorithm was employed, where the
cost function encompassed a weighted combination of distance and
area between matched bounding boxes in the preceding and current
frames. In [6], a similar approach was also employed, utilizing only
the Hungarian algorithm to enable real-time lightweight processing
for insect tracking. Nevertheless, when dealing with objects having
non-linear state transition and observation models, an extended
Kalman filter is employed to provide more precise predictions for
insect tracking. Particle filters are also used to deal with non-linear
problems [10]; however, as the number of particles increases, the
computational complexity increases exponentially. The Kalman fil-
ter and other similar methods encounter limitations when applied
to insect-tracking situations involving occlusions or interactions
between multiple insects. This constraint arises from their inability
to maintain object identities, relying solely on spatial data for tra-
jectory matching [30]. A typical example of an illustration where
these techniques fail is when two insects’ cross paths and change
direction after a collision. When this situation occurs, the algorithm
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temporarily loses track of the insects. The primary challenge cur-
rently faced in the trajectory-generation stage is maintaining the
identity of multiple individuals (identity preservation) following
an occlusion. To address this challenge, some studies undertake
manual corrections [40]. Other works perform a texture analysis
to analyze insects’ similarity between occlusions [32]. In [15], they
combine color tags to mark individuals, more sophisticated CNN
models, and a graph-based approach. An exciting study explored
ant head direction information to preserve ant identity in crossover
and touching scenarios [40]. A method like the Particle-Kalman
Filter (PKF), which combines the Kalman filter and particle filters,
has proven highly effective in tracking objects such as humans
and vehicles in occlusion scenarios [25] and holds the potential for
adaptation to insect tracking. The trajectory generation in insect
tracking from video data presents challenges and future oppor-
tunities. One major challenge involves preserving the identity of
multiple insects during occlusions or interactions, which impacts
trajectory accuracy. Current methods face difficulties maintaining
consistent tracking when objects cross paths or change directions
due to collisions, resulting in brief tracking losses. Future research
may focus on advanced techniques such as deep learning to improve
identity preservation and trajectory accuracy.

5 DISCUSSION
Our study highlights the 2010-2013 evolution in video-based insect
tracking, aiding insect behavior researchers in future planning and
decision-making. Through our analysis, we demonstrate the contin-
uous growth of this field, resilient even in the face of global disrup-
tions such as the COVID-19 pandemic. We have also illustrated the
high research activity in video tracking insects, with a strong pres-
ence from countries like the United States. Furthermore, our study
highlights the multidisciplinary nature of this research domain,
encompassing biology, artificial intelligence, insect behavioral stud-
ies, image processing, etc. Our comprehensive review shows the
evolution of insect tracking methods, emphasizing the shift from
labor-intensive manual observation to sophisticated video-based
techniques. It covers various tracking methods, including physical
markers, acoustics, radio frequency, chemical markers, and video-
based tracking. The latter has revolutionized insect monitoring,
particularly in precise pose estimation and trajectory extraction.
Pose estimation frameworks leverage kinematics for anatomical
feature tracking, while trajectory analysis distinguishes between
single-target and multiple-target tracking. The trajectory extraction
process involves crucial steps such as acquisition (offline and on-
line), background modeling (dynamic and static), insect recognition
(traditional and deep learning-based), and trajectory generation
(Kalman filter, Hungarian algorithm, particle filters). Table 1 summa-
rizes trajectory information extraction methods. Our study reveals
several challenges in advancing video-based insect tracking, and
promising directions emerge. Preserving the identity of multiple in-
dividuals, especially in complex interactions or occlusions, remains
a challenge in trajectory generation. Real-time tracking is crucial
for ecological studies, requiring a balance between computational
efficiency and accuracy. Incorporating machine learning and deep
learning methods show potential for improved recognition, robust
tracking, and adaptability to environmental variations. Open-access

datasets and benchmarking standards can promote collaboration
and algorithm evaluation. Field experiments in real-world condi-
tions are vital for validating tracking methodologies.

Table 1: Summary of trajectory information extraction meth-
ods

Tracking
steps

Commonly used
methods

Additional parameters /
methods

Acquisition Online; Offline

Camera resolution:
720p to 1080p
Frames per second:
20 to 30

Background,
Foreground
Modeling

Gaussian Mixture
Model;
K-Nearest Neighbors;
Reference background;
Pixel-based averaging
or median model;

Morphological filter
(opening, erosion,
dilatation) to eliminate
isolated pixel

Insect
Recognition

Color histogram;
Scale-Invariant
Feature Transform;
Feature fingerprints;
Speeded-Up
Robust Features;
Deep Learning (CNN,
YOLO, ResNet)

No

Trajectory
Generation

Kalman Filter;
Hungarian algorithm;
Particles Filter;
Optical flow;

For identity preservation:
graph-based approach;
color tags; head direction

6 CONCLUSION
In summary, our study combines a thorough bibliometric analysis
with a concise review of the current state of video-based insect
tracking. The research output in this field, totaling over 300 pub-
lications between 2010 and 2013, underscores its growing signifi-
cance. Despite disruptions from the COVID-19 pandemic in 2020,
research publications in video-based insect tracking maintained
steady growth. The United States has emerged as a leader in this
area, and machine learning plays a pivotal role. Our study high-
lights that video-based insect tracking primarily addresses pose
estimation and trajectory information, with greater emphasis on
the latter due to its enthusiasm. The main challenge lies in preserv-
ing the identity of multiple insects, particularly during occlusions
or intricate interactions. Additional challenges include real-time
tracking and adapting to environmental variations. Considering the
limitations of our bibliometric analysis, it’s important to recognize
that our search string’s specificity may have led to the exclusion of
some pertinent documents. In future research, a broader approach
could involve combining multiple search strings to ensure the in-
clusion of a wider range of publications. Additionally, this study
focused exclusively on the Scopus database; however, expanding
our scope to include documents retrieved from the Web of Science
database is a promising avenue for further investigation.
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