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ABSTRACT

Passive brain-computer interfaces (pBCIs) developed
within the neuroergonomic field usually aim to improve
safety by augmenting human-machine interaction. To ac-
complish said goal, many pBCIs classify mental states
such as mental workload or mental fatigue. An alterna-
tive is to forego mental states and aim to predict perfor-
mance. Despite its drawbacks, we argue that performance
estimation is a more goal-oriented approach than mental
state estimation. In a realistic experiment, 25 participants
had to control an uncrewed aerial system for two hours,
continuously switching between target search and navi-
gation. EEG classification accuracies based on mental
states and performance were compared. With a Tangent
Space Logistic Regression, we could predict an increased
likelihood of lapses in the form of missing instructions
with an above-chance level accuracy of 62.09 %.

INTRODUCTION

Passive Brain-Computer Interfaces (pBCI), i.e., BCIs that
observe brain activity that is not influenced by the pres-
ence of a BCI, are a valuable component of neuroer-
gonomics [1]. They promise to provide complex systems,
such as cockpits, with valuable information on their user
and the Human-Machine Interaction. A machine can then
use that information employing adaptation or feedback to
improve said interaction [2].
To do so, pBCIs are often trained to detect specific men-
tal states such as mental workload [3] or mental fatigue
[4]. The underlying argument for detecting said mental
states is their correlation with erroneous or sub-optimal
behaviour by the operator. Thus, by detecting, e.g. a high
mental workload, the system may adapt itself to reduce
workload and increase safety [5]. This approach has cer-
tain drawbacks. Mental states as constructs are not ob-
servable and vary across definitions [6, 7]. Furthermore,
mental states depend on the current context and tasks.
Differing task instructions can result in differing brain
activity [8]. A high mental workload during an N-Back
task may not be comparable to a high workload during a
Stroop task [9, 10]. Finally, mental states are not always
strong predictors of performance. In the case of men-
tal fatigue, evidence suggests that participants, using e.g.
compensatory strategies, can uphold performance despite

fatigue [11–13]. So, all these aspects must be accounted
for when constructing a mental state-based pBCI to be
used in an open-loop adaptation (feedback) or a closed-
loop adaptation (interface change) with a complex system
[2].
Alternatively, a pBCI could forego the mental state as-
pect and try to predict a participant’s behaviour directly.
Performance estimation has been proven to work in sev-
eral contexts [14–17] and does not suffer from any of
the aforementioned issues. It works by assigning labels
to the physiological data, using the recorded behavioural
data of participants, such as reaction time, accuracies and
misses. Performance prediction allows direct observation
of the variable we want to optimize with a pBCI, but also
faces challenges. To predict performance, we first need
to define good and bad performance. Many tasks, such as
the Stroop or N-back tasks, involve some measure of cor-
rectness and reaction time [9, 10]. Reaction time or accu-
racy may be considered a valid performance measure in
these cases, but only the combination into a global score
will provide a complete picture of performance. Com-
bining scores, on the other hand, raises questions about
how to weigh each metric. Here, it needs to be consid-
ered that these measures are not orthogonal [8]. As men-
tioned above, the issue gets more complex as we move
away from very controlled tasks and move towards more
ecologically valid measures that may include several dif-
ferent reaction times and accuracies.
A related challenge is then how these cases should be la-
belled. Imagine, for example, an experiment where par-
ticipants continuously perform a task for one hour. A
global score of performance is assigned to each minute
of the task. The value is continuous from 0 (bad) to 1
(good). How can the data now be divided into a 2-class
problem? The 10 worst minutes of performance versus
the remaining 50 minutes, the 10 best minutes versus the
10 worst minutes, the good half versus the bad half, or
values exceeding a threshold (e.g. >0.8) or subceeding
another (e.g.<0.2) are all present plausible approaches.
The metric calculation and label assignment issue is fur-
ther complicated when algorithms are tested to classify
the data. Does a chance level classification accuracy
mean the algorithm doesn’t work or that the label assign-
ment is sub-optimal?
In many cases, predicting any change in performance
may be helpful, whether it is the likelihood of committing



an error, missing a trial or the speed at which a partic-
ipant responds. Still, trying out unlimited combinations
of labels may also create a global performance score not
because of its usefulness but because of its ability to be
classified.
To the best of our knowledge, no study has yet evalu-
ated performance prediction using a pBCI applied to a
prolonged realistic drone task. Hence, this experiment
tested whether an EEG-based pBCI can predict meaning-
ful performance metrics from participants performing a
complex Uncrewed Aerial System (UAS, drone) pilot-
ing task. Moreover, extended mission duration makes
UAS pilots vulnerable to mental fatigue and the associ-
ated risks [18]. Participants were asked to switch between
a search and a navigation task during the experiment for
two hours. This work expands on a previous protocol that
focused only on a visual search task –and which did not
yield above chance level performance estimations– [19]
by adding a second navigation task and making the over-
all performance more difficult and longer. The long du-
ration allows for comparing performance-based labelling
and more traditional labelling based on subjective fatigue
scores and Time-On-Task (TOT). Our goal is to illustrate
how label assignment impacts classification accuracies,
particularly in the absence of an absolute performance
definition, for such a realistic task.

METHODS

Participants:
25 Participants (7 female, mean age 23.54 years (std 2.7),
11 English speaking & 14 French speaking) were re-
cruited and completed the experiment. From the subse-
quent analysis, one participant had to be dropped due to
inconsistencies and missing data in the recordings.

Procedure: Participants who agreed to participate
signed the informed consent forms and were equipped
with the EEG sensor.Next, participants completed a bat-
tery of questionnaires. They then completed a train-
ing phase of 16 minutes before a five-minute resting
state was recorded (30-second intervals of eyes open and
closed). They then started the 120-minute main phase of
the experiment. After completing the main phase, partic-
ipants filled in another battery of RSME, KSS, SPS, and
VAS questionnaires. The ethical committee of Toulouse
(Comité éthique de l’Université de Toulouse) approved
the experimental protocol (Dossier 2022-501).

Materials:
Task: The UASOS task (Fig. 1) combines some of
the fundamental aspects of UAS operations with a Task-
Switching protocol to allow the investigation of cognitive
flexibility [20]. The task requires participants to alter-
nate between tasks on a trail-based system. On average,
every 7 seconds (with a +-1000ms jitter, ~1020 trials dur-
ing the main condition), written instructions appear on a
widget in the middle of the participant’s visual field to in-
dicate the current task. To ensure adequate performance,
small pretests were conducted to calibrate these param-

Figure 1: Experimental setup. Left Screen: Search Task. Right
Screen: Navigation Task. Center Top: Flight director with task
information. (Note: The text in the centre of the screens is feed-
back only displayed during the training phase.)

eters. Participants work on two main tasks, with two
modes each. The Navigation task (NAV) requires the par-
ticipant to navigate the UAV either using headings (head-
ing mode, HDG) or waypoints (Waypoint mode, WPY).
The design was balanced with an equivalent number of
trials in all tasks and modes.
In the heading mode of the NAV task, participants re-
ceive a heading instruction (e.g. 350) in each trial. Using
a joystick, they then turn the UAS in said direction. For
the WPY mode, they receive a waypoint consisting of a
letter and a number (e.g. F13). They must choose the
corresponding waypoint using a trackball on a grid over-
laying the navigational display. The other task is the SRC
task. This task was adapted from previous work [19], and
integrated into the overall protocol. Participants see a 3x3
grid of black-and-white images that visual filters may fur-
ther distort. They are instructed to search either People or
Vehicles. If they detect a target on one picture, they se-
lect the corresponding picture using a numpad. For all
tasks, reaction times and the correctness of responses are
recorded. The instructions on the flight director widget
tell the participant which mode to perform at the onset of
each trial.
The task was coded in Python and presented on two iden-
tical computer screens. A detailed description of the ex-
perimental environment can be found in [21].
Questionnaires: Participants answered 5 questionnaires
at varying moments. At the beginning of the experiment,
participants completed the demographics questionnaire,
and their handedness was also assessed using the short-
ened Edinburgh handedness questionnaire [22]. Next, the
Karolinska Sleepiness Scale (KSS), a 9-point Likert and
the Samn-Perelli Fatigue (SPF) 7-point Likert scale were
used to assess fatigue [23, 24]. Participants also filled
in the RSME scale [25] that evaluates participants’ men-
tal effort invested in the task. The versions in which all
items are labelled were used [26]. The translated ver-
sions of the KSS and SPS questionnaires originate from
the ICAO [27]. Participants also responded to two Visual
Analogue Scales (VAS) scales: cognitive fatigue (VAS-



F) and drowsiness (VAS-D). The entire battery was pre-
sented a second time following the completion of the ex-
periment. The VAS scales were also filled in at 19-minute
intervals during the main experimental phase.
EEG: Using an active AG-AgCl electrode system with an
ActiCHamp amplifier (Brain Products, Gmbh), EEG data
was recorded from 64 electrodes. The international 10-20
system was used for electrode placement [28]. Data were
recorded at 500 Hz, and impedances were kept below 50
kΩ. Data was streamed and synchronized using the Lab-
StreamingLayer (LSL) [29].
As part of the data validation, we performed a frequency
analysis of the EEG data independently from the men-
tal state prediction. For this, a zero-padded channel was
added to the EEG data before an average referencing,
with a subsequent removal of the zero-padded channel.
Extreme values were clamped following the method pro-
posed by [30]. The data was then cut into 5-second non-
overlapping epochs. The power of each frequency band
was calculated by band-pass filtering the signal and cal-
culating the root mean square for each electrode. Us-
ing the parameters suggested in [31], the power of the
theta (4-8Hz) alpha (8-12Hz) bands were extracted. For
the statistical analysis the data was then averaged into
10-minute epochs over three clusters of electrodes (i)
Frontal: F3, F1, Fz, F2, F4, FC3, FC1, FCz, FC2, FC4;
(ii) Central: C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2,
CP4; and (iii) Parieto-Occipital: P3, P1, Pz, P2, P4, PO3,
POz, PO4, O1, Oz, O2.

Performance and Mental State classification:
EEG preprocessing: The EEG data for each partici-
pant was cut into 5-second non-overlapping epochs, to
allow for robust covariance matrix estimation, and to be
independent of the task trials. The epoched data was
then referenced and filtered between 2-36 Hz using the
mne.filter() function. Data points of each channel that ex-
ceeded 20 std of the robustly scaled data were clamped to
the value equal to +/- 20 std; for a detailed explanation of
this method, see [30]. Finally, the data was resampled to
125Hz.
Label creation: The performance metrics used misses
(Miss), reaction times (RT) and accuracies (Acc) of all
subtasks. Across subtasks, all values were first normal-
ized to give equal importance to each subtask. Next, av-
erages of misses, RT and accuracies were calculated. For
each value, the best and worst 33% were used to assign
labels—the global performance (OVR) score combined
misses, RT, and accuracy. Three different mental state-
based labels were created. The time-on-task used the first
and last 33% of each recording, respectively. The VAS
scores were used for the other two approaches. Using the
drowsiness and cognitive fatigue scales, the blocks corre-
sponding to the most extreme values of each scale were
used to label the data. Adjusted chance levels were cal-
culated for each label-type based on [32].
Classification: The data from each participant was di-
vided into an 80/20 split for training/testing datasets.
Next, the covariances were computed using OAS or LWF,

and the data was projected to the target space. We
compared performances of logistic regression (Log Reg),
Support Vector Machine (SVM) and Random Forest (RF)
Classifiers. Hyper-parameters for each classifier were
optimized using 5-fold cross-validation using Bayesian
search.

Statistical Analysis:
The general inference criterion is a p-value of p < .05.
In multiple comparisons, we adjusted that criterion ac-
cording to the adjusted Bonferroni method. Assumptions
for each statistical test were checked and accounted for if
not satisfied. Outlier detection was performed based on
the interquartile range criterion. This was done for trials
grouped by condition.
Subjective: To analyse the subjective results, we com-
pared the SPS and KSS scores from the beginning to
the end. For this, we used a paired samples T-Test. We
also performed a one-way repeated measures ANOVA for
both VAS scales. For one participant, the questionnaires
at the end of the experiment were not recorded.
Behavioral: The behavioural analysis was divided into
three sections for the (i) Search Task, (ii) Navigation Task
- Heading Mode, and (iii) Navigation Task - Waypoint
mode, respectively. An overall analysis was not possible
due to the differences between tasks. Due to the random-
ized order of the tasks, missing data occurred in some
blocks as single participants did not engage in a task in
a given block. In this case, the missing values were re-
placed with the list-wise mean. This occurred in 0.55 %
of the behavioural data.
For the search task, reaction times, F1 score and misses
were used as dependent variables in repeated measures
within-subjects ANOVA with Task (searching humans or
searching vehicles) as an independent variable and time
on task (19-minute blocks) for repeated measures.
To analyse the heading task reaction times, turning direc-
tion misses and deviation were the dependent variables
of repeated measures within-subjects ANOVA with TOT
(19-minute blocks) for repeated measures.
The Waypoint mode was evaluated using reaction time,
correct choices, and misses as dependent variables, again
TOT was the independent variable for repeated measures.
EEG Frequency: The extracted powerbands were com-
pared across blocks in a repeated measures ANOVA for
each cluster.
Classification: To analyze the classification results, a 2-
way ANOVA with factors Classifier and Label-type was
performed on the dependent variable of accuracy.

RESULTS

Subjective Data: Scores for the KSS, RSME and
SPS measures all showed significant increases in val-
ues comparing the beginning and the end of the experi-
ment KSS: t(23) =−6.912, p < .001,d =−1.411; SPS:
Z = −4.000, p < .001,r = −0.933; RSME: t(23) =
−6.380, p < .001,d = −1.302). The assumption of
normality was violated for the SPS test (Shapiro-Wilk



W = 0.875, p = 0.007); therefore, the Wilcoxon result
is reported. VAS scores on both cognitive fatigue and
drowsiness showed linear increases over time (Cogni-
tive: F(2.374,49.849) = 25.979, p < .001, Greenhouse-
Geisser corrected, η2 = 0.553 and η2

p = 0.553; Drowsi-
ness: F(4.294,90.184) = 12.159, p < .001, Greenhouse-
Geisser corrected, η2 = 0.367 and η2

p = 0.367, see Figure
2 a-d).

Figure 2: Subjective results: a) KSS Scores comparing the be-
ginning and end of the experiment. b) SPS Scores comparing
the beginning and end of the experiment. c) RSME Scores com-
paring the beginning and end of the experiment. d) VAS scores
throughout the experiment for both the Cognitive Fatigue and
the Drowsiness scale. Timepoint 0 is before the start and before
the training, and then each subsequent point occurred every 19
minutes into the experiment. The last point occurred after the
completion of the experimental phase.

Behavioral Data:
SRC Task: Searching humans resulted in significantly
larger reaction times and more misses (RT: F(1,24) =
214,872, p < .001, Greenhouse-Geisser corrected, η2 =
0.900 Misses: F(1,24) = 34.308, p < .001, Greenhouse-
Geisser corrected, η2 = .588). Surprisingly, the F1
score was slightly higher for searching humans (F1:
F(1,24) = 108.011, p < .001, Greenhouse-Geisser cor-
rected, η2 = .818) . Time did not significantly affect
performance on any metric (RT: F(4.117,120) = .381,
p = .827, Greenhouse-Geisser corrected, η2 = .0160
F1:F(4.056,120) = 2.268, p < 0.066, Greenhouse-
Geisser corrected, η2 = 0.086 Miss:F(2.024,) = .751,
p= .479, Greenhouse-Geisser corrected, η2 = .030.), see
Figure 3 a-d.
NAV task HDG mode: RT, correct turn and misses were
all influenced by time (RT: F(4.1,60) = 41.711, p <
.005, Greenhouse-Geisser corrected, η2 = 0.635, cor-
rect turn: F(4.207,60) = 3356, p = .011, Greenhouse-
Geisser corrected, η2 = .123, miss: F(3.327,60) =
4.185, p = .007, Greenhouse-Geisser corrected, η2 =
.148). Contrast analysis revealed significant cubic effects
for RT, correct turn and misses (RT: F(5,60) = 99.569,
p < .005, Greenhouse-Geisser corrected, η2 = 0.806,

Figure 3: Behavioral Results of the SRC task: a) Reaction time
by Mode. b) F1 scores by Mode. c) Misses by mode. d) Reac-
tion Times over time

Figure 4: Behavioral Results of the NAV task: a) HDG: Re-
action times over time b) HDG: Misses over time. c) WPY:
Reaction times over time. d) WPY: Misses over time.

correct turn: F(5,60) = 7.627, p = .011, Greenhouse-
Geisser corrected, η2 = .231, miss: F(5,60) = 5.253,
p= .031, Greenhouse-Geisser corrected, η2 = .180). See
Figure 4 a & b.
SRC task WPY mode: Reaction times were also in-
fluenced by time (RT: F(3.078,60) = 2.707, p = .05,
Greenhouse-Geisser corrected, η2 = 0.101). Contrast
tests revealed a significant cubic effect (RT: F(1,60) =
10.395, p = .004, Greenhouse-Geisser corrected, η2 =
0.302). See Figure 4 c & d.

EEG: The alpha frequency band showed signifi-
cant effects throughout the experiment. In all three
clusters, an increase in alpha power was observed
(Frontal : (F(1,4.6) = 3.184, p = .012, Greenhouse-
Geisser corrected, η2 = 0.117; Central: (F(1,6.051) =
3.995, p < .001, Greenhouse-Geisser corrected, η2 =
0.143; Parieto-Occipital: (F(1,4.899) = 2.508, p =
.035, Greenhouse-Geisser corrected, η2 = 0.095). Theta
power did not show any significant change over time (see
Figure 5 a-d.

Classification: The 2-way ANOVA showed a signifi-



Figure 5: Frequency power in the theta and alpha power bands
over time for the a) Frontal Cluster; b) Central Cluster; c)
Parieto-Occipital Cluster. d) Topology of the 3 clusters.

cant effect of Label type (F(6,24) = 342.12, p < .001,
η2 = 0.81). There was no significant effect of classi-
fier (F(7,24) = 2.398, p > .09, η2 = 0.01). The high-
est classification accuracy was obtained using the TOT
labels, with an average accuracy of 94.86% across all
classifiers. However, both VAS scales, the performance
labelling based on misses and accuracy, also performed
above their respective chance levels. This resulted in a
62.09 % accuracy for detecting misses using the tangent
space logistic regression (see Figure 6).

DISCUSSION

To use pBCIs in complex environments, the output of a
pBCI needs to have some predictive value. The results
presented here compare mental-state estimation and per-
formance estimation using EEG data. The subjective and
EEG analyses both point toward increased mental fatigue
over time. Yet, while some behavioural metrics, such as
reaction times in the navigation task, seem to show a sim-
ilar trend, variability in overall performance is not best
explained by TOT.
While mental state estimation using Time-On-Task or
subjective metrics as ground truth performs considerably
above chance level, our algorithms could also predict
misses with an above chance level likelihood. The algo-
rithm’s success with TOT metrics may be attributable to
the observed alpha power increase often associated with
mental fatigue. [31, 33]. It may also be due to slow drifts
and the non-stationarity of the EEG signal [34]. Subjec-
tive fatigue scores increased over time, creating similar-
ities between the TOT and VAS labels. The absence of
stronger effects in the spectral analysis may have been
attenuated due to the complexity of the task [35]. The re-
action time-based performance estimation had the lowest
accuracy. One possible explanation is that longer reaction
times may reflect several processes that are then mixed
up. Slow reaction times may be due to fatigue [36] or
a speed-accuracy tradeoff [37]. The moderate success of
the performance estimation based on misses suggests that

Figure 6: Classification results: Accuracy by Label Type with
adjusted chance levels.

spectral EEG features, especially theta power, are sensi-
tive to lapses [38]. Future work could evaluate incorpo-
rating Bayesian updating, which may further improve the
performance estimation

CONCLUSION

This study highlights the challenges and possibilities
of EEG-based performance estimation. The differ-
ences between definitions of performance highlight
the importance of label assignment. In our opinion,
performance scores should (i) be defined as a priori, (ii)
be explainable, and (iii) provide real-world value.
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