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Data‑driven normative values 
based on generative manifold 
learning for quantitative MRI
Arnaud Attyé 1*, Félix Renard 1, Vanina Anglade 2, Alexandre Krainik 2, Philippe Kahane 3, 
Boris Mansencal 4, Pierrick Coupé 4 & Fernando Calamante 5,6

In medicine, abnormalities in quantitative metrics such as the volume reduction of one brain region 
of an individual versus a control group are often provided as deviations from so-called normal values. 
These normative reference values are traditionally calculated based on the quantitative values from 
a control group, which can be adjusted for relevant clinical co-variables, such as age or sex. However, 
these average normative values do not take into account the globality of the available quantitative 
information. For example, quantitative analysis of T1-weighted magnetic resonance images based 
on anatomical structure segmentation frequently includes over 100 cerebral structures in the 
quantitative reports, and these tend to be analyzed separately. In this study, we propose a global 
approach to personalized normative values for each brain structure using an unsupervised Artificial 
Intelligence technique known as generative manifold learning. We test the potential benefit of these 
personalized normative values in comparison with the more traditional average normative values on a 
population of patients with drug-resistant epilepsy operated for focal cortical dysplasia, as well as on a 
supplementary healthy group and on patients with Alzheimer’s disease.

Automatic quantitative tools for Magnetic Resonance Imaging (MRI brain analysis are a very valuable resource 
for the diagnosis and management of neurologic diseases, particularly quantitative volume measurements based 
on automatic segmentation of brain structures including cortical subdivision, deep grey nuclei or hippocampi. 
Such analysis, based on segmentation of T1-weighted images, can now be reliably obtained using deep learning 
techniques1–3, which show domain shift robustness and high potential for generalization.

Once segmentation volumes are obtained, the detection of volume abnormalities in each structure is classically 
achieved based on normative lifespan data4,5 (i.e. the model of the developing trajectories/curves): individuals 
falling outside the normative curves are considered as harboring an abnormality. The largest and most inclusive 
dataset for reference standards was recently proposed with 123,984 MRI scans from 101,457 participants4. The 
main idea of proposing such a large reference cohort is to be robust to brain morphometrics variations, such as 
variation in scanner platforms, sequences and data quality.

These approaches are used in a number of popular software tools, such as VolBrain6, Qyscore7, Neuroquant8, 
or IcoBrain DM9. One potential limitation with these approaches is the use of civil age and sex as co-variables. 
For example, the available reference data are not always equally distributed across all ages leading to a high 
variance of reference cohorts in many cases. A framework allowing to better select appropriate controls from the 
reference cohort based on multiple quantitative measures of the brain, instead of just civil age, would allow to 
improve the modeling of non-Gaussian predictive distributions. In addition, there is a need to develop methods 
aiming at proposing personalized normative values to detect local cortical alterations while taking other cortical 
regions into account. This is not addressed by traditional methods, which compare each region independently.

Unsupervised manifold learning has long been used in medical data analysis, for example to decrease the noise 
and reconstruction artifacts in the pre-processing of medical imaging data10, for drug repurposing by clustering 
gene expression 11, or for single cell identification12. In this study, we exploit this type of machine learning 
methods to provide a personalized normative model while considering all structures in a more global approach.

The first step of manifold learning often involves a dimensionality reduction for high-dimensional data, 
which can be linear or non-linear using Riemannian approximation13,14. Manifold learning algorithms aim to 
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represent these complex datasets within a more restricted space, while preserving the topology and the initial 
relative distance between each data characteristic in the original space. The dimension reduction step is not just a 
simple tool permitting the visualization of complex data, but it also allows to link the variables from the original 
space before the application of manageable statistical models. This type of approach was recently proposed to 
generate synthetic data within the reduced latent space using a model of generative manifold learning for the 
identification of white matter abnormalities based on diffusion MRI15. In that work, the TractLearn algorithm was 
proposed as a statistical learning workflow optimized for MRI diffusion data, allowing to model inter-individual 
variability and predict structural changes in patients with mild Traumatic Brain Injury. This effectively involves 
creating “digital twin”, i.e. new individual from the nearest set in the manifold space of healthy controls included 
in the learning database, and to use these digital twins to enable the personalization of normative values at each 
brain structure tested. The difference between the newly created digital twin and the tested individual allows a 
more sensitive detection of quantitative abnormalities.

Here we propose a combined manifold learning approach for quantitative normative modeling applications 
in medicine, involving the construction of a geodesic learning framework that we referred to as GeoNorm, based 
on a large cohort of healthy controls, allowing the estimation of personalized normative values for each cerebral 
structure simultaneously. We demonstrate the framework by mapping the brain abnormalities of patients with 
drug-resistant epilepsy in a cohort of patients who underwent corticectomy for type 2 focal cortical dysplasia 
(FCDII) for which the pathologist confirmed the presence of hypertrophy of the operated cortex. Our new 
technology based on generative manifold learning is compared with a traditional lifespan model providing 
average normative values. Furthermore, GeoNorm is also used in a supplementary cohort of controls to ensure 
that the proposed personalized normative values are not overestimating the presence of cortex abnormalities 
in comparison with the average normative values. Finally, the new method is also applied to patients with 
Alzheimer’s disease to demonstrate its capability on a different clinical application.

Results
Diagnostic performance in epileptic patients
All 28 epileptic patients considered in this study had an increase of the estimated cortical volume confirmed 
by post-operative tissue analysis. Among these, the average normative values from the LifeSpan model (i.e., 
the ‘traditional’ approach) identified 11 out of 28 patients with increase of estimated cortical volume, while our 
generative manifold learning analysis GeoNorm identified 17 out of 28 patients with increase of estimated cortical 
volume based on the personalized normative values (a further 55% more subjects detected). Figure 1 shows an 
example of a patient with confirmed FCDII. In this patient, AssemblyNet 1 estimated the inferior triangular 
gyrus occupies 0.35% of the total ICV. The LifeSpan average normative range for this part of the cortex was 
[Inferior: 0.21 Superior: 0.39]%, therefore considered normal. In contrast, the personalized normative values 
from GeoNorm found the following normative range: [0.21; 0.34]%, therefore classifying the right inferior 
triangular gyrus as abnormally increased.

The sensitivity of the personalized normative values on the resected zone was 0.67 (i.e. 17 patients out of 28 
with cortical hypertrophy on MRI further confirmed by surgery) while that of the average normative values was 
0.39 (i.e. 11 patients out of 28). Note that 0.67 was also the sensitivity of the radiological report (i.e. 17 patients 
out of 28, see Table 1).

Focusing on patients with pre-identified radiological abnormalities (n = 17), the average normative values 
found a total of 8 with increased estimated cortical volume, whereas personalized normative values identified 
12 patients. In patients without radiologically described abnormalities (n = 11), average normative values found 
3 cortical zones with hypertrophy and the personalized normative values found 5 in total, all consistent with the 
post-operative pathological analysis. The McNemar Test showed significant disagreement (p < 0.05) between the 
performance of the LifeSpan model and that of the generative manifold learning.

We randomly selected one patient (subject number 25 in Table 1), providing a comparison between some 
example areas and the corresponding MRI scan as shown in Fig. 2. For this patient, AssemblyNet estimated the 
left supplementary motor cortex as representing 0.47% of the volume of all the structures. The traditional average 
normative range for this part of the cortex was [0.31; 0.49], therefore considered as normal. The GeoNorm 
personalized normative values found the following normative range: [0.35; 0.47]%, therefore classifying the left 
supplementary motor cortex as with increased volume.

Furthermore, in this cohort, despite the lack of gold standard, we investigated the number of ROIs in the 
non-operated brain with cortical volume estimated as decreased or increased (Table 2).

Diagnostic performance in the supplementary healthy cohort
Table 3 shows the number of ROIs with decreased and increased volume in cortical regions. The Wilcoxon signed 
rank test was statistically significant when combining decreased and increased cortical regions (statistic = 7.5; 
p-value = 4.45 × 10–5), yet not for increased regions alone (statistic = 172.5; p-value = 0.48).

Performance in the Alzheimer’s disease cohort
As the choice of a single disease model raises questions for generalization, we also applied our proposed 
framework to the ADNI multicenter database for Alzheimer’s Disease (AD), both for AD patients and controls. 
We targeted the hippocampi of patients as a common atrophic structure in these patients, despite a small subset of 
patients described without apparent radiological atrophy 26. Personalized normative values significantly detected 
more hippocampus atrophy in comparison with average normative values in the pMCI group and in the AD 
group. There was no significant difference in the control group (supplementary table 1).
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Discussion
We have introduced GeoNorm as a new framework for normative analysis of individual subjects based on 
manifold learning. We showed that the generative manifold model for data-driven personalized normative 
values provided a better detection of focal cortex hypertrophy in comparison with the classic LifeSpan model 
providing average normative values. Importantly, these epilepsy patients had been specifically selected as they all 
had confirmed post-surgical histology analysis: all detected increased estimated cortical volume were confirmed 
by pathological analysis. In addition, personalized normative values detected fewer regions falling outside the 
normative curves in the other non-operated regions of epileptic brains, as well as in a second cohort of 30 healthy 
controls.

A major difference between the generative manifold learning model and the traditional lifespan models is the 
use of age as a co-variable for the latter. By comparing epileptic patients with digital twins built from the closest 
(in the manifold space) set of brain quantitative values from the healthy control group independently from age, 
we better capture the heterogeneity of aging in the general ‘normal’ population. In other words, the selected 
closest 30 normal controls are chosen with a global perspective on all 132 cortical metrics, which should better 
reflect the ‘brain age’. It is based on the assumption that the 30 selected controls, based on the 132 quantitative 
values coming from AssemblyNet reports, allow to more precisely model non-Gaussian predictive distributions 
and, thus, detect subtler local quantitative variations. Over the lifespan, the inter-subject variability of the volume 

Figure 1.   Example of a 18-year old patient with surgically confirmed FCDII of the right inferior triangular 
gyrus; MRI was considered abnormal by the senior radiologist. (A) Presurgical T1-weighted imaging: the 
white arrow shows focal thickening of the cerebral cortex at the level of the right inferior triangular gyrus. (B) 
Presurgical FLAIR sequence: the white arrow shows a subcortical region with FLAIR signal hyperintensity at the 
level of the dysplastic zone. (C) AssemblyNet segmentation of the right inferior triangular gyri, the yellow arrow 
shows the right sided region. (D) Postsurgical T1-weighted scan: postoperative cavity (white arrow).
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of each anatomical structure tends to increase either due to environmental or genetic factors. The quantitative 
pairing using the nearest subjects from a more global data viewpoint (rather than comparing with a Euclidean 
mean—see a toy example in Supplementary Figs. 1 and 2) allows the improved detection of atypical anatomical 
regions at the subject level.

The generation of synthetic data is more common in machine learning concerning generative adversarial 
networks16 in which a convolutional neural network synthesizes artificial images and another network tests 
them. While normally used to refer to a virtual clone of an image or device, a ‘digital twin’ in our study refers 
to a series of quantitative measurements that can be considered as a suitable representation of the reference 
brain measures for comparing to a specific patient. The manifold learning space could be either estimated in a 
linear or non-linear manner for the generation of synthetic data14. Principal components analysis represents the 
typical example of linear dimensionality reduction, but it has the drawback that requires Gaussian distributed 
data sets; in medical imaging, however, non-Gaussian data sets are frequent17. In contrast, nonlinear dimension 
reduction techniques use the Euclidean distance on a local scale and geodesic distances (Riemann space) on a 
global scale. This approach enables the representation of these geodesic distances using coordinates within the 
reduced space. Today, uniform manifold approximation and projection (UMAP)13 probably represents the best 
performing reduction algorithm, more accurately preserving the global structure of the data due to the graph 
construction correctly modeling the local neighborhood between all individuals. This is the reason why UMAP 
was selected in our framework to determine the manifold subspace.

In this article, we used manifold learning in a generative manner, allowing us to conserve the usual statistical 
framework used in medicine for the analysis of individuals, but replacing a global Euclidean framework with a 
learning manifold based on the set of healthy control individuals selected to globally resemble the test subject 
under consideration.

Table 1.   Relevant characteristics of the 28 epileptic patients included in the study. The surgery column 
provided the gold standard for the dysplasia location. Average and Personalized normative values reported 
the potential presence of increase of estimated cortical volume (labelled increased) or the absence of reported 
abnormality (NA). The radiological report summarized the visual analysis of the radiologist, either by 
describing any abnormality from different MRI sequence (here reported with the location of the abnormality) 
or the absence of reported abnormality (NA). M, male; F, female; R, right; L, left. SMA, supplementary motor 
area. HS, Hippocampal Sclerosis. NA, no abnormality.

Patient number Sex Age (years)
Age at epilepsy 
onset (years) Surgery

Radiological 
report

Average 
normative values

Personalized 
normative values

1 F 10 0.6 R occipital R occipital Increased Increased

2 M 10 4 L frontal L frontal Increased Increased

3 F 11 1 R frontal R frontal NA Increased

4 M 18 11 R frontal R frontal NA Increased

5 M 19 4 R temporal NA NA Increased

6 M 19 6 L frontal L frontal NA NA

7 M 22 0.5 L frontal L frontal NA Increased

8 F 23 5 L frontal L frontal Increased Increased

9 M 26 3 R parietal NA Increased Increased

10 M 29 4 R frontal R frontal NA NA

11 F 29 9 R SMA NA NA Increased

12 F 29 4 R frontal R frontal Increased Increased

13 F 33 14 L SMA NA NA NA

14 F 34 13 R frontal NA NA NA

15 F 34 12 R parietal NA Increased Increased

16 M 34 3 L frontal L temporal Increased Increased

17 F 35 21 R temporal R temporal NA NA

18 M 35 1 R temporal R HS Increased Increased

19 M 40 25 L temporal NA NA NA

20 M 40 7 R frontal NA NA NA

21 F 41 28 R frontal NA NA NA

22 M 42 15 L frontal NA NA NA

23 M 42 18 L frontal bilateral HS Increased Increased

24 M 44 4 R frontal R frontal NA NA

25 M 47 4 L SMA L SMA NA Increased

26 F 47 8 L frontal L frontal NA NA

27 F 52 39 R temporal R HS Increased Increased

28 M 57 22 L parietal NA Increased Increased



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7563  | https://doi.org/10.1038/s41598-024-58141-4

www.nature.com/scientificreports/

Figure 2.   Normative range for the % volume of four structures for the 47-year-old randomly selected patient 
with FCD in the left supplementary motor cortex (A, Subject 25). The variation between normative ranges 
depends on the anatomical area. For example, the LifeSpan-based normative values placed the patient’s left 
supplementary motor cortex in the upper end of the range but still within the normal range (green cross), while 
GeoNorm considered this structure outside of the personalized normative values (red cross). Both models also 
found the left superior parietal lobule as atrophic, but this was less severe using GeoNorm. The Presurgical 
T1-weighted imaging (B) and AssemblyNet segmentation (C) are shown in the bottom row. For example, for 
the left supplementary motor cortex, AssemblyNet classified it as normal, while the GeoNorm personalized 
normative values classified it as with increased volume.

Table 2.   Mean number of cortical regions detected with either hypertrophy (increased) or 
atrophy + hypertrophy (Decreased + Increased) in the remaining non-operated 131 brain regions of the 28 
epileptic subjects. Percentages represent proportion of the total of cortical regions with abnormalities.

Average normative values
(LifeSpan)

Personalized normative values
(GeoNorm)

Decreased + Increased 14 ± 6 (0.03% ± 0.015) 9 ± 4 (0.024% ± 0.01)

Increased 10 ± 6 (0.028% ± 0.015) 6 ± 4 (0.016% ± 0.01)
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Generative manifold learning is an unsupervised machine learning technique, limiting the risk of data leakage 
recently reported in supervised classification techniques18. In addition, the focus of this article is to compare a 
radiological feature (regional cortical volume) with a pathological feature (hypertrophy). However, as we compare 
sensitivity in the operated zones, we added a second cohort of 30 supplementary controls, different from the 2944 
controls used as reference, to rule out that we are detecting a larger unexpected number of hypertrophies. To 
note, in our paper the patients were not learned as the manifold learning spaces are unsupervised AI techniques 
and the residuals were only learned from the controls. Importantly, as it is important to test our personalized 
normative values in future multicenter studies/external datasets, we purposedly learned the manifold based on 
controls from various previous studies encompassing multiple MRI manufacturers and sequences; this limits 
the risk of decreasing the model performance when applied to other datasets. In fact, the lifespan control data 
used here had been acquired using over one-hundred 1.5 T and 3 T sites.

FCD is a heterogeneous group of cerebral malformations with architectural features of cortical disorganization. 
They are often responsible for refractory epilepsy and constitute the main cause of surgically-remediable epilepsy 
in children. Up to 23% of patients receiving surgical resection of seizure foci have an FCD diagnosis 19. FCD type 
II consists of abnormal cortical lamination, specifically, with cytologic abnormalities, either without balloon cells 
(Type IIa) or with balloon cells (Type IIb) 20. FCD radiological diagnosis classically relies on abnormal cortical 
morphology and/or blurred gray-white matter junction on T1-weighted imaging, therefore making interesting 
to extract cortical metrics for possible apparent hypertrophy linked to one of these two phenomena.

In 2012, Wang et al.21 evoked the potential usefulness of cerebral morphometrics in detecting MRI-negative 
epilepsies. Jin et al.22 tested the performance of neural networks for surface marker-based morphometrics 
detection of FCD, with an estimated specificity of 90% (by comparison with hippocampal sclerosis) and an 
estimated sensitivity of 73.7%. The main difference with our work, in addition to the use of 6 cortical features 
(such as gray-white matter intensity contrast, curvature and sulcal depth), was that Jin et al. proposed a classifier 
(to differentiate between brains with or without FCD) without localizing the epileptic area. Noteworthy is the 
more difficult interpretation of surface markers compared to AssemblyNet-based morphometrics, the latter 
being uniquely based on calculating lesion volume. Interestingly, Chen et al. 23 reported that volume-based 
morphometry analysis can help in detecting FCD lesions individually, but also noted that atrophic regions 
are more likely than hypertrophic regions to represent FCD lesions. Their study was focused on MRI negative 
findings from radiologists. We hypothesized that the atrophic regions were misclassified due to the limitation of 
a Z-score Euclidean framework in the case of non-Gaussian distribution for the region of interest.

More recently, Spitzer et al.24 described a multicenter study including 618 patients with FCD and 397 controls, 
and using a deep-learning algorithm based on 33 morphometrics-derived surface markers. The sensitivity is 
close to those from our study at 67% despite using 33 metrics (as compared with the unique cortical thickness 
in our paper) with an estimated specificity of 54%. The sensitivity increased to 85% on a sub-cohort of patients 
without epileptic seizures and having undergone FLAIR imaging in addition to T1-weighted imaging. Analyses 
of diagnostic precision fall outside the scope of our study, which instead focused on the resected zone; however, 
we have checked that our personalized norms are not associated with an increased rate of hypertrophy/atrophy in 
other cortical zones, as well as when applied to a second cohort of 30 volunteers without any known neurological 
disorders. Future studies are required to investigate the diagnostic precision of GeoNorm.

We note that we are detecting other increases of estimated cortical volume unrelated to patients’ symptoms 
and that the second group of controls also showed such areas. In epileptic patients, the role of neuroplasticity 
following seizures could be put forward as a possible reason behind this finding. The presence of cortical areas 
outside the centile in a second group of 30 controls might be considered as “false positives”. GeoNorm found 
less outliers than average normative values, although both method succeeds in capturing all cortical variation. 
In addition, as both models study 132 regions per brain, statistical laws make it possible to detect 5% of regions 
classified as positive even if they have no abnormality (i.e., decrease and or increase) for a threshold at 5%. A 
threshold for multiple comparisons is not adapted as the anatomical regions are not studied separately in the 
reduced subspace.

The use of generative manifold learning as proposed in our article allows a considerable increase in diagnostic 
performance, since 17 out of 28 patients presented a cortical hypertrophy, compared to 11 out of 28 with the 
Euclidean statistics model, corresponding to a further 55% more subjects with a detected abnormality. These 
performances are solely based on T1-weighted imaging and are expected to be increased by adding other 
complementary information, such as clinical examination, EEG and complementary MRI sequences such as 
FLAIR.

Interestingly, the manifold learning allowed the detection of 6 abnormalities (versus 2 for the Euclidean 
model) in patients for whom the MRI was considered normal by the expert radiologist. It should be stressed that 
all these patients had pathology-confirmed FCD, validating the findings from GeoNorm. Future prospective and 

Table 3.   Mean number of cortical regions detected with either hypertrophy (Increased) or atrophy and 
hypertrophy (Decreased + Increased) in the 132 brain regions of the second control dataset (n = 30). 
Percentages represent proportion of the total of cortical regions with abnormalities.

Average normative values
(LifeSpan)

Personalized normative values
(GeoNorm)

Decreased + Increased 11 ± 5 (0.032% ± 0.014) 7 ± 3 (0.02% ± 0.008)

Increased 5 ± 3 (0.014% ± 0.008) 5 ± 3 (0.014% ± 0.008)
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multicenter studies including EEG and clinical data will permit an evaluation of the potential value of these new 
personalized normative values for the detection of FCDII, ideally included in a clinical decision support system25.

The results found in the supplementary Alzheimer’s disease cohort hold promise for earlier detection of 
Alzheimer’s Disease, as GeoNorm described more hippocampus injuries in both pMCI and AD groups, suggesting 
increased sensitivity. We also found 8 cognitively normal controls with decreased hippocampus volume, while 
average normative values only found 2 controls with such feature, without statistical significative difference 
between the two groups. In our opinion, 2 out of 155 (as detected by the average normative values) is a very low 
rate in an elder population of controls because radiological signs of AD may occur decades before clinical signs, 
and regarding the high prevalence of AD in this population. Of note, however, in contrast to the focal cortical 
dysplasia cohort (main cohort in this study), there was no gold standard data regarding the presence or absence 
of hippocampal abnormality.

In conclusion, we propose GeoNorm as a new manifold learning technique to definine personalized normative 
values for quantitative MRI and more generally quantitative medicine. The possibility to define a ‘digital twin’ and 
adapt the reference values to both intra- and inter-subjects’ variability holds great promise for precision medicine.

Methods
Ethics approval
All datasets were collected under Institutional Review Board (IRB) approval from the French Society of Radiology 
(Ethic committee of research) with the number CRM-2302-320. The datasets were de-identified prior to model 
development. Due to the retrospective nature of the study, the IRB from the French Society of Radiology (https://​
cerf.​radio​logie.​fr/​cerim) waived the need of obtaining informed consent. All experiments were performed in 
accordance with relevant guidelines and regulations, including the Declaration of Helsinki.

Subjects
Epilepsy patient selection
Adult and pediatric patients were retrospectively identified from consecutive patients at our institution who 
underwent resective surgery for epilepsy between 2011 and 2022 and had FCD type II confirmed by post-
resection pathology. All patients underwent video–scalp EEG (SEEG) long-term monitoring and brain MRI. 
Noninvasive data were presented at local epilepsy conferences to provide a consensual conclusion regarding the 
most likely epileptogenic zone and the decision to proceed directly to surgery or to perform SEEG procedure 
for patients with MRI-negative patients.

Similar to the decision on whether to proceed to SEEG, the type and extent of surgical treatment was discussed 
and approved at local epilepsy conferences based on review of available data.

FCD pathology was classified as type I, IIA, IIB, or III according to the International League Against Epilepsy 
2010 classification. Initially, we found 82 eligible patients who underwent a cortectomy in our center with a FCD 
type II on the pathological analysis. Fifty-four patients were excluded because of the lack of available presurgical 
MRI. We thus retrospectively included 28 patients who met the inclusion criteria. Among these patients, 12 
were women and 16 men. Most of them were right-handed (n = 23; 82%). Average onset age of epileptic crisis 
was 10.2 years [0.5–39]. Eleven patients had neurological, familial or personal history and predispositions, and 
four among them had familial history of epilepsy. All 28 patients included had a presurgical MRI at mean age 
of 24.1 years [1–54 years]. The MRI data were acquired on different scanners (1.5 Tesla: n = 13; 3 Tesla: n = 15). 
Seventeen patients (60.7%) were considered abnormal by an expert neuroradiologist. The histologically proved 
FCDII were localized in the frontal lobe (n = 19, including 3 in the supplementary motor areas), temporal lobe 
(n = 5), parietal lobe (n = 3) and occipital lobe (n = 1). All these characteristics are described in Table 1.

Healthy control datasets
We used 3D T1-weighted MRI data from nine publicly available databases covering the entire lifespan (see 
“Acknowledgments ”section). All subjects included are normal controls. The images were acquired at 1.5 T and 
3 T over 103 sites. From the initial 3,296 subjects, and after assessing for quality control, 2,944 subjects (47% 
female; 9 months to 94 years, with an average age of 39.7 years and standard deviation of 26.6 years) were kept. 
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, including cognitively normal and Alzheimer’s 
Disease patients, were only used in the external validation testing (see supplementary material). The details of 
the dataset have been provided5.

For comparison purpose with the findings from the 28 epileptic patients, we also included 30 supplementary 
healthy subjects locally scanned in our academic hospital, which were never learnt in the initial manifold. These 
subjects are matched in gender and age with the epileptic patients. The 3D T1-weighted MRI data for this group 
were acquired on different scanners, on a Siemens Aera 1.5 Tesla (n = 16) and on two 3 Tesla MR machine (Philips 
Ingenia, n = 9 and Siemens Skyra, n = 5).

Framework
AssemblyNet
All the considered T1-weighted MRI data were segmented using AssemblyNet (https://​github.​com/​volBr​ain/​
Assem​blyNet/). This software produces a deep learning based segmentation (i.e., 132 structures) of the entire 
brain as part of the volBrain pipeline1 with the following steps: (i) denoising27, (ii) inhomogeneity correction28, 
(iii) affine registration into the MNI space29, tissue-based intensity normalization30, and (v) intracranial cavity 
volume (ICV) extraction31. Finally, image intensities were centralized and normalized within the brain mask and 
the background was set to zero. After preprocessing, the brain was automatically segmented into 132 structures 
using 250 Deep Learning models (see supplementary table 2)1.

https://cerf.radiologie.fr/cerim
https://cerf.radiologie.fr/cerim
https://github.com/volBrain/AssemblyNet/
https://github.com/volBrain/AssemblyNet/
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Lifespan model
To compensate for the inter-subject variability, we normalized all the structure volumes using the ICV. The 
lifespan model of the different structure volumes is modeled using low order polynomial regression related to 
age on the normal control datasets as described in a previous publication of Coupé et al. 5. The normative range/
interval is estimated using a threshold at 5% for the lower bound and 95% for the upper bound.

GeoNorm
GeoNorm are part of the BrainGML software (version 0.1,) a medical device software that assist radiologic 
assessment of patients with neurological disorders We used a strategy similar to that developed in TractLearn15 
to generate the personalized normative values (see Fig. 3 for a summary of the proposed pipeline). We first 
estimated the distance between a given epileptic patient and the 30 closest controls from the full 2,944 set in our 
normal control dataset. To identify this closest group (for each patient), we used volume differences between 
normalized volumes for each brain structure of the epileptic patient and selected the 30 controls with the shortest 
distances. For each of the epileptic patients and the subjects from the second control dataset, we reduced the 
132 quantitative variables coming from the AssemblyNet into a low-dimensional reduced manifold space using 
U-map13 for the 31-subject set (i.e., the subject of interest + the 30 closest healthy controls). In practice, U-map 
was therefore used 28 times for the epileptic patient group and 30 times for the second dataset of controls.

We learn the manifold subspaces based on the data from the healthy controls:

where Y is the healthy control data in real space (i.e., the 132 quantitative values extracted from AssemblyNet), 
x the corresponding point in the reduced space, and ε the residuals; f is the regression function between the 
reduced space and the real space. The combined manifold learning algorithm and regression functions determine 
the quality of the model. The regression function is crucial to obtain the smallest residual; if it cannot capture 
the variation estimated between the real and the latent space, the residual will be high.

The projection f of a new brain (i.e. not included in the learned manifold step) will be based on the collection 
of brain measures from the closest subjects from the healthy manifold. As the Riemannian normative space 
has been built to capture the maximum variability, a new subject projected onto the learned manifold will be 
synthetized using a local average from the closest 30 healthy controls. For the estimation of the local average, 
we have used the Nadaraya-Watson kernel for high dimensional non-parametric regression32, here defined as:

where Kh represents a Gaussian kernel of bandwidth h, which was selected to reduce the residuals between Y and 
Ŷ. The training couples (xi, yi) includes x as the quantity to regress and y as the prediction.

Two toy examples illustrating the differences between average normative values and personalized normative 
values are provided in Figs. S1 and S2.

Y = f (x)+ ε

Ŷ =

∑

i Kh(x − xi)yi
∑

j Kh

(

x − xj
)

Figure 3.   Pipeline in the proposed GeoNorm framework. For each subject of interest (e.g. an epileptic patient), 
the K-nearest neighbors from the large healthy control group are identified (in this study, K = 30). The nearest 
controls, together with the subject of interest were moved to a reduced manifold subspace (which was computed 
from the 30 nearest controls). We considered that the residuals ε was representative of any abnormalities present 
in a new patient when it is greater than the model variability learned during a leave-one-out procedure on 
controls.
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Statistical analysis
To ensure robustness in our dataset and avoid overfitting, the distribution of the residuals ε of the healthy group 
was estimated using a leave-one-out (LOO) strategy. The subjects used to estimate the model (the latent space and 
the regression function) are not used in the estimation of the parameters of the distribution law of the residuals. 
We consider that the residual ε of a new subject is representative of the abnormalities present in that subject 
when it is greater than the model variability learned during the LOO on the healthy control group. Permutation 
tests were computed for the 30 nearest neighbors. We assume that ε follows a multivariate Gaussian distribution 
with a standard deviation that varies across the voxels33,34.

Following the LOO strategy, we obtained the distribution of the residuals of the control group. We considered 
the mean of this last distribution to estimate the z-score. We can also evaluate the confidence interval of the 
residual of the new subject at the N-th percentage level, to evaluate the robustness of the method.

While we benefited from the information provided by a surgical gold standard for the epileptic patients, we 
still need to confirm that we are not finding an unexpected amount of decreased/increased estimated cortical 
volume in normal brain cortical areas in patients or in our second cohort of 30 supplementary healthy controls. 
We hypothesize that the second cohort of controls would detect a lower number of atypical regions than those of 
epileptic patients with both models (average normative values and the personalized normative values). We have 
then compared the GeoNorm framework with the lifespan model in all brain regions for 58 individual subjects 
(28 epileptic patients and 30 controls) to detect subject-specific atrophy and hypertrophy using a Wilcoxon rank 
pair test. We also looked for a potential disagreement between the performance of the average normative values 
and the personalized normative values with a Mc Nemar test.

Data availability
The C-MIND data used in the preparation of this article were obtained from the C-MIND Data Repository 
(accessed in February 2015) created by the C-MIND study of Normal Brain Development. This is a multisite, 
longitudinal study of typically developing children from ages newborn through young adulthood conducted 
by Cincinnati Children’s Hospital Medical Center and UCLA A listing of the participating sites and a complete 
listing of the study investigators can be found at https://​resea​rch.​cchmc.​org/c-​mind. The NDAR data used in the 
preparation of this manuscript were obtained from the NIH-supported National Database for Autism Research 
(NDAR). NDAR is a collaborative informatics system created by the National Institutes of Health to provide a 
national resource to support and accelerate research in autism. The NDAR dataset includes data from the NIH 
Pediatric MRI Data Repository created by the NIH MRI Study of Normal Brain Development. This is a multisite, 
longitudinal study of typically developing children from ages newborn through young adulthood conducted by 
the Brain Development Cooperative Group A listing of the participating sites and a complete listing of the study 
investigators can be found at http://​pedia​tricm​ri.​nih.​gov/​nihpd/​info/​parti​cipat​ing_​cente​rs.​html. The ADNI data 
used in the preparation of this manuscript were obtained from the Alzheimer’s Disease Neuro- imaging Initiative 
(ADNI). The ADNI is funded by the National Institute on Aging and the National Institute of Biomedical Imaging 
and Bioengineering and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer 
Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, 
GE Healthcare, GlaxoSmithKline, Innogenetics NV, Johnson & Johnson, Eli Lilly and Co., Medpace, Inc., Merck 
and Co., Inc., Novartis AG, Pfizer Inc., F. Hoffmann-La Roche, Schering-Plough, Synarc Inc., as well as nonprofit 
partners, the Alzheimer’s Association and Alzheimer’s Drug Discovery Foundation, with participation from the 
U.S. Food and Drug Administration. Private sector contributions to the ADNI are facilitated by the Foundation 
for the National Institutes of Health (www.​fnih.​org). The grantee organization is the Northern California Institute 
for Research and Education, and the study was coordinated by the Alzheimer’s Disease Cooperative. Study 
at the University of California, San Diego. ADNI data are disseminated by the Laboratory for NeuroImaging 
at the University of California, Los Angeles. The OASIS data used in the preparation of this manuscript were 
obtained from the OASIS project. See http://​www.​oasis-​brains.​org/ for more details. The AIBL data used in the 
preparation of this manuscript were obtained from the AIBL study of ageing. See www.​aibl.​csiro.​au for further 
details. The ICBM data used in the preparation of this manuscript. The IXI data used in the preparation of this 
manuscript were supported by http://​www.​brain-​devel​opment.​org/. The ABIDE data used in the preparation of 
this manuscript were supported by ABIDE funding resources listed at http://​fcon_​1000.​proje​cts.​nitrc.​org/​indi/​
abide/​prepr​ocess​ed.​html. ABIDE primary support for the work by Adriana Di Martino. Primary support for 
the work by Michael P. Milham and the INDI team was provided by gifts from Joseph P. Healy and the Stavros 
Niarchos Foundation to the Child Mind Institute. http://​fcon_​1000.​proje​cts.​nitrc.​org/​indi/​abide/​prepr​ocess​ed.​
html. This manuscript reflects the views of the authors and may not reflect the opinions or views of the database 
providers. The dataset for the epileptic patients is available from the corresponding author on reasonable request.

Code availability
The underlying code for AssemblyNet can be accessed via this link: https://​github.​com/​volBr​ain/​Assem​blyNet. 
The code for BrainGML is not publicly available for proprietary reasons.
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