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CONTROLLABILITY OF A TIME-DISCRETE 1D PARABOLIC SYSTEM

KUNTAL BHANDARI', RAJIB DUTTA#, MANISH KUMARS$

ABSTRACT. This article investigates the ¢(At)-null controllability of a time-discrete parabolic system
with Kirchhoff boundary conditions, using a single boundary control. We demonstrate this ¢(At)-null
controllability by deriving an appropriate Carleman estimate. Furthermore, we establish that the limit
of these controls for the discrete system turns out to be a control responsible for the null controllability
of the associated continuous system.
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1. INTRODUCTION

Let us consider the following one dimensional parabolic control system with Kirchhoff type boundary
condition

Orur — Oy (y10,u1) = 0, (t,z) € (0,T) x (0,1),

Orug — Oz (V20,ug) = 0, (t,z) € (0,T) x (0,1),

up(t,0) = 0,us(t,0) = v(t), te (0,7), (1.1)
ui(t, 1) = us(t, 1), te (0,7),

Y1 (1)0pur (¢, 1) + v2(1)Opua(t, 1) + auq(t,1) =0, te (0,T),

u1(0,2) = uy o(z),u2(0,2) = uz o(z), z € (0,1),

where o > 0, y; € C'[0, 1] with Y = infyefo17{7i(2) : 4 = 1,2} > 0, and v is the control.

Such boundary conditions of Kirchhoff type is used widely in physics, electrical engineering, and
biology to describe systems involving network. For instance, in [15] and [16], authors have studied
the mathematical aspects of Kirchhoff’s rule for quantum wires, while in [8], the author has studied
the FitzHugh-Nagumo-Rall model of a neuronal network with a Kirchhoff type boundary condition. It
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should be noted that the usual Kirchhoff condition involves only first order derivatives (i.e, & = 0),
however, in the control system (1.1) a general Kirchhoff condition with o = 0 has been chosen.

The system (1.1) without control (i.e., v = 0) can be written in an abstract form as

<5tu1> A <u1> 7
(315’11,2 U9
where the differential operator A is given by

.A o a$(’}/16z’u,1) 0
' 0 az('YQamUQ) ’

with its domain
D(A) := {(vl,vg) e (H?(0,1))% : v1(0) = v2(0) = 0,v1(1) = va(1), Z 7 (1)0zv: (1) + avy (1) = 0} :

Define the space H := D(A'?) as the completion of D(A) with respect to the norm

2 1 1/2
ol = CAv, vy e = (ZJ %(1>|v;<z>|2dx+a|v1<1>|2> , for ve D(A).
i=170

Note that this norm is equivalent to H! x H' norm. Moreover, the Hilbert space H with the inner
product

2 1/2
(u, vy = (Z J v (1) w}(z) vi(z) doe + aui (1) v1(1)> , foru,veH,
i=170
can be explicitly represented as

H= {(vl,vg) e (H'(0,1))%: v1(0) = v2(0),v1(1) = 1)2(1)}.
Finally, we denote H' as the dual space of H with respect to the pivot space E := [LQ(O, 1)]2.

1.1. Controllability of continuous system. Before introducing the discrete control system and the
associated control problem, let us first state the existing null controllability result for the continuous con-
trol system (1.1), which we shall recover in this article using the null controllability of the corresponding
discrete control system.

Let us first introduce the notion of solution for the control system (1.1).

Definition 1.1 (Transposition solution). For ug = (u1,0,uz2,0) € H', a function uw € L*(0,T; E) is said
to be a solution of the above control system (1.1) if it satisfies

T T
L <u(ta')ag(ta')>E dt — J;) ’72(0) U(S) (795902(8,0) d57<y03¢(07’)>7-[’77-[ = Oa VQG LQ(OaT; E)7 (12)

where (¢1,p2) solves

—0tp1 — O (71 02p1) = g1, on (0,T) x (0, 1),

—0tp2 — Oz (12 0xp2) = g2, on (0,T) x (0, 1),

01(t,0) = 0, pa(t,0) =0, te (0,7), (13)
e1(t, 1) = wa(t, 1), te (0,7),

71(1)0po1(t, 1) + y2(1)0rp2(t, 1) + a1 (¢, 1) =0, te (0,7T),

e1(T,x) = 0,p9(T,z) =0, z € (0,1).

We have the following well-posedness result for the system (1.1).

Proposition 1.2 (Well-posedness). For any uy € H', and v € L?(0,T;R), the control system (1.1)
admits a unique solution uw € L?(0,T;E) in the sense of transposition defined above. Moreover, the
solution u e CO([0, T]; H').

Now, we define the notion of null controllability for the system (1.1).

Definition 1.3 (Null controllability). The control system (1.1) is said to be null controllable in time
T > 0 if for any initial data ug € H', there exists a control v € L*(0,T) such that the solution of (1.1)
satisfies
u(T,-) =0 on (0,1).
2



The null controllability of system (1.1) has been addressed in [9, Chapter 8], [2, Remark 3.6] and [1]
with the usual Kirchhoff boundary condition, i.e., @ = 0. This was further generalized for o > 0 in the
work [3] via duality approach, which will be followed in this article as well for proving a similar notion of
null controllability for the discrete control system. As per controllability-observability duality property,
proving null controllability of the control system (1.1) is equivalent to proving the following observability
inequality

T
2 2
HSO(O)HH < C(T)JO |0202(0)|" dt, Vor = (1,1, 02,1) € H, (1.4)
where ¢ solve the following adjoint system
aﬁal - am(’Ylazsﬁl) = 07 (t,l’) € (OvT) X (03 1)’
Orp2 — Oz (720z402) = 0, (t,2) € (0,T) x (0,1),
ng(t,O) = 0,(,02(t,0) = 0, te (O,T), (1 5)
w1(t, 1) = pa(t, 1), te (0,7),
Y1(1)0pip1(t, 1) + v2(1)0ppa(t, 1) + api(t, 1) =0, te (0,7),
Sﬁl(Ta 1') = 901,T(1')7902<T7 m) = @Q,T(x)a TE (Oa 1)

The authors in [3] derived a Carleman inequality to deduce the observability inequality (1.4), which
subsequently gives the following controllability result.

Proposition 1.4 (Null controllability, see [3]). The control system (1.1) is null controllable in any time
T > 0 with the control v e L*(0,T) satisfying the following estimate

[l 20,7y < CeT Juollze,

where the constant C > 0 depends on the system parameters ~1,v2, @ but is independent of controllability
time T and initial data ug.

The present article addresses similar question of null controllability for a time discretized version of
the control system (1.1), and uses it to produce a sequence of controls which approximates the control
obtained in [3].

1.2. Notations and symbols. To set the framework for posing and studying the problem of this article,
let us introduce some relevant notations and symbols. For any M € N, we define the discretization
parameter At = L. For a,b e R, we define the set [a,b] as

M
[a,b] := [a,b] " N.

We define ¢, = nAt and £, 1 = (n+ %) At, for n € [0, M — 1]. Let us now denote the set of primal and
dual discrete points, respectively as

Pi={tn:ne[l,M]}, D:={t, 1:nel0,M—1]} (1.6)
Further, we denote
P:=Pu{t} 5::Du{tM+%}, (1.7)

where #741/2 is an extra point outside the interval [0, T7].
We denote the sets of all real-valued discrete functions defined on P and D by R” and RP, respectively.

For v € R? (resp. u € RD), we denote by u” (resp. u"*é), its value at the point ¢, (resp. tn+%). We

define the time-discrete integrals as

T M
f = Z Atu”, for ueR”, (1.8)
0 n=1
and
T M—1 .
jﬁ = Z Atu™tz,  for ueRP. (1.9)
0 n=0

3



Let (X, || x) be a real Banach space. We denote by X7 and XP the sets of vector-valued functions
defined on P and D respectively. We introduce the spaces L% (0,7; X) and L},(0,T;X), 1 < p < +0o0,
to denote the spaces X* and X P, endowed with the norms

T 1/p T 1/p
|z, 0.7 == (L HU|§<> and [ufzz (0,7;x) = <{ Uz;() , respectively, (1.10)
where the discrete integrals are defined by (1.8) and (1.9). More precisely,

0
M 1/p M—1 ) 1/p
H“HL’;,(O,T;X) = (Z At |Un||§(> and HUHL%(O,T;X) = (Z At‘ X) .
1 0

For p = o0, we define the spaces L% (0,7 X) and LF(0,T; X) by means of the norms

un-‘r%

luleg .7 1= sup fultn)|x and Julrgorx) = swp_fult,.y)lx (1.11)
n n+1€

For p = 2 and X = L?(0,1), the spaces L,(0,T; X) and L% (0,T; X) are Hilbert spaces with the inner
products

M
<u’ v>L%(o,T;L2(0,1)) N quv - ;At NIRRT (1.12)
Q

M—1
and <u,v> = jtj uv = 2 At <u”+%,v"+%> ) (1.13)
L2,(0,T5L2(0,1)) Q 5 L2(0,1)
respectively.

Let us now introduce the translation operators t™ and t~ as
t7: X7 5 XP: (¢tw)" 7 = " for ne [0, M — 1],
t7: X? - XD (t_u)”+% =u", formne[0,M—1].

Next we define the difference operator D; as a map from X P into XP given by

ntl wttl — 1 _ nty
(Dyu)™ "2 = — - (N(t+ -t )u) , nelo,M—1]. (1.14)
Analogously, we define the translation operators t+ : XP > XP andt~ : XP — XP by
(tTu)" = w3 and (t7u)" = w73, ne[l,M], (1.15)
respectively, as well as an difference operator D, from X D to X7 given by
(Dyu)" = “Hl%n_f = (Alt(t+ — t_)u>n, ne 1, M]. (1.16)

1.3. Time-discrete control system. Let us now consider the following time-discrete control system

n+1 n
Uy — Uy

Al — 0:(mdpui™t) =0, ne[0,M —1],
un+1 —un
QTf — 0u(20,us ™) = 0, ne [0, M —1],
ui™(0) = 0, up*(0) = ", ne0,M — 1], (1.17)
up ™ (1) = up (D), nelo,M— 1],
11(1)0,uT (1) + 72(1)dpuby ™ (1) + auTH(1) =0, ne [0, M —1].
’U,(l) = U1,0, ’U,g = U2,0-

This discrete system can be obtained from (1.1) using standard implicit Euler scheme for the time
derivative, where u} (resp. v") denote the approximate value of u; for i = 1,2 (resp. v) at time t,.

The discretized differential equation can be written in shorthand form as
(Dyur)™+% — 0y (11 (£ 0pu1))"+2 = 0,
(Dyug)™*2 — 0y (Y2(tdpug))**2 = 0,

4

ne [0, M —1]. (1.18)



Using the Lax-Milgram theorem, one can easily prove the following existence-uniqueness result.

Proposition 1.5 (Well-posedness). For any given u’ € H', the above discrete system (1.17) can be solved
inductively to get a unique sequence of weak solution u™t! e [Hl(O,L)]2 for n € [0, M — 1], satisfying
the boundary conditions

u711+1(0) =0, u721+1(0) = Un+17
up (1) = ugt(1),

and the identity
2 A1 1 & ! 1
. n+1 . T n+le. n+1 _ = /am
;L Vi Ozuy ™ 0x&i + Al ;L up g+ au T (1)€(1) = Al {u a€>7-[/77-[7 VEeH. (1.19)

Motivated by Definition 1.3, we now define the null controllability for the above discrete control system.

Definition 1.6 (Discrete null controllability). The time discrete control system (1.17) is said to be
null controllable at n = M if for any ug € H’, there exist controls {v"*l}[[07M_1]] such that the solution
{u" Y jo,m—1) satisfies uM =0 in L*(0,1).

As pointed out in the work [22] for single heat equation with interior control, one cannot expect the
null controllability of the discrete control system (1.17) to hold in the above sense. In fact, we have
proved so in Section 2. This motivates us to study a weaker notion, known as ¢(At)- controllability,
which roughly means that there exists a discrete control v € L%(O, T) such that the norm of u* is small,
and tends to 0 as At — 0 at a rate of \/¢(At), for any function ¢ : (0,00) — (0,0) satisfying

.. d(At)
i inf = w7

This notion of ¢(At)-controllability is an appropriate analogue of null controllability for discrete control
systems (see Remark 1.8), and such notion has been studied in literature for time-discrete parabolic
systems, for instance, see the works [22], [4] for heat equation with interior control, and the recent
work [13] for stabilized Kuramoto-Sivashinsky system.

> 0, for some constant C. (1.20)

1.4. Main Results. We prove the ¢(At)-controllability of the discrete control system (1.17) by following
the duality approach, analogue to the duality approach used in [3] to study of null controllability of the
main control system (1.1). First, we derive a time-discrete Carleman estimate, and then use it to deduce
a relaxed observability inequality for the following adjoint system

—(Dip1)™ 2 — (M (t 0uipr1))"+2 =0,

—(Dyp2)™% — 0y (Y2t~ duip))" T3 = 0,

©7(0) = 5(0) = 0, (1) = ¢5(1), n e [0, M - 1]. (1.21)
Y1(1)0207 (1) +72(1) 025 (1) + api(1) =0,

e (2) = prm(x), 93 (2) = oM (),

More precisely, we obtain the following weak observability inequality, analogue to the estimate (1.4).

Theorem 1.7 (Relaxed observability inequality). There exist constants Ko, K1, K2 > 0 such that for
all T € (0,1) and At = At < Ko(T? + T)™* TS, any solution to (1.21) with M = (1.1, 02.m) € H
satisfies

T Ko
”@0”3{ < Cops ( J£0 ‘5z(t_902)(0)|2 L e @anl/A }@M”j_[>a (1.22)

where Cypg = eK1+Y/T)

Remark 1.8. The second term appearing on the right side of above inequality is specific to the discrete
system, and does not appear in the observability inequality (1.4). Due to the presence of this extra term,
the inequality (1.22) is referred as relazed observability inequality in the literature. But note that this
extra term appearing in (1.22) goes to zero as the discrete parameter At — 0. Moreover, one can show
that

T 9 T )
Jﬁ 10 (£ 2) (0)] af 10202(0)[2, as At — 0,
0 0

5



where po appearing on right is a solution component of the continuous adjoint system (1.5), see Lemma 6.7.
This shows that the inequality (1.22) approximates the observability inequality (1.4). This points out that
@ (At)-controllability is a suitable notion of controllability for discrete control systems.

Remark 1.9. The assumption T € (0,1) in the above theorem is made as we are mainly interested in
small time controllability result. Although, one can follow the same procedure for T > 1, with a small
change in the definition of At.

Next, we show that this weak observability inequality is enough to guarantee the ¢(At)-controllability
of the time-discrete system (1.17) using the standard variational approach. More precisely, we are able
to obtain the following controllability result.

Theorem 1.10 (¢(At)-controllability in H'). Let T > 0 and choose the discretization parameter At
sufficiently small. Then, for any initial data ug € H' and any function ¢ satisfying

B(At)
lim it~ a7

>0, (1.23)
there exists a time-discrete control v e L% (0,T) satisfying
HUHL;(O,T) < Clluol|4yr
such that the associated solution u € L% (0, T;H') of (1.17) satisfies
[, < CV/S(AL) uol 4y (1.24)

where C' > 0 is a constant, depending on ¢ and T'.

Using the sequence of controls {Un+1}ne[[0, r—1] responsible for ¢(At)-controllability of the discrete
control system (1.17) and the associated solution {u"},ec[o,a], We define approximations Vi € L?(0,7),
and Uy € L?(0,T; E) as

M—
Z tn7t77,+1 n+17 te (O,T), (1.25)

M-1 n+1 n
u x U +u
U 6:9) = a5+ 3 Nl (55 )@, aeen =0 0

where Uy = ((UM)l, (UM)Q), and u* = (u’f,uQ) Then, we show that these sequence of functions

(Var, Upr) has a weak limit (v,u) € L?(0,T) x L*(0,T; E) as M — oo, which satisfies the identity (1.2),
i.e., the limit function u solves system (1.1) with the limit function v as non-homogeneous boundary data.
Moreover, the limit function v of Vs turns out to be a control responsible for the null controllability of
main continuous control system (1.1). We obtain the following convergence result.

Theorem 1.11 (Discrete to continuous). There exist functions v € L*(0,T) and u € L?*(0,T; E) such
that

Vs — v weakly in L*(0,T),
and Upr — u weakly in L*(0,T; F).
Furthermore, the pair of functions (u,v) solves the control system (1.1) such that the state u satisfies
w(T,yz) = (ur (T, z),uz(T,x)) = (0,0), foraxe(0,1) a.e

1.5. Short literature survey concerning parabolic systems. The paper [22] is first one to ad-
dress the question of uniform controllability for time discrete heat equation. The proof is based on the
Lebeau-Robbiano’s strategy for the continuous heat equation (see [17], [18]), which relies on an observ-
ability estimate for the eigenfunctions of the Dirichlet Laplacian. Later, the work [10] proved similar
controllability result for an abstract controllable parabolic equation (discrete or continuous in space). In
particular, using the controllability result of space-discrete heat equation proved in [18], they conclude
about the controllability for fully discrete heat equation. In the article [7], the authors studied the con-
trollability problem for space-discrete and fully discrete heat equation, and computed the controls using
the variational approach. Moreover, they proved the convergence of control for the fully discrete system
to that of semi-discrete one. For proving the controllability result for fully discrete system, they assumed
spectral inequality for space-discrete system and then used the Lebeau-Robbiano’s strategy to yield the
6



controllability for the fully discrete system. Such spectral inequality for space-discrete system has been
proved by them in their earlier works [5], [6]. All the works mentioned above deals with an appropriate
filtering of high-frequencies. More precisely, for the lower frequency, one proves the null controllability
and for high frequencies, dissipation property of parabolic equation is utilized. This is where study of
similar control problems for hyperbolic systems becomes different from the parabolic ones (see [23] for
details).

Recently, a Carleman-type inequality for a time-discrete heat equation has been derived in [4] to deduce
¢(At)-controllability result for the time-discrete heat equation with localized interior control. Unlike the
works mentioned before, this approach does not uses the spectrum of the underlying operator. Since
then, there has been few more works utilizing this method, for instance, see [12] for fully discrete heat
equation, and [13] for a time-discrete coupled system of fourth and second order parabolic equations.

Concerning the wave equation, the authors in [21] established some uniform boundary controllability
of trapezoidal time discrete wave equation in higher dimension using the discrete version of multiplier
method introduced in [14]. In [11], the authors proved controllability for general time-discrete conserva-
tive linear systems, which includes wave equation, in particular. Recently, the authors in [19] has studied
the boundary controllability of time-discrete approximation schemes for a class of integro-differential
equations in one dimension, which has been further extended in two dimensions in [20].

1.6. Outline. The remaining of the article is organized as follows. We first prove the lack of null
controllability of the discrete control system (1.17) in the sense of Definition 1.6 in Section 2. In the
next Section 3, we prove a suitable time-discrete Carleman estimate. Such estimate plays a very crucial
role in proving the relaxed observability inequality as stated in Theorem 1.7, which has been proved in
Section 4. In Section 5, we prove the ¢(At)-controllability result as stated in Theorem 1.10. Lastly, we
dedicate Section 6 for the convergence analysis mentioned in Theorem 1.11.

Acknowledgements. The authors would like to thank Dr. Shirshendu Chowdhury for his comments
and valuable suggestions. The work of Kuntal Bhandari is supported by the Praemium Academiae of S.
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2. LACK OF CLASSICAL NULL CONTROLLABILITY

Motivated by the work presented in [22], we use a contradictory argument to prove the lack of null
controllability of the discrete control system (1.17) in the sense of Definition 1.6.

If possible, suppose that the control system (1.17) is null controllable, i.e., for any ug € H', there exists
a control v € R” such that the solution {(u?“, ust) ine [0, M — 1]]} of (1.17) satisfies

(uM,ud") = 0 in L*(0,1). (2.1)

Using discrete control system (1.17) and integration by parts w.r.t. x, one can easily obtain the following
identity:

2 1
<(Dtu)”+%,90”>w = Z f w0, (1:0007) + 72(0) 005 (0) "L for ne [0, M — 1].
’ i=170

Multiplying the above identity by At, and summing over n € [0, M — 1], we get

T 2 T T
jﬁo O ;jﬁo (e u, 00 (4t~ 00p) e = 72(0)j£ (t70up2(0)) (t70).

0

Now using discrete integration by parts (A.6), and the discrete adjoint system (1.21), the above identity
gives

T
= (0 My = 2O (€ 02(0) (),
7



which due to assumption (2.1) becomes

M—1
<u0)(100>7_[/,% = _72(0) Z At aﬂigpg(o)vn+1 (22)

n=0
Claim: The identity (2.2) cannot be true.
Proof. Let ®° € CZ(0,1) x C*(0,1) with |®°|g > 0. For n € [0, M — 1], define
O = B — At 0,(7:0,9), forie {1,2}.
Note that ®" € (CF(0, 1))2 for all n € [1, M]. So, multiplying the above equation by ®? and using

integration by parts, we get
2

2 1 1 1 2 1 1 1 1
S|t [ aloar+ [ore| = X [erere < X |5 [ai g [ erep].
i=1 0 0 i=170 o2 do 2 Jo

which gives

2 1 2 1
ZJ |<I>?|2<Zf @712 Yne[0,M —1].
i=170 i=170

This shows that ®M € C*(0,1) x C*(0, 1) satisfy |® |z > 0.

Now let us choose the terminal data o™ = ®M € A, in particular. Then by the uniqueness of solution

of the adjoint system (1.21) we get
" =0" Vne|0,M].
Due to the fact that ¢™ € C£(0,1) x C¥(0,1), the identity (2.2) becomes

<U0, S00>H',H = 07

and thus by choosing the initial data ug = ¢°, we get |¢°|g = |®°|z = 0, i.e.,, ®° = 0, which is a
contradiction. O

3. TIME-DISCRETE CARLEMAN ESTIMATE

This section is devoted to derive a time-discrete version of the Carleman estimate obtained in [3]
for the associated adjoint system to (1.1). The proof would be done by mimicking the steps from the
continuous setup, as done in [4] and [13].

To state the time-discrete Carleman estimate, let us first introduce the relevant weight functions
which is similar to the one used in [3] for the continuous system, and plays a very important role in the
estimate. Assume a constant vg € (0,1), sufficiently close to 1 so that

((1216;?)373(1) —775(1)> > 1. (3.1)

For i € {1,2}, consider the functions 3; on [0, 1] given by
Bi(x) =2+ ¢i(x — 1),
. 6 3.2
with ¢; = 1, co = 62(’71,’)/2) = —m < 0. ( )
Note that
B2(x) = f1(z) > 0, z € [0,1],
B2(1) = Bi(1), and |By] > |B].
Let K = 2max {|B1]w,[B2]x}, and assume A > 1. Then for i € {1,2}, we define the functions 7; and p;
over the interval [0, 1] as

ni(w) = M — MO () = ) (3-3)
Note that p1(1) = (1) and 71 (1) = n2(1), since B1(1) = B2(1). Next, given that

ni(z) = (e/\(K—Bi(w)) _ 1) i (),
8



we can establish the following relations:

ni < e on [0,1], (3.4)
pi < Cn; on [0,1]. (3.5)
Observe that the constant appearing in (3.5) is independent of A as A > 1

Let 6 € (0,1/2). Then, we define the function 6 as
1

0(t) = te[0,T]. 3.6

= Grsnmyor—n <07 (3.6)
One can easily observe that 6 satisfies the following estimates
1 1

= S 0(t) < —-. 3.7

Remark 3.1. Note that the T term is absent in the weight function associated to the continuous
Carleman estimate. This is added here to avoid the singularities of 6 at t = 0 and T, and thus this
number § is specific to the discrete system.

For 7 > 0, let s(t) = 70(¢). Finally for i € {1, 2}, we define the functions r; and p; as
ri(t,x) = eI gyt a) = (ri(t,@) 7Y (ta) e (0,T) x (0,1). (3.8)
Then the spatial derivatives of u;,n; and r; can be given by

ﬁx,ul = )\Ci/J,i7 &ml = —ACiﬁLi, axT‘i = T)\Cieluﬂ"i. (39)

Let @ = (0,7) x (0,1). We introduce the space F, defined as

2
F = {(s@maz) e (C*(@))7: p1(t,0) = pa(t,0) = 0,01 (£, 1) = a(t,1), O 7i(1)sipilt, 1) + apr (t,1) = 0}.
- (3.10)
Let us denote the discrete adjoint differential operator as
(Lppi) " = —(Dyoi) "™ = 0a( (1™ utp))" 2, for i € {1,2).

Theorem 3.2 (Time-discrete Carleman estimate). Let n; for i = 1,2 and 0 be the weight function as
defined in (3.3) and (3.6) resp. Then for A = 1 large enough, there exists 7o = 1, €9 > 0 and a constant
C > 0, all depending on 1,72, a, T and A, such that the following estimate holds true

BZH (03 (¢ 1) |- \2+TZH (£70) (¢ 1)2 0w (£~ )2 + 72 Jﬁ(t 0)(t~r(1))°] £ 1 (1)
CZH (t7r) (Lo +CTJEO (£°0) [ £ (r2(0)*|0u (™ 02) (O)

P LlKwn()\”f“’“ﬁ"i)M’Q+£‘(”W)MF>’
(3

for every 7 = 10(T? +T), At € (0,1), and for any § € (0,1/2] satisfying the condition
T3AL
S (min{73,7%}) S
and for all time discrete function (p1,¢2) € FP.

Proof. The proof of this theorem is quite long and so it has been broken in steps for better readability.

Step-1: Change of variable:
Let us first make the following change of variables. For i € {1, 2}, we denote

q;' (z) =i (z) @i’ (), n € [0, M],
where 77 (z) = 7;(t,, ). Then, ¢; € C*([0, 1])?, and so for n € [0, M — 1] we have
Vi Oty = TAC 0" piyi i + 77 Q'

9



Recall that (¢1,¢2) € FP, and so (¢q1,q2) satisfies the following boundary conditions:

41 (0) = g5(0) =0,
ar' (1) = r{ (i (1) = r3(1e3(1) = g3 (1),

(3.12)
(71 0247) (1) + (72 02¢3) (1) + e gy’ ( (Z civi(1 ) (1Do"qr (1),

for n e [0, M —1].
Now, we compute

00 (1i0u(t7qi)) = AP (67 0)pivi(t ™ qs) + TAC (87 0) iy (£ 7 qs) + TAci (67 0)pivi 0 (t7 i)
AN (6T 0) 2 i (7 ) — T(6T O myi0x(tTq) + (£77) 00 (130 (7 0)).

Next, using Lemma A.1 and Lemma B.1, we get

Di(qi) = (t77:)Dypi + Dyri(t 7 ;)
= (t7ri)Dypi + (87 p)(Dyri) (87 1)
-2

— (t ;) Dypi + [—T(ﬁe')m + At (53}4 - 64T6> 01 )] (t* ).

Combining the above computations, we get the following identity:

Agi+ Bg; = F;, ie{1,2), (3.13)

where
Agi = 00 (4i0u (67 q0)) + T2N¢ (670)%1F (e~ @) + T i (870') (7 i), (3.14)
Bq; = Dyq;i — 27A¢i(t70)pii 02 (87 qs) — 270 (27 0) i (87 @), (3.15)
Fi=(t7r) (thi + 02 (Vi t‘(axw))) + A (T iy (87 ¢) — APt )it 4i) (3.16)

T 7'2
At <§3T4 B 64T6> Ox(D)(t*q:) — At (£70") 1i(Degs).

Taking L?-norm in (3.13), we have:
140172 () + 1 Baill 72 () + 2{Adi, Baidra @) = IFil72 (), i€ {1,2}. (3.17)

We denote the inner product 2 (Ag;, qu>L%(Q) as the sum Z?,k:l I, with Il = ((Agi);, (qu)k>L2D(Q) )
for i € {1,2}.

Step-2: Expanding and estimating the cross product terms:
Estimating the inner product (Ag;, Bg;) L2 (@) and |Fill L2 (@) properly, one can obtain the estimate
mentioned in the lemma below.

Lemma 3.3. Let ¢g > 0 be any real number. Then for a fized A = Xg, there exists 7o(y1,7v2, @) = 1 and
a constant C > 0 such that

2
2<|qui%@>+faﬂcg<t0>3|tqﬁwﬂ( 0)l0u(t )| + fqu\ —z)
i=1

C’Z ( (t7r; (Dtcpz+(3 (%073( <p))) 2@ +W1>

=1

ted Z (H Pt al + HQ(t_s)_lthiP)’ (3.18)
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for all 7 = 79(T? + T), and for all 6 € (0,1/2] and At satisfying the condition m < €9, where

W= [ o [ @2+ @02 (5o + 5o | @2 (3.19)
Zi=— tf Yi(1) 7 (02q:) (1) Drgi(1) + 7 Jl (t70)pi(1) (7:(1))° (t_(ain(l)))Q
0 0
T T
e ]ﬁ (£ 00 (0) (1:(0))? (£ (2:(0)))° + 262 (va(1))? Tas (1) Jﬁ (60) (g (1)t (600 (1)
ey (uz(l))?’]L (£°6)° (a(1))2 (£~ )2(1) +T2|Ci|%(1)ui(1)m(1)T]£ (6 0)% (¢~ ga(1))?
0 0
T
7m0 g . (270 a7 (320)

Further, we have following auxiliary estimate for the boundary terms Z

Lemma 3.4 (Estimates on the boundary terms of Z) Let 79 > 0 be a sufficiently large number. Then
for T = 7o(T + T*), there exists a constant C > 0 such that

— Z Zi>—-CW, — CE, + Cr ]£0 (t70) ]ag{‘,(t—qQ(l))\2 +Cr Jﬁ (t—9)3\t—q1(1)\2

i=1

T 2 2
-0 (0| OF o e o) - o 53T4ZZJ£ (O a7, (3:21)

where
=5 (@) - @)7) - 2 (2 cm(l)> {0 (o} (1)" = 0" (2(1))} (3.22)
B a T T 9
By = At {2 Jﬁo (Deqn(1))% dt + 22 (g civi(1 ) J£ 1(1)(t70)(Diqa (1)) at (3.23)

T T
+CmO g | ap s oravem | (Teor+ 51 (th1<1>)2} -

The proofs of Lemma 3.3 and Lemma 3.4 have been postponed to Appendix C and Appendix D,
respectively for better readability.
Now, using the above estimate (3.21) in (3.18), we get the following:

2 T
> <|qu|L2 T jﬁj t70)% 1t~ ql|2+TjLJ t70)[0.(t7q)|* + f M| ) +7 j£ (£70)%tq (1))
i=1 0

2 T 9 _ 2
o chﬁ()( ) [£= (2 (0)] 2 (£ 22) (0)

2
+eOCZ (jq (t7s)% [t q|? + jq (t7s) |thl|2> +CZ W, + W, + Ey
=1 =1

e ij (£ 0)(c a(L)? (3.24)

for all 7 > 10(T?% + T) with some constant C := C(v1,72, @) > 0, where 79 is large enough to absorb the
unwanted terms from right by the Lh.s. terms to get the above estimate.

CZH (67rs) (Despi + 22 (5 02 (67 )))

Step-3: Absorption of (D,q;) term from the r.h.s.:
Let us recall the expression of Dyg; from equation (3.15),
DtQi = qu + 27‘)\061'(1370)#1"}/1' (}I(tiqz) + 27’)\36?("379)#1")/1(1:7(]1)

As 7 = 19T?, we note that
T HeT0) st < 7T ITe M < O
11



Using this, we have

TIHQ<te>lu;1|thi|2
¢ (1Balts 0 + 7% ] o @« i ff Q(t@)m(tqi)?) .

By utilizing the above estimate in (3.24) and choosing €y small enough, we get

$ (4] g oren oo ff oot s ) oo otuor

C’ZH (t7r (Dtgol-i-@ (7zaas( 90)))

1=1

2 2 T
= = At -
+CZIW1-+W1+E1+07253T423£0 (-0)(5-gs(1)?, (3.25)

2 ' 2 2
+C t70)|t™ 0)|" |0:(t~ 0
LQD(Q) T 0 | T2( )| | ( 802)( )|

for all 7 = 7o(T? + T).

Step-4: Estimating the remaining discrete terms of r.h.s.:
We begin this step by estimating the last two terms of the r.h.s. of inequality (3.25). From the
expression of F; given by (3.23), we see

2 T At T )
E; < CAt ”*W Dl +7At<62T4 + 63T4> jfo (Dyqr(1))2 dt

i=1
TAt jﬁT _ 9
t q1(1))* dt.

< €, T = 10T? and the fact 0~ < T?, we get

+C

3 At
min{7T3,T%}

2 T
= jf ()0 ()?

CAt{ 5T2 (; ci%‘(l)> +60}j£0 (Digi (1)) dt

2

+ CAt (63;2 53TT4) j[:(tﬁ)(tql(l))Q dt

T T
< CAt { (Z civi(l ) + 60} j£0 (Dyq1(1))* dt + Ceg jto (t70)(t~q1(1))? dt.

Note that the first term is negative as Zle ¢;i7vi(1) can be made so by choosing vy close to 1 (see (3.2)),
and so

Now using the condition

E1+T

T
Ei+7 53T4Zj£ (t70)(t " qi(1))? eojfo (t70)(t~q1(1))* at. (3.26)

Using the facts 7 = 7072, 0 < § < 1/2, and § < 1/(6T?), we now estimate the terms Wi, W, appearing
in the r.h.s. of (3.25) as follows

ST : At)2r4 ! + !
;Wi ; {f 0" T+ 58(m(in{1)“8 T12}) L (@) + 5274 L (q?)z}
+ % (M (1) - T (Z civi(l ) < (g (1)) - 6° (q9(1))2>,
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where V/[Z-7 W, are given by (3.19) and (3.22), respectively. Further we use the fact that 25:1 civi(l) <0,
to remove the term 6° (q?(l))2 from the right side, and thus we obtain:

i + Wi < CZJ dugM +CeOZJ qM +052T4ZJ @) +01+W)(M(1>)2'

Now as ¢}¥ (0) = 0, so we have:

and so using Holder’s inequality, we get

f |an1

Using this estimate and the bound 377 > 1 -, we get

ZW+W1 CGOZJ (M +052T4ZJ &) +C5TQZ‘J|anz 2 (3.27)

Finally, substituting the estimates (3.26) and (3.27) in (3.25), we obtain

Z( H (£ 0)°fc q1|2+qu (£0)[2, tqz)|>+fjf &0t a (1)

C(Z H(t_ri) (Dt(Pi + 0 (i 590('0_80)))

2 T 2 2
+ Tjﬁo (£70) [ (r2(0))] [0 (&~ 2) (0)]

L3(Q

2 1
T 0y2 |
L ( O
+ 52T4;L(qz) 5% Zf |00a]
(3.28)
for 7 = 170(T? + T) and % <€
This completes the estimation of the cross product terms.

Step-5: Returning back to the original variables:
This is the final step, where we return to the original variable ¢ to get the desired Carleman estimate
(3.11). For that, let us recall the expressions

(t7q) = (t7r) (t7 ). (3.29)
(t7ri) t7(0zpi) = t7(02qi) — TAocit™ (O)pi(w)t™ (i)t~ (04)- (3.30)

outea)] < (6 (1000l + il 0l) < (67 (1206l + Cplind ). 31)
From the identity (3.30), we have

(t7r0)? [£7 (Qupi) [ < 2067 (02ai)[* + 272225 () (£7(0)*¢ ™ (@2)?,

and hence

’7')\2ij £70) [t 7|2 |t (0ni)]? CT)?qu t70) [t (0pq) |2+CT3>\4ZJ£J £70)% |t~ ¢
i=1 i=1 i=1

Thus, using this estimate and (3.29), the inequality (3.28) can be rewritten as

i (73 {JQ('CW)B‘(‘C_HF [t ul* + qucg('c_e)(t‘m)2 |5w(t_%)|2> i Tjt:(t_e)(t_rl(l)ﬂt_@l(1)|2
< c(i H(t_ri) (Dtsoi + 0y (i (%(t‘w))) i
i=1

et EOE ) e 0f
62T42J‘n% T Tore thl i) +53TGZJ’”%M’>




Finally, using the fact that 7 > 79T and W?*TG} €0, we get the desired estimate

i( Jq (70 (&7 ri)* [~ ‘Pl|2+qu (£70)(t 1) [u(t 1) ) +7'jﬁj(t_ﬂ)(t_rl(1))2|t_<p1(1)|2

C’ZH vy (Dt¢,+a (i 0t w))) " —i—CTj‘:Tt 0) [t~ (ra(0)) [ (6~ 02) (0)

2
23 ([ reearte oo+ [ o mwr)
i=1

32)
for 7 = 7(T? + T), and for all At e (0,1) and 6 € (0, 1/2] satisfying the condition
73 At
S min({T3,70}) =
t

4. RELAXED OBSERVABILITY INEQUALITY

In this section, we prove Theorem 1.7. The proof uses the discrete Carleman inequality (3.11), energy
type estimates for the adjoint system (1.21), and proper bounds for the weight functions. Before going
to the proof, let us first see the relevant energy estimates.

Lemma 4.1 (Energy type estimates). For o™ € H, the solution of the adjoint system (1.21) satisfies
|<)On+l‘|’?-b fO?"’I’LG [[OaM_ 1H7 (41)

le™ 13,
E |<p"+1\|E, forne[0,M —1]. (4.2)

<|
"z < |

Proof. We multiply the first and second equation of (1.21) by (Dyp1) and (D;p2) respectively, and add
them together to get

(Dip1)? + (Dip2)? + 00 (71 (£702¢01)) (Dep1) + 0x (72 (87 02p2)) (Dyp2) = 0.
Now integrating it w.r.t. = over (0,1), we get
1

1 1 1
2 2 _ 7 _
fo (Dig)? + f (Dig2) f 1t (0a1) Di (o) fowt (2002) Di(@ri02)

+ 71t 7 (0x91) D (1) + 2t~ (0202) Di(2) =0.

=

Further, performing discrete integration w.r.t. ¢ over (t,,¢n+1), and using the boundary conditions of
adjoint system (1.21), we have

n+1 n+1 n+41
{* J (Dipr1)? j£ J- (Dyip2)? j[ J’Ylt 0x901)Di(0zp1)

jﬁ J ot (2ioa) Dy (Bripa) — jfot (1(1)) Dy (91(1)) = 0.

Lastly, we use the discrete product rule (A.4) to get

jﬁthJ 71{ Dy (00p1)” _A2 (Di(0zp1)) } jﬁtnﬂf Y2 { xsﬁ2)2—At(Dt(5z<P2))2}
+ajft:“ {;Dt () - 5 (Dt } jff (Dugr)? jﬁf (Dep)?,

which proves the estimate (4.1).
Next we multiply the first and second equations of (1.21) by ¢t and ¢4 respectively, and add them
to obtain

n+1

2
Z{% P — 0 (i) Z}—o ne [0, M —1].
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Upon rearranging the terms and applying integration by parts in the above identity, we obtain

Z [ ey = oo ot [ et - St @t 1)} =

Now, using Holder’s and Young’s inequalities in the second term, we get

5 s f (e f (o1 )" + e f 5 Eal)? = A1) @t (1) 1) <.

i=1

Using non-negativity of the third term, and the boundary conditions of (1.21), the above inequality gives

Z f(so Zf )+ 20 (—ag (1) 1 (1)
lZlf n+1

which proves (4.2). O

Let us now proceed to the proof of weak observability inequality (1.22).

Proof of Theorem 1.7. Applying the Carleman estimate (3.11) to the solution of the adjoint system (1.21)
with ™ € H and ignoring the integral term associated to (t~¢;), we get

2 T
T 0 77‘1'2 695 TP 2 T 0 rp 21g- 1 ?
SJ e iaem el e f @0 o))
<Crf @Ol ) o e O
0

¥ cmt)li_fjl ( | e + | oM + | o azsmMF), (4.3)

for 7 = 79(T? + T), and for all At e (0,1) and ¢ € (0, 1/2] satisfying the condition giﬁ}f < €.

Now we find lower bounds for the 1.h.s. terms. Using the fact 7 > 1, and the estimate

1 T T 16 1 T 3T
<oz ) <o <o)< f ==,
T2 9<2> 0(t) 9<4> 3 T2 orte[4 4]

2 T
T 79 77"1'2 am - i 2 T 70 77"1 2|g— 1 2
;ﬂ@& (5 1) [u (e o) + jﬁ()(t (£ 71 (1)%[e 1 (1)]
1 /T2
> 7 Leeer jﬁm (ZJ () + ().

where Cy = % Next using the estimate (4.1), we have:

3T /4 2 1 3T /4 T
f (B[ @l + i eawr) = 1ol > T 1l
T/4 \;=1J0 T/4

Hence, combining the last two estimates and using the fact that 7 > 7 T, we have

2 T
I B MG T T R R R

we get

Note that 0(t)e=27()m2(0) attains its maximum value at t = 7//2 and so we have:

4T —27mn3(0)

T(t70)(t72(0))? < 75e~ 72 < C. (4.5)
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Using the bounds (4.4) and (4.5) in (4.3), we get

T

le® 13 < CBCIT/T2]£ 02 (27 2) (0]
0
2 1o ! 2 ! 2 ! 2
+C DT (AT Z (f |(ri 3)°| +J |(ri i)™ +j |(ri 00i)™] >’ (4.6)
i1 \Jo 0 0

for 7 = 10(T? + T).

Thus, in order to get the observability inequality (1.22) we only need to estimate the last three terms.
To do that, we use 6(0) = §(T) > %57z to obtain

2
2 2
|(ri 00)°” + | (ri 00) M| + [(ri Gwi0) M| < Z( S |ax90fw\)»
where, 19 = minpg 11{n; : i € {1,2}}. Further we use this estimate in (4.6) to get:
2 T 2 2 2 1
@[3 < C /T j£ 0267 @2)(O) + Cem 77T (A1) ™ f (16202 + 1o} + 0 2),
0 i=170

where Cy = %770 —C18 > 0, for 6 € (0, &), for sufficiently small §y. Lastly, we use the Poincaré inequality
and the estimate (4.2) in the last inequality to obtain

T
[¢°2, < CeCrm/T jf 102 (6= 02) () + C e~/ (A)~ Zj a2, (47)

Let us now fix 7 = 79(7? + T), and define

At = 75 (T? + T)~*T°,
To
which implies
AL
e o
Next for any At < At we define § := ((Az)/l /ff” do so that we get
AL
§i76 = O

which further implies
4 4

s = () = (i) =@

as T' < 1. Now using this inequality and then fixing 7 = 7o(T? + T) in (4.7), we have

T
s mm i (f oo+ Z f o). (4.8

for some constant Cy > 0. This completes the proof. O

5. ¢(At)-NULL CONTROLLABILITY RESULTS

This section is devoted to prove the ¢(At)-controllability result mentioned in Theorem 1.10, which
mainly relies on the relaxed observability inequality (1.22).
Proof of Theorem 1.10. To prove the ¢(At)-controllability result, let us first recall the condition (1.23)
on ¢, given by

lim inf $(At)

—— =7 > 0.
At—0 e—Ka/(At)H/4

This means there exists a constant C' > 0 such that for sufficiently small At (depending on ¢), we have

G(AL) = Ce K2/ (A0
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Thus, from the relaxed observability inequality (1.22) we have

T
HapOHi < Cops (jﬁ [t~ (0x42)(0)|* + ¢(AL) |@Mi> , for sufficiently small At. (5.1)
0
Let us define the functional

Tai(e jﬁ\t 2uoa ) + DO o, M2 4 Cuou gy Tor M e H, (52

where ¢ = (p1,¢2) is solution of the discrete adjoint system (1.21). This functional Ja; satisfies the
following properties:

(a) Ja¢ is continuous and strictly convex. The continuity follows by sequential approach using the
well-posedness result of the adjoint system, and the strict convexity by the properties of norm
induced in the Hilbert space.

(b) Using Cauchy-Schwarz and Young’s inequalities in the expression of Ja:, we get

At) 1
Tau(e jﬁ Qo) + X5 e I~ e 19705~ Conlle

Now using inequality (5.1) and the equivalence of the norms || |3 and |0,¢ | £ in the above
estimate proves coercivity of the functional Ja;.

These properties guarantee the existence of a unique minimizer of the functional Ja;. Let us denote
the minimizer by $™ and the associated solution of (1.21) by @. Then, the Euler-Lagrange equation
associated with Ja; is given by

T
jL £ (,72(0)) £ (0aip2(0)) + B(AL) (0, M, 0ug™ )y + (o, = 0, VM M. (5.3)
0

Let us now define a linear map L3t : H' — L%(0,T) given by
(z%t(uo))” = (0232(0))", for ne [0, M — 1], (5.4)
and set the control v™*! in the control system (1.17) as
Vi = (z%t(yo))" — (0.55(0))", for ne [0, M — 1]. (5.5)

Now taking duality product in (1.17) with the solution ¢™ of the adjoint system with ¢ € H, for
each n € [0, M — 1], and then summing over n € [0, M — 1], we obtain

T
jﬁ (£+0) £~ (@2(0)) — ™0™, 4, + o %), = 0, (5.6)

0
where the control v is given by (5.5). On comparing this identity (5.6) with (5.3), we get

<uM,<pM>H/,H = —¢(At) <(9I AM,6$¢M>E, VoM e H,

which implies

uM = p(At) 02(PM) in H'. (5.7)
Now, we take ™ = oM in (5.3) and use the Cauchy-Schwarz inequality to get
{1 @) OF + 680 1815, < ok 18,
Next substituting (5.1) for o™ = @M in the last estimate, we obtain

SIS

jf [£7 (2:2) (O) + $(A8) |3 [, < v/Cons 0] 3 (} [£7(0:32) (0) + B(At) Wh) :
which yields
[olz, = [~ (0:22)(0)] 12, < V/Cobs Iyl (5.8)
VoA 8], < v/ Cobs yollze - (5.9)
17



This proves the well-definedness and continuity of the control map E%t given by (5.4). Finally, we use
the expression (5.7) and the estimate (5.9) to get

[, < V/Cobsv/H(AL) [0l -

This completes the proof. ([l

6. CONVERGENCE ANALYSIS

The main goal of this section is to prove the convergence result as stated in Theorem 1.11. Note
that the transposition definition for the control system (1.1) mentioned in Definition 1.1 involves the
adjoint system as well. Due to this reason, we study the convergence of discrete adjoint system to the
continuous system in Section 6.1. Further, we carry out the study of convergence of the discrete control
to the control for the continuous system in Section 6.2.

6.1. Convergence of the adjoint system. For n € [0, M — 1], let us consider the following time-
discrete adjoint system

—E = 0 (n ) = g1
—£2 P2 5 (2 00008) = g5,
4 90711(0) = ‘)03(0) = 07 (6.1)
(001 (1) = 903(1)7
Y1(1) Ozt +72(1) Oy (1) + a0t (1) = 0,
M _
2 = YT,

n+1

where the functions g and (7 are given.

The following lemma gives stability of the above discrete system (1.3).

Lemma 6.1. For {g”*l}ne[[07M_1]] c FE and pr € H, system (6.1) admits a unique set of solutions
{¢" bnefo,m—1] satisfying the following estimates

(@) 1"l < C (lgl a0 + lorlae) s ¥ne {01, M —1}.
M—-1

2
2 At]| 0z (72 920572 < <||9HL$,(0,T;E) + ”SOTH%) , fornge{0,1,..., M —1}.
= 2 2 2
) 25 Athal0) b O <€ (lalig 0 + lerlhe).

Proof. The existence and uniqueness of solution for system (6.1) is guaranteed by the well-known Lax-
Milgram theorem. To obtain the above estimates, let us multiply the differential equations in (6.1) by
0z (s Oxol) for i € {1,2}. Then, performing integration by parts and summing over 4, we get

2 1 2 1
> at | 220 28+ ) f i 10l P + g (1)
i=1 0 i
A n+12 2 n+12
\72 | >+ Z |(7 (i O] + Z %\@z%

1 «
+*ZJ i |07 |2 + |<P"+1\2 St
235 Jo 2

which gives

lo™ 15 = o™ M3 < Atlg"HE, Yne{0,1,...,M 1}, (6.2)
2

and )| A0, (v xpf)72 < At " + 0™ IR — " I3 (6.3)
i=1

Summing the above estimates over n, we get the estimates (a) and (b). Finally, using the trace inequality
and the estimates (a), (b), one can easily get (c). O
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Using the solution {¢" = (o7, %) }ne[[O M-1] of the discrete system (6.1), we define the functions

& (t B tn) n+1 (tn+1 - t) n .
(@M) (t SL‘) 7;0 1[tn7tn+1]<t) At ®; (.’L‘) + T‘pz (.’L‘) ) for i e {172} (64)
Let us now recall the non-homogeneous adjoint system (1.3)
_atSO1 - (’):v(’)/laxipl) = J1, (t,l’) € (OvT) X ( 71)7
_6%02 - a:c('YZaa:(PZ) = g2, (t,ﬂ?) € (07T) X (07 1)7
@l(t 0) = 0)902(t 0) = 0’ te (07T)a (6 5)
e1(t,1) = p2(t, 1), te (0,7), '
’71( ) Oxp1(t, 1) +72(1) Oxpa(t, 1) + apr(t,1) =0, te (0,T),
901( ): 7‘»02(T7x):07 1'6(0,1)

Define the space:

Co = {«ol,m € (@) : 01(1.0) =pa(t,0) = 0, 01 (1, 1) = a1, 1),

i )oupi(t,1) + api(t, 1) = 0, for t € (0, T)}

Definition 6.2. ¢ € L?(0,T;H) n H*(0,T; E) is a solution of (6.5) if it satisfies
(i)

g!;&t%% +;21£J%‘(l") Oupi Ozt + OéLT e1(t, 1) Yi(t,1) = i[)fgi i, Ve Ca,

(ii) (T, z) = 0.
Theorem 6.3. Let g = (g1,92) € L?(0,T; E). For n e [0, M — 1], define the functions

1

T
*J gi(t,x)dt, forie{1,2}.

n+1 _
(@) = % t

9i

Then the function @y, defined by (6.4) corresponding to above g"*' and o7 = 0, converges weakly to
the solution ¢ of (6.5) in H(0,T; E) n L?(0,T;H n H? x H?) as M — .

Proof. The proof of this theorem is done in two steps. First step is to show the uniform boundedness
of {¢nr}men, which gives a convergent subsequence with some weak limit . In the next step, we show
that this weak limit ¢ solves the adjoint system (6.5).

Step-1: Uniform boundedness.
Using the estimates mentioned in Lemma 6.1, one can easily obtain the following bounds for js
defined by (6.4):
(a) ||90MHL2(H) ¢ HQHLZ(OTE)
(b) 10ortlae) < Clola0.zem -
Due to these uniform bounds, we get a function ¢ € L2(0,T;H) with d;p € L?(0,T; E) such that
on — @ in L2(0,T;H),
Oron — Opp in L2(0,T; E), (6.6)
@M(tv 1) - QO(L 1) in L2(07 T)
up to a subsequence. For the last convergence, we have used the continuity of the trace map
T L20.T:H) = 0.1 T(f) = f(t.1)
with the convergence result ¢ — ¢ in L?(0,T;H).

Step-2: The limit ¢ is the solution.
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Let ¢ € C,. Then using the differential equation (6.1) and performing integration by parts w.r.t. x,

we obtain
tn+1

2 M—1 T M—1
[ @owirn=3 Y [ wwoeie ([ e na)arsa X et ([ wena)
i=1 n=0 tn n=0 tn
2 M-— tnt1
-, Z f e (J it x) dt) dz.
i=1 n=0 tn
Thus using the above identity, we have

<5t¢M7¢>E+Z Vi(@) Oz (oM )i Outhi + T(</7M) (t,1) ¥a(t,1) 22: 9i i
’ =g

B [iMEl Jl (@) JM <(t ;;n)@w?“ + % m) Dot
-3 Mot f (@) Gan (2) < L t ouibi(t ) dt) dx]

i=1 n=0 YO0
M-—1 At
"t —t) (th41— 1) o, )
+ + 1)) ¢y (t,1) dt
laf (S + B0 =0a0w) we
M—1 tnt1
—aEso’f(l)(f w1<t71>dt)]
n=0 tn
M—-1 A1 trnt1 M—-1 1 ptpir
ntl(g i(t,x) ) — ) (t, x
+l2jg <><L bt >) ZJJ (t, @)t >1
=]+ 11+ 1II.

These three terms can be estimated as listed below:
e Using Lemma E.1, we can easily conclude that

HII| < CVAt[Y]L2m)

e Next observe that using o™ = 0, the first term can be written as

2 M—1 2 M—1
t—t,) t(t—t
Z Z J i :c‘PnJrlL ( a i — Z Z f Y Ozp th ( Atn)axwi
i=1 n=0 n i=1 n=0 n
2 M—-1 51 tnt1 (t—t ) tnt2 (t—t ) 2 1 t ¢
ntl " pth; — St o) — f R
; g f Vi 0P (f A Ot LM N mwz) ;1 R Nt
Now we use change of variable and triangle inequality to get
2 M—1 2l
13 % [ et | [ S o) — e atlae+ Y [ et St el
i=1 n=0 i=1v0

Using the mean value theorem and Holders’s inequality in the first term, we get

11| < (At Z H‘P"HHHJFMZJ vi(2) 0297 )

e Similarly, we have:

1] < o<<m>2 3 (j alet 1))

n=0

1/2 1/2
+ At <a |g0(1)(1)|2> )
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Now we combine the last two estimates and use Lemma 6.1 to obtain

M—1
i< o((@07 X 1o+ 8010, )

n=0

< C At HQHLZ(O,T;E)-

Using the estimates of I, IT and I11, we have

M—0 0

lim 4 — J-T Ovpr, V) + ZQ: JJ.%‘ Oz (on1)i Outhi + GLT(LPM)l(?Z 1) ¢ (t,1) dt — 22: Jfgﬂ/)i =0.
i1 =1

(6.7)

We now use the convergence result (6.6) to get

- f RO +i£f%<m> Outps Out + f " r (6 1) v (0, 1) —Z £ [ovi-0. 09

This proves the first point of the Definition 6.2.

Next, using integration by parts w.r.t. ¢ in (6.7) and (6.8) for the ¢ € C, such that (0, z) = 0, with
the fact ™ = 0 and the convergence result (6.6), we get

2 1
> f ©0i(T,2)0;(T, z) de = 0, ¥1p € Co with 1(0,2) = 0, (6.9)
i=170

which gives
o(T,-) =0on (0,1).

This proves the second point of the Definition 6.2, which subsequently shows that ¢ € L2(0,T;H) n
H(0,T; E) solves the system (6.5) for g € L?(0,T). O

The sequence ¢); has few more convergence properties as mentioned in the lemma below.

Lemma 6.4. Consider the sequence {pnr}ven as mentioned in Theorem 6.3, and let p € L*(0,T;H) n
HY0,T; E) be the associated limit which solves the system (6.5). Then, the following convergence results
hold for a subsequence:

(a) om(0,2) — ¢(0,2) in H.
(b) 0x(ar)2(t,0) = dupa(t,0) in L2(0,T).
(©) om (&.) —em(0,:) =0 in H.

Proof of Lemma 6.4. (a) Using Lemma 6.1, we have:
loar (0, 2)3 < CllglZz gy, ¥Yne{0,1,...M -1}

So, there exists a function p* € H such that ¢ (0,2) — ¢* in H and hence in E, up to a subsequence.
Further, using the arguments similar to the one used in the proof of Theorem 6.3 to get (6.9), we obtain
2

1 2 1
lim ' L (pnr); (0,2):(0, ) de = ZIJO ©i(0,2)0;(0,2) dz, Vb € Cy with (T, z) = 0,

M=
which proves that ¢ (0,:) — ¢(0,-) in E. Thus, by uniqueness of weak limit, we have
0(0,) = p*() e A,
which proves (a).
(b) Using the estimate

1/2 1/2
FO) < [ Fz200) + £l o 1F11500, for £ € H(0,1),
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we have

T
H(?m(QDM)Q(t,O) - axWQ(tvO)Hi%o,T) = L |0z(90M)2(ta O) - ar‘PZ(ta 0)|2 dt

< JO I(ar)2(t, ) = 2t )1 0,0) [(Prr)2(E ) = @a(ts ) 20,1y + JO I(ean)2(t, ) = p2(t, )i

2
< [[(pm)2 — <P2HL2(0,T;H1(0,1)) |(enrr)2 — 902HL2(0,T;H2(0,1)) + [ (enr)2 — <,02HL2'(0,T;H1(0,1)) : (6.10)

Due to Lemma 6.1, we have

I(par)2llze (o, m2) < Cllglz200,7;8)
and [ 0¢(oar)2llz2 0,522y < ClglL20,7:8)-
Note that the embedding H? < H' and of H' < L? are compact and continuous, respectively. So by

Aubin-Lions lemma, (¢ar)2 — @2 € L2(H?') up to a subsequence. Using this result in the estimate (6.10),
we conclude

Oz (@ar)2(t,0) — 0,02(t,0) in L*(0,T) up to a subsequence.
This proves (b).
(¢) Using fundamental theorem of calculus and Holder’s inequality, we have

At

|(par)i(At @) = (par)i(0,2)* < AtJO |0 (oar)i(s, x)|* ds.

Further, integrating w.r.t. x over (0,1) and summing over i € {1, 2}, we get

loar(At, ) = oar(0,)% < At|ownr 720,806 < C Atlglr2omm)-

This shows

T

©m (,) —QOM(O,') — 0as M — oo. (6.11)

M E

Also due to Lemma 6.1, we have
T 1 0
ou (470 ) —em(0)) =l =@ lu < Clgle,
H

which says that there exists a function ¢° € H such that

T
©m (M> — o (0,-) = ¢° in H as M — 0.

Due to (6.11), we must have ¢° = 0, and hence proves (c) . O

Let us finally step into the proof of main theorem of this section, i.e., Theorem 1.11 in the following
subsection.

6.2. Convergence of the control system. The proof has been split into two theorems. The first
theorem concerns about the convergence of (Vas, Ups) to the solution pair (v,u) of the system (1.1),
while the second one deals with proving the function v as a control for the null controllability of (1.1).

Theorem 6.5 (Uniform boundedness for Vy; and Uyy). Let M € N and ug € H'. Then the functions Vi
and Ups given by (1.25) and (1.26) respectively satisfies the following uniform bound

(@) [Varllzzco,ry < v/ Cobslluo |-
() 1Unmlle 0,300y < Clluo]-
(©) 1Unmlr20,1,8) < Clluolsw-

Furthermore, there exist v e L*(0,T) and u € L?(0,T; E) such that the pair (v,u) solves the continuous
control system (1.1).

Proof. (a) Due to Theorem 1.10 the approximate control Vj;, given by (1.25) satisfies

IVatllzzco,m) = [vlzz 0.1y < Cluols-
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(b) For ke {0,1,...,M — 1}, and ¢, € H, consider the system

O — At 0z (m1 0o0}) = 77,

o — At 0z (72 0o0%) = 05T,

@7 (0) = ¢3(0) = 0,

1 (1) = ¢5(1),

71(1) Ozt (1) +72(1) dus (1) + a (1) = 0,
@k+l =¥,

n € [0, k].

Then to estimate |u**1|3/, let us consider the duality product

o) g = () (o = At duieh), 05 — Aty (22 6xg0§)>>wﬂ '

Note that since u**! € H < E, the duality product on r.h.s. is basically the (-, ->p inner product,
and so we have

<uk+1’ (PT>7.[/_’H = <(u11€+1’ u§+1)7 (3011C — Aty ('71 aw‘pllc)Npg — Aty ('72 3x¢§))>E :

Now using integration by parts, we have

2

L L
W00 = D) (L u el + AtL i Opug (%ccpf) +a At (1) ul ™ (1)

i=1

+ At y2(0) Ouiph (0) v* 1
Finally, we use the identity (1.19) in the above expression to obtain
<uk+17 907>7-y,7-[ = <uk7 @k>y/,% + Aty2(0) 5zg0§(0) ot

which iteratively gives

k
<uk+17 SDT>'H',’H = <u03 SDO >’H/,'H + 2 At 72 (0) aﬂ?@’; (0) vn+1’ (612)

n=0

Using Cauchy-Schwarz and triangle inequalities in the above identity, we have

k
[ 0] < ol + Y ALA2(0) [0203 )] o

n=0

Next, we use the trace regularity and the Hdélder’s inequality in the second term of r.h.s. to

obtain
) 12, 1/2
L2> (Z_:OAtU"+1|2> .

Using Lemma 6.1 and (a) in the second term of r.h.s. of above inequality

k
Kw“w»mJ<uwwwm+<ZAt
n=0

|0 | < Cllwole e
which gives
w3y < Cluolp, Vke{0,1,...,M—1}. (6.13)
Now, due to the uniform estimate (6.13) we get
|Un(T)ll3r < Clluolar, V7 e[0,T],

which establish the estimate (b).
(c) Let g € L?(0,T, E) be arbitrary, and let " := (p7,¢%) be the solution of system (6.1) with

or =0 and g"*t 1= (g™, g5") given by
1 tnt1
i (z) = KtJ gi(t,x)dt, me{0,1,...,M —1}, forie {1,2}.

n
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To get L%(0,T; E) bound for Uy, let us consider

T 2 1 M—1 R
| <UM<t>,g<t>>Edt—Z{A; | w@gt@dz+ Y ac (‘Li;%)gy%m}
t

i=1

ul(
— 0
2 1 1
0|5 [ d@a@any X a [ @) d

i=1

=:A+B+C.

Using the differential equation of (6.1), and performing integration by parts, we get:

Z{ [ uttet =)o [ wtestaneh)}
a4l

1 ! ! 1 0 At 1 0 t 1 0
=3. uj ) + At L Opt; Oy ¢ + 7%1(1)@1(1) + 772(0)1) 0z3(0)

M\H

A

Next we use (1.19) in the above identity to get

1
A= 5 <u0a§00>7{/77.[ ( )’U a$302 -5 ZJ‘ ’LL SDZ

Following similar steps as in the case of A, and noting the fact that u”*! € H, B can be simplified
to get

M1
ZJ uj oy + 'yg 0) Z At v 0,5(0).
i=1 n=1

Again we follow the same steps as in A, keeping the regularity of {u"},e[0,a7—1] in mind, to get

M—1

1 1
C = 5 <u0,<,01>H,,H + 5’}/2(0) Zl At " 0,05(0).
Summing these expressions together, we get
n+1 4 U" At
f Un(t), 9(t))p dt = Z At ( ) Ozp3(0) + 7711 72(0) 0:£5(0)

+ %<u0, o0+ @1>H/7,H . (6.14)

Using summation by parts and the fact @™ = o = 0, the first term of r.h.s. can be rewritten

as
M—-1 n+1 M— n+1 n
+ " o O + 0, %(0
}: ﬁt< >3x<,02 = 75(0 z: +1< P2 ()2 902())

At

~ 5 0 v! 2.6(0).

Now substitute this identity in the expression (6.14) and recall the definition (1.25) of Vi to get

1
J Unm(t),g(t))pdt =~2(0 J Var(t) 0z (<PM>2(t>O)dt+§<U074P0+801>H/77_L

T
1
= (uy, S00>H,)H + ’72(0)L Vi (t) 0z (@ar)2(t,0) dt + 5 (o, o' — 900>H,7H
(6.15)
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Using Cauchy-Schwarz, Holder’s inequality, and the estimates from Lemma 6.1, we get

< C (ol + IVarl ooz Il s

J Om(t),9(t))pdt

which gives

U202,y < € (Il + IVarl aoury ) -
Finally using the estimate (a), we get
1Unt | 220,78y < C |ug|#, for some C > 0.

Now, due to the uniform bounds of Vj; and Uj; obtained above, there exist v € L%(0,T) and u €
L?(0,T; E) such that Vay — vin L2(0,T) and Up; — w in L2(0,T; E), up to a subsequence. From (6.15),
we have

f <UM >Edt <u0»30M( )>7-L”H 'Y2 J VM (9 (QDM)Q(t,O)dt

5 G0 oar (A = a1 (0, Vg s Vg€ FO.TSE). (616)

Thus, taking limit as M — oo in the above identity and using Lemma 6.4, we get

T
f (u(t) >E dt — (ug, ¢(0, ')>7-L’,?-L —2(0) JO v(t) Oxpa(t,0) dt = 0,

where ¢ is solution of the adjoint system (6.5). This proves the pair (u,v) solves the system (1.1). O

The next and final theorem is to show that the limit function v serves as a control for the null
controllability of the continuous system (1.1).

Theorem 6.6. The limit function v of sequence Vi is a control for the continuous control system (1.1).

Proof. Let u and ¢ be the solution of the control system (1.1) and its adjoint system (1.5), respectively.
Then, using the differential equations of u and ¢, and performing integration by parts w.r.t. =, we have

Ol ), 9t g0 = 00) 2pa(t,0).

Further integrating w.r.t. ¢ over [0,T] we get
T

<u(T>7 L)0T>7-[/,”H - <’LL0, (p(O, ')>H’,7—L = J;) U<t) aa:()02 (ta 0) dt7 v YT € H.

Now, note that the null controllability of the system (1.1) is equivalent to the identity

T
J 0(t) Dot 0) dt + (g, 9(0, 7)) 30 = 0, ¥ pr € H. (6.17)
0

Thus to prove the theorem, we shall prove that v satisfies the identity (6.17).
Let o7 € H be arbitrarily chosen. For n € [—1, M], let ™ = (¢¥, ¢%) be the solution of system (6.1)

with g"*! = 0 and terminal data 7. Then, from the Euler-Lagrange identity (5.3), we have
M-1
D1 AL 3,05(0) + (AL) (3,8™, daipry , + (yo, s =0, VoreH, (6.18)
n=0

where M is the minimizer of the functional Ja; given by (5.2).
Note that {ap"‘l}ne[[o’M]] solves system (6.1) with g"*! = 0 and terminal data o™ ~!. Thus, using the
identity (6.18) for o7 = @M ~1 we have
M—1

D) Ao apH(0) + G(A) (0., 0™ T+ (Yo, 07 g 4 = 0. (6.19)
n=0
Adding the identities (6.18) and (6.19), we have

M-1
D Attt (835903(0) + Ouips (0 )) + ¢(A1) (0™, 0™ + 0™ L 4 (yo, ° + 074 = 0.

n=0
(6.20)
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Recall that

M—1
Var() = 3 Loy
n=0
and define the approximation ¢y as
M—1
t— tn) tn 1 — t) —
om(t,x) = Z 1[tn,tn+1](( AL <p"+( +At " 1). (6.21)
n=0

Using these approximations, we have

T R am M_’_am M-—1 O+ —1
J vMa)ax(soM)Q(t,mdt:—¢<At><amgoM, ot G > —<yo,w> (6.22)
0 2 B 2 WoH

Finally, using the convergence results mentioned in the lemma below, we get the desired identity
(6.17). (]

Lemma 6.7. Let ¢ solves (1.5). Then the following convergence results holds up to a subsequence.
~M M M—
(a) ¢ At <aac , Oz @™ 4 Opp 1>E—>0 as M — oo.
(b) @M=L() — o7 (-) in H as M — 0.
(c) @ ( ) (+,0) = Oxp2(+,0) in L*(0,T) as M — oo.
)

(d M—wp(O,-)inH&sMaoo.

Proof. The proof of this lemma follows easily using the property of function ¢ and analysis similar to
the one used in the proof of Lemma 6.4.

(a) Using Cauchy-Schwarz inequality and the uniform estimate (5.9), we have
’¢(At) <(9z 693@ + axQOM 1>E ‘ o(At) H@MHH H(p + QDM 1“7—[

<2 V C’obs V ¢ At ”y0|

Note that ¢(At) — 0 as M — o0, and hence we get the result.
(b) Using the equation, and the estimate (6.3) we have

It~ el = e (20 0l 20 (n 22l ) |, < VATlpre

This shows that ™ ~1 — ¢ in E. Moreover, due to the uniform bound || Y|y < Clor|x,
we can conclude =1 — ¢r in H.

(¢) The proof of this is similar to the proof of (b) of Lemma 6.4.

(d) Using the argument similar to the one used in proving (a) and (c) of Lemma 6.4, one can easily
get

o ol

e (0,) = ¢(0,-) in H,
@M(At,-)—gpM(O,-)—\O in H.
Thus, using the definition of ¢, given by (6.21), we get

() + () = om(0,) + oar(At, ) — 2(0,) in H.
This completes the proof of the claim.

APPENDIX A. DISCRETE CALCULUS

For any continuous function h defined over R, we introduce the following continuous operators, with
similar notations as in the discrete case,

tTh(t) := h(t + At), t7h(t) := h(t — At), and D;h := X, — (" —t7)h.
Lemma A.1 (Discrete Product rule). Let f and g be continuously defined function over R. Then, we
have
Di(fg) = t"fDig+ Dif t™g. (A.1)
Di(fg) =t~ f Dig+ Dif t*g. (A.2)
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Using the above formulas with f = g, we obtain the following identities

tTfDif = %Dt(f ) + g(th) : (A.3)
I = 5D - %(DJ) (A1)

Proof. We compute

Df9)(7) = 3 (F9)(7 + A~ (F)(r — A)
= 1 ((F9)(r + B1) + f(r + At)g(r — AD) — [(r + Ag(r — Af) — (fg)(r — A1)
= J(r+ A1 (g + A8 — g(r = A8) + 1 (f(r+ A0) = f(7 — At)) g(r — A1)
= (% 1)) (Dig) () + (Do f) () (57 ) (),

— f(r+ At)g(r — At) by f(r —

which proves (A.1). Similarly, replacing the term f(7 + At)g(r — At)
U

At)g(T + At) — f(r — At)g(T + At) in the second line, we get (A.2).
Lemma A.2 (Discrete integration by parts). Let H be any Hilbert space.
g T = M M+3 0,1 P D
f <thvg>:_J <Dtgaf>+<f Y +§>_<fvg§>a erHPageH ) (A5)
0 0

T T _
j£0 (Dif, t7g) = - j£0 (4 £, Dug) + (FM g™ — (0, g% Vf.ge H, (A.6)

where we use the common notation {-,-) to denote inner product and duality product (depending on the

situation).

Proof. For f e Hf7 geE Hﬁ, we have
“FZ<th,9> Z <th )it gnts >
< fn+1 >gn+;>
< _gntE g g z >_<f0’gé>+<fM7gM+;>
g§>+<fM7gM+§>—JOT<Dtg7f>.

E

I
/l\ ”Mi ||DﬂE ﬁ
R

This proves (A.5). Similarly, one can prove (A.6) as well.

APPENDIX B. ESTIMATES ON WEIGHT FUNCTIONS

Lemma B.1 (see Lemma B.4 of [4]). Provided &% <1, we have

2

(tTpi) (Dyry) = —7(t10 ) + At (53;4 - 54TT6'> Ox(1), forie{1,2}.

Proof. For any sufficiently smooth function f, we have the following n*® order Taylor’s formula

n—1 k 1 —a n—1
flasn) = % 190 % o [ S 1+ an)da.
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Using this formula for f;(¢,2) = e *®(®) wrt. ¢t and y = At with n=2, we get
e~ st+AN _ o—s(t)n

At

1
= —s'(t)ym e 4 Atf (1 — a)es(tradn [(s'(t + alt)n;)? — s"(t + alt)n;] da
0

1
= e T [ — 70 (t)n; — Atf (1 — a)e TOETAD+TOOM L0 (¢ 1 o At) n; dov
0

1
+ AtJ (1 — @)e T0UFAmFTO0m: 12 0'(t+a At))2 n? da].
0

. 1
Using the facts ||1;]co(o,17) = O(1) and tg[lc??l(“] oU) < ST for j = 0,1,... in the above expression,

and choosing the parameters satisfying At 7(7262)~! < 1 gives the required result. O

Lemma B.2. There exists a constant C > 0 independent of the discrete parameters §, At, and control-
lability time T such that

At

|D (W) < kT(t76%) + Csiraparrs: k=12 (B.1)
_ At
|tT(0")| < T(¢t 0)2+C§3T4. (B.2)
At
0< Dy(0) <CT?t (%) + 054T5. (B.3)

The proof of this lemma is elementary and can be found in [4, Lemma B.5].

APPENDIX C. PROOF OF LEMMA 3.3

Proof. The proof has been divided in few steps for the ease of reading. We do the estimation for ¢ € {1, 2},
and at last sum the estimates over i € {1,2} to get the desired estimate (C.7). First recall that

;k = {(Agi);, (BQi)k>L%(Q) . 1e{1,2}.

Step-1: Estimating the terms with no discrete operation:
e Using the integration by parts, we get:

Iy = =27)¢; tFJQ i (t_9) (%‘ Ox (t_Qi)) O (%‘ Oz (t_Qi))
=T\ ij(tW) i it (8~ @) — T jtoT(tW) 14i hz’ax(t_qi)‘2‘l

e Next using integration by parts and the fact that ¢/*(0) = 0, for n € [0, M — 1], we have:

Iiy = —27 03¢ ﬂ (70 O4l700) 20l (00)
T

_Jiy 4 2702 ij(t_Q) i 17 O (6= i) |2 — 27022 jﬁo (£70) (67 :) (1) 0 (£~ 1) (1),

where
T =20t f[ @0 (uin ) (6700 e e a0
Using the facts v; € C1([0,1]), and g = Ac;p; we have
il < o]0 a) (ua(s ).
Next we first use the Young’s Inequality and then the estimates (t~60) < T4 (t70)3, u; < us to get

|Jis| < CorTHA jﬁf 2t 0)3 (7 q;)% + eTA? jt_[ i (£70) |v: 0-(t~q:)|?, for some e > 0.
Q Q
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Choosing the e sufficiently small, we get

Ii, = CT)\?c QJEJ (t70) i |vi 0 (t~aqi)| C’T)\4T4j£f (e 0)3 [t ql?

— 27222 (vi(1)) uz(l)} (t70)(t7qi)(1) t™ (0xqi)(1).

0

e Again using integration by parts, boundary conditions on ¢ and Young’s inequality, we get
I, = —213)\3¢¢ jq (t70) 1 ~? (t_qi) O (t_qi)
Q
T
= e |0 (suti? 2t o) el N (0 ) u (1))

0

Further, using (3.9) and the fact that «; € C1([0,1]) such that v; > Vi > 0, we get

I, > 373/\4c§jq (702 u y2 [t~ ] — O3\ jq (t70)%u3 (t~¢;)?
Q

-7\ ?j% (£70)° (ua())* (m(1))* |67 aa(t, I

e Next, we have
Iés = 9273 )\¢ cf jﬁjQ(tG S;Lf 'yf |t7q,-|2.

Step-2: Estimating the terms which involve discrete operations:
e Using integration by parts w.r.t.. z, and (A.4) we get

jq (67 i) Di(qi)

T
B _ 1
—«fj Yt (6’Iqi)Dt(6Iqi)+~f Yt~ (02qi) Diqi |z:0
0

%
Ill

M—-1

= _7JEJ‘ Vi Dt |aa:Q'L jEJ"YZ |Dt zqi | + Z z( wqi) (qanrl q?) |i:0
n=0

[ piary s f v @l
Q 0

In the last step we have used the non-negativity of second terms and the boundary conditions ¢*(0) = 0
for n € [0, M — 1], along with the fact that ¢ (0) = ¢; ,/(0) = 0 as ¢ = pq € F. Further, evaluating
the time integral of the first term, we have:

\%

1 T
2 _
—CJ (020!") +j£ Vit (%24i) Degi |,
0 0
e Using (A.4), we have

I3 = X\ ZJEJ £70)2 13y (v~ a:) (Degs)

- At i i
§T2/\26? {J (t G)ZM?WiDt(q?) — 77'2/\26?{ (Dyg;)? =: Jo1 + K54
Q Q

Now, using the discrete integration by parts (A.6), (3.7), and the fact v; = Ymin > 0, we have
Ji__12/\22 2D (02) (1T g )2 }2)\221‘2 9M2 M2_6.02 0\2
21T 75T AG %Ni H(0°) (7 @) + ST NG | vk ( ) (qz' ) ( ) (‘Iz)

1222 2\ (4 + 2)‘2 2( M2 12221 2(00Y2(,,0\2
Ne %uth(G )&t )+ C— ui (@) = 5% | wipd (0°)(a7)"
0 0
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Further, using the estimate (B.1) and ttq = t~¢ + At D;q, we can estimate the first term of the above
estimate to get

1
2>\2 23[] - Df 92 t+q1)

<072/\2jq Ml[ (t76)3 T%&l](t )% + C(At)? QAQULJ Mz[ (t70)3 + T%;] (Dyqs)?.

Hence, we get the following estimate on I3,

I3y > —Cr2A°T ol 2(t7qi)?
21 T N’L t Ql) tT654 /u‘z (t Q1)
— C(AY) T%Wﬂ 12(670)3(Dygs)* — C At3;624 ﬂ 12(Dyqi) —CAt72A2j£ (Dyq:)?

O L) - gt [0 @)

Finally combining the third and fourth terms, and using (3.7) and the fact that At/T < 1 in the combined
term, the above estimate can be rewritten as

I > —Cr2\2T 2(6-0)% [t gs|? — CAEL 2 O(At 2 TN 21 Dyqil?
21 = —ULT Q:uz( ) |t qz| - T654 :uz ‘t qz| ) S4T5 Mz' tql'
212 A 2 2 2 ! 2 0
— CAt2 N2 H | Degil +C 2gM)? ~ TA S| viu? (0°)%0)
0 0

e Using the discrete product rule (A.4), we get

TAt
131 ff +9 nzt q: th’L jtf 771 +0 jﬁj 771 +0 thl)'

Further using discrete integration by parts (A.6), and the estimates (B.1),(B.2) of 6, we have:

I} = iﬂ w0 = § [ @@+ 5 [ @) -] e
o ﬂ m( £ 0)? 54AT5> t7g;)? — TAtjq m( ) +C(53T4>(thi)2'

Lastly, using the relation (3.4) we get:

At
I31 = CGAKTTH Mz t (h (;T5H 772 t qz CTAtTﬂ 7’1 th'L)
*C ﬂ ni(DtQi)z
53T4 o

e Using integration by parts w.r.t. x, boundary conditions given by (3.12), and the expression for " and
A
u', we get

I32 = 727’ )\CZ fJ‘ +0 ,uz i '77.(1: ql) (%(tf%)

= 72)2 Q{J (€T (70 s mi vi (v~ ql 2X\2¢ QTFJ (o) (¢ 9@1 v (™ qz)

i J[f (£70) (67 0) s mi vi(t ™ i) — 72/\c"j£ (E* ) (&™) i mi it @) |,

0
Next using the estimate (B.2), relation (3.4), and the facts that g; =1 on [0,1] and A > 1, we get:

At _ _
il < o | (16007 + 55 ) (0 Pl e o

roraelf (1602 + Sk ) ol n 3l
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Thus, we have
i _ _ T2A2AL _ _
I3y = —CTQAzTekKjﬁJQ(t 0)° it il _CWH (7 0) (Imipsi + i) [t~ @il

T
- cmjﬁo (T<te>2 + 5fT4) 676 aa(1) (1) 3 (D] [£7 (1)

e Using (B.2), the last term can be estimated as
il = =22 ] (00 Ot a)
TEN2AL _ _
< Cr2T ﬂ &0l [6 i + O S ﬂ@(t 0) s | |6~ 2.

Thus, using (3.4) we get

. _ —_— T)\QAt
s> et ] ot ol - Tt [ ot

Step-3: Combining the above estimates:

(a) Terms corresponding to 0, (tg;):
Collecting the first terms from the estimates of I}, and Ij;, we have

(7)‘2(31')2 + CT}\2(Cz‘)2) j[fQ(tﬁ)uihi Bm(tfqi)|2 > C7)\? ij(te)Hihi 5x(t7Qz')|2-

(a) Terms corresponding to (t~¢;):
Collecting the terms from the estimates of Ii5, I3y, I35, I3, Ii;, Ii,, and Ii;, and using 7, A, eM >
1 we have

(= mA Tt 4 PAXE = A PANIT — r T - 27202 ) ﬂ 1 (£70) [t gl
> (7’3)\4 — 3N — T - TQAQe’\KT ij w2 (t70)3 |t g2
Next, for A > Ao ; >> 1 we have
(7N = 7207 = I P2N2ART) 5 O (7 - AT 22K T,
and for 7 > 75, T* with 79; >> 1, we have
I — TN > 3Nt — iT2>\4 > O3\t

70

Hence, we obtain

<— TATA 4 730 — 303 — 7220N2T — 7T — 27202 AKT jq (t70)* 1t q)?

> C(’TB)\4 — rINZAT jtJ p2 (870)3 ¢
Q

Now, we sum up all the above estimates to get a lower bound for (Ag;, Bg;) and use it in (3.17) to get

1 _ _
HF 122 = IIquHLz +5Baills ) + CTN (87 Omilvide (7 a)
2 (@) 0
+ C«T3/\4 j[J uf(t_9)3(t_qi)2 _ CTQ)\QTe)\K j[f (t‘&)%f |t_Qi|2
Q Q
2/\2 1
+05 Lu?(qf)M—C(Wi+Xi+Yi) s (C.1)
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where

W, = f 0rgM)? 4 X2 f 12(0)2(¢0)%, (C2)
At T2)\2 AtT _ 2N\ At _ _
xo= S ] et G near s Tt ] e omiear @
2(; ;6 H 12 (Dyg)? + At T2\ jLJ (Dyq;)? + TAtqu n:i(t~0)%(Dyq;)?
63T4 J‘J 771 thl ) (04)

T 2 T 2
zi:mijfo (t70)a(1) (7:(1))? (+7(02q5(1))) fmcijf (t70)ua(0) (7:(0))* (£ (224:(0)))

0

+2¢2 (vi(1))? TAQMi(l)j[O (t70)(t7 ) (1)t (02qi)(1) — j& Yi(1) £ (02qi) (1) Dygi(1)

T

Frehimn) | (16024 ) 0 w2
T

+ T3A3c§<ui<1>>3jﬁ (£70)° (4(1)? (v~ )2(1). (C5)

0

Step-4: Estimating the |F;|3, @'
D

Recall the expression of F; from (3.16), and then use triangle inequality to obtain

2
Il 0 < € e (Dees v aeuate o)), o + O ] 0D ar

_ T 7'2 2
+ O\t 4jq V(1) (27 q)? + C(At)? (53T4 - 54T6) Ox(l)jq (t7 @)’
+ C(AL)? QJEJ. (t70')*n? (Dig;)?

<0H(t77'i)(Dt‘pi+ax(7iax( @))) 2L2( +C’7'2)\4T2jq (t70)°u3 (t~q:)?

+ C(At)? <56T;8 5;;12)@ Hf (t7gi)? L(ql) r(qz)]

4 2
verr@ f[ ot war oS [ wr @0

In the last inequality, we have merged the second and third term together and then used the facts
(760)2 < T2(t=0)%, pu; > 1.

Step-5: Combining the estimate of |[F;| .z (o) with (C.1):
Using (C.6) in (C.1), and absorbing the second term of r.h.s. of the above inequality in left, we get:

1 1 -~ _ _ _
;\Aqiu%m+§\|qu\|%%<Q>+cT3A4ﬂ e 0P (e a)? - e O ol

2)\2 1
+CT)\2<-£[ (t70) |y 0 (£~ qz)|2 +C J u?(q?)M —7Z;
0

i%(@) +oaey ((WTTS ' 55:1;) (jq (a0 + fl(q%2>

At 4 2
+ CTQ(At)qu (t=0)*(Dygs)? + C 678 j£ (Dyq;) +C(W + X; +K),
Q

<C H(tfm) (Dt%‘ + 0z (Vi ax(t7<ﬂ)))

for A = )\()71‘(’}/2') > 0,7’ = T()_’i(T2 + T)

Step-6: Summing the above estimate over i € {1,2}:
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Define g := max{Ao; : ¢ = 1,2} and 79 := max{7(y;)o; : ¢ = 1,2}. Now, summing the above estimate
over i € {1, 2}, we get

2
> (Aqili%@) +1Bail7, () + 7N H P (702 (v~ q;)? — 2NN HQ(tamg‘ It~ q?
=1

+TA2]q (7 0)pilvi0e (7 q)” + T4 f N?(QE)M—Zi>
0

<C Z (’(t_ri) (Dtgoi + 0 (i 590(17_80))) .

LQ(Q)+V%+E+SE>, (C.7)
D

for all 7 > 79(T? + T), A = X\o and for all § € (0,1/2] and At satisfying the condition ;352 1. The
expression IT/,', )A(; and }71 are given by

2 4 1
W; = W; + AtQ(T+T>J g2,
( ) 56T8 58T12 0( )

+(ar? (;FS + 5;;12) ﬂ (74

At42
Y Y-l—T At jtj t 9 th o578 jr“ thz

Let us fix A = A\g. Then by ignoring few positive terms from lLh.s., using v; = Ymin > 0, 4; = 1 and the
fact 7 = 79 T?, the above estimate (C.7) can be rewritten as

2
Z<||Bql|L2(Q)+T jq (t70)*(t~q) +qu (t70)]0.(t~q))* + J M| Z>

=1

12.(0) + Wi + )?i + ﬁ), (08)
D

<Oy, (‘ (67rs) (Dispi + 00 (3 (s *eo)))

1=1

where Z-, Wi, )A(z and 571 are nothing but Z;, I,/I\J/i, )?; and }71», respectively with A = )\g in their expression.
Claim: Let ¢y > 0 be any real number. Then for any At > 0, and 7 > 79(T? + T) satisfying the relation

3 At -
S min{T4, 76} =
we have the following:
X, < e ﬂ (t75)° [t~ ail?, (C.9)
Q
and V; < € jq (t7s) 7! | Degi)?. (C.10)
Q

Proof of the claim. Let us first write X; and Y; as

5
SN R, T YT

Jj=1 Jj=1
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Now, using the fact 1 < = s(t), we can estimate the X” as follows:
S Atr? 12 < Atr?
L4 71 < 54T6 ’L 54T6 t S t Qz 6O t S t qz

e AtT

(54T5 t s t ql < € t 5 t qz
e Att
Xis < 53T4 t S t qZ < € ‘t S t QZ
A At 2 2
i4\ 56T8 {J to 5 t QZ GOfJ‘ t 8 t Qz
/\ At 2 4
15 < 58T12 {J t 5 t QZ GOfJ. t 8 t Qz

Thus, combining the estimates, we have

5
Y Xij<e H (t78)3(t )2 (C.11)
j=1 Q

Next we estimate the Y” terms, and in order to do so we use the fact that |n;| < Cp? and (t76) < 555.

o Vi < A(Yf;sz[J- D) < %ﬁ;gsjq pi (67 s) " (Degi)? GOjEJ- pi (67 8) " (Degi)?.
ﬁzéAthjq M?(DtQi)Q\ 5T2 jq Y(Digi)? €qu 17 (67 s) " (Degi)*
Vi mtﬂ B2 (£ 0)%(Dugy)? —mtﬁ W26 0) r(s7s) " (D)’
62?2 ]LJ 12 (t7s) " (Dyg;)? onq 12 (t7s) "N (Dygi)*.
= S ] wroar = S w0’
< ?:;GQJﬁJ t7s) thl eojﬁf t7s) thi) .

Z(At)quQ(t_O)‘l(thi) _ (A ﬁ (t=0)57(t=5)"L(Dugs)?

< ?}t;m?) jq (t7s) Y (Dyg;)? onq (t7s) Y (D)%
0 [ o <95 ] e o 0

On combining these estimates, we get:
€ H (t78) " (Digi)*. (C.12)
Q

Thus, the estimates (C.11) and (C.12) proves the claim. d

>

® Vi =

-
~

Finally, the claim reduces the estimate (C.8) to
2
> <qu|Lz R i q1|2+7ﬂ L s —z)
i=1
— 2 =
< C)\o H t T3 (Dt% + ax (7@' ax(t @))) 2 + Wz
i=1 L3 (Q)

Ly, 2 (ﬁ 9 +ﬁQ<t—s>—l |thi|2>, (C.13)
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for all 7 = 70(T? + T), and W?”TG} €o. This completes the proof of Lemma 3.3. O

APPENDIX D. PROOF OF LEMMA 3.4

Proof. To begin the proof, let us first club the boundary terms together as

Now, we aim at simplifying these Ji’s for 1 < k < 7.
e Using the boundary condition (3.12), J; can be rewritten as

5= B 2 a)0Da)

T 2
—f ( —aea () + oo X enn() i) 0) (tq1><1>) (Dia)(1).

0 i=1

Next, using the product rule (A.2) we obtain

5 =af [souaian -5

2
+7ho (Zcm ) n((E0) | 3DAAD) - 5 (D (VY|
-2 nuaa j(z (1 )} {EODUAEW) + B,

— At {‘;‘jﬁo (Dyqu(1))2 dt — %O (Z‘i cma)) jﬂo Ml(l)(t‘@)(thl(l))th} . (D1

Further, expanding the integral in first term and using discrete integration by parts (A.6) in the second
one, we get

n==5( ()" (2)")

2 T
v (Z cm(l)> (1) l‘]ﬁ (DA (@ (1)) + 6™ (a1 (1))~ 6° (1))

0

2 T
- _TT/\O (Z Ci%‘(l)> ”1(1)j£ (DtQ)(tJrCJl(l))z — Wi+ B,

(Dan(1)?|

where

+E

- (0 - )72 (Speen) o - ')

Now using (B.1), and the relation t*q; = t~q; + AtD;qi, the first term can be further estimated as

2 T
%\O (Z Ci%‘(l)> jﬁo p1(1)(D:8) (" q1(1))?

< orjfT p1(1) (T(t—e) + 053T4) [(t_ql(l))2 + (At)2(th1(1))2].

0

Finally using the above estimate along with the fact 62 < 272603, we get

T

o <u1<1>>3j£ (6 0) (6™ 1 (1))% — I, — By,
0
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T 2 T
Ey = At {_;jto (Dyq(1))* dt + %\O (ilcm(l)> jﬁo u1(1)(t70) (thl(l)f dt

T

A T
+Cﬂ1(1)527?4 fo (t_ql(l))2 + CTAt)\()/dbl(l)f

0

_ At 2
<T(t 0)% + 53T4> (Dega (1)) }
e Recall the expression of Jy

2 T
J2 = —’7'>\0 Z C; J’O (tig)/,LZ(].)(’)/1(1)81(137(]2)(1))2 = J21 + J22.

Now, using the boundary condition (3.12) Jo; can be rewritten as

T 2 2
Jo1 = —TXo jﬁo (t70)ui(1) {—Of (t7q)(1) - (72(1'»7(%(12))(1) + 7o (Z Cz‘%‘(l)> pa(1) (£70) (tlh)(l)} .
Using (a + b+ ¢)* < 3(a® + b + %), (a + b)* < 2(a® + b?) and 6 < T*63, we have

T

[l <3007 f (€0 (i (D) (& (D) + 370 |- (0D (1) (@oaa(1)

2 T
+6rNg (2 c?ﬁu)) f mre e am?
i=1 0

1 2 3
= J + I 4 I,

Next using the fact ug(1) = p1(1), we have

Jos = —TAoCa jfT(ta)m(n(wa) (amt*qz)a))g.

0
e The term J3 can be written as

2 T
J3 =TAo Z Ci jﬁo (t70)ui(0) (%(0)@(137%‘)(0))2 = Ja1 + Jso.

Then using the fact that ¢; = 1, we have
T

J31 = TAo Ml(o)jto (t70)(72(0) ax(tiql)(o))z > 0.

The second term Jop can be further estimated as

T 2 2
| J32| < CTua(0) j£0 (£70) [t~ (r2(0)|" |02t~ 2)(0)|" .

e Now, recall
2

T
Jo= 21N ) ¢ (%(1))2][ pi(1) (£70) (£7 i) (1) (02¢i) (1) := Jar + Jaa-

i=1 0
Then, using the fact § < 726? we have

T
| < 2rAf ¢ (m(1)* T2 ]EO (1 (1)) (€70~ ) (V)] [+ (Qoqn) (1)].

Let € > 0. Using Young’s inequality and (3.12), we have

T T ) )
] < jf 11 (1) (570) 1 (1) 5 (2eq1) (D] + Cor T jﬁ (ua (1)) (5~ 0)° |5~ aa (1)
< cjf i1 ()& O)a(1) 8 (ag2) (D] + Cer® (mu))?’jﬂo (- 0)° [t g (1)

T

4 3 — 3l — 2
O (1)) jf (- 0)%qu(1)]

1 2 3
= JW 4 g2y g®)
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Similarly, for € > 0 noting the fact ¢7'(1) = ¢4 (1), the second term of term J4 can be estimated as
T

T
al < er | uaU(E ) (e @)W + Crrt | (1) 0w
0 0
= J I
e Using the facts p1(1) = pa(1), and t7¢1(1) = t~¢2(1) the term J5 follows to
T

Js = 73 (~et n (D) = & (2(VF) |- (670 () (6 (1))

0
e Again using p1(1) = p2(1),71(1) = n2(1) and t~¢1(1) = t~¢a2(1), the sixth boundary term can be

estimated as
T

el < CTQTM(Um(l)jﬁO (+0) (- (1)

e To estimate the last term .J7, we again use the boundary condition (t7¢1)(1) = (t7¢2)(1) to get

5 At r _ 2
|J7| < Ct 57 (t70)(t (1))
0

We now combine the similar terms from above estimates together.
(a) Terms corresponding to the derivative 0, (t~q1(1)):

Looking at the leading terms, we have:
T
Jog — Jé? — ( — TNy — BTAO)ul(l)jﬁ (t70) (72(1))2 |am(t_q2(1))|2.
0

Using —cy = (1—61]0) > 6, we have

Joo — JQ(?) > 3T\ ,ul(l) (’)/2(1))2{0 (t_9) |6m(t_q2(1))|2.

Thus for sufficiently small € > 0, all the boundary terms corresponding to 0, (t‘ql(l)) can be
combined together to get

T
Jog — I — g — gD > ijf (£70) [0 (8~ g2(1))]*. (D.2)
0

(b) Terms corresponding to the derivative (t7¢1(1)):

Again looking at the leading terms, we have

‘ 3 T 2
Js — J5 = M72A3 (1 (1)) jﬂo (t70)% [t qu(1)],

where

M = (= 63) (u@)” =70 (0)°) = (P - 72D ).

So, using (3.1) we have

T
3 _ _ 2
T = I =% )’ (& 0P,
0
Now, lower order terms can be combined together as
T
I=J) = JP I —JD + e = —CET3J£ (£70)? |t~ qu (1))?
0

— Crmax{T? T jﬁoT(tG)?’ [t~ q1(1)?

T
—CTQJL (£=0)% [t~ g1 (D)2

0
Thus for sufficiently small and € > 0 and 7 > C max{T?3, T*}, we have

T
_ _ 2
Y SO (O U ) LM ) Ry ARy A CTSUL (t=0)°|t~a (1) (D.3)
0
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Finally, we can conclude the following

T T
- Z Zi>-W,—FEy + OTJE ) |ax(t*q2(1))12 + CT3JL (t*9)3]t*q1(1)|2
i=1 0 0
r o _ 2 _ 2 5 At T _ 2
—Cr . (t70) ‘t (rg(O)] ]ax(t cpg)(())| - CT 5T |, (t 9)(t ql(l)) .
This completes the proof. ([l

APPENDIX E. A TECHNICAL LEMMA

Lemma E.1. Let f € L*(0,T; E). Define for M € N,

M—-1

= 2 1[tn;tn+1)fn+l(x)7

n=0

1 [t
7J F(tx)dt, ne{0.1,..., M —1}. Then,

where f"(z) = A7
t

M—-1

T
(a) f ul = 3 AP < f 2.

fo (Ut — 1) (6), (Y dt

which implies

< CVAL|Y| 2050200, Y € L2(0,T; E),

far — fin L*(0,T; E).

Proof. Using the expression of f**! and Hélder’s inequality, we have

tnt1
n+1|2 < i 2
’f ’ ~= At . |f‘ 9

which on summing over n € [0, M — 1] gives (a).

Let us now prove second part of the lemma. Note that for ¢ = 1(44)(t) " (z), where ¢)* € E, a €
(tp,tp+1) and b€ (t4,tq41) for some p, g € [0, M — 1] with p # ¢, we have

_EJJ (fvr — it z) i (x) dedt
=§ff (nt = Dilt ) v o ddeZLHJ (Fat = ilts ) 7 (2) dar

+ZJJ (far — F)ilt, z) ¥ () da dt.

Note that the second integral term is 0. Further, using the definition of f,;, we have

J0T<<fM—f>< ) >Edt—;‘1jfp+l (AtJp+1f*(8,$)ds—fi(t,x)>wf(x)dxdt

JL ( f fi(s,x)ds — filt, x)) G2 (x) da dt.

Next, we use Holder’s inequality in each of the four terms to obtain

T 2 1
|| = v ppar < 3 | VAIIACa 0+ D, 10 )0 @) do

0
< CVAL 9] L20,322(0,1)) -
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no

The above relation is true even for simple functions of the form ¢ = Z L(a, by ci®" (). Finally, using the

1

fact that simple functions are dense in L? space, we can conclude

T
fo (ot — £) (60t ) pdt | < OVAE Y]z omizoy. Vo € L0, T E).

Hence, fy; — f in L?(0,T; E), which completes the proof. O
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