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Event-triggered finite-dimensional observer-based output
feedback stabilization of reaction-diffusion PDEs

Hugo Lhachemi

Abstract—This paper addresses the topic of event-triggered output
feedback stabilization of reaction-diffusion PDEs. The control applies
at the boundary while the output is distributed. The control strategy
consists of a finite-dimensional controller augmented with an adequate
event-triggered mechanism. This event-triggered mechanism dictates the
time instants at which the applied control input needs to be updated based
on the occurrence of specific events monitored by the control law. The
reported stability analysis relies on the use of two small gain arguments.
A first small gain argument is used to establish that the employed finite-
dimensional observer-based control strategy with continuous application
of the control input (i.e., without triggering mechanism) satisfies an input-
to-state stability (ISS) estimate with respect to an additive perturbation of
the control input. Then, taking advantage of this latter ISS estimate along
with the introduction of an adequate triggering mechanism, a second
small-gain argument is developed to establish the exponential decay of
the resulting closed-loop system trajectories. Finally, the feasibility of
the reported event-triggered control approach is assessed through the
establishment of a minimal dwell-time between two triggering instants.

Index Terms—Reaction-diffusion PDE, event-triggered, finite-
dimensional control, output feedback, boundary control.

I. INTRODUCTION

The design of control strategies that combine a reduced complexity
and an efficient usage of computational resources is a major concern.
For finite-dimensional systems, event-triggered control strategies have
emerged as efficient approaches to reduce computation and commu-
nication workloads [9], [23]. More recently, the possibility to develop
event-triggered control methods for partial differential equations
(PDEs) has attracted many attention. Efforts have been first devoted to
the control of hyperbolic PDEs [3]–[5], [7], [19] with recent applica-
tions to mining cable elevators [26], deep sea construction [27], load-
moving cable systems [24], and nonlinear manufacturing systems [2].
These efforts have been extended to parabolic PDE [10], [22], [25],
[28]. A spectral reduction-based approach is proposed in [15] for
output feedback by deriving sufficient LMI conditions. An emulation
of backstepping control has been reported in [6] for the state-feedback
event-triggered boundary control by taking advantage of an input-
to-state stability (ISS) property. Emulation of backstepping control
has been further studied for output feedback observer-based event-
triggered boundary control [20].

All the above-mentioned event-triggered control approaches that
embrace the problem of output feedback stabilization of a parabolic
PDE rely on an infinite-dimensional observer that takes the form of
a PDE. Therefore, the implementations of these control strategies
require a late lumping approximation (i.e., an a posteriori finite-
dimensional approximation) of the controller dynamics. To avoid the
pitfall of late lumping approximations for the control of parabolic
PDEs, efforts have been devoted to the development of procedures
for the design of finite-dimensional observer-based control strategies.
Such efforts root back to the pioneer work [21] and have then
been extended in a number of directions [8], [13], [16], [17] using
spectral reduction methods. This includes periodic sampled-data
control [14] but at the expense of piecewise linear control inputs
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while digital implementations impose, in general, piecewise constant
control inputs.

This work addresses the topic of event-triggered finite-dimensional
observer-based output feedback stabilization of reaction-diffusion
PDEs by means of piecewise constant control inputs. We consider
the case of Dirichlet/Neumann/Robin boundary control while the
system output takes the form of a distributed measurement. The main
contribution of this paper consists of the design of an event-triggered
output-feeback strategy that relies, for the first time, on a finite-
dimensional observer. Furthermore, the reported triggering mecha-
nism presents a low complexity because its structure is reminiscent
of those reported for finite-dimensional systems [9], [23]. Inspired
by [6] in a state-feedback context, the proof of stability consists
of the derivation of an ISS estimate with respect to a boundary
perturbation coupled with small gain arguments. The first step of
the proof is devoted to the study of the closed-loop system with
a continuous application of the control strategy in the presence of
a perturbation. By deriving an explicit small gain condition, we
demonstrate that the order of the observer can always be selected
such that the above closed-loop system is exponentially ISS with
respect to an additive perturbation of the command. The developed
approach extends spectral reduction-based ISS analyses methods for
open-loop reaction-diffusion PDEs [11], [12] to a closed-loop PDE
plant. Then, introducing an adequate event-triggered mechanism and
interpreting the event-triggered-based control strategy as a perturba-
tion of the continuous-time control strategy, a second explicit small-
gain condition is derived to ensure the exponential decay of the
closed-loop system trajectories. We show in the process that this
small gain condition is always satisfied provided a suitable choice
of one of the parameters of the event-triggered mechanism. We
finally assess the existence of a minimal dwell-time, independent
of the initial conditions of both the plant and controller, between
two consecutive events. This ensures the avoidance of possible Zeno
solutions that would prevent the practical feasibility of the reported
control strategy [9], [23].

The paper is organized as follows. The problem description and the
control strategy are described in Section II. An ISS estimate for the
closed-loop system in the case of a continuous actuation is derived
in Section III. The exponential decay of the closed-loop system
trajectories with event-triggered control, along with the existence
of a minimal dwell time, is reported in Section IV. A numerical
illustration is presented in Section V. Finally, concluding remarks
are formulated in Section VI.

Notation. Spaces Rn are endowed with the Euclidean norm ‖ · ‖.
The corresponding induced norms of matrices are also denoted by
‖·‖. For any two vectors X and Y of arbitrary dimensions, col(X,Y )
stands for the vector [X>, Y >]>. The space of square integrable
functions on (0, 1) is denoted by L2(0, 1) and is endowed with the
usual inner product 〈f, g〉 =

∫ 1

0
f(x)g(x) dx and with associated

norm denoted by ‖ · ‖L2 . For an integer m ≥ 1, Hm(0, 1) denotes
the m-order Sobolev space and is equipped with its usual norm
‖ · ‖Hm . For a given square matrix A, we denote by η(A) =
maxλ∈sp(A) Re(λ) the spectral abscissa of the matrix A. We define
the set C1pw(R+) as the the set of functions d : R+ → R such that
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there exists a strictly increasing sequence (tj)j≥0 with tj = 0 and
limj→+∞ tj = +∞, so that d|[tj ,tj+1)

can be continuously extended
into a continuously differentiable function d̃j : [tj , tj+1]→ R for all
j ≥ 0. For a given Hilbert basis {φn , n ≥ 1} of L2(0, 1), which
will be specified later, we define RNf =

∑
n≥N+1 〈f, φn〉φn for

any integer N ≥ 1 and any f ∈ L2(0, 1).

II. PROBLEM DESCRIPTION AND CONTROL STRATEGY

A. Problem setting

We consider in this paper the following reaction-diffusion equation:

zt(t, x) = (pzx)x(t, x)− q̃(x)z(t, x), (1a)

cos(θ1)z(t, 0)− sin(θ1)zx(t, 0) = 0, (1b)

cos(θ2)z(t, 1) + sin(θ2)zx(t, 1) = u(t), (1c)

z(0, x) = z0(x), (1d)

y(t) =

∫ 1

0

c(x)z(t, x) dx, (1e)

for t > 0 and x ∈ (0, 1). Here we have p ∈ C2([0, 1]) with p > 0,
q̃ ∈ C0([0, 1]), θ1, θ2 ∈ [0, π/2], and c ∈ L2(0, 1). The state at time
t of the PDE is given by z(t, ·), the command is u(t), the output is
y(t), and the initial condition is z0.

B. Spectral reduction

We introduce q ∈ C0([0, 1]) and qc ∈ R such that q̃(x) =
q(x) − qc with q(x) > 0. This allows the introduction of the
Sturm-Liouville operator A : D(A) ⊂ L2(0, 1) → L2(0, 1)
associated with (1), defined by Af = −(pf ′)′ + qf on the domain
D(A) = {f ∈ H2(0, 1) : cos(θ1)f(0) − sin(θ1)f ′(0) =
cos(θ2)f(1) + sin(θ2)f ′(1) = 0}. Let λn and φn ∈ L2(0, 1),
n ≥ 1, be the eigenvalues and the associated unit eigenvectors of
A, respectively. Then the eigenvalues λn are simple, non negative,
and form an increasing sequence with λn → +∞ as n → +∞.
The eigenvectors φn ∈ L2(0, 1) form a Hilbert basis of L2(0, 1).
The domain of A is characterized by D(A) = {f ∈ L2(0, 1) :∑
n≥1 |λn|

2| 〈f, φn〉 |2 < +∞}. The growth of λn can be estimated
as follows (see [18] for details): for any given p∗, p∗, q∗ ∈ R so that
0 < p∗ ≤ p(x) ≤ p∗ and 0 ≤ q(x) ≤ q∗ for all x ∈ [0, 1], we
have that 0 ≤ π2(n − 1)2p∗ ≤ λn ≤ π2n2p∗ + q∗ for all n ≥ 1.
Moreover, owing to the assumption p ∈ C2([0, 1]), we have (using
the standard Bachmann–Landau notation) that φn(ξ) = O(1) and
φ′n(ξ) = O(

√
λn) as n→ +∞ for any given ξ ∈ [0, 1].

We introduce the coefficients of projection defined by zn(t) =
〈z(t, ·), φn〉 and cn = 〈c, φn〉. The projection of (1) into the Hilbert
basis {φn , n ≥ 1} gives (see, e.g., [11] or [17, Sec. 3.1] for details)

żn = (−λn + qc)zn + βnu, n ≥ 1, (2)

where βn = p(1){− cos(θ2)φ′n(1) + sin(θ2)φn(1)} = O(
√
λn).

Due to the Parseval identity, one has ‖z(t, ·)‖2L2 =
∑
n≥1 zn(t)2.

Finally, in view of (1e) we have y(t) =
∑
n≥1 cnzn(t).

C. Control strategy

Let N0 ≥ 1 be such that −λN0+1 + qc < 0. Hence we have
−λn + qc ≤ −λN0+1 + qc < 0 for all n ≥ N0 + 1. Then, for an
arbitrarily fixed integer N ≥ N0 + 1, which will be specified later,
we consider the following observer dynamics:

˙̂zn(t) = (−λn + qc)ẑn(t) + βnu(t) (3a)

− ln

{
N∑
k=1

ckẑk(t)− y(t)

}
, 1 ≤ n ≤ N0,

˙̂zn(t) = (−λn + qc)ẑn(t) + βnu(t), N0 + 1 ≤ n ≤ N, (3b)

where ln ∈ R are the observer gains. The initial condition of the
observer (3) is denoted by Ẑ0 =

[
ẑ1(0) . . . ẑN (0)

]> ∈ RN .
Note that the observer dynamics (3b) does not include a correction of
the error of observation and is only introduced to improve the estimate∑N
k=1 ckẑk of the measurement y in (3a). The efficiency of such

a finite-dimensional observer architecture was originally reported
in [21] in the case of a bounded input operator.

In the case of a continuous application of the control, the input u(t)

of (1) is set as u(t) = KẐN0(t) where ẐN0 =
[
ẑ1 . . . ẑN0

]>
and K is the feedback gain. In that case, introducing the matrices
A0 = diag(−λ1 + qc, . . . ,−λN0 + qc), B0 =

[
β1 . . . βN0

]>,
C0 =

[
c1 . . . cN0

]
, and L =

[
l1 . . . lN0

]>, the feedback
gain K is selected so that the matrix A0 +B0K is Hurwitz. For the
design of the observer, we make the following assumption.

Assumption 1: cn 6= 0 for all 1 ≤ n ≤ N0.
Hence, we can select the observer gain L so that the matrix A0−LC0

is Hurwitz. This approach ensures the output feedback exponential
stabilization of the plant (1) provided the order of the observer N ≥
N0 + 1 is selected to be large enough, see [8], [17], [21].

Our objective is now to augment the above control design strategy
with an event-triggered mechanism similar to those encountered
for finite-dimensional systems [9], [23]. More precisely, we aim at
defining events that produce a strictly increasing sequence of event-
based instants (tj)j≥0, with tj = 0 and limj→+∞ tj = +∞, so that
the application of the sampled control

u(t) = u(tj) = KẐN0(tj), ∀t ∈ [tj , tj+1), ∀j ≥ 0 (4)

ensures the exponential decay of the trajectories of (1). To achieve
this, we first introduce the exogenous dynamics described by

ṁ(t) = −κm(t), m(0) = m0 > 0, (5)

where the decay rate κ > 0 and the initial condition m0 > 0 can
be freely chosen. This signal is used in the proof of Theorem 2 to
ensure the existence of a minimum dwell-time. Then, we introduce
the actuation error induced by the event-triggered mechanism as

d(t) = KẐN0(tj)−KẐN0(t), ∀t ∈ [tj , tj+1), ∀j ≥ 0. (6)

Hence, the command (4) can be written as u(t) = KẐN0(t) + d(t)

for all t ≥ 0. We finally define ẐN−N0 =
[
ẑN0+1 . . . ẑN

]> and
Ẑ = col(ẐN0 , ẐN−N0). Let β > 0 be a design parameter (of the
event-triggered mechanism) that will be further specified later. We
recursively define for any j ≥ 0 the following set:

E(tj) =
{
t ≥ tj : |d(t)| ≥ β‖K‖

(
‖Ẑ(t)‖+ ‖Ẑ(tj)‖

)
+β sup

s∈[tj ,t]
|y(s)|+m(t)

}
, (7)

with system trajectories obtained from (1) and (3)-(5) for t ≥ tj while
starting from the initial conditions z(tj , ·) and Ẑ(tj) and where d is
defined by (6).

Let TM > 0 be arbitrarily given. We recursively define the
sequence (tj)j≥0 of the time of the events as follows. We first define
t0 = 0. Then, we define iteratively the time of the events as1:

tj+1 = min {inf E(tj), tj + TM} , j ≥ 0. (8)

This allows the application of the event-triggered boundary control
strategy (4). Note in particular that tj+1 − tj ≤ TM for all j ≥ 0,
which will be used in the proof of Theorem 3. A distinguished feature

1We use the convention inf ∅ = +∞.
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of the triggering mechanism (4)-(8) is its low complexity because
reminiscent of those for finite-dimensional systems [9], [23].

Remark 1: Note that the control input u(t) given by (4) is
piecewise constant on I = ∪j≥0[tj , tj+1). Consequently, the well-
posedness of the closed-loop system formed by (1), (3)-(8) in terms of
mild solutions with a continuous z(t, ·) ∈ C0(I;L2(0, 1)) is inferred
from classical well-posedness results for boundary control systems [1,
Sec. 3.3] and an induction argument. Note that z(t, ·) is in general
not of class C1 due to discontinuity jumps of zt(t, ·) at times tj . ◦

The stability analysis goes as follows. Step 1: consider the closed-
loop system formed by the plant (1), the observer (3), and the
disturbed control input:

u(t) = KẐN0(t) + d(t), (9)

for any arbitrary d ∈ C1pw(R+). Using a small gain-argument, we
derive a sufficient condition on the dimension N ≥ N0 + 1 of
the observer (3) so that the above closed-loop system satisfies an
exponential ISS estimate w.r.t. d. Step 2: for an arbitrarily given
β > 0, we assess for the closed-loop system composed of the
plant (1), the observer (3), and the event-triggered control input (4)
with events defined by (5)-(8) the existence of a minimal dwell-time
Tm > 0 independent of the initial conditions z0, Ẑ0,m0, i.e. such
that tj+1− tj ≥ Tm for all j ≥ 0. This will ensure the avoidance of
possible Zeno solutions for the closed-loop system trajectories. Step
3: Using a second small gain argument, we finally derive a sufficient
condition on the event-triggered parameter β > 0, see (7), so that we
obtain the exponential stability of the latter closed-loop system with
event-triggered boundary control.

Remark 2: The two above sufficient conditions, the first one
concerning the choice of the dimension N ≥ N0 + 1 of the observer
(3), and the second one regarding the choice of the event-triggered
parameter β > 0, are both shown to be always feasible for an integer
N selected to be large enough and β > 0 selected to be small
enough, respectively. Hence, the reported control design procedure
is systematic. ◦

In preparation of stability analysis, we fix σM , δ > 0, indepen-
dently of the integer N ≥ N0 + 1, such that

−λN0+1 + qc < −(σM + 2δ) < 0, (10a)

η(A0 + B0K) < −(σM + 2δ) < 0, (10b)

η(A0 − LC0) < −(σM + 2δ) < 0. (10c)

This implies that −λn + qc < −(σM + 2δ) < 0 for all n ≥ N0 + 1.

III. AN INPUT-TO-STATE STABILITY RESULT

We use here the spectral representation of the PDE to establish
an exponential ISS estimate w.r.t. d for the the closed-loop system
formed by the plant (1), the observer (3), and the disturbed control
input (9); see [11] for such an approach for the open-loop PDE.

We first introduce the errors of observation en = zn −
ẑn, the vectors of errors EN0 =

[
e1 . . . eN0

]
and

EN−N0 =
[
eN0+1 . . . eN

]
, and the matrices A1 =

diag(−λN0+1, . . . ,−λN ), B1 =
[
βN0+1 . . . βN

]>, C1 =[
cN0+1 . . . cN

]
, C =

[
C0 C1

]
=
[
c1 . . . cN

]
, F =

F1 + F2, F1 = diag(A0 + B0K,A0 − LC0, A1),

F2 =

0 LC0 LC1

0 0 −LC1

0 0 0

 , L =

 L
−L
0

 , Ld =

B0

0
0

 .
Then, introducing the vector X = col(ẐN0 , EN0 , EN−N0), we infer
from (2) and (3) along with (9) that

Ẋ = FX + Lζ + Ldd, (11)

where ζ =
∑
n≥N+1 cnzn represents the residue of measurement.

Moreover we have that
˙̂
ZN−N0 = A1Ẑ

N−N0 + B1KẐ
N0 + B1d. (12)

Noting that the matrix F is Hurwitz with spectral abscissa η(F ) <
−(σM + 2δ), we have for any integer N ≥ N0 + 1 the existence of
a constant C1,N > 0 so that

‖eFt‖ ≤ C1,Ne
−(σM+δ)t, ∀t ≥ 0, ∀N ≥ N0 + 1. (13)

Note that an explicit, but conservative, estimate of C1,N is derived in
Appendix. In practice, tighter estimates can be derived numerically
(e.g., based on Lyapunov’s equation). We can now state the following
theorem whose proof is placed in Appendix.

Theorem 1: Let N0 ≥ 1 be such that −λN0+1 + qc < 0. Under
Assumption 1, let K ∈ R1×N0 and L ∈ RN0 be such that the
matrices A0 + B0K and A0 − LC0 are Hurwitz. We fix σM , δ > 0
such that (10) holds. Let N ≥ N0 + 1 be fixed such that

∆N ,
√

2δ−1C1,N‖L‖‖K‖‖RNc‖L2ΣN < 1, (14)

where ΣN =

(∑
n≥N+1

∣∣∣ βn
λn−qc−σM

∣∣∣2)1/2

<∞. Then there exist

C2,C3 > 0 such that, for any initial conditions z0 ∈ L2(0, 1) and
ẑn(0) ∈ R, and any disturbance d ∈ C1pw(R+), the trajectories of
the plant (1), the observer dynamics (3), and the disturbed control
input (9) satisfy, for all t ≥ 0,

‖z(t, ·)‖L2 + ‖Ẑ(t)‖ ≤ C2e
−σM t

(
‖z0‖L2 + ‖Ẑ0‖

)
(15)

+ C3 sup
s∈[0,t]

e−σM (t−s)|d(s)|.

An explicit realization of the constant C3 appearing in the latter
theorem is provided by (31) in Appendix and will be used in the
statement of the next results. We now assess that the small gain
condition (14) can always be satisfied for N selected to be large
enough. We first introduce the following result.

Lemma 1: There exists C1 > 0, independent of N ≥ N0 +1, such
that ‖eFt‖ ≤ C1e

−(σM+δ)t for all t ≥ 0 and all N ≥ N0 + 1.
The proof of Lemma 1 is placed in Appendix. Therefore, without

loss of generality, we can select C1,N appearing in the small gain
condition (14) such that C1,N ≤ C1 for all N ≥ N0 + 1. We can
now infer from (14) that ∆N → 0 as N → +∞. This is a direct
consequence of: (i) δ, L and K are independent of N ; (ii) C1,N =
O(1) as N → +∞ due to Lemma 1; and (iii) ‖RNc‖L2 → 0 and
ΣN → 0 when N → +∞. Hence the small gain condition (14) is
always achievable for N ≥ N0 + 1 selected to be large enough.

IV. EXPONENTIAL DECAY UNDER EVENT-TRIGGERED ACTUATION

We now focus on the analysis of the closed-loop system composed
of the plant (1), the observer (3), and the event-triggered control input
(4) with events defined by (5)-(8).

A. Minimal dwell-time

Our objective in this section is to ensure the avoidance of possible
Zeno phenomena, i.e., the possible occurrence of an accumulation
point for the sequence of triggering events (tj)j≥0, as this would
present any possible practical implementation of the control strategy.
To do so, we assess the existence of a minimal dwell-time for the
closed-loop system by using a second small gain argument [6].

Theorem 2: Let κ > 0 and N0 ≥ 1 be such that−λN0+1+qc < 0.
Under Assumption 1, let K ∈ R1×N0 and L ∈ RN0 be such that the
matrices A0+B0K and A0−LC0 are Hurwitz. For arbitrarily given
N ≥ N0 + 1, β > 0, and TM > 0, consider the closed-loop system
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composed of the plant (1), the observer (3), and the event-triggered
control input (4) with events defined by (5)-(8). Then, there exists a
constant Tm > 0, independent of the initial conditions z0 ∈ L2(0, 1),
ẑn(0) ∈ R, and m0 > 0, such that tj+1 − tj ≥ Tm for all j ≥ 0.

Proof. We fix again σM , δ > 0 such that (10) holds.
The case K = 0 is trivial as it implies from (4) that u(t) = 0 for

all t ≥ 0. This corresponds to the case where the open-loop plant
(1) is exponentially stable. In this configuration, since m(t) > 0, (8)
implies that tj+1 − tj = TM > 0. We focus on the case K 6= 0.

Let j ≥ 0 be arbitrarily fixed. From the definition (6) of d we have
that d(tj) = 0. Hence, owing to the definition (8) of the triggering
event tj+1 and because m(t) > 0 for all t ≥ 0, we have by a
continuity argument that tj+1 > tj . Furthermore, we have either
tj+1 − tj = TM or

lim
t→(tj+1)−

|d(t)| ≥ Φj , β‖K‖
(
‖Ẑ(tj+1)‖+ ‖Ẑ(tj)‖

)
+ β sup

s∈[tj ,tj+1]

|y(s)|+m(tj+1). (16)

Let us focus on the second scenario, i.e. when (16) holds.
We note from (3) that

˙̂
ZN0(t) = (A0 − LC0)ẐN0(t) + B0KẐ

N0(tj) (17a)

− LC1Ẑ
N−N0(t) + Ly(t),

˙̂
ZN−N0(t) = A1Ẑ

N−N0(t) + B1KẐ
N0(tj), (17b)

for all t ∈ [tj , tj+1). Recalling that ‖eA1t‖ ≤ e−(σM+2δ)t ≤ 1 for
all t ≥ 0, we infer from (17b) that

‖ẐN−N0(t)‖ ≤M2‖Ẑ(tj)‖, (18)

for all t ∈ [tj , tj+1) with M2 = 1 + ‖B1K‖
σM+2δ

> 0. Owing to (10), we
have the existence of a constant M3 > 0 such that ‖e(A0−LC0)t‖ ≤
M3e

−(σM+2δ)t for all t ≥ 0. Hence we infer from (17a) while using
(18) that

‖ẐN0(t)‖ ≤M4‖Ẑ(tj)‖+M5 sup
s∈[tj ,t]

|y(s)|, (19)

for all t ∈ [tj , tj+1). Here the constants are defined by M4 =

M3

{
1 + ‖B0K‖

σM+2δ
+ ‖LC1‖

σM+2δ
M2

}
> 0 and M5 = ‖L‖

σM+2δ
M3 ≥ 0.

From the definition (6) of d, we have d(t) = −K
∫ t
tj

˙̂
ZN0(s) ds,

for all t ∈ [tj , tj+1). In view of (17a), this implies that
|d(t)| ≤ ‖K(A0 − LC0)‖ sups∈[tj ,t] ‖Ẑ

N0(s)‖|t − tj | +

‖KB0K‖‖ẐN0(tj)‖|t − tj | + ‖KLC1‖ sups∈[tj ,t] ‖Ẑ
N−N0(s)‖

|t − tj | + ‖KL‖ sups∈[tj ,t] |y(s)||t − tj |. Combining this latter
estimate with (18)-(19), we deduce that

|d(t)| ≤

{
M6‖Ẑ(tj)‖+M7 sup

s∈[tj ,t]
|y(s)|

}
|t− tj |, (20)

for all t ∈ [tj , tj+1) with M6 = M4‖K(A0−LC0)‖+‖KB0K‖+
M2‖KLC1‖ > 0 and M7 = M5‖K(A0 − LC0)‖ + ‖KL‖ ≥ 0.
Letting t→ (tj+1)− in (20) and comparing with (16) we infer that

Φj ≤

{
M6‖Ẑ(tj)‖+M7 sup

s∈[tj ,tj+1]

|y(s)|

}
|tj+1 − tj |

≤M8Φj |tj+1 − tj |,

with M8 = max
(

M6
β‖K‖ ,

M7
β

)
> 0 where we have used that

m(tj+1) > 0. Using the fact that m(tj+1) > 0, we infer that Φj > 0.
Then, the combination of the latter estimates gives tj+1 − tj ≥
1/M8 > 0. We have shown that tj+1− tj ≥ Tm , min(TM , 1/M8)
for all j ≥ 0 where Tm > 0 is a constant independent of the initial
conditions. This completes the proof.

B. Exponential decay assessment

We are now in position to state our main result.
Theorem 3: Let κ > 0 and N0 ≥ 1 be such that−λN0+1+qc < 0.

Under Assumption 1, let K ∈ R1×N0 and L ∈ RN0 be such that the
matrices A0 + B0K and A0 − LC0 are Hurwitz. We fix σM , δ > 0
such that (10) holds. Let N ≥ N0 +1 be selected such that the small
gain condition (14) holds. Let β > 0 be selected such that

C3β {2‖K‖+ ‖c‖L2} < 1, (21)

where the constant C3 > 0 is provided by Theorem 1 with explicit
estimate given by (31) in Appendix. Then, for any given TM > 0,
there exist constants σ,C4 > 0 such that, for any initial conditions
z0 ∈ L2(0, 1), ẑn(0) ∈ R and m0 > 0, the trajectories of the
closed-loop system composed of the plant (1), the observer (3), and
the event-triggered control input (4) with events defined by (5)-(8)
satisfy, for all t ≥ 0,

‖z(t, ·)‖L2 + ‖Ẑ(t)‖+ |m(t)| ≤ C4e
−σt

(
‖z0‖L2 + ‖Ẑ0‖+ |m0|

)
(22)

Remark 3: Introducing

βmax = 1/(C3{2‖K‖+ ‖c‖L2}), (23)

the small gain condition (21), hence the conclusion of Theorem 3,
holds for any β ∈ (0, βmax). ◦

Proof. Let β > 0 be such that (21) holds. For a fixed TM > 0,
a continuity argument at σ = 0 shows the existence of σ ∈
(0,min(σM , κ)) so that

Γβ = C3β
{

(1 + eσTM )‖K‖+ eσTM ‖c‖L2

}
< 1. (24)

By definition of the event-triggered control input (4) with events
defined by (5)-(8), we have

|d(t)| ≤ β‖K‖
(
‖Ẑ(t)‖+ ‖Ẑ(tj)‖

)
+ β sup

s∈[tj ,t]
|y(s)|+m(t),

for all t ∈ [tj , tj+1) and for all j ≥ 0. We introduce the notation
τ(t) = tj for all t ∈ [tj , tj+1) and for all j ≥ 0. Hence, since
Theorem 2 ensures that limj→+∞ tj = +∞, we have

eσt|d(t)| ≤ β‖K‖eσt‖Ẑ(t)‖+ β‖K‖eσ(t−τ(t))eστ(t)‖Ẑ(τ(t))‖
+ βeσt sup

s∈[τ(t),t]
|y(s)|+ eσtm(t),

for all t ≥ 0. For any given t ≥ 0, we have t ∈ [tj , tj+1)
for some integer j ≥ 0. Thus, by definition of τ(t), we have
0 ≤ t − τ(t) < tj+1 − tj ≤ TM hence eσ(t−τ(t)) ≤ eσTM .
Moreover, for any s ∈ [τ(t), t] we have eσ(s−τ(t)) ≥ 1,
hence eσt sups∈[τ(t),t] |y(s)| ≤ eσ(t−τ(t)) sups∈[τ(t),t] e

σs|y(s)| ≤
eσTM sups∈[τ(t),t] e

σs|y(s)|. Consequently we have

eσt|d(t)| ≤ β‖K‖eσt‖Ẑ(t)‖+ β‖K‖eσTM eστ(t)‖Ẑ(τ(t))‖
+ βeσTM sup

s∈[τ(t),t]
eσs|y(s)|+ eσtm(t),

for all t ≥ 0. This implies that

sup
s∈[0,t]

eσs|d(s)| ≤ β‖K‖(1 + eσTM ) sup
s∈[0,t]

eσs‖Ẑ(s)‖

+ βeσTM sup
s∈[0,t]

eσs|y(s)|+ sup
s∈[0,t]

eσsm(s), (25)

for all t ≥ 0. In view of (1e) we have |y(t)| ≤ ‖c‖L2‖z(t, ·)‖L2 .
Using this latter estimate into (25) and combining with (15), while
recalling that 0 < σ < σM , we deduce that

sup
s∈[0,t]

eσs
(
‖z(s, ·)‖L2 + ‖Ẑ(s)‖

)
≤ C2

(
‖z0‖L2 + ‖Ẑ0‖

)
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Fig. 1. Density of the inter-execution times for 1000 randomly chosen initial
conditions on a simulation time frame of 10 seconds

(a) State z(t, x)

0 2 4 6 8 10

Time (s)

-0.4

-0.2

0

u
(t

)

(b) Command u(t)

Fig. 2. Closed-loop system under event-triggered control

+ Γβ sup
s∈[0,t]

eσs
(
‖z(s, ·)‖L2 + ‖Ẑ(s)‖

)
+ C3 sup

s∈[0,t]
eσsm(s).

Recall from (24) that Γβ < 1. Hence, based on (5) with 0 < σ < κ,
we infer that (22) holds with C4 = max(C2,C3)/(1− Γβ).

V. NUMERICAL ILLUSTRATION

We consider p = 1, q̃ = −9, θ1 = 0.1, θ2 = 0, and c(x) =
1
5
x(x − 1) for the measurement (1e). The open-loop plant (1) is

exponentially unstable. For feedback control we set N0 = 1, K =
−2.025, L = 217.1, κ = 1, and TM = 5. In this case (10) holds for
σM = 0.01 and δ = 3.5. Then, the small gain condition (14) holds
for a dimension of the observer N = 2. The computation of βmax

defined by (23) gives βmax ≈ 0.0083; this value is inferred based
on C3 = 29.59 as provided by Theorem 1 through (31) reported in
Appendix. This allows us to set β = 0.008. Based on (24), we deduce
numerically that (22) holds for σ = 0.01. Finally, following the proof
of Theorem 2, it is found that the guaranteed minimal dwell-time is
Tm = 9.09 · 10−6 s. Such an a priori dwell-time is known to be, in
general, very conservative.

We consider for numerical simulations initial conditions of the
form z0(x) = 10x

∑4
n=1(α0,n + α1,nx + α2,nx

2) sin(2nπx) with
αk,n ∈ [−1, 1] randomly chosen. We fix ẑn(0) = 0 and m0 = 0.1.
The density of inter-execution times for 1000 randomly chosen initial
conditions are depicted in Fig. 1. The exponential stabilization of the
closed-loop system for one specific initial condition is depicted in
Fig. 2. As shown by Fig. 2(b), this is achieved with a command
presenting 29 aperiodic updates on a time interval of 10 seconds.

VI. CONCLUSION

This paper discussed the event-triggered output feedback stabiliza-
tion of reaction-diffusion PDEs. The main feature of the reported
control procedure is that the event-triggered control strategy relies
for the first time on a finite-dimensional observer. Since the reported
procedure applies for bounded measurement operators (in particular
due to Theorem 1), future research directions may be concerned

with extensions to unbounded measurement operators. The relaxation
of the conservatism of the small gain conditions is also a reseach
direction of interest.

APPENDIX

PROOF OF THEOREM 1

Denoting by X0 the initial condition of (11), we have X(t) =
eFtX0 +

∫ t
0
eF (t−s){Lζ(s) +Ldd(s)}ds. In view of (13), we infer

that

‖X(t)‖ ≤ C1,Ne
−σM t‖X0‖+ δ−1C1,N‖L‖ sup

s∈[0,t]
e−σM (t−s)|ζ(s)|

+ δ−1C1,N‖Ld‖ sup
s∈[0,t]

e−σM (t−s)|d(s)|. (26)

Now, the integration of (2) for n ≥ N + 1 with input u given by
(9) gives zn(t) = e(−λn+qc)tzn(0) +

∫ t
0
e(−λn+qc)(t−s)βnu(s) ds.

Recalling that −λn + qc ≤ −λN0+1 + qc < −(σM +
2δ) for all n ≥ N0 + 1, we have for all n ≥ N + 1
that

∫ t
0
e(−λn+qc)(t−s)|u(s)| ds = e(−λn+qc)t

∫ t
0
e(λn−qc−σM )s ×

eσMs|u(s)|ds ≤ 1
λn−qc−σM

sups∈[0,t] e
−σM (t−s)|u(s)| where we

have used that λn − qc − σM ≥ 2δ > 0. This implies that |zn(t)| ≤
e−σM t|zn(0)|+ |βn|

λn−qc−σM
sups∈[0,t] e

−σM (t−s)|u(s)|. Introducing

SN (t) =
(∑

n≥N+1 |zn(t)|2
)1/2

, the use of the triangular inequal-

ity gives SN (t) ≤ e−σM tSN (0) + ΣN sups∈[0,t] e
−σM (t−s)|u(s)|

where ΣN =

(∑
n≥N+1

∣∣∣ βn
λn−qc−σM

∣∣∣2)1/2

< ∞. In view of (9),

we deduce that

sup
s∈[0,t]

eσMsSN (s) ≤ SN (0) + ΣN‖K‖ sup
s∈[0,t]

eσMs‖ẐN0(s)‖

+ ΣN sup
s∈[0,t]

eσMs|d(s)|, (27)

for all t ≥ 0.
Since ζ(t) =

∑
n≥N+1 cnzn(t), Cauchy-Schwarz inequality gives

ζ(t) ≤ ‖RNc‖L2SN (t). Substituting (27) into the latter estimate and
using it in the right-hand side of (26), we obtain that

‖X(t)‖ ≤ C1,Ne
−σM t‖X0‖+ C1e

−σM tSN (0)

+ ∆N sup
s∈[0,t]

e−σM (t−s)‖ẐN0(s)‖+ C2 sup
s∈[0,t]

e−σM (t−s)|d(s)|,

with the constants C1 = δ−1C1,N‖L‖‖RNc‖L2 and C2 =
δ−1C1,N{‖L‖‖RNc‖L2ΣN + ‖Ld‖} while ∆N is defined by
(14). Using the fact that ‖ẐN0(t)‖ ≤ ‖X(t)‖, we in-
fer that sups∈[0,t] e

σMs‖X(s)‖ ≤ C1,N‖X0‖ + C1SN (0) +
∆N sups∈[0,t] e

σMs‖X(s)‖ + C2 sups∈[0,t] e
σMs|d(s)|. Using the

small gain condition (14), we deduce that sups∈[0,t] e
σMs‖X(s)‖ ≤

C3‖X0‖ + C4SN (0) + C5 sups∈[0,t] e
σMs|d(s)| with C3 =

C1,N/(1 − ∆N ), C4 = C1/(1 − ∆N ), and C5 = C2/(1 − ∆N ).
This gives

‖X(t)‖ ≤ C3e
−σM t‖X0‖+ C4e

−σM tSN (0)

+ C5 sup
s∈[0,t]

e−σM (t−s)|d(s)|, (28)

for all t ≥ 0. Using (28) into (27) we also have

SN (t) ≤ C6e
−σM t‖X0‖+ C7e

−σM tSN (0)

+ C8 sup
s∈[0,t]

e−σM (t−s)|d(s)|, (29)

with C6 = ΣN‖K‖C3, C7 = 1 + ΣN‖K‖C4, and C8 =
ΣN (1 + ‖K‖C5). Finally, from (12) and using ‖eA1t‖ ≤
e−(σM+2δ)t for all t ≥ 0, we have ‖ẐN−N0(t)‖ ≤
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e−σM t‖ẐN−N0(0)‖ + ‖B1K‖
2δ

sups∈[0,t] e
−σM (t−s)‖ẐN0(s)‖ +

‖B1‖
2δ

sups∈[0,t] e
−σM (t−s)|d(s)|. In view of (28) this implies that

‖ẐN−N0(t)‖ ≤ e−σM t‖ẐN−N0(0)‖+ C9e
−σM t‖X0‖

+ C10e
−σM tSN (0) + C11 sup

s∈[0,t]
e−σM (t−s)|d(s)|, (30)

with C9 = ‖B1K‖
2δ

C3, C10 = ‖B1K‖
2δ

C4, and C11 = ‖B1K‖
2δ

C5 +
‖B1‖
2δ

.
We can now complete the proof. We first note that

‖z(t, ·)‖L2 =
√∑

n≥1 zn(t)2 ≤
√∑N

n=1 zn(t)2 + SN (t).

Moreover we have
√∑N

n=1 z
2
n =

√∑N
n=1(en + ẑn)2 ≤√

2
∑N0
n=1(e2n + ẑ2n) +

∑N
n=N0+1 e

2
n +

√∑N
n=N0+1 ẑ

2
n ≤

√
2‖X‖ + ‖ẐN−N0‖. Hence we infer that ‖z(t, ·)‖L2 + ‖Ẑ(t)‖ ≤

(1 +
√

2)‖X(t)‖ + 2‖ẐN−N0(t)‖ + SN (t). The claimed stability
estimate (15) is now obtained by substituting (28)-(30) in the
right-hand side of the latter estimate, giving in particular :

C3 = (1 +
√

2)C5 + 2C11 + C8. (31)

APPENDIX

PROOF OF LEMMA 1

The proof follows arguments reported in [13]. Since
F 3
2 = 0, we have Fn1

1 F2F
n2
1 F2F

n3
1 F2 = 0 for all integers

n1, n2, n3 ≥ 0. Using series expansions, this implies that
eF1t1F2e

F1t2F2e
F1t3F2 = 0 for all t1, t2, t3 ≥ 0. Consider

now the function x(t) = eFtx0 for some arbitrarily given vector
x0 ∈ RN0+N . Then, we have ẋ(t) = Fx(t) = F1x(t) + u(t)
with u(t) = F2x(t) = F2e

Ftx0. A direct integration gives x(t) =
eF1tx(0)+

∫ t
0
eF1(t−s)u(s) ds. Because x0 is arbitrary, we infer that

eFt = eF1t +
∫ t
0
eF1(t−s)F2e

Fs ds. Applying three times in a row
this identity, we deduce that eFt = eF1t +

∫ t
0
eF1(t−s)F2e

F1s ds +∫ t
0

∫ s1
0
eF1(t−s1)F2e

F1(s1−s2)F2e
F1s2 ds2 ds1. Since F1

is block diagonal, we have eF1t = diag(e(A0+B0K)t,
e(A0−LC0)t, eA1t). As A1 is diagonal with simple real eigenvalues
not larger than −λN0+1 + qc < −(σM + 2δ), we have
‖eA1t‖ ≤ e−(σM+2δ)t for all t ≥ 0 and all N ≥ N0 + 1.
Hence, in view of (10), there exists a constant M1 > 0,
independent of the integer N , so that ‖eF1t‖ ≤ M1e

−(σM+2δ)t

for all t ≥ 0 and all N ≥ N0 + 1. Therefore we obtain
that ‖eFt‖ ≤ M1

(
1 +M1‖F2‖t+

M2
1‖F2‖2

2
t2
)
e−(σM+2δ)t.

The claimed conclusion is obtained by noting that (i)
tne−δt ≤ (n/δ)ne−n for all t ≥ 0 and all integer
n ≥ 1; and (ii) from the definition of the matrix F2,
‖F2‖ ≤ ‖L‖

√
‖C‖2 + ‖C1‖2 ≤

√
2‖L‖‖c‖L2 where L

and c are independent of N . In particular one can take
C1,N = M1 supt≥0

{(
1 +M1‖F2‖t+

M2
1‖F2‖2

2
t2
)
e−δt

}
≤

M1{1 + δ−1e−1M1‖F2‖ + 2δ−2e−2M2
1 ‖F2‖2} and

C1 = M1{1+
√

2δ−1e−1M1‖L‖‖c‖L2 +4δ−2e−2M2
1 ‖L‖2‖c‖2L2}.
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