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ABSTRACT We investigate a single-turn circular wire loop antenna lying in a homogeneous and lossless

medium, in the framework of known explicit mathematical models of the current distribution in the loop

antenna and the impedance presented by the loop antenna. We obtain improved equivalent formulas and

approximate formulas for these models. We derive mathematical models about emission by the loop antenna.

These models include new approximate but accurate formulas for the computation of the vector effective

length. We obtain new mathematical models and results about reception by the loop antenna.

INDEX TERMS Antenna theory, loop antenna, measuring antenna, electromagnetic compatibility, EMC.

I. INTRODUCTION
We consider a single-turn circular wire loop antenna, similar

to the one shown in Fig. 1, lying in a homogeneous and loss-

less medium. This loop antenna is made of a perfect electric

conductor (PEC) having a circular cross-section of diameter

dw. The center line of the PEC is an arc of a circle of radius

a. The antenna is used for emission or reception of time-

harmonic signals at a radian frequency ω, corresponding to

a wavelength λ and a wave number k in said medium. We

assume that: the wire is sufficiently thin for dw ≪ 2a to hold;

and the wire radius is electrically small, that is, kdw ≪ 1. We

also postulate that the antenna has a narrow gap, each side of

the gap being one of the antenna terminals.

This article presents mathematical models which may be

used to compute the loop antenna’s behaviour as regards

emission and reception.

Section II is about a known explicit mathematical model

for the current distribution in the loop antenna during emis-

sion, and the associated explicit mathematical model of the

impedance presented by the loop antenna. These models con-

tain complicated frequency-dependent integrals and special

functions of arguments depending on a and dw, so that the

effects of the frequency, a and dw are difficult to grasp. In

Section III, we obtain new equations for these models: equiv-

alent formulas without integrals depending on the frequency,

and then approximate formulas without special functions of

arguments depending on a and dw.

We derive mathematical models which may be used to

compute the loop antenna’s behaviour, as regards emission in
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FIGURE 1. The single-turn circular loop.

Section IV, and as regards reception in Section V. These mod-

els include new approximate but accurate formulas for the

computation of the vector effective length, which are found

to be useful for estimating the limitations of an electrically

small single-turn circular loop antenna used as a probe or a

measuring antenna, or in direction finding.

The existing literature relevant to this work is cited and

reviewed in the next sections, where it is easier to compare it

to our results.
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II. CURRENT DISTRIBUTION AND IMPEDANCE
A. NOTATIONS AND ASSUMPTIONS

The antenna’s positive terminal corresponds to an angle

ψmin > 0 shown in Fig. 1, and the antenna’s negative

terminal to an angle ψmax = 2π−ψmin, also shown in Fig. 1.

The physical space between these terminals is the gap. Since

we postulate a narrow gap, ψmin ≪ π/18.

A time factor ejωt is assumed and suppressed throughout

the paper. In this Section II, the loop antenna is used for

emission, and excited by a generator applying a voltage U0

to the gap. Whatever is connected to the antenna ports is

regarded as a part of the generator, so that, if an actual setup

comprises a feeder (i.e., a feed line), the feeder is a part of

the generator. We assume that the generator is equivalent to

a perfectly conducting wire, the wire closing the gap in such

a way that the wire and the loop antenna form a solid torus,

the wire being encircled by some distribution of small loops

of impressed magnetic current, of total electromotive force

U0, the resulting distribution of impressed magnetic current

density being symmetric with respect to the plane y = 0. This

is a broad assumption [1, Sec 3-1] [2, Appendix III].

At an arbitrary angle ψ such that 0 6 ψ 6 2π, the current

iE(ψ) flowing in the loop antenna or in the gap is positive

in the direction of increasing ψ, so that iE(ψmin) is a current

flowing into the positive terminal, and iE(ψmax) a current

flowing out of the negative terminal. It follows from our

assumptions that the generator does not deliver a common-

mode current, that is to say iE(ψmax) = iE(ψmin).

B. MODEL FOR THE CURRENT DISTRIBUTION

The symmetry of the problem is such that iE(ψ) is given by

a Fourier cosine series

iE(ψ) =
∞
∑

n=0

IE n cos (nψ) (1)

Wu explained how the current distribution may be com-

puted, in the case of a loop antenna made of a PEC, excited by

a delta-gap source [3]. This approach was further developed

and implemented by King and other authors in [4]–[5], in [6,

Ch. 4] and in [7, Ch. 11]. According to the resulting theory,

if the positive integerN is sufficiently large but not too large,

iE(ψ) is accurately given by

iE(ψ) ≃
V0
jπη

{

1

A0
+ 2

N
∑

n=1

cosnψ

An

}

(2)

where V0 is the voltage of the delta-gap source and where η
is the intrinsic impedance of the medium [4], [6, Ch. 4], [7,

Sec. 11.4]. The Wu-King factors A0, . . . , AN are

A0 = ka κ1 (3)

and, for n ∈ {1, . . . , N},

An = ka
κn+1 + κn−1

2
− n2

ka
κn , (4)

the quantities κ0 to κN+1 being given by

κ0 =
1

π
ln

16a

dw
− j

2

∫ 2ka

0

B(x, 0) dx (5)

and, for n ∈ {1, . . . , N + 1},

κn =

K0

(

ndw
2a

)

I0

(

ndw
2a

)

+ Cn

π

− j

2

∫ 2ka

0

B(x, 2n) dx , (6)

in which K0 and I0 are modified Bessel functions, in which

Cn = ln(4n) + γ − 2

n−1
∑

m=0

1

2m+ 1
, (7)

where γ is Euler’s constant, and in which, for any x ∈ R,

B(x, ν) =
1

π

∫ π

0

ej(νφ−xsinφ) dφ (8)

where ν is zero or an even positive integer.

The Wu-King factors are dimensionless. By (2), iE(ψ)
depends on only 3 real variables: ψ, ka and 2a/dw.

Since ν is always an integer in (8), we can use results

shown in [8, p. 145] and [8, p. 251] to write

B(x, ν) = Jν(x) + jEν(x) = Jν(x)− jΩν(x) , (9)

where Jν is a Bessel function and Eν = −Ων is a Weber

function (in [3], [4] and [7], Ων = −Eν is called a Lommel-

Weber function).

Let c be the velocity of light in the medium. The value

N = 19, corresponding to 20 terms in (2), provides accurate

values up to the frequency

fmax =
2.5 c

2πa
(10)

if 2a/dw > 24, or up to a lower frequency if the loop

antenna is thicker [4], [7]. For any frequency f 6 fmax, we

have ka 6 2.5 so that B(x, ν) can accurately be computed

using (8) and a numerical integration. However, we found the

computation of the Wu-King factors to be much faster if we

use (9), the expansion

Jν(x) ≃
(x

2

)ν 15
∑

p=0

(−x2
4

)p

p!(ν + p)!
(11)

based on [9, Eq. 9.1.10] and the fact that ν is a nonnegative

integer, and the expansion

Eν(x) ≃
−x
2

(−1)ν/2
15
∑

p=0

(−x2
4

)p

Γ
(

p+ 3+ν
2

)

Γ
(

p+ 3−ν
2

) (12)

based on [10, Eq. 11.10.9] and the fact that ν is zero or an

even positive integer.

It follows from (1) and (2) that:

IE 0 ≃ V0
jπη A0

; (13)

for n ∈ {1, . . . , N}, we have

IE n ≃ 2V0
jπη An

; (14)

and, for n > N , we have

IE n ≃ 0 . (15)

2 Copyright © 2024 by Excem
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FIGURE 2. The terminal-zone network, connected to Yδ .

C. TERMINAL-ZONE NETWORK

To obtain a good measure of the impedance of the loop

antenna, denoted by Zant, the conventional admittance

Yδ =
iE(0)

V0
≃ 1

jπη

{

1

A0
+ 2

N
∑

n=1

1

An

}

, (16)

assumed to exist at the gap of the antenna, should be cor-

rected to take into account the actual configuration close to

the gap, by introducing a suitable terminal-zone network in

the model, in a manner paralleling that described for dipole

antennas [4], [6, Ch. 4], [7, Sec. 11.4]. Terminal-zone net-

works for dipole antennas have been thoroughly covered in

[11, Sec. II.7–II.9], [11, Sec. II.33–II.38] and [12, Sec. 8.1–

8.2].

A possible terminal-zone network is shown in Fig. 2,

where α is an arbitrary real number. This terminal-zone

network comprises a lumped inductance LT and a lumped

capacitance CT which need not be nonnegative, CT be-

ing connected in parallel with Yδ to obtain the admittance

Yδ + jωCT subject to the voltage V0, this admittance being

connected in series with LT to obtain the impedance Zant
subject to the voltage U0. It follows that we have

Zant ≃
1

1

jπη

{

1

A0
+ 2

N
∑

n=1

1

An

}

+ jωCT

+ jωLT (17)

and

V0 ≃ U0

1 + ωLT

(

1

πη

{

1

A0
+ 2

N
∑

n=1

1

An

}

− ωCT

) . (18)

In this model, the current flowing into the positive terminal

of the antenna, denoted by I0 and such that U0 = ZantI0,

is equal to the current flowing out of the negative terminal

of the antenna (so that there is no common-mode current

flowing into the antenna), but it need not be exactly equal

to iE(ψmin) = iE(ψmax). It satisfies

I0 ≃ V0

(

1

jπη

{

1

A0
+ 2

N
∑

n=1

1

An

}

+ jωCT

)

, (19)

so that

iE(ψ)

I0
≃

1

A0
+ 2

N
∑

n=1

cosnψ

An

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

. (20)

FIGURE 3. Impedance of the loop antenna, versus frequency. Absolute value
of the impedance: curve “a”. Real part of the impedance: curve “b”.

D. EXAMPLES

The mathematical models for iE(ψ) andZant defined by (2)–

(18) are easily implemented, and published values of Yδ may

be used to validate a program. We checked that values of Yδ
computed by a program based on (2)–(9), (11)–(12) and (16),

for 2 ln (4πa/dw) = 12 and ka in the range 0.05 to 2.00, by

utilizing N = 19 and the inaccurate value 120π ohms of the

intrinsic impedance of vacuum η0, are exactly equal to the

corresponding values tabulated with 4 decimal places in [4]

and [6, Ch. 4]. Slightly different values were obtained when

this program used an accurate value of η0, as it did to deliver

the results shown hereinafter.

We now consider a loop antenna made of a PEC in

vacuum, with a = 280mm and dw = 14mm, for which

fmax ≃ 426MHz. For CT = 0pF, LT = 0nH and N = 20,

we study the results computed by said program. Let Re(x)
denote the real part of a complex number x. Fig. 3 shows

|Zant| and Re(Zant) up to about 422MHz, plotted with 40

points per decade of frequency. According to Fig. 3, the

first parallel resonance occurs near 79.3MHz, the first series

resonance near 179MHz, the second parallel resonance near

256MHz and the second series resonance near 352MHz.

Fig. 4 shows seven curves providing information on the

Wu-King factors, plotted up to about 422MHz with 40 points

per decade of frequency. Up to about 30MHz, |1/A0| is

much greater than |1/An| for n > 1, so that the contents of

the curly brackets in (16) is very close to |1/A0|. Up to about

60MHz, |1/A0| has a slope of about −20 dB/decade, while

|1/A1| to |1/A5| have a slope of about 20 dB/decade. We also

note that the first series resonance frequency approximately

corresponds to a maximum of |1/A1|, and the second series

resonance frequency to a maximum of |1/A2|.
Fig. 5 to Fig. 7 show the normalized current distribution

|iE(ψ)/I0| at different frequencies. At low enough frequen-

cies the current is of course uniform in the loop antenna, so

that |iE(ψ)/I0| ≃ 1. We see that this is accurate at 10MHz,

but no longer at 30MHz and above.

Copyright © 2024 by Excem 3
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FIGURE 4. Information on the Wu-King factors. |1/A0| is curve “a”, |1/A1| is
curve “b”, |1/A2| is curve “c”, |1/A3| is curve “d”, |1/A4| is curve “e”, |1/A5|
is curve “f”, and the absolute value of the contents of the curly brackets in (16)
is curve “g”.

E. DISCUSSION

The current distribution iE(ψ) and the input current I0 pre-

sented in Section II.B and Section II.C are applicable to a

lossless circular loop antenna used for emission and subject

to the voltage U0, so that, if I0 6= 0A, its impedance is

Zant = U0/I0, where Zant is given by (17). We can also

consider the lossless semi-circular loop antenna shown in

Fig. 8, which is built over an infinite plane made of a PEC.

The current distribution iE(ψ), where ψ ∈ [0, π], and the

input current I0 are applicable to this semi-circular loop

antenna used for emission and subject to the voltage U0/2,

according to image theory [13, Sec. 2-3], [14, Sec. 5-3]. Thus,

the impedance of the semi-circular loop antenna is Zant/2.

An improved computation of the current distribution in

a semi-circular loop antenna used for emission, and of the

resulting antenna impedance, is proposed by Smith in [15].

In this improved computation, the delta-gap source used in

the theory of Wu and King is replaced with a magnetic frill

generator. If the antenna feeding configuration accurately

corresponds to the one assumed to introduce the magnetic

frill generator, the agreement between experiment and theory

is excellent, without using a terminal-zone network. How-

ever, this semi-circular loop antenna feeding configuration

cannot be realized in a circular loop antenna.

In 2006, Anastassiou proposed a new approach to the com-

putation of the current distribution in a circular loop antenna

used for emission, and of the resulting antenna impedance.

This approach is based on a method of moment formulation,

cast in such a way that accurate expressions are obtained at

a low computational cost, without the upper frequency limit

given by (10). The case of a delta-gap source is covered in

[16], and the case of a magnetic frill generator is treated in

[17]. The current distributions obtained in this manner are

not in the form of the Fourier cosine series (1), though.

FIGURE 5. Normalized current distribution |iE(ψ)/I0| versus ψ in degrees:
at about 10.0 MHz is curve “a”; and at about 31.6 MHz is curve “b”.

FIGURE 6. Normalized current distribution |iE(ψ)/I0| versus ψ in degrees,
at about 79.4 MHz (near the first parallel resonance, for which ka ≃ 0.466).

FIGURE 7. Normalized current distribution |iE(ψ)/I0| versus ψ in degrees:
at about 178 MHz (near the first series resonance, for which ka ≃ 1.048) is
curve “a”; at about 251 MHz (near the second parallel resonance, for which
ka ≃ 1.505) is curve “b”; and at about 355 MHz (near the second series
resonance, for which ka ≃ 2.063) is curve “c”.

infinite ground plane

x

y

ψ

ψmin

a
−
d
w
/
2

a
+
d
w
/2

FIGURE 8. The semi-circular loop.

III. ANALYSIS OF THE WU-KING FACTORS
A. THE FREQUENCY-DEPENDENT INTEGRALS

In (5) and (6), each quantity κn is a sum of: a first term

that only depends on 2a/dw and n; and a second term that

only depends on ka and n, through the frequency-dependent

integral

− j

2

∫ 2ka

0

B(x, 2n) dx =

1

2

∫ 2ka

0

E2n(x) dx− j

2

∫ 2ka

0

J2n(x) dx . (21)

We want to exactly compute this frequency-dependent

integral, in the form of a power series in the variable ka.

4 Copyright © 2024 by Excem
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According to [10, Eq. 11.10.9], we have

Eν(x) =
−x
2

(−1)ν/2
∞
∑

p=0

(−x2
4

)p

Γ
(

p+ 3+ν
2

)

Γ
(

p+ 3−ν
2

) , (22)

so that

∫ 2ka

0

E2n(x) dx =

(−1)n+1
∞
∑

p=0

(−1)p
∫ 2ka

0

(x

2

)2p+1

dx

Γ(p+ n+ 1.5) Γ(p− n+ 1.5)
. (23)

This leads us to

∫ 2ka

0

E2n(x) dx =

(−1)n+1
∞
∑

p=0

(−1)p(ka)2p+2

(p+ 1)Γ(p+ n+ 1.5) Γ(p− n+ 1.5)
.

(24)

According to [9, Eq. 9.1.10], we have

Jν(x) =
(x

2

)ν ∞
∑

p=0

(−x2
4

)p

p!(ν + p)!
(25)

so that

∫ 2ka

0

J2n(x) dx =

∞
∑

p=0

(−1)p
∫ 2ka

0

(x

2

)2n+2p

dx

p! (2n+ p)!
. (26)

This leads us to

∫ 2ka

0

J2n(x) dx =

2(ka)2n+1
∞
∑

p=0

(−1)p(ka)2p

p! (2n+ p)!(2n+ 2p+ 1)
. (27)

Using (24) and (27) in (21), we get (28) shown at the

bottom of this page. It follows that

− j
2

∫ 2ka

0

B(x, 2n) dx =

∞
∑

q=1

χq n(ka)
q , (29)

where, if q is even, χq n is real and given by

χq n =
(−1)n+

q
2

q Γ
(q

2
+ n+ 0.5

)

Γ
(q

2
− n+ 0.5

) , (30)

and where, if q is odd, χq n is 0 if q 6 2n − 1, or imaginary

and given by

χq n = −j (−1)
q−1
2 −n

q

(

q − 1

2
− n

)

!

(

q − 1

2
+ n

)

!

(31)

if q > 2n+ 1.

The coefficients χq n are dimensionless numbers, which

are independent of the frequency and of the characteristics

of the antenna. Some approximate values of χq n are shown

in Table 1. We will use the polynomial approximation

− j
2

∫ 2ka

0

B(x, 2n) dx ≃
dB(n)
∑

q=1

χq n(ka)
q , (32)

of degree less than or equal to dB(n), resulting from a

truncation of the power series in (29). The number dB(n)
of terms which are necessary to obtain a given accuracy in

(32) depends on ka, hence on the frequency f .

− j
2

∫ 2ka

0

B(x, 2n) dx =

∞
∑

p=0

(−1)n+p+1(ka)2p+2

2(p+ 1)Γ(p+ n+ 1.5) Γ(p− n+ 1.5)
− j

∞
∑

p=0

(−1)p(ka)2n+2p+1

p! (2n+ p)!(2n+ 2p+ 1)
. (28)

TABLE 1. Some approximate values of χq n defined in Section III.A.

q

n
0 1 2 3 4 5 6

1 −1.000000 j 0 0 0 0 0 0

2 −6.366198× 10
−1

2.122066× 10
−1

4.244132× 10
−2

1.818914× 10
−2

1.010508× 10
−2

6.430503× 10
−3

4.451887× 10
−3

3 3.333333× 10
−1 j −1.666667× 10

−1 j 0 0 0 0 0

4 1.414711× 10
−1

−8.488264× 10
−2

1.212609× 10
−2

1.347343× 10
−3

3.674576× 10
−4

1.413297× 10
−4

6.595387× 10
−5

5 −5.000000× 10
−2 j 3.333333× 10

−2 j −8.333333× 10
−2 j 0 0 0 0

6 −1.509025× 10
−2

1.077875× 10
−2

−3.592916× 10
−3

3.266287× 10
−4

2.512529× 10
−5

5.025057× 10
−6

1.477958× 10
−6

7 3.968254× 10
−3 j −2.976190× 10

−3 j 1.190476× 10
−3 j −1.984127× 10

−4 j 0 0 0

8 9.238926× 10
−4

−7.185832× 10
−4

3.266287× 10
−4

−7.537586× 10
−5

5.025057× 10
−6

2.955916× 10
−7

4.667236× 10
−8

9 −1.929012× 10
−4 j 1.533210× 10

−4 j −7.716049× 10
−5 j 2.204586× 10

−5 j −2.755732× 10
−6 j 0 0

Copyright © 2024 by Excem 5
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We can compare the result of (32) with the result of a

numerical integration ofB(x, 2n), using (9) and the approxi-

mations (11) and (12). If dB(n) = 30, the relative difference

is less than 10−11 for f 6 fmax and any value of n. If

dB(n) = 15, the relative difference is less than 0.2% for

f 6 fmax and any value of n. If dB(n) = 5, the relative

difference exceeds 1% above fmax/4 for n = 2, and exceeds

10% above fmax/2 for n = 1 and n = 2.

B. EXACT VALUES OF THE WU-KING FACTORS

Some manipulations using (3)–(7) and (29) lead us to the

exact values of the Wu-King factors shown in (33)–(35) at

the bottom of this page.

The Wu-King factors being dimensionless, we can use (16)

to assert that: A0 corresponds to an impedance z0 = jπηA0;

if n ∈ N is nonzero, then An corresponds to an impedance

zn = jπηAn/2; and these impedances satisfy

Yδ ≃
N
∑

n=0

1

zn
. (36)

In other words, Yδ is approximately the admittance ob-

tained by connecting z0, . . . , zN in parallel.

It follows from (30)–(31) and (33)–(35) that:

• for any n ∈ N and any nonzero q ∈ N, the coefficient

of the term of An of degree q in ka is real if q is odd, or

imaginary if q is even;

• for any n ∈ N and q > 2, the coefficient of the term

of An of degree q in ka is independent of the frequency

and of the characteristics of the antenna;

• at low frequencies, z0 approximately corresponds to an

inductive impedance exactly equal to jπη times the term

of A0 of degree 1 in ka, so that z0 ≃ jωL0 in which ω
is the radian frequency and the inductance

L0 = µa

[

K0

(

dw
2a

)

I0

(

dw
2a

)

+ C1

]

(37)

is frequency independent (we use µ to denote the per-

meability of the medium);

• the coefficient of the term of A0 of degree 2 in ka is 0
because χ1 1 = 0;

• χ3 1 = −j/6 entails that, at low frequencies, Re(z0)
approximately corresponds to a frequency-dependent

resistance

Rr = η
π

6
(ka)4 = η

8π5

3

(a

λ

)4

, (38)

which is the approximate radiation resistance of the loop

at frequencies where it is electrically small [2, Sec. 2.5],

[18, Sec. 6-8];

• for any nonzero n ∈ N, the coefficient of the term ofAn
of degree 1 in 1/ka is real;

• at low frequencies, for any nonzero n ∈ N, zn approx-

imately corresponds to a capacitive impedance equal to

jπη/2 times the term of An of degree 1 in 1/ka;

• the coefficient of the term of A1 of degree 2 in ka is

−j/3, since χ1 0 = −j, χ1 2 = 0 and χ3 1 = −j/6;

• for n > 2, the coefficient of the term of An of degree 2

in ka is zero because χ1 (n−1) = 0, χ1 (n+1) = 0 and

χ3n = 0.

A0 = ka

K0

(

dw
2a

)

I0

(

dw
2a

)

+ C1

π
+

∞
∑

q=2

χ(q−1) 1(ka)
q , (33)

A1 = − 1

ka

K0

(

dw
2a

)

I0

(

dw
2a

)

+ C1

π
+

ka









K0

(

dw
a

)

I0

(

dw
a

)

+ ln
16a

dw
+ C2

2π
− χ2 1









+
∞
∑

q=2

(

χ(q−1) 0 + χ(q−1) 2

2
− χ(q+1) 1

)

(ka)q , (34)

and, for n > 2

An = −n
2

ka

K0

(

ndw
2a

)

I0

(

ndw
2a

)

+ Cn

π
+

ka









K0

(

(n+ 1)dw
2a

)

I0

(

(n+ 1)dw
2a

)

+K0

(

(n− 1)dw
2a

)

I0

(

(n− 1)dw
2a

)

+ Cn+1 + Cn−1

2π
− n2χ2n









+

∞
∑

q=2

(

χ(q−1) (n−1) + χ(q−1) (n+1)

2
− n2χ(q+1)n

)

(ka)q . (35)
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For any n ∈ N, we consider the power series in the variable

ka, that is present in (33) if n = 0, or (34) if n = 1, or

(35) if n > 2. It has no constant term and starts with a term

proportional to ka. We can define an approximation ofAn by

utilizing the nonnegative integer dA(n) such that this power

series is replaced with the sum of its terms of degree at most

dA(n) if dA(n) > 1, or is ignored if dA(n) = 0.

C. ABOUT THE MODIFIED BESSEL FUNCTIONS

In what follows, we will use Landau’s little-o and big-O no-

tations [19, Sec. 5.1]. By [9, Eq. 9.6.12] and [9, Eq. 9.6.13],

for any z ∈ C, we have

I0(z) = 1 +
z2

4
+
z4

64
+O(z6) (39)

as z → 0, and

K0(z) = −
{

ln
z

2
+ γ

}

I0(z) +
z2

4
+

3z4

128
+O(z6) (40)

as z → 0. It follows from (39) and (40) that

K0(z) = −
(

ln
z

2
+ γ

)

(

1 +
z2

4
+
z4

64

)

+
z2

4
+

3z4

128
+ o(z5) . (41)

Using (39) and (41), we obtain

K0(z)I0(z) = −
(

ln
z

2
+ γ

)

(

1 +
z2

2
+

3z4

32

)

+
z2

4
+

11z4

128
+ o(z5) , (42)

K0(z)I0(z) = −
(

ln
z

2
+ γ

)

(

1 +
z2

2

)

+
z2

4
+ o(z3) (43)

and
K0(z)I0(z) = − ln

z

2
− γ + o(z) . (44)

We have assumed that dw ≪ 2a, so that we can in

principle use (42), or (43), or (44) as approximations to

remove the modified Bessel functions from (33)–(35). Note

that using the coarsest approximation (44) in (37) leads us to

L0 ≃ µa

(

ln
16 a

dw
− 2

)

, (45)

which is equal to the thin-wire approximation of the external

inductance of the loop [20, Eq. (5-100)].

To make sure that one of these approximations is such

that the relative error on K0(ndw/2a)I0(ndw/2a) is less than

0.1% up to n = 21, a sufficient condition is:

• dw/2a is less than 0.029 if we use (42);

• dw/2a is less than 0.014 if we use (43); and

• dw/2a is less than 0.002 if we use (44).

As a comparison, dw/2a = 0.025 in the case a = 280mm
and dw = 14mm considered above in Section II.D. Thus, a

good accuracy could be obtained in this case if we remove

the modified Bessel functions from (33)–(35) using (42).

Approximations ofA0,A1 andA2 were proposed (without

explanations) and discussed in [21, Eq. (71a)–(71c)]. They

are based on the use of dA(n) = 6 for n ∈ {0, 1, 2}, and on

the use of (44) in (33)–(35) to remove the modified Bessel

functions.

A word of caution is in order here, about formulas without

modified Bessel functions for the computations of what looks

like the Wu-King factors, proposed in [22, Eq. (12)–(13)]

and [23, Eq. (5-31)–(5-32)]. Though none of these references

mention this, these formulas stem from [24, Appendix III]

and should not be used today, because they relate to the

theory proposed by Storer in [24], which was a significant

contribution when it was published, but became obsolete

after the theory disclosed by Wu in [3].

IV. EMISSION
A. GENERAL RESULTS

We now use a right-handed cartesian coordinate system

(x, y, z) arranged according to Fig. 1, and the associated

spherical coordinates system (r, θ, ϕ). We use (ux,uy,uz)
to denote the basis of the cartesian coordinate system, and

(ur,uθ,uϕ) to denote the local orthonormal basis of the

spherical coordinate system.

To compute the electric field E and the magnetic field H

emitted by the loop antenna, we sum the contributions of

infinitesimal current elements, regarded as electric dipoles.

Using the classical results [25, Sec. 8.5] or [26, Sec. 15.5.5],

we obtain

E =
a

4πǫ

2π
∫

0

{(

1

R3
+
jk

R2

)

[3R0(R0 · ut)− ut]

− k2

R
R0 × (R0 × ut)

}

iE(ψ)e
−jkR

jω
dψ (46)

and

H =
a

4π

2π
∫

0

(

1

R2
+
jk

R

)

ut ×R0 iE(ψ)e
−jkRdψ (47)

where R is the distance between the point of spherical

coordinates (a, π/2, ψ) and the observer, R0 is a unit vector

directed from this point towards the observer, ut is a unit vec-

tor tangent to the loop wire, its direction being the direction

of positive current (which is the direction of increasing ψ),

and ǫ is the permittivity of the medium.

Using a numerical integration in (46)–(47), the fields E

and H can be computed anywhere (though the result will not

be accurate very close to the antenna wire, because of the thin

wire approximation).

It is interesting to compute H on the axis of the loop, that

is the straight line of equations x = 0 and y = 0. If the

cartesian coordinates of the observer are (0, 0, z), we can use

the results of Appendix A to get

ut ×R0 =
z cosψux + z sinψuy + auz

R
, (48)

where R =
√
a2 + z2. By (20), (47) and (48), H on the axis

of the loop is given by (49) shown at the top of next page.
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H ≃ I0
a

4π
e−jkR

(

1

R2
+
jk

R

)

2π
∫

0

z cosψux + z sinψuy + auz
R

1

A0
+ 2

N
∑

n=1

cosnψ

An

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

dψ. (49)

Using manipulations involving integrals of cosψ cosnψ
and sinψ cosnψ over the interval [0, 2π], we obtain

H ≃ I0
a

2R2
e−jkR

(

1

R
+ jk

)(

auz
A0

+
zux
A1

)

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

(50)

on the loop axis. At a frequency low enough to be such that

kR ≪ 1, and 1/|A0| ≫ πηωCT , and 1/|A0| ≫ 2/|An| for

n > 1, and a/|A0| ≫ |z|/|A1|, we find that (50) leads us to

H ≃ I0
a2

2R3
uz , (51)

which is identical to a textbook result on the magnetic field on

the axis of a circular loop carrying a dc current [27, Sec. 6-3].

In contrast, if |z| ≫ a and the frequency is high enough to be

such that kR≫ 1 and a/|A0| ≪ |z|/|A1|, we get

H ≃ I0
jka

2RA1
e−jkR

±ux

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

(52)

on the loop axis, where the plus sign applies to z > 0 and the

minus sign to z < 0. In (52), ||H|| varies as 1/R.

B. EMISSION IN THE FAR FIELD

We now want to assess E and H given by (46)–(47) seen

by an observer at the point of spherical coordinates (r, θ, ϕ),
in the case where r ≫ a and kr ≫ 1. According to

Appendix A, we have R0 ≃ ur,

ut ×R0 ≃ cos (ϕ− ψ)uθ − cos θ sin (ϕ− ψ)uϕ , (53)

−R0 × (R0 × ut) ≃
cos θ sin (ϕ− ψ)uθ + cos (ϕ− ψ)uϕ , (54)

and R ≃ r − a sin θ cos (ϕ− ψ) . (55)

By (20), (46)–(47) and (53)–(55), E and H in the far field

are given by (56)–(57) shown at the bottom of this page.

For any nonnegative integer n, we have

cos (ϕ− ψ) cosnψ =

cosnϕ

2

{

cos [(n+ 1) ξ ] + cos [(n− 1) ξ ]
}

+
sinnϕ

2

{

sin [(n+ 1) ξ ] + sin [(n− 1) ξ ]
}

, (58)

where ξ = ϕ− ψ. It follows that

2π
∫

0

cos (ϕ− ψ) cos (nψ) ejka sin θ cos (ϕ−ψ)dψ

= jn+1π cos (nϕ) [Jn+1(ka sin θ)− Jn−1(ka sin θ)]

= −jn+12π cos (nϕ) J′n(ka sin θ) , (59)

in which we have used [9, Eq. 9.1.21] and [9, Eq. 9.1.27]. For

any nonnegative integer n, we also have

sin (ϕ− ψ) cosnψ =

cosnϕ

2

{

sin [(n+ 1) ξ ]− sin [(n− 1) ξ ]
}

− sinnϕ

2

{

cos [(n+ 1) ξ ]− cos [(n− 1) ξ ]
}

, (60)

where ξ = ϕ−ψ. It follows that, in the case where θ 6= 0 and

θ 6= π, we can again use [9, Eq. 9.1.21] and [9, Eq. 9.1.27] to

obtain

2π
∫

0

sin (ϕ− ψ) cos (nψ) ejka sin θ cos (ϕ−ψ)dψ

= −jn+1π sin (nϕ) [Jn+1(ka sin θ) + Jn−1(ka sin θ)]

= −jn+1 2nπ

ka sin θ
sin (nϕ) Jn(ka sin θ) , (61)

E ≃ I0
ak2

4πǫr

e−jkr

jω

2π
∫

0

[cos θ sin (ϕ− ψ)uθ + cos (ϕ− ψ)uϕ]

1

A0
+ 2

N
∑

n=1

cosnψ

An

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

ejka sin θ cos (ϕ−ψ)dψ (56)

and

H ≃ I0
jka

4πr
e−jkr

2π
∫

0

[cos (ϕ− ψ)uθ − cos θ sin (ϕ− ψ)uϕ]

1

A0
+ 2

N
∑

n=1

cosnψ

An

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

ejka sin θ cos (ϕ−ψ)dψ (57)
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whereas, in the case θ = 0 or θ = π, we get

2π
∫

0

sin (ϕ− ψ) cos (nψ) ejka sin θ cos (ϕ−ψ)dψ

=

{

π sinϕ if n = 1

0 else .
(62)

Using (56)–(57), (59) and (61)–(62), we find that: if θ 6= 0
and θ 6= π, then E and H in the far field are given by (63)–

(64) shown at the bottom of this page; whereas, if θ = 0 or

θ = π, then E and H in the far field are given by

E ≃ −I0η
jka

2rA1
e−jkr

cos θ sinϕuθ + cosϕuϕ

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

(65)

and

H ≃ I0
jka

2rA1
e−jkr

cosϕuθ − cos θ sinϕuϕ

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

, (66)

where we have used the fact that, by (25), for any nonnegative

integer n, the only nonzero J′n(0) is J′1(0) = 1/2. We may

use the last results of Appendix A to see that, on the axis of

the loop, where θ = 0 or θ = π, (66) agrees with (52).

The fields given by (63)–(66) of course satisfy

H ≃ 1

η
ur ×E , (67)

since, locally, the fields look like a plane wave propagating

in the direction of ur.

We can express E in the form E = Erur+Eθuθ+Eϕuϕ.

Using (13)–(14) and (19) in (63), we obtain, in the far field

and in the case where θ 6= 0 and θ 6= π,

Er ≃ 0 , (68)

Eθ ≃ −η cot θ
2r

e−jkr

×
N
∑

n=1

njnIE n sin(nϕ)Jn(ka sin θ) (69)

and

Eϕ ≃ −ηka
2r

e−jkr

×
N
∑

n=0

jnIE n cos(nϕ)J
′
n(ka sin θ) . (70)

C. NOTES ON RELATED WORKS

In 1996, Werner proposed formulas that give the fields emit-

ted by a thin circular loop antenna [28]–[29], for any assumed

current distribution specified using the angular Fourier cosine

series (1). These impressive but cumbersome formulas use

spherical coordinates and are valid everywhere around the

antenna. Unlike (46)–(47), they contain no integral. Werner’s

results for the far-field approximation [28, Eq. (111)–(116)]

are consistent with (68)–(70), though they were obtained

differently.

In 1997, other formulas for the fields radiated by a thin

circular loop antenna were proposed by Li et al [30], but they

are not advantageous [31]–[32] and use the obsolete concept

of dyadic. In 2005, other formulas for the fields radiated by

a thin circular loop antenna, based on the use of cylindrical

coordinates, were proposed by Conway [33]. Later, other

formulas for the fields radiated by a thin circular loop antenna

were proposed by Hamed [34]–[36] and Miljak [37].

In 2018, Werner proposed formulas that give the fields

emitted by a thin elliptical loop antenna in the far zone [38].

They can be used to assess the effects of an ellipticity of a

nominally circular loop antenna.

D. VECTOR EFFECTIVE LENGTH

Let hE be the vector effective length of the loop antenna in

a direction (θ, ϕ), as defined in [2, Sec. 5.2] and [26, Sec.

16.5]. This definition is about emission (a different definition,

relating to reception, also exists [39, Sec. 2.15]). According

to this definition, in the direction (θ, ϕ), the vector effective

length hE is such that E satisfies

lim
r→∞

rE = jη
I0 k e

−jkr

4π
hE . (71)

We can express hE in the form hE = hEθuθ + hEϕuϕ.

E ≃ −I0η
e−jkr

r

cot θ

[

N
∑

n=1

njn sin (nϕ) Jn(ka sin θ)

An

]

uθ + ka

[

J′0(ka sin θ)

2A0
+

N
∑

n=1

jn cos (nϕ) J′n(ka sin θ)

An

]

uϕ

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

(63)

and

H ≃ I0
e−jkr

r

ka

[

J′0(ka sin θ)

2A0
+

N
∑

n=1

jn cos (nϕ) J′n(ka sin θ)

An

]

uθ − cot θ

[

N
∑

n=1

njn sin (nϕ) Jn(ka sin θ)

An

]

uϕ

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

(64)
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According to (63) and (65), we obtain:

hEθ ≃ 4jπ
cot θ

k

N
∑

n=1

njn sin (nϕ) Jn(ka sin θ)

An

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

(72)

in the case where θ 6= 0 and θ 6= π;

hEθ ≃ −2πa

A1

cos θ sinϕ

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

(73)

in the case where θ = 0 or θ = π; and

hEϕ ≃

2jπa

J′0(ka sin θ)

A0
+ 2

N
∑

n=1

jn cos (nϕ) J′n(ka sin θ)

An

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

.

(74)

We observe that, if θ = π/2, or if ϕ = 0 or ϕ = π,

then hEθ = 0. Let ϕX ∈ [0, 2π). Since, for any nonnegative

integer n, the only nonzero J′n(0) is J′1(0) = 1/2, we observe

that, if θ = 0 or θ = π, then the value of |hEϕ| for ϕ = ϕX
is equal to the value of |hEθ| for ϕ = ϕX + π/2.

At a frequency where the loop is electrically small, we can

use expansions of hEθ and hEϕ for small values of ka. It

follows from (25) that, for small values of x,

Jn(x) =
1

n!

(x

2

)n
(

1− x2

4(n+ 1)
+ o(x3)

)

, (75)

J′0(x) = −x
2
+
x3

16
+ o(x4) (76)

and

J′n(x) =
1

2n!

(x

2

)n−1
(

n− (n+ 2)x2

4(n+ 1)
+ o(x3)

)

, (77)

where n is a positive integer. To get the wanted expansions,

we must also take into account the fact that, according to

Fig. 4 and (33)–(35), for ka→ 0, we have 1/A0 = O(1/ka),
and 1/An = O(ka) if n is positive. Thus, for small values

of ka, it follows from (72)–(74) that hEθ and hEϕ are

approximately given by (78)–(79) shown at the bottom of the

page, where w = ka sin θ. These formula are new.

FIGURE 9. Entries of the vector effective length at about 10.0 MHz, as a
function of θ in degrees: |hEϕ| for ϕ = π is curve “a”; |hEϕ| for ϕ = π/2
is curve “b”; |hEθ| for ϕ = π/2 is curve “c”; and |hEθ| for ϕ = 0 or ϕ = π is
not shown but equal to 0.

FIGURE 10. Entries of the vector effective length at about 31.6 MHz, as a
function of θ in degrees: |hEϕ| for ϕ = π is curve “a”; |hEϕ| for ϕ = π/2 is
curve “b”; |hEθ| for ϕ = π/2 is curve “c”; and |hEθ| for ϕ = 0 or ϕ = π is
not shown but equal to 0.

FIGURE 11. Entries of the vector effective length at about 31.6 MHz, as a
function of ϕ in degrees: |hEϕ| for θ = 0 is curve “a”; |hEϕ| for θ = π/2 is
curve “b”; |hEθ| for θ = 0 is curve “c”; and |hEθ| for θ = π/2 is not shown
but equal to 0.

Less accurately, we also have

hE ≃ −jπka2 sin θ uϕ + o(ka). (80)

E. EXAMPLES

We use again the case where a = 280mm and dw = 14mm
defined in Section II.D, for which dw/2a = 0.025.

Fig. 9 to Fig. 14 show |hEθ| and |hEϕ| given by (72)–(74),

as a function of θ and ϕ, at about 10.0 MHz, 31.6 MHz,

79.4 MHz (near the first parallel resonance, at ka ≃ 0.47),

hEθ ≃ 2jπa cos θ

j
sinϕ

A1

(

1− w2

8

)

− sin 2ϕ

2A2
w − j

sin 3ϕ

8A3
w2 + o((ka)3)

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

(78)

and

hEϕ ≃ 2jπa

− 1

2A0
w

(

1− w2

8

)

+ j
cosϕ

A1

(

1− 3w2

8

)

− cos 2ϕ

2A2
w − j

cos 3ϕ

8A3
w2 + o((ka)3)

1

A0
+ 2

N
∑

n=1

1

An
− πηωCT

. (79)
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FIGURE 12. Entries of the vector effective length at about 79.4 MHz, as a
function of θ in degrees: |hEϕ| for ϕ = π is curve “a”; |hEϕ| for ϕ = π/2 is
curve “b”; |hEθ| for ϕ = π/2 is curve “c”; and |hEθ| for ϕ = 0 or ϕ = π is
not shown but equal to 0.

FIGURE 13. Entries of the vector effective length at about 79.4 MHz, as a
function of ϕ in degrees: |hEϕ| for θ = 0 is curve “a”; |hEϕ| for θ = π/2 is
curve “b”; |hEθ| for θ = 0 is curve “c”; and |hEθ| for θ = π/2 is not shown
but equal to 0.

FIGURE 14. Entries of the vector effective length at about 178 MHz, as a
function of θ in degrees: |hEϕ| for ϕ = π is curve “a”; |hEϕ| for ϕ = π/2 is
curve “b”; |hEθ| for ϕ = π/2 is curve “c”; and |hEθ| for ϕ = 0 or ϕ = π is
not shown but equal to 0.

and 178 MHz (near the first series resonance, at ka ≃ 1.05).

Fig. 15 shows |hEθ| and |hEϕ| given by (72)–(74), as a

function of the frequency.

Fig. 16 shows the discrepancies between the accurate

formulas (72)–(74) and the approximate formulas (78)–(79),

as a function of the frequency. The latter are found to be very

accurate up to 200 MHz (for which ka ≃ 1.17), well beyond

the first parallel resonance and the first series resonance.

Fig. 15 shows that the behavior predicted by (80) is accu-

rate up to about 30 MHz (for which ka ≃ 0.18).

F. GAIN

The gain of the antenna in a specified direction is given by

G =
ηk2

4πRe(Zant)
(|hEθ|2 + |hEϕ|2). (81)

At low enough frequencies, we can use (80) and the fact

that Re(Zant) is close to Rr given by (38), to obtain

G ≃ 3

2
sin2 θ. (82)

Fig. 17 shows G given by (81), as a function of the

frequency, for the same loop antenna as the one considered

FIGURE 15. Entries of the vector effective length, versus frequency. |hEϕ| for
θ = π/2 and ϕ = π is curve “a”. |hEϕ| for θ = π/2 and ϕ = π/2 is curve
“b”. |hEθ| for θ = 0 and ϕ = π/2 is curve “c”.

FIGURE 16. Deviations of (78)–(79) from (72)–(74): |hEϕ| for θ = π/2 and
ϕ = π is curve “a”; |hEϕ| for θ = π/2 and ϕ = π/2 is curve “b”; |hEθ| for
θ = 0 and ϕ = π/2 is curve “c”; |hEθ| for θ = π/4 and ϕ = π/2 is curve “d”.

FIGURE 17. Gain, versus frequency. G for θ = π/2 and ϕ = π is curve “a”.
G for θ = π/2 and ϕ = π/2 is curve “b”. G for θ = 0 and ϕ = π/2 is curve
“c”. G for θ = π/2 and ϕ = 0 is curve “d”.

in Fig. 9 to Fig. 16. We see that the approximation (82)

is accurate up to about 20 MHz (for which ka ≃ 0.12).

It follows that, up to 20 MHz, the maximum gain occurs

for θ = π/2 and practically any value of ϕ. We have not

found the direction of maximum gain at higher frequencies,

in the literature [14, Sec. 5-3]. We used a maximum seeking

algorithm to ascertain that, for this loop antenna:

• at about 31.6 MHz (for which ka ≃ 0.19), the max-

imum gain is about 1.47, and occurs in the direction

θ = π/2 and ϕ = 0, which is consistent with Fig. 10

and Fig. 11;

• at about 79.4 MHz (near the first parallel resonance), the

maximum gain is about 1.40, and occurs in the direction

θ = π/2 and ϕ = 0, which is consistent with Fig. 12

and Fig. 13; and

• at about 178 MHz (near the first series resonance),

the maximum gain is about 2.29, and occurs in the

directions θ = 0 or θ = π, in line with Fig. 14.
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V. RECEPTION
A. GENERAL RESULTS

This Section V presents new results about the loop antenna

used for receiving an arbitrary incident time-harmonic elec-

tromagnetic field Fi = (Ei,Hi). The open-circuit voltage

at the antenna terminals is denoted by eant. The results

presented in [40, Sec. IV-Sec. V] and [41, Sec. IV] seem

to be only applicable to a planar wire loop antenna without

terminal-zone network. However, they are based on [40,

Eq. (1)], that is to say

eant = − 1

I0

∫∫∫

Antenna

Jt ·Ei dv , (83)

where Jt is the current density in the antenna if it is used

for emission and a current I0 flows into the positive terminal

of the antenna port, where Ei is the incident electric field,

and where dv is a volume element. This formula is based

on reciprocity and applicable to any antenna in which no

non-reciprocal phenomenon occurs [42, Sec. 13.06]. If we

apply this formula to our antenna, we observe that the volume

integral over the lumped capacitance CT and the lumped

inductance LT can be ignored because a lumped capacitance

or inductance has no physical size, and our model assumes

that the only effective current in the antenna wire is the

current distribution iE(ψ).
It follows that we can directly apply the results presented

in [40, Sec. IV-Sec. V] and [41, Sec. IV] to the loop antenna

considered in this article, which includes a terminal-zone

network. Thus, using [40, Eq. (73)] or [41, Eq. (75)], we

obtain

eant = jωµ

∫∫

A

Hi · uz dA

− a

2π
∫

0

iE(ψ)− I0
I0

ut ·Ei dψ , (84)

where A denotes the disk bounded by the center line of the

loop antenna, dA is a surface element of A, and ut was

defined in Section IV.A. This formula is equivalent to

eant = −a
2π
∫

0

iE(ψ)

I0
ut ·Ei dψ . (85)

An alternative proof of (84)–(85) is shown in Appendix B.

If we decompose Fi = (Ei,Hi) into the 4 elementary

time-harmonic electromagnetic fields (ETHEFs) defined in

[40]–[41], denoted by FA = (EA,HA), FB = (EB ,HB),
FC = (EC ,HC) and FD = (ED,HD), it follows from (84)

that we can also use [40, Eq. (71)] or [41, Eq. (73)], that is to

say

eant = jωµ

∫∫

A

HA · uz dA

− a

2π
∫

0

iE(ψ)− I0
I0

ut · (EA +EB) dψ . (86)

Thus, at any frequency, only FA and FB excite the loop

antenna. Moreover, in the context of low-frequency field

measurements, it is possible to consider that FA causes the

intended response of the antenna, while FB may cause an

unwanted response. What follows will allow us to clarify

the meaning of “the context of low-frequency field measure-

ments” in the previous sentence.

B. RECEPTION OF UNIFORM PLANE WAVES

We now assume that Fi is a uniform time-harmonic plane

wave propagating from the direction θ = θi and ϕ = ϕi. The

wave vector of this incident plane wave is

ki = −k sin θi(cosϕiux + sinϕiuy)− k cos θiuz . (87)

Let Ei0 be Ei at the origin. We use (uri,uθi,uϕi) to

denote the local orthonormal basis of the spherical coordinate

system in the direction θ = θi and ϕ = ϕi. Since Ei0·ki = 0,

we can express Ei0 in the form Ei0 = Ei0θuθi + Ei0ϕuϕi.
We have

Ei = Ei0 e
−jki·r = (Ei0θuθi + Ei0ϕuϕi) e

−jki·r , (88)

where r is the radius vector of the observer. If we now assume

that the observer is located on the center line of the electric

conductor, at the angle ψ shown in Fig. 1, we have

ki · r = −ka sin θi cos (ϕi − ψ) . (89)

It follows from (113) of Appendix A that

ut ·Ei =
[

cos θi sin (ϕi − ψ)Ei0θ

+ cos (ϕi − ψ)Ei0ϕ
]

ejka sin θi cos (ϕi−ψ) . (90)

Using (90) in (85), and comparing the result with (56), we

find that, if E is the field radiated by the loop antenna in the

direction θ = θi and ϕ = ϕi during emission, we get

lim
r→∞

rE ·Ei0 = −I0
k2

4πǫ

e−jkr

jω
eant . (91)

Using (71) in (91), we obtain

eant = hEi ·Ei0 , (92)

where hEi is the vector effective length of the loop antenna

in the direction θ = θi and ϕ = ϕi. This result, which

only applies to the circumstance in which Fi is a uniform

plane wave, is well known [2, Sec. 5.2], [26, Sec. 16.5],

[43, Sec. 4.5]. We have derived it here to show that it is a

direct consequence of (84) or (85), which are applicable to

an incident Fi that need not be a uniform plane wave.

According to [40, Appendix D], in the plane z = 0, FA
and FB satisfy

EA = Ei0ϕ uϕi e
−jki·r , (93)

HA = −1

η
sin θiEi0ϕ uz e

−jki·r (94)

and

EB = cos θiEi0θ (cosϕiux + sinϕiuy) e
−jki·r , (95)

where, in the case θi = 0 or θi = π, the arbitrary ϕi is chosen

in such a way that Ei0 = Ei0ϕ uϕi.
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If we express hEi in the form hEi = hEiθuθi + hEiϕuϕi,
(92) leads us to

eant = hEiθEi0θ + hEiϕEi0ϕ (96)

where Ei0θ and Ei0ϕ are independent arbitrary parameters

that define the arbitrary incident uniform plane wave Fi.
Using (93)–(95) in (86), and comparing the result to (96) in

a context where Ei0θ and Ei0ϕ are regarded as independent

and arbitrary, we find that the contribution of FA to eant is

hEiϕEi0ϕ, and the contribution of FB to eant is hEiθEi0θ.

If eant is computed using (92) and the approximate value of

hEi given by (80), only FA is (coarsely) taken into account.

Since we have already investigated Zant, hEiϕ and hEiθ
as a function of the frequency, it follows from (96) that we

have all the ingredients of a Thevenin equivalent circuit of

the circular loop antenna used for reception. For a Norton

equivalent circuit, we need the short-circuit current of the

loop antenna used for reception, which is given by

iant =
hEi ·Ei0
Zant

=
hEiθEi0θ + hEiϕEi0ϕ

Zant
. (97)

The loop antenna parameters hEiθ/Zant and hEiϕ/Zant
are therefore relevant to the Norton equivalent circuit. It

follows from (17) and (72)–(74) that, if LT = 0, we obtain:

hEiθ
Zant

≃ 4 cot θi
ηk

N
∑

n=1

njn sin (nϕi) Jn(ka sin θi)

An
(98)

in the case where θi 6= 0 and θi 6= π;

hEiθ
Zant

≃ j
2a

ηA1
cos θi sinϕi (99)

in the case where θi = 0 or θi = π; and

hEiϕ
Zant

≃ 2a

η

[

J′0(ka sin θi)

A0

+ 2

N
∑

n=1

jn cos (nϕi) J
′
n(ka sin θi)

An

]

. (100)

For small values of ka and LT = 0, it follows from (78)–

(79) that hEiθ/Zant and hEiϕ/Zant are approximately

hEiθ
Zant

≃ 2a cos θi
η

[

j
sinϕi
A1

(

1− w2

8

)

− sin 2ϕi
2A2

w − j
sin 3ϕi
8A3

w2 + o((ka)3)

]

(101)

and

hEiϕ
Zant

≃ 2a

η

[ −1

2A0
w

(

1− w2

8

)

+ j
cosϕi
A1

(

1− 3w2

8

)

− cos 2ϕi
2A2

w − j
cos 3ϕi
8A3

w2 + o((ka)3)

]

, (102)

where w = ka sin θi. Less accurately, we also have

hEi

Zant
≃ −πa

2

cL0
sin θi uϕi + o(1), (103)

in which L0 is the inductance defined by (37).

FIGURE 18. Components of hEi/Zant, as a function of the frequency.
|hEiϕ/Zant| for θ = π/2 and ϕ = π is curve “a”. |hEiϕ/Zant| for θ = π/2
and ϕ = π/2 is curve “b”. |hEiθ/Zant| for θ = 0 and ϕ = π/2 is curve “c”.

The contribution of FA to iant is hEiϕEi0ϕ/Zant, and

the contribution of FB to iant is hEiθEi0θ/Zant. If iant is

computed using (97) and the approximate value of hEi/Zant
given by (103), only FA is (coarsely) taken into account.

Fig. 18 shows |hEiθ/Zant| and |hEiϕ/Zant| given by

(98)–(100), as a function of the frequency, for the antenna

considered in Section IV.E (in which LT = 0).

Expressed in decibels, the deviations between the accurate

formulas (98)–(100) and the approximate formulas (101)–

(102) are the same as the corresponding deviations between

the accurate formulas (72)–(74) and the approximate formu-

las (78)–(79). Thus, the approximate formulas (101)–(102)

are very accurate up to 200 MHz or ka ≃ 1.17.

Fig. 18 shows that the behavior predicted by (103) is

accurate up to about 30 MHz or ka ≃ 0.18.

C. ABOUT DIRECTION FINDING AND MEASUREMENTS

We have up to now only considered a circular loop antenna

in free space, so that we have ignored the effects of nearby

ground and/or objects, and of a feeder, on the received signal.

A discussion of these phenomena is outside the scope of this

article. Our models nevertheless directly provide some clues

on direction finding and electromagnetic field measurements

using an electrically small circular loop antenna.

In direction finding, the loop antenna is typically rotated

until a very small response (ideally, a null response) is

obtained from a receiver coupled to the antenna [44, p. 875],

[45, Ch. 3], [46, Sec. 1.04], [47, Sec. 39-2]. It is assumed that

this very small response indicates that the plane of the loop is

perpendicular to the direction in which a received uniform

plane wave propagates, that is to say θi = 0 or θi = π.

It follows from (78)–(79) or (101)–(102) that a very small

response is obtained for any polarization of this incident wave

if the frequency is such that |1/A1| ≪ |ka/A0|/2.

In electromagnetic field measurements, a reasonable pur-

pose of the measurement is to obtain information about FA,

in spite of possible unwanted effects of FB [40, Sec. X],

[41, Sec. VII]. It follows from (78)–(79) or (101)–(102) that

this result is achieved by positioning the loop in such a way
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that the direction in which a received uniform plane wave

propagates satisfies θi = π/2.

In addition, one may wish that |iant/Ei0ϕ| is substantially

frequency independent up to the largest possible frequency.

This is particularly relevant to configurations in which the

loop antenna is suitably coupled to an amplifier having an

input impedance whose absolute value is much less than

|Zant| over a broad frequency range, and having a practically

constant transimpedance over this broad frequency range.

According to (102), |iant/Ei0ϕ| is substantially frequency in-

dependent up to the largest possible frequency by positioning

the loop in such a way that θi = π/2 and ϕi = ±π/2, and

by utilizing a loop such that |1/A2| ≪ |1/A0|. In Fig. 18,

this result is obtained up to about 168 MHz, corresponding

to ka ≃ 0.99 and 2a/λ ≃ 0.314, for a deviation of about

1 dB from the value at 100 kHz.

In contrast, if θi and ϕi are unknown, the unwanted effects

of FB are small if |1/A1| ≪ |ka/A0|/2, according to (78)–

(79) or (101)–(102). We find that a difference of at least

20 dB between the curves “b” and “c” of Fig. 15 or Fig. 18

is obtained only up to about 8.4 MHz, which corresponds to

ka ≃ 0.049 and 2a/λ ≃ 0.016.

This discussion of electromagnetic field measurements

supplements the one proposed in [48], where a loop antenna

such that 2a/λ 6 0.010 is recommended for measuring

unknown magnetic fields.

VI. CONCLUSION
We have studied a single-turn circular wire loop antenna

lying in a homogeneous and lossless medium.

In this endeavor, we used known explicit mathematical

models of the current distribution in the loop antenna and

the impedance presented by the loop antenna. These models

contain no details of the geometry of the terminal region,

but include a terminal-zone network that allows the pos-

sibility of taking this geometry into account. We obtained

improved equivalent formulas and approximate formulas for

these models. In particular, (33)–(35) are quite efficient for

very accurate computations of the Wu-King factors.

We derived mathematical models for emission by the

loop antenna, which include new approximate but accurate

formulas for the computation of the vector effective length.

We obtained new mathematical models for reception by

the loop antenna, including results involving the elementary

time-harmonic electromagnetic fields FA and FB . We also

explained how these results can be applied to direction find-

ing and measurements.

A limitation of our work is that we have not taken into

account the resistance of the conductor forming the antenna.

This article is relevant to antenna theory and applications

where accuracy is important, among which electromagnetic

compatibility (EMC), electromagnetic field measurements,

antenna calibration, direction finding, etc. A forthcoming

article will show how some of the mathematical models

presented in this article can be used to obtain circuit models

of the circular wire loop antenna, and to design innovative

shielded loop antennas.

APPENDIX A
This appendix provides some details on the derivations of

Section IV. Let Q be the point where the observer lies, and

P a point on the center line of the solid torus mentioned in

Section II.A, at the angle ψ shown in Fig. 1. At this angle,

the vector ut defined in Section IV.A is

ut = − sinψux + cosψuy . (104)

In Section IV.A, when we assume that the cartesian coor-

dinates of the observer are (0, 0, z), we have
#   „

PQ = −a cosψux − a sinψuy + zuz , (105)

so that

R = || #   „

PQ|| =
√

a2 + z2 (106)

and

R0 =

#   „

PQ

|| #   „

PQ||
=

−a cosψux − a sinψuy + zuz
R

. (107)

By (104) and (107), ut ×R0 is given by (48).

The observer may now lie anywhere, at the spherical

coordinates (r, θ, ϕ). We have

ur = sin θ cosϕux + sin θ sinϕuy + cos θ uz , (108)

uθ = cos θ cosϕux + cos θ sinϕuy − sin θ uz , (109)

and

uϕ = − sinϕux + cosϕuy . (110)

It follows that

ux = sin θ cosϕur + cos θ cosϕuθ − sinϕuϕ (111)

and

uy = sin θ sinϕur + cos θ sinϕuθ + cosϕuϕ . (112)

Using (111) and (112) in (104), we obtain

ut = sin (ϕ− ψ) sin θ ur

+ sin (ϕ− ψ) cos θ uθ + cos (ϕ− ψ)uϕ . (113)

In Section IV.B, we have R0 ≃ ur because r ≫ a.

Accordingly, it follows from (113) that ut×R0 satisfies (53)

and that −R0 × (R0 × ut) satisfies (54). We also have

#   „

PQ = −a cosψux − a sinψuy + rur

= [r − a sin θ cos (ϕ− ψ)]ur

+ a cos θ cos (ϕ− ψ)uθ + a sin (ϕ− ψ)uϕ , (114)

in which we have used (111) and (112). It follows that

R = || #   „

PQ|| ≃ r − a sin θ cos (ϕ− ψ) (115)

because r ≫ a. We have proven (55).

Finally, we note that, by (109) and (110), on the axis of the

loop, where θ = 0 or θ = π, we have

cos θ sinϕuθ + cosϕuϕ = uy (116)

and

cosϕuθ − cos θ sinϕuϕ = cos θux = ±ux , (117)

where the plus sign applies to z > 0 and the minus sign to

z < 0. These results are useful to interpret (65)–(66).
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APPENDIX B
This appendix is about reception by the loop antenna.

The results presented in [40, Sec. IV-Sec. V] and [41,

Sec. IV] being applicable to a planar wire loop antenna

without terminal-zone network, they can be directly used

to determine the electromotive force at the gap of the loop

antenna, denoted by egap.

According to Fig. 2 and [40, Eq. (73)], we have:

egap = jωµ

∫∫

A

Hi · uz dA

− a

2π
∫

0

iE(ψ)− iE(0)

iE(0)
ut ·Ei dψ , (118)

which is equivalent to

egap = −a
2π
∫

0

iE(ψ)

iE(0)
ut ·Ei dψ . (119)

According to Fig. 2, we have

I0 = iE(0)

(

1 +
jωCT
Yδ

)

(120)

during emission, and the open-circuit voltage of the loop

antenna (during reception) is given by

eant =
egap

1 +
jωCT
Yδ

. (121)

It follows from (119)–(121) that

eant = −a
2π
∫

0

iE(ψ)

I0
ut ·Ei dψ , (122)

which is equivalent to

eant = jωµ

∫∫

A

Hi · uz dA

− a

2π
∫

0

iE(ψ)− I0
I0

ut ·Ei dψ . (123)

These formulas are identical to (84)–(85), though they

were derived differently.

REFERENCES
[1] R.F. Harrington, Time-Harmonic Electromagnetic Fields, New York, NY,

USA: McGraw-Hill, 1961.

[2] R.E. Collin, Antennas and Radiowave Propagation, International Edition,

New York, NY, USA: McGraw-Hill, 1985.

[3] T.T. Wu, “Theory of the thin circular loop antenna,” J. Mathematical

Physics, J. Mathematical Physics, vol. 3, no. 6, pp. 1301-1304, 1962.

[4] R.W.P. King, C.W. Harrison, Jr. and D.G. Tingley, “The admittance of bare

circular loop antennas in a dissipative medium,” IEEE Trans. Antennas

Propagat., vol. AP-12, no. 4, pp. 434-438, Jul. 1964.

[5] R.W.P. King, C.W. Harrison, Jr. and D.G. Tingley, “The current in bare

circular loop antennas in a dissipative medium,” IEEE Trans. Antennas

Propagat., vol. AP-13, no. 4, pp. 529-531, Jul. 1965.

[6] R.W.P. King, Tables of Antenna Characteristics, New York, NY, USA: IFI

Plenum Data Corporation, 1971.

[7] R.W.P. King, “The loop antenna for transmission and reception,” ch. 11 of

Antennas Theory, Part 1, R.E. Collin and F.J. Zucker, Ed., New York, NY,

USA: McGraw-Hill, 1969.

[8] E. Jahnke, F. Emde and F. Lösch, Tables of Higher Functions, 6th Edition,

Stuttgart, Germany: B.G. Teubner Verlagsgesellschaft, 1960.

[9] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions,

New York: Dover, 1965.

[10] F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST Handbook

of Mathematical Functions, New York, NY, USA: Cambridge University

Press, 2010.

[11] R.W.P. King, The Theory of Linear Antennas, Cambridge, MA, USA:

Harvard University Press, 1956.

[12] R.W.P. King, R.B. Mack and S.S. Sandler, Arrays of Cylindrical Dipoles,

London, U.K.: Cambridge University Press, 1968.

[13] H. Jasik, “Fundamentals of antennas,” ch. 2 of Antenna Engineering

Handbook, 3rd ed., R.C. Johnson, Ed., New York, NY, USA: McGraw-

Hill, 1993.

[14] G.S. Smith, “Loop antennas,” ch. 5 of Antenna Engineering Handbook,

3rd ed., R.C. Johnson, Ed., New York, NY, USA: McGraw-Hill, 1993.

[15] G. Zhou and G.S. Smith, “An accurate theoretical model for the thin-wire

circular half-loop antenna,” IEEE Trans. Antennas Propagat., vol. 39, no.

8, pp. 1167-1177, Aug. 1991.

[16] H.T. Anastassiou, “Fast, simple and accurate computation of the currents

on an arbitrarily large circular loop antenna,” IEEE Trans. Antennas

Propagat., vol. 54, No. 3, pp. 860-866, Mar. 2006.

[17] H.T. Anastassiou, “Input susceptance of an arbitrarily large, circular loop

antenna,” Proc. First European Conf. on Antennas and Propagation,

EuCAP 2006, Nice, France, pp. 1-5, Nov. 2006.

[18] J.D. Kraus, Antennas, First Edition, New York, NY, USA: McGraw-Hill,

1950.

[19] E. Ramis, C. Deschamps and J. Odoux, Cours de mathématiques spéciales

— 3 — Topologie et éléments d’analyse, 3rd ed., Paris, France: Masson,

1991.

[20] C.T.A Johnk, Engineering Electromagnetic Fields and Waves, New York,

NY, USA: John Wiley & Sons, 1975.

[21] L.W. Rispin and D.C. Chang, “Wire and loop antennas,” ch. 7 of Antennas

Handbook — Volume II — Antenna theory, Y.T. Lo and S.W. Lee, Ed.,

New York, NY, USA: Van Nostrand Reinhold, 1993.

[22] K. Iizuka, R.W.P. King and C.W. Harrison, Jr., “Self- and mutual admit-

tances of two identical circular loop antennas in a conducting medium and

in air,” IEEE Trans. Antennas Propagat., vol. AP-14, no. 4, pp. 440-450,

Jul. 1966.

[23] R.F. Harrington, Field Computation by Moment Methods, Piscataway, NJ,

USA: IEEE Press, 1993.

[24] J.E. Storer, “Impedances of thin-wire loop antennas,” Trans. of the Amer-

ican Institute of Electrical Engineers, Part I: Communication and Elec-

tronics, vol. 75, no. 5, pp. 606-619, Nov. 1956.

[25] J.A. Stratton, Electromagnetic Theory, New York, NY, USA: McGraw-

Hill, 1941.

[26] S.J. Orfanidis, Electromagnetic Waves and Antennas — vol. 2 — Antennas,

Sophocles J. Orfanidis, 2016.

[27] J.D. Kraus, Electromagnetics, Fourth Edition, New York, NY, USA:

McGraw-Hill, 1992.

[28] D.H. Werner, “An exact integration procedure for vector potentials of thin

circular loop antennas,” IEEE Trans. Antennas Propag., vol. 44, no. 2, pp.

157-165, Feb. 1996.

[29] D.H. Werner, “Correction to ‘An exact integration procedure for vector

potentials of thin circular loop antennas’,” IEEE Trans. Antennas Propag.,

vol. 44, no. 8, p. 1199, Aug. 1996.

[30] L.-W. Li, M.-S. Leong, P.-S. Kooi and T.-S. Yeo, “Exact solutions of

electromagnetic fields in both near and far zones radiated by thin circular-

loop antennas: A general representation,” IEEE Trans. Antennas Propag.,

vol. 45, no. 12, pp. 1741-1748, Dec. 1997.

[31] D.H. Werner, “Comments on ‘Exact solutions of electromagnetic fields in

both near and far zones radiated by thin circular-loop antennas: A general

representation’,” IEEE Trans. Antennas Propag., vol. 49, no. 1, p. 109, Jan.

2001.

[32] L.-W. Li, “Reply to ‘Comments on “Exact solutions of electromagnetic

fields in both near and far zones radiated by thin circular-loop antennas: A

general representation”’,” IEEE Trans. Antennas Propag., vol. 49, no. 1,

pp. 109-110, Jan. 2001.

[33] J.T. Conway, “New exact solution procedure for the near fields of the

general thin circular loop antenna,” IEEE Trans. Antennas Propag., vol.

53, no. 1, pp. 509-517, Jan. 2005.

Copyright © 2024 by Excem 15



EXCEM 

F. Broyde and E. Clavelier: Some Mathematical Models of a Circular Wire Loop Antenna

[34] S.M.A. Hamed, “Exact field expressions for circular loop antennas using

spherical functions,” IEEE Trans. Antennas Propag., vol. 61, no. 6, pp.

2956-2963, Jun. 2013.

[35] K.H.R. Zheng and J.L.-W. Li, “Comments on ‘Exact field expressions for

circular loop antennas using spherical functions expansion’,” IEEE Trans.

Antennas Propag., vol. 62, no. 8, pp. 4432-4434, Aug. 2014.

[36] S.M.A. Hamed, “Response to ‘Comments on “Exact field expressions for

circular loop antennas using spherical functions expansion”’,” IEEE Trans.

Antennas Propag., vol. 62, no. 8, pp. 4434-4435, Aug. 2014.

[37] D.G. Miljak, “Exact expressions for the near field of a thin uniform circular

loop current with application to loops lying on a half space,” Progress In

Electromagnetics Research B, vol. 105, pp. 93-105, Mar. 2024.

[38] D.H. Werner, “Exact expressions for the far-zone electromagnetic fields

radiated by thin elliptical loop antennas of arbitrary size,” IEEE Trans.

Antennas Propag., vol. 66, no. 12, pp. 6844-6850, Dec. 2018.

[39] C.A. Balanis, Antenna Theory, 2nd ed., New York, NY, USA: John Wiley

& Sons, 1997.

[40] F. Broydé and E. Clavelier, “The Open-Circuit Voltage of a Planar Wire

Loop Antenna Used for Reception,” Excem Research Papers in Electronics

and Electromagnetics, no. 6, doi: 10.5281/zenodo.7498910, Jan. 2023.

[41] F. Broydé and E. Clavelier, “Contribution to the theory of planar wire loop

antennas used for reception,” IEEE Trans. Antennas Propag., vol. 68, no.

3, pp. 1953-1961, Mar. 2020.

[42] E.C. Jordan and K.G. Balmain, Electromagnetic Waves and Radiating

Systems, 2nd ed., Englewood Cliffs, NJ, USA: Prentice-Hall, 1968.

[43] R.E. Collin, “The receiving antenna,” ch. 4 of Antennas Theory, Part 1,

R.E. Collin and F.J. Zucker, Ed., New York, NY, USA: McGraw-Hill,

1969.

[44] F.E. Terman, Radio Engineers’ Handbook, New York, NY, USA: McGraw-

Hill, 1943.

[45] R. Keen, Wireless Direction Finding, Third and Enlarged Edition, London,

U.K.: Iliffe & Sons Limited, 1938.

[46] D.S. Bond, Radio Direction Finders, First Edition, New York, NY, USA:

McGraw-Hill, 1944.

[47] H.D. Kennedy and R.B. Woolsey, “Direction-finding antennas,” ch. 39 of

Antenna Engineering Handbook, 3rd ed., R.C. Johnson, Ed., New York,

NY, USA: McGraw-Hill, 1993.

[48] H. Whiteside and R.W.P. King, “The loop antenna as a probe,” IEEE Trans.

Antennas Propag., vol. AP-12, no. 3, pp. 291-297, May 1964.

FRÉDÉRIC BROYDÉ was born in France in

1960. He received the M.S. degree in physics

engineering from the Ecole Nationale Supérieure

d’Ingénieurs Electriciens de Grenoble (ENSIEG)

and the Ph.D. in microwaves and microtechnolo-

gies from the Université des Sciences et Technolo-

gies de Lille (USTL).

He co-founded the Excem corporation in May

1988, a company providing engineering and re-

search and development services. He is president

of Excem since 1988. He is now also president of Eurexcem, a subsidiary

of Excem. Most of his activity is allocated to research in electronics, radio,

antennas, electromagnetic compatibility (EMC) and signal integrity.

Dr. Broydé is author or co-author of about 100 technical papers, and

inventor or co-inventor of about 90 patent families. He is a Senior Member

of the IEEE since 2001. He is a licensed radio amateur (F5OYE).

EVELYNE CLAVELIER was born in France in

1961. She received the M.S. degree in physics

engineering from the Ecole Nationale Supérieure

d’Ingénieurs Electriciens de Grenoble (ENSIEG).

She is co-founder of the Excem corporation,

based in Maule, France, and she is currently CEO

of Excem. She is also president of Tekcem, a

company selling or licensing intellectual property

rights to foster research. She is an active engineer

and researcher.

Her current research areas are radio communications, antennas, matching

networks, EMC and circuit theory.

Prior to starting Excem in 1988, she worked for Schneider Electrics (in

Grenoble, France), STMicroelectronics (in Grenoble, France), and Signetics

(in Mountain View, CA, USA).

Ms. Clavelier is the author or a co-author of about 90 technical papers.

She is co-inventor of about 90 patent families. She is a Senior Member of

the IEEE since 2002. She is a licensed radio amateur (F1PHQ).

Open access license: you may reproduce, store and distribute this document, provided the document remains complete and unmodified.
All other rights reserved. Published by Excem. ISBN 978-2-909056-29-6

Excem — 12, chemin des Hauts de Clairefontaine — 78580 Maule — France

16 Copyright © 2024 by Excem


