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ABSTRACT

This contribution presents direct numerical simulation

results on the anisotropy properties of homogeneous tur-

bulent shear flow as well as the return to isotropy from

anisotropic states due to shear and initially imposed polariza-

tion anisotropy. The anisotropy properties are quantified us-

ing the Reynolds stress anisotropy tensor and a wavelet-based

scale-dependent decomposition of the velocity fields is used

to compute the Reynolds stress anisotropy tensor at different

scales of the turbulent motion. For homogeneous turbulent

shear flow, the largest contribution to anisotropy originates at

the larger scales of the turbulent motion. The smaller scales,

however, are observed to show small levels of anisotropy. The

return towards isotropy from anisotropic states due to shear

and polarization anisotropy is strongest at the smallest scales

of the turbulent motion, while anisotropy persists for multiple

eddy-turnover time scales at the larger scales of the turbulent

motion.

INTRODUCTION

The return to isotropy of anisotropic turbulence is of fun-

damental interest to understand turbulence dynamics and it has

been studied and modelled in previous studies. Lumley &

Newman (1977) considered the return to isotropy of homo-

geneous anisotropic turbulence without mean velocity gradi-

ents, drawing on previous work by Rotta (1951), Uberoi (1956,

1957), Mills & Corrsin (1959), and others. Choi & Lum-

ley (2001) revisited the topic and analyzed results of three

anisotropic flows. They observed that ”the rate of return to

isotropy was much lower for turbulence with a greater third

invariant of the anisotropy tensor” and that the ”turbulence

wanted to become axisymmetric even more than it wanted

to return to isotropy.” More recently, Briard et al. (2016) de-

rive a model for the slow-part of the pressure-strain tensor to

describe the return to isotropy and propose a decay law for

anisotropic quantities in Batchelor turbulence. Yang et al.

(2021) also consider the return to isotropy from homogeneous

turbulent shear flows.

SIMULATIONS AND SCALE DECOMPOSITION
A number of direct numerical simulations of homoge-

neous turbulence are performed to study the anisotropy proper-

ties of homogeneous turbulent shear flow as well as the return

to isotropy from its anisotropic state.

Numerical Approach
The coordinates xxx = (x,y,z) = (x1,x2,x3) are directed

in the downstream, vertical, and spanwise directions, respec-

tively. In the case of shear, the downstream component of the

mean velocity UUU = (U,V,W ) has an imposed constant gradient

S = ∂U/∂y in the vertical direction y:

U = Sy V =W = 0 (1)

This study is based on the Navier–Stokes equations for

incompressible flow. This results in the following equation of

motion for the fluctuating velocity components uuu = (u,v,w) =
(u1,u2,u3) and pressure p:

∇ ·uuu = 0 (2)

∂uuu

∂ t
+uuu ·∇uuu+Sy

∂uuu

∂x
+Sveeex =−

1

ρ0
∇p+ν∇2uuu (3)

Here, ρ0 the density, and ν the kinematic viscosity. The unit

vector in the downstream direction is denoted as eeex.

The equations of motion are transformed into a frame

of reference moving with the mean velocity (Rogallo, 1981).

This transformation enables the application of periodic bound-

ary conditions for the fluctuating components of velocity and

pressure. A spectral collocation method is used for the spa-

tial discretization and the solution is advanced in time with a

fourth-order Runge—Kutta scheme. The simulations are per-

formed in a cubic computational domain of size L3
0 = (2π)3

using 5123 grid points. In the cases without shear, we have

S = 0 and U = 0.
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Figure 1. Evolution in non-dimensional time St of the energy

spectrum E(k) for homogeneous turbulent shear flow.

The initial conditions are taken from a separate simula-

tion of isotropic turbulence. This simulation was initialized

with random fluctuations with an imposed energy spectrum

E(k) ∼ k4 for small wave numbers (Batchelor turbulence, see

Batchelor & Proudman (1956)) and an energy density max-

imum at k = 13 in order to allow for growth of the large

scales. The turbulence was allowed to develop for approxi-

mately one eddy turnover time and the k4 dependence at small

wave numbers was maintained. The resulting initial value of

the Taylor-microscale Reynolds number is Reλ = qλ/ν = 87

and, in the case of turbulent shear flow, SK/ε = 2 for the shear

number. Here q = 〈uiui〉
1/2 is the magnitude of the veloc-

ity fluctuations, K = q2/2 the turbulent kinetic energy, and

ε = ν〈∂ui/∂uk∂ui/∂uk〉 its dissipation rate. The brackets 〈·〉
denote a volume average at a fixed time, which is an appropri-

ate choice for homogeneous flows.

The anisotropy of the flow is quantified using the

Reynolds stress anisotropy tensor bi j:

bi j =
〈uiu j〉

〈ukuk〉
−

1

3
δi j (4)

Here, δi j is the Kronecker delta. This measure of the
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Figure 2. Evolution of the components of the Reynolds stress

anisotropy tensor bi j for homogeneous turbulent shear flow.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  1  2  3  4  5  6  7  8

b11
b22
b33
b12
b13
b23

b i
jl

l

Figure 3. Scale decomposition of the components of the

Reynolds stress anisotropy tensor bi j for homogeneous turbu-

lent shear flow at St = 5.

anisotropy was chosen due to its direct connection to the

Reynolds stresses present in the flows.

Wavelet-Based Scale-Dependent Decomposi-
tion

A three-dimensional orthogonal vector-valued wavelet

decomposition is used for defining scale-dependent statis-

tics of different flow quantities. For reviews on wavelets in

fluid mechanics we refer to Farge (1992) as well as Schnei-

der & Vasilyev (2010). We consider a generic vector field

uuu = (u1,u2,u3) at a fixed time instant and decompose each

component uα (xxx) into an orthogonal wavelet series,

uα (xxx) = ∑
λ

ũα
λ ψλ (xxx). (5)

The wavelet coefficients are given by the scalar product

ũα = 〈uα ,ψλ 〉 (e.g., Farge & Schneider, 2015). The wavelets

ψλ with the multi-index λ = (l, iii,d) are well localized in scale

L02−l (where L0 corresponds to the size of the computational

domain), around position L0iii/2l , and orientated in one of the
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Figure 4. Scale decomposition of the components of the

Reynolds stress anisotropy tensor bi j for homogeneous turbu-

lent shear flow at St = 10.
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Figure 5. Evolution of the energy spectrum E(k) towards re-

turn to isotropy started from homogeneous turbulent shear flow

at St = 5.

seven directions d = 1, ...,7, respectively. The three compo-

nents uα at scale L02−l can be reconstructed by summing only

over the position iii and direction d indices in eq. (5). The result

yields the vector field uuul at scale L02−l . Summing all scale

contributions yields the total vector field, uuu = ∑l uuul , as the uuul

are mutually orthogonal.

The scale-dependent statistical moments of the flow fields

can thus be computed from uuul using classical statistical esti-

mators. For instance, the scale-dependent components of the

Reynolds stress anisotropy tensor can be defined as follows:

bl
i j =

〈ul
iu

l
j〉

〈ul
k
ul

k
〉
−

1

3
δi j (6)

RESULTS
In the following, the anisotropy properties of homoge-

neous turbulent shear flow, initialized with an isotropic tur-

bulence field, are presented first at two different times St = 5

and St = 10. The anisotropic flow fields at St = 5 and St = 10
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Figure 6. Evolution of the energy spectrum E(k) towards re-

turn to isotropy started from homogeneous turbulent shear flow

at St = 10.
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Figure 7. Evolution of the components of the Reynolds stress

anisotropy tensor bi j towards return to isotropy started from

homogeneous turbulent shear flow at St = 5.

are then used to study the return towards isotropy without the

mean velocity gradient. Additionally, polarization anisotropy

is imposed on the original isotropic turbulence field, resulting

in an anisotropic field, and its return toward isotropy is consid-

ered.

Homogeneous Turbulent Shear Flow
Starting with the initial condition described above, a sim-

ulation of homogeneous turbulent shear flow was carried out.

After an initial decay of the turbulent kinetic energy K =
uiui/2 due to the isotropic initial condition, anisotropy de-

velops at approximately nondimensional time St = 2, produc-

tion of K sets in, and the turbulent kinetic energy eventually

grows exponentially. At the end of the simulation at St = 10,

the Taylor-microscale Reynolds number reaches a value of

Reλ = 128 and the shear number assumes an approximately

constant value of SK/ε = 5.

The evolution of the spherically averaged energy spec-

trum E(k) is shown in figure 1. The spectrum at St = 0

shows the isotropic initial condition with a Batchelor spec-

trum E(k) ∼ k4 for small wave numbers. During the initial

isotropic decay until about St = 2, the energy spectrum de-
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Figure 8. Evolution of the components of the Reynolds stress

anisotropy tensor bi j towards return to isotropy started from

homogeneous turbulent shear flow at St = 10.
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Figure 9. Evolution of the Taylor micro-scale Reynolds num-

ber Reλ .

cays for wave numbers k & 10 and grows for k . 10, and

for which the Batchelor spectrum approximately persists. The

anisotropy strongly increases until about St = 4. During this

period of the flow evolution, the energy spectrum continues

to decrease for larger k & 12, grows for smaller wave num-

bers, and the spectral slope at the smallest wave numbers de-

creases. For St & 4, the turbulence has reached its eventual

state (exponential growth of K, see Jacobitz et al. (1997)) with

energy growth at small wave numbers and an energy spectrum

E(k) ∼ k2 for small wave numbers (Saffman turbulence, see

Saffman (1967)). A Saffman type spectrum at low wave num-

bers was also observed for forced isotropic turbulence by Alex-

akis & Brachet (2019).

The development of the components of the Reynolds

shear stress anisotropy tensor bi j in non-dimensional time St is

shown in figure 2. The diagonal components eventually reach

approximately constant values with b11 > b33 > b22 or down-

stream > cross-stream > vertical. The off-diagonal compo-

nent b12 develops quickly and it determines the timing of the

spectral flow development described above. The remaining

two off-diagonal components remain small. More details of

the anisotropy properties of homogeneous turbulent shear flow,

including the effects of rotation, can be found in Jacobitz et al.

(2010) and Salhi et al. (2014).

The wavelet-based scale-dependent decomposition of the

components of the Reynolds stress anisotropy tensor bl
i j are

shown in figures 3 for St = 5 and 4 for St = 10. The figures

show the dependence of the bl
i j components (open symbols) on

the scale index l with small l corresponding to the large scales

of the turbulent motion and large l corresponding to the small

scales. Additionally, the bi j components for the total fields

(filled symbols) are also shown in the center of the graphs.

At both times, strong anisotropy bl
i j is observed at the large

scales of the turbulent motion with scale index l . 4. Often,

but not always, the observed bl
i j at the large scales exceed the

bi j obtained for the total fields. Please note that the decom-

posed fields for the smallest scale indices j = 0 and j = 1 are

based on very few wavelet modes modes and may not result

in reliable statistics. At both times, smaller anisotropy bl
i j is

observed at the large scales of the turbulent motion with l & 5.

However, some components of bl
i j remain clearly non-zero at

the smallest scales of the turbulent motion.
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Figure 10. Scale decomposition of the components of the

Reynolds stress anisotropy tensor bi j towards return to

isotropy started from homogeneous turbulent shear flow at

St = 5. The scale decomposition is shown after a return to-

wards isotropy for three eddy-turnover times.

Return to Isotropy from Homogeneous Turbu-
lent Shear Flow

The homogeneous turbulent shear flow results at non-

dimensional times St = 5 and St = 10 with developed

anisotropy are allowed to return towards isotropy. The time

St = 5 was chosen as the Reynolds number Reλ = 89 is close to

the value of the original isotropic turbulence initial condition.

The Reynolds number at time St = 10 has increased to a value

Reλ = 128. The flow is allowed to decay towards isotropy for

five eddy turnover times.

Figures 5 and 6 show the development of the energy spec-

tra for the two cases as εt/K time progresses. In both cases,

a decay of the energy is observed at all wave numbers and the

Saffman type spectrum established during the shear forcing of

the previous simulation persists at low wave numbers.

The evolution of the components of Reynolds stress

anisotropy tensor bi j in non-dimensional time εt/K are shown

in figures 7 and 8. In both cases, the non-zero components
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Figure 11. Scale decomposition of the components of the

Reynolds stress anisotropy tensor bi j towards return to

isotropy started from homogeneous turbulent shear flow at

St = 10. The scale decomposition is shown after a return to-

wards isotropy for three eddy-turnover times.
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Figure 12. Evolution of the energy spectrum E(k) towards

return to isotropy started from homogeneous isotropic turbu-

lence with imposed polarization anisotropy.

b11, b22, and b12 show a strong decay towards isotropy for

about one eddy-turnover. Similar to the observations in Choi &

Lumley (2001), the decay then slows. The initially zero com-

ponents even develop a low level of anisotropy. Figure 9 shows

the evolution of Reynolds number Reλ in non-dimensional

time εt/K. The Reynolds number also shows a strong decrease

for about one eddy-turnover.

Figures 10 and 11 present the wavelet-based scale-

dependent decomposition of the components of the Reynolds

stress anisotropy tensor bl
i j for the two cases at non-

dimensional time εt/K = 3. For both cases, strong anisotropy

persists at the large scales of the turbulent motion with scale

index l . 4. However, a return to isotropy is observed for both

cases at the small scales of the turbulent motion with scale in-

dex l & 5.

Return to Isotropy from Polarization Anisotropy
The results of a return to isotropy from an anisotropic ho-

mogeneous turbulent shear flow presented in the previous sec-

tion, are now compared to results of a return to isotropy sim-
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Figure 13. Evolution of the components of the Reynolds

stress anisotropy tensor bi j towards return to isotropy started

from homogeneous isotropic turbulence with imposed polar-

ization anisotropy.
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Figure 14. Scale decomposition of the components of the

Reynolds stress anisotropy tensor bi j towards return to

isotropy started from homogeneous isotropic turbulence with

imposed polarization anisotropy at εt/K = 0.

ulation, which is initialized with polarization anisotropy. Fol-

lowing the approach given in Morinishi et al. (2001) or Cam-

bon et al. (1992), polarization anisotropy is imposed by linking

the complex conjugate coefficients in helical wave space with

a constant phase angle Φ0 = 0. This results in an anisotropic

turbulence field with b11 = b22 =−1/2b33.

Figure 12 shows the decay towards isotropy of the energy

spectrum E(k) with non-dimensional time εt/K. The decay

is observed at all wave numbers k & 5, while the largest wave

numbers approximately retain their Batchelor type spectrum

∼ k4.

The evolution of the components of the Reynolds shear

stress anisotropy tensor bi j is shown in figure 13. The non-zero

diagonal components b11, b22, and b33 again show a strong

decay towards isotropy for about one eddy turnover. After

that, the decrease slows considerably, similarly to the decrease

of the Reynolds number Reλ as shown in figure 9. The off-

diagonal components remain small.

The wavelet-based scale-dependent decomposition of the

components of the Reynolds stress anisotropy tensor bl
i j are
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Figure 15. Scale decomposition of the components of the

Reynolds stress anisotropy tensor bi j towards return to

isotropy started from homogeneous isotropic turbulence with

imposed polarization anisotropy at εt/K = 3.
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shown in figures 14 for εt/K = 0 and 15 for εt/K = 3. The

polarization anisotropy imposed on an originally isotropic tur-

bulence field results in approximately constant anisotropy for

the diagonal components of bl
i j at all scale indices l. Excep-

tions are the smallest scale indices l = 0 and l = 1, which are

computed from a small number of modes in wavelet space. As

time progresses and the turbulence decays, strong anisotropy

bl
i j remains present in the turbulent fields at the large scales

of the turbulent motion with scale index l . 4. Again, the

observed bl
i j values at the large scales with 1 ≤ l ≤ 4 exceed

the bi j obtained for the total fields. As in previous return to

isotropy cases, only very small levels of anisotropy bl
i j are ob-

served at the small scales of the turbulent motion with l & 5.

SUMMARY
The anisotropy properties of homogeneous turbulent

shear flow as well as the return to isotropy from anisotropic

states due to shear and initially imposed polarization

anisotropy is studied using results from direct numerical sim-

ulations. The velocity fields of the turbulent fluctuations are

decomposed by scale using a wavelet-based approach. The

components of the Reynolds stress anisotropy tensor are then

calculated at different scales of the turbulent motion as well

as for the total fields. For homogeneous turbulent shear flow,

strong anisotropy is observed at the larger scales of the turbu-

lent motion, while lower levels of anisotropy are also obtained

at the smaller scales of the turbulence. A complete return to

isotropy is observed within about one eddy-turnover time for

cases initialized with anisotropic states due to shear at two

different Reynolds numbers and due to imposed polarization

anisotropy for the smaller scales of the turbulent motion. How-

ever, anisotropy persists for multiple eddy-turnover time scales

at the larger scales of the turbulent motion. This observation

could be due to the decrease of the Reynolds number as time

progresses. Future work will address the effect of Reynolds

number as well as consider a similar series of simulations ini-

tialized with Saffman turbulence.
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