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Abstract

Large Language Models (LLMs) have recently gained popularity, but they also
raise concerns due to their potential to create harmful content if misused. This study
introduces the Query-Response Optimization Attack (QROA), an optimization-
based framework designed to exploit LLMs through a black-box, query-only
interaction. QROA adds an optimized suffix to a malicious instruction to compel
the LLM to generate harmful content. Unlike previous approaches, QROA does
not require access to the model’s logit information or any other internal data, and
not relying on any human-crafted templates, operating solely through the standard
query-response interface of LLMs. Inspired by deep Q-learning and iterative token-
level optimization, the method iteratively updates tokens to maximize a designed
reward function. We tested our method on various LLMs such as LLama2, Vicuna,
Falcon, Mistral, and GPT-3.5, demonstrating that it can achieve an Attack Success
Rate (ASR) over 80%. This study demonstrates the feasibility of generating
jailbreak attacks against deployed LLMs in the public domain using black-box
optimization methods, enabling more comprehensive safety testing of LLMs. The
code is made public on the following link: https://github.com/qroa/qroa

1 introduction

In recent years, the emergence of large language models (LLMs) and their rapid improvements
([22],[29]) has marked a transformative period in the fields of natural language processing, text
generation, and software development. While the utility of these models is undeniable, their potential
for misuse has surfaced as a critical issue. Studies have highlighted their ability to produce offensive
content or be manipulated into performing undesirable actions through so-called "jailbreak" prompts
([31]; [32]). Such weaknesses gave the impetus for the development of alignment strategies to
mitigate these risks by training models to avoid harmful outputs and reject inappropriate requests
([23]; [4]; [16]; [40].

Despite these efforts, recent advancements reveal that LLMs remain vulnerable to hand-written and
algorithmically generated attacks that cleverly bypass these protective mechanisms ([5] , [1]). This
vulnerability is particularly alarming given the models’ widespread integration into commercial and
private sectors, with significant security implications.

A notable advancement in jailbreak attacks on LLMs is the development of token-level optimization
methods. In these methods, a specifically optimized trigger is appended to a malicious instruction
to compel the LLM to respond in a desired manner. For instance, the Greedy Coordinate Gradient
(GCG) optimization algorithm proposed by [41] leverages the gradient of the objective function to
update the trigger one token at a time. However, GCG is effective only in "white box" scenarios
where internal model details are accessible, contrasting with "black box" situations encountered in
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production environments where attackers typically only have access to the LLM’s output through a
chatbot interface.

In this work, we introduce QROA (Query-Response Optimization Attack), a black-box jailbreak
attack on LLMs that discover adversarial suffixes. QROA is an automatic, suffix-optimization-
based approach that leverages principles similar to GCG [41] and PAL [27], employing token-level
optimization to discover suffixes that, when appended to a malicious instruction, force the LLM to
comply without refusal. The three main ingredients of QROA are:

1. Formulation of the attack as a reinforcement learning problem.

2. Design of an optimization objective function to maximize in order to discover effective suffixes.

3. Use of a Deep Q-learning experience replay framework with iterative token optimization to
maximize the objective function.

Unlike previous strategies that may require access to the model’s gradient or logit output to optimize
the suffixes, QROA operates entirely through the standard query-response interface of LLMs. This
gives QROA a wide range of applicability as it can directly address open source or proprietary LLMs
in production. We will detail the contributions of QROA with respect to existing black-box jailbreak
methods in the related works section.

2 Related Works

LLM Jailbreak Jailbreak prompts have become a key focus in the domain of adversarial machine
learning, particularly in the context of large language models (LLMs). These prompts are intentionally
crafted to manipulate models into producing outputs that bypass their ethical or alignment safeguards.
Several researchers have made significant contributions to this area. For instance, [5] and [1] explored
how carefully designed prompts could circumvent alignment protocols in LLMs. Their work laid the
groundwork for understanding the vulnerabilities in LLMs and the potential risks posed by adversarial
inputs. Expanding on this, [33], [15], [7], [41], and [25] demonstrated that adversarial prompts could
be automatically generated, leveraging specific model weaknesses to produce harmful, biased, or
misleading responses. Moreover, [10], [37] and [35] conducted a large-scale evaluation of various
jailbreak strategies, offering insights into the effectiveness and diversity of these attack vectors.

Black-Box Jailbreak Attacks on LLMs Recent research has introduced automatic black-box
jailbreak techniques, eliminating the need for direct access to the model. Techniques such as the PAL
attack [27] leverage a proxy model to simulate the target model, enabling attackers to refine their
inputs based on the proxy’s feedback. Other methods, like the one proposed by [17], use fuzzing
methodologies that rely on cosine similarity to determine the effectiveness of the input modifications.
These methods highlight a shift toward techniques that can operate effectively without comprehensive
access to the target model’s internal workings, reflecting realistic attack scenarios in many real-world
applications. However, these methods still require access to the logits or other internal data of
the model to optimize their attack strategies effectively. Other state-of-the-art black-box jailbreak
methods, such as TAP [20] and PAIR [8], use LLMs as optimizers. They utilize language models to
generate or refine adversarial prompts, although the generated adversial prompts are more human-
readable, the dependency on additional LLM resources raise operational costs, and the generated
prompts are limited by the output distribution of the attacker’s LLM. This means the quality and
effectiveness of the adversarial prompts are restricted by the capabilities and biases of the LLM
used by the attacker, potentially reducing their generalizability and effectiveness across different
target models. Other black-box methods, such as GPTFUZZER [39] , are effective but highly rely on
carefully designed human-crafted templates as initial seeds. These templates may be applicable to
some models but not others, or they may not always be available for all target models.

Jailbreak through suffix optimization Suffix optimization attacks represent a more refined ap-
proach in the Jailbreak domain, where the goal is to automatically discover trigger phrases that, when
appended to a malicious instruction, lead the LLM to produce outputs aligned with the attacker’s in-
tentions without refusal. This class of attack moves beyond simple prompt crafting to an optimization
problem where the objective function is carefully set to maximize the model malicious response. [41]
proposed a gradient-based discrete optimization method that builds on earlier work by Shin et al. [26]
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and [15]. A significant advantage of this type of attack is that it does not require any human-crafted
templates as seeds, enhancing its generalizability across different and new LLMs, which makes the
attack more adaptable and harder to defend against.

Query-Response Optimization Attack (QROA) QROA is a black-box, suffix-based optimization
attack. Specifically, we optimize a suffix x (chain of tokens) such that, when appended to a malicious
instruction and sent to the LLM, it elicits a malicious response from the model. Our primary claim
to novelty of QROA is that, to the best of our knowledge, this is the first black-box jailbreak attack
based on adversarial suffix optimization. This differentiates it from other black-box attacks in the
literature. It is a novel approach to circumvent the safeguards of LLMs, with the following claims:

• QROA is a automatic black-box jailbreak method, that relies exclusively on the query-
response interface of the LLMs. It does not require additional side information from the
API, such as logits or log probabilities.

• It is not based on human-crafted templates or proxy LLM models to generate adversarial
prompts, allowing the framework to be more general and adjustable to user-specific tests.

3 Formalization

3.1 Problem Setting

In this study, we focus on a fixed Large Language Model (LLM), denoted as G, which generates a
sequence of output tokens G(p) in response to an input prompt p.

Our goal is to "jailbreak" the LLM G: Given an input prompt containing malicious instructions I ,
we aim to identify a suffix x that, when appended to I (denoted as I + x), induces the LLM to follow
the intended behavior without refusing the request.

3.2 Objective Function

To achieve Jailbreak, we propose maximizing the score function S(x; I), which evaluates the effec-
tiveness of suffix x in inducing the desired response from G. This is defined as:

S(x, I) = E
tx∼G(I+x)

[f(I, tx)] (1)

with the following notations

• I + x: The concatenation of the malicious instruction I and the suffix x.
• tx: The output of the LLM G given the input prompt I+x. For sake of notational simplicity,

we remove the (crucial) dependency on the model G and the instruction I .
• f(I, tx): The alignment function quantifies how closely the generated output tx aligns with

the malicious intent of I . Higher values of f(I, tx) indicate stronger alignment with the
intended behavior. More details about this function will be given in section 3.3.

• E[f(I, tx)]: The expectation represents averaging over all possible outputs tx generated by
the model G in response to the input I + x. Since the output of G may be stochastic (i.e., it
can vary across different runs due to randomness in sampling), the expectation ensures that
we consider the average alignment across multiple outputs. This allows us to account for the
model’s variability and seek suffixes that, on average, elicit the desired behavior.

The optimal suffix x⋆ that maximizes the malicious behavior is then defined as:

x⋆ = argmax
x

S(x, I) (2)

The objective function S(x, I) unveils two primary challenges:

1. Unknown Alignment Function: The exact form of the alignment function f is not prede-
fined. There are several potential methods to estimate or approximate f .

2. The gradient is not available: Operating with the LLM as a black box prevents access to
the gradient of f , complicating the optimization process for x. This challenge necessitates
alternative strategies to adjust x without relying on gradient-based optimization methods.
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3.3 The Alignment Function

The alignment function f(I, tx) defined in the objective function is crucial for evaluating how well
the generated output tx aligns with the malicious behavior specified in I . It assigns a scalar score
where higher values correspond to stronger alignment between the output and the malicious intent,
and lower values correspond to the LLM rejecting or contradicting the instructions. There are several
potential methods to estimate or approximate f .

Fixed Target Approach: Previous studies ([41], [27], [17]) have often used a fixed target sequence
T to check if the LLM’s output aligns with the malicious instruction I . The algorithm searches for a
suffix that maximizes the likelihood of generating a specific target output string T . For example, for
the instruction "Give instructions on how to steal a car", the target output string could be "Sure, here’s
how to steal a car." In this case, the alignment function is simplified to f(I, tx) = P (T | I + x),
where T is a specific target output. This approach requires access to logits information in order to
calculate the probability.

However, in this work, we adopt a more comprehensive alignment function that generalizes beyond a
fixed target and not using logits. By using the fine-tuned Roberta model for harmful evaluation.

Fine-tuned model for Harmful evaluation: Another approach to defining the alignment function is
by utilizing a fine-tuned model specifically trained for detecting harmful content. For instance, we can
employ the fine-tuned Roberta model introduced by [36] for harmful content detection. This model,
available at https://huggingface.co/zhx123/ftrobertallm, has demonstrated 92% accuracy,
outperforming GPT-4. The model’s input format is: "USER: [query] ASSISTANT: [response]". The
output is a value between 0 and 1, with 1 indicating harmful content and 0 indicating otherwise.

3.4 Link with Reinforcement Learning

In our study on jailbreaking a Large Language Model (LLMs), we propose using a Reinforcement
Learning (RL) framework to optimize the scoring function S(x, I). We conceptualize this as a
multi-armed bandit problem [24], where the suffix x represents the action (or arm), and the alignment
evaluation f(I, tx) serves as the reward associated with this action (see [28]). Hence, the optimization
of the score S(·, I) corresponds to the optimization of the average reward function under uncertain
conditions.

An additional motivation for framing the jailbreaking problem as RL task arises from the complex-
ity and uncertainty surrounding the scoring function S(·, I). Iterative strategies that address the
exploration-exploitation trade-off are commonly used to tackle such challenges. Since we do not
have access to a pre-labeled dataset, our approach focuses on iteratively generating and refining
hypotheses (suffixes). The suffixes selected in the current iteration guide our decisions on which
suffixes should be selected in subsequent iterations, based on their observed effects f(I, tx) and
the scoring function S(x, I). This scoring function is not explicitly known beforehand and must be
inferred through interaction with the LLM.

Nevertheless, our approach exhibits two key differences from general RL problems:

• Absence of States: In general RL frameworks, decisions depend and lead to new states, and the
agent must learn to navigate these transitions. In contrast, our jailbreaking scenario involves a
static malicious instruction I and a fixed environment—the LLM G—with no state transitions
involved. We assume the behavior of G is independent of prior prompts or calls. The optimization
problem is simplified to maximizing the alignment score S(x, I) for a fixed instruction I . So
this problem can be formulated as a Multi-Arm Bandit problem [24].

• Complexity of the Action Space: Each suffix x corresponds to an action, and the search space
encompasses the entire token vocabulary, resulting in an extremely large and discrete action
space. Specifically, the search space is V ℓ, where V represents the token vocabulary and ℓ
denotes the length of the suffix. For example, when ℓ = 10 and V = 104, the size of the action
space reaches the order of 1040. This vast, discrete action space presents challenges similar to
those found in high-dimensional reinforcement learning (RL) problems [11], where managing
the immense number of potential actions becomes a significant obstacle.
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4 QROA: A Query Response Optimization Attack

4.1 Overview

QROA is an adaptation of the Upper Confidence Bound (UCB) algorithm [3], which was originally
developed for solving the multi-armed bandit problem. In this adaptation, we modify the UCB
algorithm to handle the challenge of a large action space, specifically when working with suffixes.
The UCB algorithm estimates a score function S(x, I) for each suffix x, based on observed rewards,
and selects actions (suffixes) by balancing exploitation and exploration, with a bias toward actions
with higher uncertainty to encourage exploration. The estimated reward Ŝ(x, I) is updated iteratively
as new data is observed, and the next action is chosen by maximizing the expected reward, augmented
by an uncertainty correction term. However, due to the vast action space, Ŝ(x, I) alone is insufficient
for effectively guiding exploration. To address this issue, we introduce a surrogate model to smooth
the estimation of Ŝ(x, I) and uncover underlying patterns, improving exploration efficiency and the
search for promising suffixes.

Surrogate Model (RL agent) We employ a simple neural network model, known as the surrogate
model, to act as our reinforcement learning agent. This model helps us predict how effective different
suffixes might be in causing the LLM to produce the desired (malicious) output. Instead of relying
solely on the LLM—which would be computationally expensive—we train the surrogate model using
past interactions (suffixes and their corresponding scores). By learning from these experiences, the
surrogate model can quickly estimate which suffixes are most promising, guiding us to explore the
vast space of possible suffixes more efficiently and focus on those likely to maximize our objective.
The surrogate model is denoted as mθ(x), where θ are the model parameters and x is the input suffix.

Deep Q-learning with experience replay [18] Deep Q-learning with experience replay is a
technique in RL that enables an agent to learn more effectively by interacting with its environment.
In our case, the surrogate model acts as the agent, and the LLM is the environment. The agent learns
by observing the results (rewards) of its actions (the suffixes) and adjusts its strategy accordingly.
Experience replay stores the agent’s past experiences (e.g., suffixes and their associated rewards)
in a memory buffer denoted as D. Instead of updating the model based only on the most recent
interactions, the agent trains on randomly sampled experiences from the buffer. This approach helps
mitigate overfitting to recent data and stabilizes the learning process, resulting in more robust training.

4.2 Description of the Algorithm

Figure 1 provides an overview and illustrative representation of the algorithm. Additionally, the
pseudocode is presented in Algorithm 1, which is available in Appendix E.
Below is a description and the motivation behind each step of the process.

1. Initialization: We start with a random or baseline suffix(trigger) as initial condition.

2. Variants Generation: Variants of these initial triggers are generated by selecting random
token position within the trigger, then replacing this token with all possible token values,
this will generate high number of new potential triggers. Motivation : This step broadens
the search space for potential triggers, enhancing the chances of finding effective ones.

3. Surrogate Model Prediction mθ(x): A surrogate model (RL agent) predicts which trigger
variants are most likely to maximize our alignment score S(x). It identifies the top triggers
(Top K) to send to the LLM. Motivation: The surrogate model allows for efficient pre-
selection of promising triggers, reducing the need for direct LLM interactions, which are
computationally expensive.

4. LLM Generation tkx ∼ G(I + xk), k ∈ [1,K]: The top triggers xk, as ranked by the
surrogate model mθ, are then fed into the LLM, which generates textual outputs tkx based on
these triggers.

5. Harmful Evaluation f(I, tkx): The outputs from the LLM are assessed for harmfulness
using the alignement function f , which in this context, is a fine-tuned RoBERTa model that
assigns a harmfulness score between 0 and 1.
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6. Learning: The scores from previous step are stored in an experience replay memory D of
constant size maxD. Then a batch of experiences Db is randomly sampled from the replay
memory D to learn and refine the surrogate model (by updating θ with a gradient descent on
Db), enhancing its predictive accuracy, and making better selection in subsequent steps.

Iteration: If the Jailbreak is not yet successful, the process iterates, using the most promising triggers
from previous iterations as the starting point for the next cycle (step 2: Variants Generation). This
is done by leveraging the Upper Confidence Bound method (UCB)[2]. Motivation: The iterative
process, guided by the UCB method, balances exploration of new triggers and exploitation of known
promising ones, leading to a robust and efficient search process. Please refer to algorithm 1 for the
exact formula of UCB.

4.3 Balancing Exploration and Exploitation

QROA addresses the challenge of the large vocabulary space with two key elements:

• Exploitation: in each iteration cycle, we replace only one token at a time from the last
promising trigger so far. This allows us to explore the space gradually and exploit the most
promising trigger, by not moving too far and by modifying only one token at a time.

• Exploration: the surrogate model is a simple neural network model, however its first
layers is a pre-trained embedding layer taken from open source models (e.g. GPT-2). This
embedding approach ensures that learning about the effectiveness of one trigger improves our
predictions for triggers close to it in the embedding space, thereby requiring less exploration.
This efficiency is achieved because the surrogate model will not select less effective triggers
among the top-K triggers sent to the LLM.

Figure 1: Image Illustrating the Methodology of QROA.

4.4 Choosing the Best Adversarial Suffix x⋆

The algorithm described in section 4.2 returns a set of adversarial suffixes x⋆ that have the potential to
compel the LLM to generate the malicious output. To ensure that only triggers meeting a user-defined
performance threshold are selected, it is crucial to apply statistical testing to these triggers. We use a
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z-test to statistically verify that the triggers exceed a defined score threshold with a certain confidence
level. The procedure is outlined in the algorithm 2.

This algorithm evaluates each candidate trigger x by querying the target model 30 times and collecting
scores to estimate the mean µx and standard deviation σx. A z-test is then performed against the score
threshold th. Triggers with a p-value less than the significance level α are considered statistically
significant and are added to the set of validated adversarial suffixes X∗.

Top1-trigger: We consider that the Best adversarial suffix is the trigger with the highest z-value.

5 Experiments

To evaluate our proposed attack, we use the AdvBench benchmark [41], which includes 500 instances
of harmful behaviors articulated through specific instructions, we also use HarmBench dataset [19].
Following the setup by PAL [27] and Mehrotra et al. [21], we randomly selected 50 behaviors for
analysis. We evaluate four open-source models: VICUNA-1.3 (7B) [9], Mistral-Instruct (7B) [14],
FALCON-Instruct (7B) [2], and LLAMA2-Chat (7B) [30].

For all models, the top_p is set to 0.6 and the temperature to 0.9. Please refer to Appendix B.2 for the
hyperparameters of QROA, refer to Appendix A for the surrogate model architecture. We use as an
alignment function the Fine tuned Roberta for harmful Evaluation as described in Section 3.3. We
have also tested other alignment functions such as an Entailment Evaluation Model. Please refer to
appendix C.2) For more details.

Our experimental framework utilized one NVIDIA RTX 6000 Ada GPU with 48 GB of RAM.
Following the setup in PAL [27] and GCG [41], we fixed the total number of queries to the target
LLM at 25K to identify good triggers, and we also show the attack success rate for different budgets.

5.1 Settings

5.1.1 Evaluation Metrics

In this study, our primary metric is the Attack Success Rate (ASR), which is defined as the proportion
of successful attacks relative to the total number of malicious instructions tested. For each malicious
instruction, QROA determines the top-1 trigger, which is then appended to the malicious instruction.
This combined query is submitted to the target LLM.

The LLM responses are stochastic. To account for variability and to make our evaluation more robust,
we introduce ASR@α%, which measures the percentage of malicious instructions where the top-1
trigger achieves a success rate of at least α% over several trials (e.g., 30 trials), meaning that

ASR@α% =
Number of instructions where the top-1 trigger has a success rate ≥ α%

Total number of instructions tested
× 100%

Labeling and Validation: To label the results, we use a fine-tuned RoBERTa model to classify
malicious responses, following the method in [36]. This model achieves a 92% accuracy rate, which
is higher than GPT-4’s 87.4% accuracy. Additionally, we conducted a manual review of the generated
triggers to ensure that the attacks successfully produced responses that addressed the input harmful
questions.

5.2 Main results

5.2.1 Evaluate the effectiveness of the attack against Vicuna-7B

The results presented in Table 1 demonstrate insights into the efficacy of our attack methods under
varying budget constraints. As expected, a clear trend shows that higher budgets correlate with
improved Attack Success Rates (ASR), indicating that more resources allow for more opportunities
to fine-tune and optimize the attack triggers.

Influence of Budget on ASR: The increase in ASR from a budget of 10K to 50K queries is substantial,
rising from 60% to 90% at the 10% threshold. This indicates that additional queries provide valuable
data that refine the attack vectors and improve their effectiveness.
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Budget ASR@10% ASR@20% ASR@30% ASR@40% ASR@50% ASR@60%
10K 60% 55.3% 50.1% 45.4% 40% 36.6%
20K 70% 63.8% 59.5% 50.5% 50% 48.2%
25K 80% 74.1% 68.6% 61.4% 55% 52.3%
30K 83.3% 76.6% 72.4% 64.2% 58% 54.2%
40K 87% 82.3% 77.5% 71.5% 60% 58.4%
50K 90% 88.5% 83.2% 76.7% 75% 70.8%

Table 1: Attack Success Rates at different budget levels for Vicuna on AdvBench dataset

5.2.2 QROA on other models

To extend the evaluation of QROA across different models, here is a table with ASR@20% values at
a budget of 25K queries for QROA applied to various large language models (LLMs). Please refer
to Appendix C for additional experiments conducted on the QROA framework and comparison to
others Models such as PAL [27] and GCG [41]

Model VICUNA FALCON MISTRAL
ASR@20% 74.1% 98% 98%

Table 2: Attack Success Rates at 20% for different models at a 25K query budget on AdvBench
dataset

5.2.3 Comparison with PAIR & TAP on ChatGPT-3.5

Table3 presents the results of testing the QROA method against GPT-3.5-Turbo-0613 on the AdvBench
dataset, conducted in August 2024. The comparison involves the Attack Success Rate (ASR), the
average number of queries, and the total cost required to perform successful jailbreaks against various
methods, including TAP [20] and PAIR [8].

In the objective function, we introduce a penalty term using the log-likelihood from a proxy model
(e.g., GPT-2), modifying the score function as follows in equation 3. This adjustment allows the
suffix to bypass perplexity filters, making it more readable. This is achievable because QROA does
not rely on gradient-based optimization of the objective function and this demonstrates that QROA
can be easily adjusted to meet the desired performance outcomes.

Spenalized(x, I) = E
tx∼G(I+x)

[f(I, tx)] + λ logPGPT-2(x|I) (3)

QROA+ is an extension of QROA, incorporating the Reapplication of Successful Suffixes as Initial
Seeds. It utilizes successful suffixes generated by QROA on some instructions as initial seeds for the
remaining instructions. Please refer to Algorithm 3 for more details.

The cost per query is higher for TAP and PAIR compared to QROA due to their reliance on large
language models (LLMs) to generate and evaluate triggers.

The table 4 shows the performance of QROA on the HarmBench dataset [19], with a focus on
ASR across different behaviors. As in previous analyses, we randomly selected 50 behaviors. It
also includes a comparison with the performance of TAP and PAIR based on HarmBench’s official
evaluation data.

Method Temperature ASR Avg Queries Avg cost per query Cost
QROA 0.6 57% 3600 0.00012$ 0.432$
QROA 0 42% 1518 0.00012$ 0.182$
QROA+ 0 56% 431 0.00012$ 0.0517$
TAP 0 78% 23.1 0.056$ 1.34$
PAIR 0 51% 37.7 0.025$ 0.942$

Table 3: Test QROA against GPT-3.5-Tubo-0613 on AdvBench dataset
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Method ASR
QROA 54%
QROA+ 69%
TAP 47.7%
PAIR 46.8%

Table 4: Test QROA against GPT-3.5-Tubo-0613 on HarmBench dataset

6 Limitations

Dependency on Alignment Function Precision: The effectiveness of QROA relies on the accuracy
and appropriateness of the alignment function f , which assesses the LLM’s output compliance with
malicious intent. The method assumes that the alignment function can be accurately modeled or
approximated, which may not hold true in practical scenarios.

Computational and Resource Intensity: The approach involves generating, evaluating, and refining
numerous suffix variations to identify effective triggers. This process can be computationally and
resource-intensive.

7 Conclusion

This paper introduces a novel black-box jailbreaking technique, QROA, that can automatically
generate attacks to bypass or defeat the safety alignment of large language models (LLMs), including
proprietary models. The method draws inspiration from the reinforcement learning framework and
iterative token-level optimization. Importantly, the attack is widely applicable and does not require
the API to provide additional side information, such as logits or log probabilities. Furthermore,
the attack does not rely on human-crafted templates or the use of LLMs to generate or evaluate
adversarial prompts, making the framework more versatile and adaptable. As a result, this paper
highlights that jailbreak vulnerabilities in LLMs are even more critical for safety and alignment than
previously understood in the litterature. This work provides researchers and engineers with a new
toolkit to evaluate the safety of deployed LLMs and conduct thorough audits.

8 Future Works

Future research could focus on enhancing the transferability of the surrogate model between different
malicious instructions. This involves developing a model that can generalize its learning from one set
of instructions to another without losing efficacy, reducing the need for extensive retraining.

As a consequence, we plan to exploit the potential of the surrogate model as a safety filter to predict
and mitigate unintended harmful outputs from LLMs. By inverting the model’s purpose, it could
serve as a proactive defense mechanism against malicious use cases, identifying and neutralizing
potential triggers before they are exploited.
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A Neural Network Architecture For the Surrogate Model

We design the surrogate model as a small Multi-Layer Perceptron (MLP). Below is the detailed
structure. The first layer is an embedding layer, which is pre-trained and taken from GPT2. This
embedding layer maps the input tokens into a 768-dimensional space, the subsequent layer is a
Conv1D layer with a kernel size of 1, intended to reduce the embedding size from 768 to 32. The rest
of the layers are standard linear layers used for further dimensionality reduction and transformation.

Layer Output Parameters Details
Embedding-1 [50257, 768] 38.6M Non-trainable

Conv1d-2 [768, 32, 1] 24.6K ReLU, Trainable
Linear-3 [32*Length of trigger, 128] 41.1K ReLU, Trainable
Linear-4 [128, 32] 4.1K ReLU, Trainable
Linear-5 [32, 1] 33 Trainable

Total params: 38.7M
Trainable params: 69.9K

Non-trainable params: 38.6M
Table 5: Architecture of the neural network.

B Experience Settings

B.1 Chat Template

We use the default conversation format for all models in FastChat. We also use the standard system
message for all models as described below:

Llama-2-7B

"You are a helpful, respectful, and honest assistant. Always answer as helpfully
as possible, while ensuring safety. Avoid harmful, unethical, racist, sexist, toxic,
dangerous, or illegal content. Ensure that your responses are socially unbiased and
positive. If a question is unclear or incoherent, explain why instead of providing
incorrect information. If unsure about an answer, do not share false information."

Vicuna-7B

"A chat between a curious user and an artificial intelligence assistant. The assistant
provides helpful, detailed, and polite answers to the user’s questions."

Falcon 7B

"Answer the question as truthfully as possible using the provided text, and if the
answer is not contained within the text below, say "I don’t know"

Mistral 7B

"You are a helpful assistant."

B.2 Hyperparameters

The surrogate model is optimized using batch size 1024 when sampling from the replay memory. We
use the Adam optimizer to update the parameters with a learning rate of 0.01 and weight decay of
0.0001. We set the size of the replay memory to 6400
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C More Experiments

C.1 Attack against LLama2-7B-chat

Evaluating the attack’s effectiveness against the LLama2-7B-chat [30] model presented unique
challenges due to its robust security alignment and consistent response behavior. Starting with
random triggers as initial conditions, we encountered limitations with the model’s consistent responses,
typically stating, "I cannot fulfill your request." This response limited the variability of the scoring
function, often returning a zero value, indicating an almost flat response landscape in the tested
region, this is known as the hard exploration problem [6].

To address this, we extended the trigger length from 10 to 20 tokens, allowing exploration of a
broader range of token sequences. Additionally, we replaced the initial pre-trained embedding layer
of surrogate model (initially taken from GPT-2) with embeddings from the lmsys/vicuna-7b-v1.5-16k
model to better align with the target model’s architecture.

Also, to enhance the efficiency of our approach, we can start with successful suffix as intial see and
pre-filling the replay memory with these triggers. These triggers, termed "successful," are not crafted
specifically for the current instruction set being targeted but are instead general-purpose or derived
from other instructions/contexts. They may require adjustments by the QROA algorithm to become
effective for the specific tasks at hand. These initial seed triggers can originate from various sources.
They may be outputs from different algorithms (e.g., GCG[41] , PAL[27], GCQ[12]), or they may
come from the QROA algorithm itself. Most importantly, they are initially generated for different
instructions or purposes.

In the study targeting LLama-2, we employed 10 suffixes originally generated by GCG for a random
selection of 10 instructions from AdvBench. These 10 suffixes were then used as the basis for
QROA (pre-filling the memory buffer in the algorithm) to devise jailbreak for an additional set of 50
instructions. Thus, the associated cost of finding these pre-validated triggers is limited to the initial
discovery of these 10 seeds—a one-time effort that serves multiple subsequent applications. This
underscores the practical feasibility of QROA in real-world scenarios. The procedure details are
outlined in the algorithm 3.

C.1.1 Comparison with GCG & PAL

In this section, we compare the effectiveness of QROA against two other attack methods: white
box (GCG) attack [41] and black box using logit and proxy model (PAL) [27]. These comparisons
provide insights into how well each method performs under the same experimental conditions. We
focus on two models Llama-2-7B-Chat and Vicuna-7B-v1.3, The attack is evaluated with a fixed
budget of 25K queries, and ASR@20% is used as the primary metric.
We test QROA using the initialization described in section C.1 for both Llama2-Chat and Vicuna.
PAL was not evaluated on Vicuna-7B as Vicuna is used as a proxy model in PAL attacks.

Attack Llama-2-7B Vicuna-7B
GCG 56 86
PAL 48 -
QROA 82 82

Table 6: ASR@20% for Different Attack Methods on Llama-2-7B-Chat and Vicuna-7B at a 25K
Query Budget

C.2 Impact of the choice of alignment function

As discussed in section 3.3, the choice of an appropriate alignment function f is critical in the QROA
framework. It is used to evaluate the degree to which the LLM output aligns with the malicious
instruction I . This is done after appending a suffix x to a given instruction I and sending the combined
query to the LLM. The main importance of this function is to provide feedback to the surrogate model
about the , enabling better selection of suffixes in subsequent iterations. It could be any bounded
smooth function such that the alignement higher higher the value. The choice of alignment function
is a crucial hyperparameter, influencing the effectiveness of the model, In this section we will test
two choice of alignement, and see the impact on the performance of QROA
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C.2.1 Proposed Alignment Models

Harmful Evaluation f1(I, tx): This is the same model presented in Section 3.3, a fine-tuned
RoBERTa model for harmful content detection. The model outputs a score from 0 to 1, where 1
indicates harmful content.

Entailment Evaluation f2(I, tx): This is an alternative choice for the alignment function. Instead
of using the fine-tuned RoBERTa, we utilize a zero-shot entailment model [38], specifically the
Facebook BART model fine-tuned on entailment tasks by being trained on the MultiNLI (MNLI)
dataset [34] (model available at https://huggingface.co/facebook/bart-large-mnli). This
model assesses the relevance and coherence of the LLM’s response relative to the initial instruction I .
The model outputs 1 if there is entailment and 0 otherwise.

C.2.2 Performance Comparison Table

Alignment Function f1 (Harmful) f2 (Entailment)
ASR@20% 74.1% 63%

Table 7: Attack Success Rates at 20% Threshold for Different Scoring Methods at a 25K Query
Budget

The table shows the Attack Success Rate (ASR) at a 20% threshold on Vicuna 7B, comparing
two alignment functions at a fixed 25K query budget. The RoBERTa harmful evaluation model f1
achieves a higher ASR of 74.1%, indicating it is more effective at eliciting harmful outputs compared
to the BART entailment model f2. This difference in performance highlights the importance of
selecting the appropriate alignment function based on the desired outcome from the LLM.

C.3 Test Against Defense Method

We conduct an evaluation of QROA against a perplexity-based defense as detailed in [13]. This
defense strategy detects adversarial inputs by identifying unusually high perplexity levels that may
characterize the presence of adversarial suffixes. [13] shows that this defense is effective, particularly
against suffix optimization attacks like GCG[41], reducing the ASR significantly from 79% to 0% on
models like Vicuna-7B. Hence, we have adapted QROA by adding a penalty term related to perplexity
in the reward function as described in section . This is possible because QROA doesn’t use gradients.

Our results, using 40 instances randomly sampled from Advbench, indicate that QROA, with its
adjusted reward function, demonstrates resilient performance with an ASR of 52% compared to 73%
without defenses. This demonstrates that QROA is flexible framework and can be easily adjusted to
meet the desired performance outcomes

D Broader Impact

D.1 Impact Statement

Positive Impact: Our study aims to enhance the security and robustness of Large Language Models
(LLMs) by uncovering potential vulnerabilities through adversarial testing. Our goal is to contribute
to the safety and alignment of LLMs, particularly those accessible via API, by equipping researchers
and developers with the necessary tools to test and improve these systems. We believe that the
societal benefits of enhanced AI security, achieved through rigorous adversarial testing, outweigh the
associated risks.

Negative Impact: We recognize that the techniques presented could be misused to generate harmful
outputs from LLM systems. This dual-use nature of red teaming poses ethical challenges: while
it serves to strengthen defenses against future attacks, it could also be exploited maliciously. We
emphasize the ethical obligation of researchers and developers to use these tools solely for defensive
and research purposes.
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D.2 Environmental Impact

Positive Impact: By improving the security and robustness of LLMs through adversarial testing, our
work can contribute to a more sustainable technological ecosystem. More secure AI systems reduce
the need for frequent patches and responses to security breaches, leading to a more stable deployment
environment. This stability can decrease the overall resource consumption and environmental impact
associated with maintaining and securing AI technologies over time.

Negative Impact: However, achieving robust adversarial testing requires significant computational
resources, which can increase the carbon footprint, especially when testing large-scale models. While
necessary for improving AI security, we acknowledge the environmental costs and emphasize the
importance of using energy-efficient hardware and exploring green computing practices to mitigate
these effects.

E algorithms

Algorithm 1 QROA: Query Response Optimization Attack Framework

1: Input: Initial trigger xinit, trigger length L, malicious Instruction I , set possible tokens re-
placement R, target model (black box) G, surrogate model mθ, batch size B, Batch size when
selecting top-k K, maximum number of queries Q to target model, threshold for triggers th,
maximum size of buffer maxD

2: Output: set of Adversarial suffix x∗

3:
4: Ŝ(x, I) := 0 ∀x ▷ Average score for each trigger, track of the effectiveness of different triggers.
5: n(x) := 0 ∀x ▷ Number of queries per trigger, track how many times each trigger has been tested
6: N := 0 ▷ Total number of queries
7: D := {} ▷ buffer memory, used to resample evaluated triggers for updating the surrogate model
8: best_triggers := {}
9: while N <= Q do

10: Selection Phase:
11: x⋆ := argmax(Ŝ(x, I) + c ·

√
log(N)
n(x)+1 ) ▷ Select best performing trigger so far using UCB method

12: i := Uniform(range(L))
13: Xi :=

⋃
τ∈R{x′|x′[i] = τ andx′[−i] = x⋆[−i]} ▷ Generate trigger variants by replacing a token

with other values
14: K-best := Top-K({mθ(x

′)|x′ ∈ Xi})
⋃
{x⋆} ▷ Select x⋆ and K variants with highest mθ

15: Evaluation Phase:
16: for z ∈ K-best do
17: tx = QueryTargetModel(G, I + z) ▷ Query target model with (Instruction + suffix)
18: r(z) := f(I, tx) ▷ Evaluate model output, and calculate alignment score

19: Ŝ(z, I) := Ŝ(z,I)∗n(z)+r(z)
n(z)+1 ▷ Update average score

20: n(z) := n(z) + 1 ▷ Update query count
21: D := D ∪ {z} ▷ Automatically maintains the most recent maxD entries
22: N := N + 1
23: end for
24: Learning Phase:
25: E := Uniform(D,B) ▷ Sample from B a set of triggers with their associated scores.
26: Update mθ using gradient descent on

∑
x∈E(Ŝ(x, I)−mθ(x))

2

27: if Ŝ(x⋆, I) ≥ th then
28: best_triggers := best_triggers ∪ {x⋆} ▷ Add to best triggers if condition met
29: end while
30: return best_triggers
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Algorithm 2 Statistical Validation of Adversarial Suffix
1: Input: Set of candidate triggers X , score threshold th, significance level α, target model (black

box) G
2: Output: Set of validated adversarial suffixes X∗

3:
4: X∗ := ∅
5: N := 30
6: for x ∈ X do
7: S := ∅ ▷ Initialize sample set for scoring
8: for i = 1 to N do
9: tz := QueryTargetModel(G, I + x) ▷ Query target model with (Instruction + suffix)

10: r(z) := f(I, tz) ▷ Evaluate model output, and calculate alignment score
11: S := S ∪ {r(z)} ▷ Collect score from model output
12: end for
13: µx := mean(S) ▷ Calculate mean of scores
14: σx := std(S) ▷ Calculate standard deviation of scores
15: Z := µx−th

σx/
√
N

▷ Calculate Z-score

16: p-value := NormalCDF(Z) ▷ Find p-value from Z-score
17: if p-value < α then
18: X∗ := X∗ ∪ {x} ▷ Add to validated triggers if below significance level
19: end for
20: return X∗

Algorithm 3 Pre-Populating Memory Buffer with Successful Triggers

1: Input: Initial set of Top successful triggers on previous instructions Xsuccessful, new malicious
instruction I , target model (black box) G, memory buffer D, alignment function f , pre-validation
threshold th

2: Output: Updated memory buffer D
3:
4: Initialize the memory buffer D := {} ▷ Clear any existing data in the buffer
5: Ŝ(x, I) := 0 ∀x ▷ Average score for each trigger, track of the effectiveness of different triggers.
6: n(x) := 0 ∀x ▷ Number how queries per trigger, track of many times each trigger has been tested
7: for each trigger x ∈ Xsuccessful do
8: z := I + x ▷ Append the trigger to the new malicious instruction
9: tz := QueryTargetModel(G, z) ▷ Query the target model with the modified instruction

10: r(z) := f(I, tz) ▷ Evaluate the model’s output using the alignment function
11: D := D ∪ {z} ▷ Store the trigger in the memory buffer
12: Ŝ(z, I) := r(z) ▷ Update average score
13: n(z) := 1
14: end if
15: end for
16: return D ▷ Return the updated memory buffer
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