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Abstract

This study explores the electricity consumption patterns in institutional build-
ings at a university campus in Greater Paris, employing time-series analysis to assess
the effects of major disruptions like the COVID-19 pandemic and the subsequent
energy crisis triggered by the war in Ukraine. Utilizing dynamic linear modeling,
our research achieved a Mean Absolute Percentage Error of 6.2%, demonstrating the
model’s efficacy in capturing complex consumption patterns under fluctuating condi-
tions. We observed a 13% reduction in electricity usage during the initial pandemic
lockdowns, with varying responses in subsequent phases due to the energy crisis.
These results underscore the critical role of adaptive energy policies and advanced
modeling techniques in enhancing energy efficiency and resilience in educational in-
stitutions. By providing detailed insights into the factors influencing energy usage,
our study assists policymakers and energy managers in devising robust strategies to
improve energy management and meet sustainable development goals, particularly
in response to external shocks.

Keywords: Electricity Consumption analysis, Institutional Buildings, Dynamic
Linear Modeling, Sustainable energy management, Energy Resilience and Crisis
Management

1. Introduction

Effective electricity consumption management is crucial for sustainable energy
development today. Given that the building sector consumes approximately 40% of
global primary energy and produces more than 30% of CO2 emissions (Taylor, 2010),
understanding building energy use at the city scale is a critical component of advanc-
ing urban sustainability, Greenhouse Gas (GHG) emissions reduction, and energy ef-
ficiency across the globe (Kontokosta and Tull, 2017). Moreover, understanding and
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forecasting electricity consumption patterns are crucial for policymakers and con-
sumers to make informed decisions regarding energy efficiency, capacity planning,
and integrating renewable energy sources (Sun et al., 2021; Wang and Lu, 2021).
Future energy use forecasts predict increased consumption in commercial buildings
and decreased consumption in residential buildings. Commercial and institutional
buildings are crucial in social, environmental, and economic sustainability (Morovat
et al., 2024). However, despite their importance, these buildings are less frequently
studied, and there is still a lack of models that can effectively capture and explain
changes in consumption patterns over time, especially in response to external events
that may occur in times of crises.

In this research, we analyze the electricity consumption data in two higher educa-
tion and research buildings located on a University campus in Greater Paris, France,
under external shocks such as a global health crisis (2020 COVID-19 pandemic) or
energy crisis (2021-2022 energy crisis post-COVID-19 and war in Ukraine). The two
buildings have been described and studied in two former works Allab et al. (2017);
Bourdeau et al. (2021). The COVID-19 pandemic has caused a severe global crisis
and has impacted every aspect of life. It has caused economic, social, technolog-
ical, political, and health consequences. It has also brought about environmental
and energy-related effects because of measures like lockdowns, shelter-in-place, and
stay-at-home orders implemented to control the pandemic locally (Abu-Rayash and
Dincer, 2020). The International Energy Agency (IEA) reported an average of 5%
decrease in global electricity demand in 2020 due to the COVID-19 pandemic (IEA,
2020). However, this reduction can vary among different countries, regions, and
building types. This point makes it crucial in this study to model the impact of
lockdowns on electricity consumption in institutional and university buildings. As-
sessing these changes is particularly interesting given the restrictions placed on stu-
dents attending physical classes and the consequent strong decrease in the building’s
occupancy.

In addition to the lockdown, the energy crisis that started in 2021 due to the
rapid economic rebound following the pandemic reached its highest magnitude in
2022 after the beginning of the war in Ukraine induced great changes in energy con-
sumption patterns from the winter of 2022. In France, for example, the authorities
announced a decrease of 5% in electricity consumption in 2022 (sob, Year). It is
also interesting to see how much this second crisis and the related governmental
measures (energy sobriety plan in this case) have impacted the electricity consump-
tion in university buildings in addition to the impact of permanent organizational
changes (teleworking, for, e.g.) that has been partially maintained after the COVID-
19 crisis. Time series models have found extensive application in various studies
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focused on modeling and predicting electricity consumption and demand. Different
methodologies have been employed to model electricity consumption dataBourdeau
et al. (2019), with various degrees of success. Fortunately, during the last decade,
advanced metering infrastructure and smart meters have enabled the collecting and
storing of large-scale electricity consumption data (Bourdeau et al., 2020). The data
provided by the advanced metering infrastructure can be used to develop and apply
data-driven methodologies for modeling electricity consumption, providing insights
into energy use patterns, and identifying energy-saving potential (Ahammed and
Khan, 2022). Many studies have been completed in recent years to focus on issues
related to automatically extracting information from these data using different ap-
proaches (Miller et al., 2018). These studies employ diverse techniques, including
regression with seasonality, exponential smoothing, autoregressive moving average
(ARMA), autoregressive integrated moving average (ARIMA), and more (Sarkodie,
2017; Hussain et al., 2016; Clements et al., 2016). McLoughlin et al. (2013) evaluate
various time series techniques to characterize domestic electricity demand patterns.
The study assesses the suitability of different methods in accurately modeling and
forecasting residential electricity consumption. These traditional statistical methods
are valuable for electricity demand modeling but have limitations. They might strug-
gle with complex consumption patterns, assumptions of data stationarity, and the
need for high-quality data (data that is accurate, reliable, and free from significant
errors or inconsistencies). Model selection can be challenging, and incorporating ex-
ternal factors can be problematic. These methods might excel in the short term but
struggle in long-term forecasting.

In addition to these challenges, in their 2016 review on enhancing energy efficiency
in commercial and institutional buildings, Ruparathna et al. emphasized the need
for studies focused on behavior-specific improvements to improve building energy
performance (Ruparathna et al., 2016; Heinrich et al., 2022).

The rapid development of machine learning and computational intelligence made
it possible to develop new approaches that can effectively deal with randomness and
non-linear factors (Qiu et al., 2017) and consider the users’ behaviors. Chou and
Tran (2018) reviews various machine-learning methods to model and predict the
electricity consumption patterns in residential households. They show the potential
of these methods in modeling the energy data.

In their study, Hong et al. (2013) show that annual weather variation greatly
impacts the buildings’ electricity demand, especially during peak hours. Li et al.
(2019b), explain that ambient temperature is one of the important factors as it
directly drives the operation of the cooling/heating system and influences the cor-
responding building cooling and heating energy consumption. Santamouris et al.
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(2015) show that the building’s peak electricity load would increase up to 4.6% for
one degree of temperature increase. They estimate the corresponding increase in
total electricity consumption as high as 8.5%. In addition to the impact of weather,
other exogenous variables can impact the level of consumption. The authors in Li
et al. (2019a) investigate how calendar-related factors, such as holidays, weekends,
and seasons, impact electricity prices and demand. Their analysis led to an under-
standing of the patterns and anomalies in electricity market behavior associated with
different calendar effects.

In addition to these commonly used explanatory variables, recent years have
witnessed unforeseen events that had a substantial impact on global energy con-
sumption. One of the most important ones is the COVID-19 pandemic, which had
a significant effect on the energy sector, resulting in notable changes in electricity
consumption patterns across residential, commercial, and industrial sectors due to
lockdown measures (Cerqueira and da Silva, 2023; Garcia-Rendon et al., 2023; Liu
and Lin, 2021).

Additionally, the recent global energy crisis exacerbated by the war in Ukraine
in 2022 has prompted the adoption of energy-saving measures, further influencing
energy consumption dynamics (Brodny and Tutak, 2023). It also affected energy
markets and, consequently, consumption behaviors. In this context, it is crucial to
understand the impact of such events on energy consumption patterns and consider
their long-term effects when forecasting future consumption patterns. It can also
be useful to guide policymakers to develop more sustainable and resilient energy
policies.

Hence, we need an improved method to analyze electricity consumption data.
This method must detect complex patterns and account for external factors and
unexpected events. Traditional models, while helpful, have shown limitations in
their adaptability and ability to handle complexities. In this paper, we introduce
Dynamic Linear Modeling (DLM) as a solution. DLM is chosen for its flexibility and
accuracy in modeling complex data over time (Petris et al., 2009). We apply DLM
to electricity data from 2017 to 2023, covering periods before and after significant
events like the COVID-19 pandemic and the last energy crisis.

In this context, Dynamic Linear Modeling (DLM) emerges as an effective method
to analyze the impact of these changes on electricity consumption patterns (Honjo
et al., 2018). DLM is particularly well-suited for capturing the time-varying dy-
namics of energy consumption and understanding how external factors, such as the
COVID-19 pandemic and energy crises, influence consumption behavior over time
(Campagnoli et al., 2009; Durbin and Koopman, 2012). By incorporating time-series
data and latent variables, DLM enables us to accurately model the evolving energy
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consumption patterns and forecast future trends more reliably (Kitagawa and Ger-
sch, 1984; Pedregal and Trapero, 2010). Although DLM has been previously utilized
for country-level electricity data modeling (Honjo et al., 2018), this paper represents
the first application of Dynamic Linear Modeling to analyze electricity consumption
patterns, specifically in buildings. This novel approach allows for a more granular
analysis of energy use dynamics within individual buildings or building types.

This study utilizes Dynamic Linear Modeling to analyze real electricity consump-
tion data, aiming to identify and quantify various components contributing to con-
sumption patterns. Dynamic Linear Modeling (DLM) is a flexible approach that has
found applications in various fields, including energy demand analysis. It offers sev-
eral advantages, making it a valuable tool for modeling and understanding complex
time series data.

DLM is adept at capturing stochastic trends within time series data, making it
particularly useful for uncovering hidden patterns in energy demand data (Dordonnat
et al., 2008; Murthy and Kishore Kumar, 2021). Additionally, it excels in describing
structural changes over time, which is essential for analyzing evolving phenomena
(Harvey and Durbin, 1986). Dı́az et al. (2019) highlights the effectiveness of DLM as
a versatile tool for modeling and analyzing complex time series data in the context
of electricity market research by using DLM in capturing the dynamics of uncertain
electricity market prices and wind speed.

An additional benefit of utilizing DLM is the fact that we can assess the changing
impact of an unexpected event over time without increasing the complexity of the
model through an excessive number of parameters (Durbin and Koopman, 2012).
This property aligns with the objectives of our study, which seeks to investigate the
impact of unpredicted events, such as the COVID-19 pandemic, increasing telework-
ing trends, and energy crises, on electricity demand in institutional buildings.

Our analysis reveals the trend and different seasonality components, providing
valuable insights into factors influencing electricity usage. Also, the model enables us
to assess the impact of exogenous factors such as weather conditions, the building’s
occupancy changes over the years, and calendar events.

In this study, we have gathered a dataset of sub-hourly electricity demand mea-
surements from 2017 to the present, encompassing both the pre-pandemic period
and the subsequent lockdown and energy crisis phases for two campus buildings.
Analyzing these data can help us answer some of the critical questions related to
electricity consumption patterns:

• How can we effectively capture and explain changes in electricity consumption
patterns over time?
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• How well does DLM quantify the impact of external events on electricity con-
sumption patterns? What are the complex relationships within the data that
DLM can help uncover?

• How did the COVID-19 pandemic influence electricity consumption in institu-
tional buildings?

• How does the energy crisis impact energy consumption in university buildings?

• What is the explanatory power of the different considered variables?

The paper is organized as follows. We describe in section 2 the datasets and
different data types we use in this study. We introduce in section 3 dynamic linear
modeling for electricity consumption data. We present in section 4 the electricity
data modeling results in two institutional buildings. Finally, section 5 concludes the
study and outlines the prospects for future work.

2. Data description

In this section, we describe the use case and the data we used in our study. The
goal is to analyze the electricity consumption patterns within institutional buildings
and assess how different crises, such as COVID-19 (2020) and the last energy crisis
in France (2022), impacted these patterns. We consider two buildings with different
features (described in subsection 2.1), which can help in the analysis of the results.
In addition to internal factors, the electricity consumption also depends on different
exogenous factors such as weather conditions, occupancy patterns, calendar events,
and non-planned events such as COVID-19 lockdowns and energy crises. In this
section, we present a comprehensive foundation to clarify the context of the study.

2.1. Buildings description

We have accessed electricity consumption data from January 1st, 2017, to the
end of December 2022 for two buildings (building 1 and building 2) located within
the ”Cité Descartes” campus in the Paris metropolitan area in France (Bourdeau
et al., 2018).

A summary of the building characteristics and technical information for these
two buildings is given in table 1. We have selected these two buildings as they were
constructed in different years under different buildings’ thermal regulation codes and,
therefore, have different energy consumption patterns. More importantly, the size,
the occupancy, and the level of electricity consumption in these two buildings have

6



major differences. This enables us to compare the electricity consumption pattern
in institutional buildings with different characteristics.

Building 1, built in 1987, has a net floor area of 30,580 square meters and com-
prises a ground floor and four additional levels. Its heated volume amounts to 144,173
cubic meters. In contrast, Building 2 is a more recent construction from 1999, with
a net floor area of 10,343 square meters. It has a ground floor and five upper levels,
with a heated volume of 51,274 cubic meters.

Regarding their energy systems, Building 1 has an electricity contract power of
900 kW and relies on a gas furnace for heating and ventilation. It also employs
refrigeration units for cooling purposes, predominantly in lecture halls and specific
laboratories. Building 2, conversely, has a lower electric contract power of 250 kW,
utilizing similar heating and ventilation systems and refrigeration units in lecture
halls. It is worth mentioning that, in addition to its large surface area and early
construction year, Building 1 exhibits a main difference from Building 2. It provides
additional specific equipment which can significantly affect the overall energy con-
sumption. Such equipment mainly includes a gym of significant surface area with a
large mechanical air renewal rate, a canteen, several computer labs and server rooms
with cooling needs, and a 600m² R&D clean-room facility with a huge air renewal
rate and humidity control needs.

Occupancy figures reveal that Building 1 accommodates a larger community, with
2,250 students and 210 staff members, while Building 2 serves a smaller population
of 700 students and 65 staff members in 2022.

2.2. Electricity consumption data

The data is provided by the French distribution system operator (eco).
This comprehensive data set includes active power measurements recorded in kilo-

watts (kW) at 10-minute intervals. In this study, we consider the daily consumption.
Figure 1 shows the data corresponding to this specific time frame for two buildings.
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Table 1: Buildings Characteristics

Characteristics Building 1 Building 2
Activity Teaching and Science and Technology Art and Humanities

research activity

Built

Construction year 1987 1999
Net floor area (m2) 30,580 10,343
Floors Ground floor + 4 Ground floor + 5
Heated volume 144,173 51,274

Energy Electricity 900kW 250 kW
(contract power)
Heating Gas boiler Gas boiler
Cooling Refrigeration units Refrigeration units
Ventilation Central ventilation Central ventilation

(gas boiler) (gas boiler)
Occupancy Number of students 2250 700

(in 2022)
Number of staff 210 65
(in 2022)

(a) Building 1

(b) Building 2

Figure 1: Raw data for daily electricity consumption from January 2017 to December 2022
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Figure 2 shows the average yearly consumption (kWh) for the two buildings, re-
vealing a similar trend for both buildings. There is an increasing trend from 2017
to 2018 for both buildings. However, a decrease of 3.3% for Building 1 and 1.2% for
Building 2 is observable between 2018 and 2019. There is a substantial decreasing
trend for both buildings in 2020, which can be attributed to the COVID-19 lock-
downs that started in March 2020. Since then, there has been a gradual rise in
consumption for Building 1; however, it remains below the 2017 consumption level.
Also, building 2’s decreasing trend has been continued but with a lower slope. This
may be in response to increased awareness and adoption of energy-saving practices
as a consequence of the energy crisis generated by the war in Ukraine.

(a) Building 1

(b) Building 2

Figure 2: Average daily electricity consumption per year from 2017 to 2022

We conducted an investigation to identify and analyze various seasonal compo-
nents present in the electricity consumption data. We found two types of seasonality
in these data: yearly seasonality and weekly seasonality.

Figures 3 and 4 display the yearly electricity consumption data in Building 1 and
Building 2, respectively. The figures reveal a similar pattern for each year except
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2020, where a decline was observed due to the COVID-19 lockdown. Electricity
consumption decreases during the winter. Also, we observe less consumption during
vacation times, including winter and summer vacations.

(a) 2017 (b) 2018

(c) 2019 (d) 2020

(e) 2021 (f) 2022

Figure 3: Daily electricity consumption (kWh) in Building 1 per year
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(a) 2017 (b) 2018

(c) 2019 (d) 2020

(e) 2021 (f) 2022

Figure 4: Daily electricity consumption (kWh) in Building 2 per year

(a) 2017 (b) 2018

(c) 2019 (d) 2020

(e) 2021 (f) 2022

Figure 5: Average electricity consumption (kWh) in Building 1 per weekdays over one year from
2017 to 2022.
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(a) 2017 (b) 2018

(c) 2019 (d) 2020

(e) 2021 (f) 2022

Figure 6: Average electricity consumption (kWh) in Building 2 per weekdays over one year from
2017 to 2022.

Furthermore, it can be observed that electricity consumption varies between week-
days and weekends. Figures 5 and 6 show boxplots of the average consumption for
each day of the week per year. The data reveals that electricity usage tends to be
lower during weekends, especially on Sundays. This decrease in consumption can be
attributed to lower occupancy during weekends. This leads to a noticeable drop in
overall electricity usage these days. This behavior is notably observed due to the
institutional nature of the buildings, where usage patterns and occupancy directly
influence electricity consumption.

2.3. Explanatory data

The seasonal effects alone cannot explain all the phenomena in the electricity con-
sumption time series data. Multiple external factors impact consumption patterns.
Significantly, the lockdowns that happened in 2020 and 2021 and the regulations in
the energy consumption policies following the war in Ukraine had major impacts on
the electricity consumption in these institutional buildings. We have identified five
categories of exogenous variables listed in Table 2. Below, we provide explanations
for the selection of each variable and the data sources used for their inclusion.

As shown in Figure 1, there is a significant decrease in electricity consumption
data after 2019. This drop in consumption in institutional buildings is due to the
lockdowns that had been set to mitigate the spread of the coronavirus.
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Table 2: Explanatory variables in the model

Categories Exogenous variables
COVID-19 period Days of lockdown
Energy crisis Days since the beginning of

the war

Meteorological factors
Temperature
Daylight duration

Calendar events
School vacations
and National holidays

Occupancy data Number of occupants

France experienced three major COVID-19 lockdowns during which universities
and schools were closed cov (2023a,b).:

• First lockdown: March 17, 2020 to May 10, 2020

• Second lockdown: October 30, 2020 to December 15, 2020

• Third lockdown: April 3, 2021 to May 3, 2021

As mentioned before, in addition to the lockdown, followed by the war in Ukraine,
the French government, under the ”Energy Sobriety Plan”, asked people to curtail
their gas and electricity usage starting in the winter of 2022. This initiative extended
to both public and private institutions, with a requirement to maintain indoor tem-
peratures not exceeding 19 degrees Celsius and strong recommendations to reduce
consumption, cut unnecessary energy use, and shift non-urgent uses to low-demand
hours. It is interesting to assess how this plan affected the electricity consumption
in institutional buildings. We include the impact of this explanatory variable by
considering an exogenous variable from October 2022.

We also consider local weather data as explanatory variables.
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(a) Outdoor temperature data

(b) Daylight duration data

Figure 7: Weather metrics data

To identify the weather variables that impact the electricity consumption in these
buildings, we conducted regression analyses between the common weather metrics
(including temperature, dew point temperature, relative humidity, wind speed, wind
direction, sea level pressure, incident solar radiation, and daylight duration) and the
electricity consumption in both buildings. The weather data represents Paris’s daily
averages (Data and API). Table 3 shows the results of these analyses. Each row in
the table represents a different meteorological metric, and the ’Coefficient’ columns
show the estimated effect of that metric on electricity consumption in Building 1 and
Building 2. The ’p-value’ columns indicate the statistical significance of these effects.
As shown, the temperature (indicating the outdoor temperature) and the daylight
duration (indicating the amount of time during which natural daylight is available at
a specific location on a given day) are the two metrics that significantly impact elec-
tricity consumption. The coefficients for both metrics are positive, suggesting that
higher temperatures and longer daylight durations correspond to increased electricity
consumption. The data for these two metrics is shown in figure 7.

Consistent with our findings, prior studies have also reported a significant positive
correlation between temperature and electricity consumption by examining the effect
of climate change on the electricity demand of New South Wales, Australia (Ahmed
et al., 2012; Vu et al., 2015). As demonstrated in our analysis, daylight duration also
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plays a crucial role in influencing electricity usage (Moral-Carcedo and Pérez-Garćıa,
2019).

It is important to note that in these two buildings, the heating system is pow-
ered by gas, and the electricity is used for refrigeration units, ventilation, electric
devices, and lighting without excluding some residual electric heating. One should
note that the ancillaries of the heating system, such as pumps, turbines, etc, con-
sume electric energy. Scatter graphs of daily energy consumption as a function of
average external temperature are plotted in figure 8 to analyze better the dependence
between temperature and electricity consumption for each building. We observe a
high-temperature sensitivity of the electric demand. Energy consumption signifi-
cantly increases when outdoor temperature rises, especially for building 1 (Bourdeau
et al., 2021). As shown in Figure 8, it is important to note that the relationships
between temperature, daylight duration, and electricity consumption may exhibit
non-linear patterns. While our linear regression analysis provides valuable insights
into these relationships, we acknowledge the limitation that the true relationships
might be more complex than what a linear model can capture.

Table 3: Regression analyses between different meteorological factors and electricity consumption

Building 1 Building 2
Variable Coefficient p-value Coefficient p-value

Temperature 49.280 0.006 ** 4.134 0.019 *

Dew point -165.700 0.119 -21.374 0.375
Humidity 34.390 0.187 9.836 0.09686
Wind speed 1.990 0.835 2.501 0.24997
Wind direction -0.0378 0.940 -0.021 0.847
Sea level pressure -2.386 0.704 -0.540 0.704
Solar radiation -0.464 0.568 0.576 0.185
Daylight duration 18.110 0.004 ** 98.734 0.016 *

* Significant (0.01 ≤ p− value < 0.05)
** Very significant (0.001 ≤ p− value < 0.01)
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(a) Building 1 (b) Building 2

Figure 8: Scatter plot of normalized electricity consumption vs. outdoor temperature

In addition to the aforementioned explanatory variables, since we are analyzing a
long period of electricity data, it is essential to account for variations in the number
of occupants in the buildings, as they significantly impact the energy demand. In
table 4 we show the evolution in the number of students and staff for both buildings.

Table 4: Number of occupants in the buildings

Academic Building 1 Building 2
Year Students Staff Total Students Staff Total
2017-2018 1700 200 1900 668 141 809
2018-2019 1800 200 2000 733 180 913
2019-2020 1950 200 2150 734 131 865
2020-2021 2100 210 2310 668 125 793
2021-2022 2250 210 2450 742 167 909

3. Model description

Dynamic Linear Modeling (DLM) is a powerful statistical framework used to
analyze and forecast time series data. It allows us to represent time series data as
a combination of unobservable states and observable measurements, making it well-
suited for modeling complex temporal dependencies and capturing latent structures
in the data (Campagnoli et al., 2009; Durbin and Koopman, 2012). This framework
proves suitable for our study’s purpose, where we aim to gain insights into the factors
influencing electricity consumption within buildings. In this section, we present how
we model the time series data for electricity consumption.
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In our model, we have considered various components to capture the trend and
different existing seasonalities in electricity consumption. By considering these com-
ponents, we aim to understand the factors that influence electricity consumption in
buildings.

In addition to these components, we can access extra measurements specific to
these buildings. These parameters provide us with valuable information on the build-
ing’s performance and environmental conditions, among other factors. In the next
step of our analysis, we plan to include these explanatory variables in our model to
assess if they can help enhance the accuracy of our predictions and provide a better
understanding of the electricity consumption patterns.

3.1. Decomposition model structures description

In this section, the goal is to break down the complex patterns of electricity
consumption into comprehensible components, each serving a unique purpose. We
want to understand the underlying factors driving electricity consumption.

To achieve this, we employ a decomposition model that accounts for the trend,
yearly pattern, and weekly pattern.

As we proceed, we will delve further into the analysis by introducing Dynamic
Linear Model (DLM) along with additional explanatory variables. This step is crucial
for refining our understanding of the electricity consumption patterns within the
buildings.

The method we use is based on a decomposition model that includes the different
components (de Nailly et al., 2022). The model can be represented as follows:

yt = θt + αt + βt + vt (1)

Where yt(kW )(t = 1, . . . , n) is the electricity consumption at time interval t. vt
is a random error term that accounts for any residual variation in the data that is
not explained by the other components of the model, and it follows a normal density:

vt ∼ N(0, σ2
v)

Each component in the model represents a specific aspect of the electricity con-
sumption patterns:

• θt: The trend component captures the underlying long-term direction or move-
ment of the data. This component helps us understand how electricity con-
sumption changes over time. The trend is a stochastic local-level model defined
as follows:
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θt = θt−1 + µ + η1t (2)

where µ is the drift parameter, and η1t is white Gaussian noise, which follows
a normal distribution with mean 0 and variance σ2

η1 :

η1t ∼ N(0, σ2
η1)

• αt: The yearly seasonality component captures the fluctuations in electricity
consumption that recur annually. This component is particularly useful for
identifying patterns that have a strong yearly cycle. We use Fourier series
models to capture the periodicity of the yearly cycle.

αt = a0 +
J∑

j=1

(aj cos(2πjt/365) + bj sin(2πjt/365)) + η2t (3)

where aj and bj are the Fourier coefficients for the j-th frequency, J is the
number of frequencies included in the model, and η2t is the white Gaussian
noise, which follows a normal distribution with mean 0 and variance σ2

η2 :

η2t ∼ N(0, σ2
η2)

• βt: The weekly seasonality component captures the differences in electricity
consumption between weekdays and weekends. This component is essential
for understanding how electricity usage varies based on the typical weekly
schedules at the institutional buildings, such as classes, events, and varying
occupancy levels. We use the stochastic model for the weekly seasonality com-
ponent. The model assumes that the current value of the weekly seasonality
component βt is a linear combination of the previous six weekly values of βt

plus a white Gaussian noise term η3t :

βt = −
6∑

j=1

βt−1 + η3t (4)

Where,

η3t ∼ N(0, σ2
η3)
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The initial values of all the components also follow the Gaussian distribution.
The term Ω shows the set of unknown parameters of the model, and Xt is the state
vector.

Ω = (σ2
η4 , σ

2
η4 , ...)

Xt = (θt, θt−1, )

The decomposition model allows us to decompose the electricity consumption
data into its underlying components: trend, yearly seasonality, weekly seasonality,
and random error.

3.2. Dynamic linear modeling description

In the previous section, a decomposition analysis was conducted on the elec-
tricity consumption data, whereby various components were identified. However,
it should be noted that electricity consumption can be influenced by different vari-
ables, including but not limited to weather conditions, occupancy levels, and calendar
events. Moreover, recent years have seen the emergence of extraordinary events like
the COVID-19 pandemic and energy crises, causing substantial disruptions in con-
sumption patterns. Therefore, in this section, we introduce and define the relevant
explanatory variables to the model to better understand the underlying dynamics
and trends of electricity consumption. The new model is as follows:

yt = θt + αt + βt +

p∑
i=1

λi
tXt + vt (5)

∑p
i=1 λ

i
tXt: This term represents the sum of the products of coefficients λi

t and
their corresponding explanatory variables Xt (i = 1, . . . , p). It accounts for the
contribution of various variables that can influence electricity consumption.

Our research examines various factors that could influence electricity consumption
patterns, which have been discussed in section 2.3.

These factors determine how much electricity is used in the buildings under con-
sideration.

3.3. Parameter estimation and model calibration

The term u = (σ2
η1 , σ

2
η2 , ...) denotes the set of unknown parameters of the model

and, Xt is the vector of latent components of the model, also known as the state
vector:

Xt = (θt, αt, βt, θt−1, η
1
t , a0, a1, . . . , aJ , b1, . . . , bJ , η

2
t , βt−1, η

3
t , . . .)
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Maximum Likelihood Estimation (MLE) is employed to estimate the unknown
parameters of the DLM (Dempster et al., 1977). Likelihood estimation, also known as
maximum likelihood estimation (MLE), is a method used to estimate the parameters
of a statistical model based on observed data. The goal is to find the values of
the model parameters that maximize the likelihood function, which measures the
probability of obtaining the observed data given by the model. By maximizing this
quantity, we find the set of parameters that best explains the observed data.

Then, the Kalman filter allows us to estimate the state vector Xt , given the
parameters u (Shumway and Stoffer, 1982).

To implement the DLM approach, we used the DLM package in R, which offers
a convenient and efficient way to specify the model components and estimate the
parameters. The package also provides tools for model selection and diagnostics,
allowing us to choose the best model and assess its goodness of fit. Appendix A
shows the steps of the modeling process. The source code for the analysis with the
dlm package is available here: https://github.com/NeginAlisoltani/DLM.

To evaluate and compare different models in order to select the most suitable
one, we rely on two key criteria:

1- Akaike Information Criterion (AIC): AIC is an information criterion designed
to strike a balance between the goodness of fit of a statistical model and its complexity
(Akaike (1974)). It is formulated as:

AIC = 2k − 2L (6)

Where k represents the number of estimated model parameters, and L is the
likelihood of the model.

A lower AIC value indicates a better trade-off between model accuracy and sim-
plicity, making it a valuable criterion for model selection.

2- Root Mean Square Error (RMSE): RMSE measures the average magnitude of
errors between the model’s predictions and the observed values in the dataset (Chai
and Draxler (2014)). It is calculated as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (7)

Where n is the number of data points, yi represents the observed values and ŷi
is the prediction of yi.

Model calibration is important in crafting an accurate and reliable Dynamic Lin-
ear Model (DLM) for electricity data analysis. This process involves adjusting the
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model’s hyperparameters to capture the underlying patterns and variations within
the data. Our DLM framework has specific parameters embedded within the trend
and seasonality components, which we can utilize for calibration.

Within the trend component of the DLM, we have the hyperparameter order,
which corresponds to the degree of the polynomial model. For example, using (order
= 1) implies a linear trend. Higher values for order capture more complex trends
in the data. However, the risk of overfitting also increases with higher order values.

In the yearly seasonality component, the hyperparameter represents the number
of harmonics used in the Fourier series model (αt). This parameter influences how
well the model captures recurring patterns in the data. Adjusting this parameter
allows us to balance the granularity of seasonality representation with the complexity
of the model.

To ensure that our DLM aligns with the distinct characteristics of the electricity
data, hyperparameter tuning becomes imperative. It involves systematically experi-
menting with different values of the aforementioned parameters and observing their
impact on model performance. By adjusting these hyperparameters, we can assess
whether the model fit improves and if the chosen values effectively capture the data’s
intrinsic features.

After the process of model calibration, it becomes essential to evaluate the per-
formance of the calibrated model systematically. AIC is employed as a quantitative
measure to assess the goodness of fit of our DLM. Lower values of AIC suggest a bet-
ter trade-off between model accuracy and simplicity, indicating a preferable model
choice. RMSE is also calculated to gauge the differences between the model’s predic-
tions and actual observed values. Smaller RMSE values indicate a closer alignment
between the model’s projections and the actual data.

The results of the model calibration are presented in Appendix B.

4. Results and discussion

In this section, we present and discuss the results obtained in our study on daily
electricity consumption data in two institutional buildings from the beginning of
2017 to the end of 2022. Our investigation covers various aspects, including the
decomposition of consumption data, the impact of external factors, and the response
of electricity consumption to crisis.

4.1. Trends and seasonalities in electricity data

This section evaluates the performance of the decomposition model in capturing
historical electricity consumption patterns for Building 1 and Building 2.
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Figures 9 and 10 show the outcomes of the decomposition model applied to elec-
tricity data for Building 1 and Building 2, respectively. In Figure 9a1 and 10a1, a
visual comparison is presented between the model’s estimated data (in blue) and the
actual data (in red). A second comparison between the model’s estimates and the
observed electricity consumption data is presented in the adjacent plot. Notably, the
data points on this plot align closely along the 45-degree line. These comparisons as-
sess how well the decomposition model’s estimated data aligns with the actual data.
In addition to these comparisons, the Mean Absolute Percentage Error (MAPE)
(De Myttenaere et al., 2016) is also used to quantify the accuracy of the model’s es-
timates. It measures the percentage difference between the model’s estimated values
and the actual data. The MAPE for Building 1 stands at 4.7%, while for Building 2,
it shows at 7.8%. This indicates that the model proficiently captures both buildings’
historical electricity consumption patterns. Furthermore, the model exhibits higher
precision for Building 1.

The next plots show the different components of the model. The solid line in
each plot represents the estimated value of the electricity consumption over time.
The shaded area represents the 95% confidence interval for different components.

The plots in Figure 9b and 10b illustrate the trend of electricity consumption
changes over the years. We can discern a slight decrease in consumption for both
buildings during these seven years. For Building 1, we observe a positive slope
after 2017 and a declining trend starting from 2018, resulting in a total decrease of
0.3% over the years. In contrast, Building 2 continuously experiences a decrease in
consumption, amounting to a notable 4.8% reduction over this period.

The yearly component plots in Figure 9(c1) and 10(c1) show the recurring pat-
terns in electricity consumption that occur on an annual basis. These patterns ex-
hibit similarities between both buildings, attributed to their nearly identical business
schedules and location. The plots in Figure 9(c2) and 10(c2) show this pattern for
the year 2021. We observe drops in consumption during vacations, especially dur-
ing the summer vacation, which is the longest. The yearly seasonality increases the
electricity consumption by 3483 kWh (29.7% compared to the average consumption)
after the New Year’s holiday at the end of January in Building 1 and by 1072 kWh
(71.9%) in Building 2. We also notice a significant drop of 3322 kWh (28.3%) in
mid-August for Building 1 and a drop of 1058 kWh (71.0%) at the beginning of
August every year for Building 2, which is due to differences in the starting of the
summer holiday season for the students in the two buildings. The yearly seasonal-
ity here captures the impact of vacation times and the seasonal changes over time.
As the meteorological factors change over the year for different seasons, the yearly
seasonality gets impacted.
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Figure 9: Decomposition of the time series of electricity consumption data in Building 1

To illustrate the impact of vacations on yearly seasonality, figure 11 visually de-
picts the periods of vacation overlaid on the yearly seasonality plots for one year for
both buildings. In this figure, the periods when vacations occur are marked in red.
The key observation from the figure is that the yearly decreases in both buildings
are synchronized with the periods of vacation. In other words, the annual electricity
consumption reductions align with official vacation dates. This pattern of energy
usage reduction during vacation periods is particularly notable in the case of small
vacations and major summer vacations. Small vacations generally induce local min-
ima in electricity consumption, reflecting short-term decreases. However, the major
summer vacation causes a global minimum, which is the most pronounced decrease in
energy usage observed throughout the year. This effect is further exacerbated by the
naturally lower demand for heating or cooling due to warmer weather, emphasizing
the significant impact of seasonal and vacation-based variations on overall electricity
consumption.
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Figure 10: Decomposition of the time series of electricity consumption data in Building 2

Figure 11: Coordinated decreases in electricity data yearly seasonality during vacation periods

Figure 12 illustrates the relation between the yearly component and the seasonal
temperature variations throughout 2021. It is evident that peaks in energy usage are
closely associated with temperature extremes. During the colder months of the year,
there is a notable increase in consumption, with building 1 experiencing a rise of
2055 kWh (a 17.5% increase compared to the seven-year average consumption) and
building 2 showing a substantial increase of 730 kWh (a 49.0% increase compared
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to the average consumption). Conversely, during the warmer months, there are
modest reductions in consumption, with building 1 decreasing by 2023 kWh (a 17.3%
decrease) and building 2 reducing by 723 kWh (a 48.5% decrease) compared to their
respective averages. These patterns confirm the influence of outdoor temperature
changes on electricity consumption.

Figure 12: coordination between outdoor temperature changes over the year with yearly seasonality
in electricity consumption data

In our analysis, we explored the weekly seasonality component in electricity con-
sumption for both Building 1 and Building 2 (Figures 9(d1) and 10(d1)). It reveals
patterns that exhibit variations across the days of the week. This component repre-
sents the recurring, seven-day cycle in electricity consumption, starting on Monday
and ending on Sunday. To clarify, the plot on the right (Figure 9(d2) and Figure
10(d2)) shows this component for one week in winter 2022 (after the New Year vaca-
tion). The negative values on Saturday and Sunday indicate a significant reduction in
electricity consumption over the weekend due to reduced occupancy and operational
changes during this period. For Building 1 on Monday, we observe a substantial
increase in electricity consumption of 952 kWh (8.1% increase), suggesting height-
ened demand during the early weekdays. The trend continues on Tuesday, with a
consumption of 921 kWh (7.8%). By Wednesday, consumption remains relatively
high, with an increase of 737 kWh (6.3%). However, on Saturday, and especially
on Sunday, there is a remarkable reduction in electricity consumption, with drops of
-2090 kWh (17.8% decrease) and -1785 kWh (15.2%), respectively. These negative
values indicate a significant reduction in consumption over the weekend, attributed
to decreased occupancy and operational changes during this period.

In contrast, Building 2 exhibits a different weekly seasonality pattern. While
Building 2 experiences some fluctuations in consumption over the weekdays, these
changes are generally smaller in magnitude compared to Building 1, suggesting a
more consistent electricity usage pattern throughout the week. Notably, there is
still a reduction in electricity consumption during the weekend, albeit with smaller
negative values. On Saturday and Sunday, the consumption values for Building 2
drop for -357 kWh (23.9%) and -276 kWh (18.5%), respectively.
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These detailed observations underscore the varying electricity consumption pat-
terns between the two buildings, with Building 2 demonstrating more pronounced
fluctuations over the weekend consumption compared to Building 1.

Residual analysis (in Figures 9(e) and 10(e)) indicates that our model generally
captures the underlying trends well, with minor deviations, highlighting its overall
effectiveness in modeling electricity consumption.

The findings in this section provide valuable insights into the underlying trends,
seasonal patterns, and the dynamic nature of electricity consumption.

4.2. Impact of weather conditions

In this section, we analyze the impact of temperature and daylight duration on
electricity consumption in both buildings. Understanding these relationships can
be crucial for optimizing energy usage and implementing energy-saving strategies
in institutional buildings. Figure 13 shows the results of these impacts for both
buildings.

Figure 13: Impact of weather conditions (outdoor temperature and daylight duration) on electricity
consumption data

It is important to note that our previous analysis, as demonstrated in Figure 12,
has effectively captured the correlations between the yearly component and the sea-
sonal temperature variations throughout the year. This yearly component accounts
for the changes in electricity consumption over the course of the year. However, to
gain a more comprehensive understanding of the influences of outdoor temperature
on electricity consumption, we introduced exogenous variables into our model. These
exogenous factors are specifically designed to capture aspects that may not be fully
accounted for by the yearly seasonality. Figures 13(a) and (b) present the results of
these additional impacts for both buildings.
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Building 1 shows a clear relationship where electricity consumption increases
during the hottest summer days and decreases during milder weather. On the hottest
summer days, electricity consumption increases, averaging 317 kWh, corresponding
to an approximately 2.5% increase compared to the average consumption. This rise in
electricity consumption can be explained by the increased demand for cooling services
in response to higher temperatures. Conversely, during periods characterized by
favorable weather conditions (the times when outdoor temperatures are moderate),
electricity consumption decreases by an average of 266 kWh, which represents a
2.1% reduction compared to the average consumption. This decrease indicates that
occupants rely less on cooling and ventilation services when the weather is mild.

In Building 2, while the impact of temperature is less pronounced than in Building
1, it still follows a similar pattern. On the hottest summer days during this period,
electricity consumption increases by up to 61 kWh, a 3.5% increase compared to the
average consumption in 2019. During periods with more favorable weather condi-
tions, such as in February and March, electricity consumption decreases by up to 51
kWh, which represents a 2.9% reduction compared to the average consumption in
2019. These variations suggest that Building 2 also experiences an increase in cool-
ing and ventilation usage during hot weather and decreases during milder weather
conditions.

Our analysis underscores the complementary nature of the exogenous tempera-
ture variable to the yearly seasonality in explaining electricity consumption patterns.
While the yearly seasonality effectively captures significant temperature-related fluc-
tuations in consumption, as highlighted in Figure 12, it primarily reflects the larger-
scale impacts associated with seasonal temperature variations. In contrast, the ex-
ogenous temperature variable provides a finer-grained perspective, capturing more
marginal and nuanced impacts that the yearly seasonality may not fully encompass.
It enables us to discern smaller variations in electricity consumption associated with
daily temperature fluctuations. This is particularly evident in the detailed quantifi-
cations we presented earlier, where we observed more subtle changes in consump-
tion during specific temperature conditions. While the yearly seasonality paints the
broader picture, the exogenous temperature variable offers a closer look at the day-
to-day variations.

The impact of daylight duration on electricity consumption in both buildings
varies from month to month (Figure 13(c) and (d)), but it follows almost the same
pattern over the years for both buildings. However, Building 2 demonstrates more
stable electricity consumption throughout the year. To clarify the differences, figure
14 shows the impact of daylight duration for different months of the year in 2019.
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Figure 14: Impact of daylight duration on electricity consumption in 1 year (2019).

It is a well-established fact that daylight has a significant role in determining
lighting needs in buildings, especially in institutional settings where minimum light-
ing levels are required for different activities and tasks.

The electricity consumption in both buildings indicates a slight uptick as the
daylight hours increase from January to March. This rise can be attributed to the
lengthening days after the winter solstice, resulting in more active hours during which
occupants remain in the buildings. Despite the increase in daylight duration, there
remains a dependence on artificial lighting in the mornings and evenings, which can
lead to a net increase in electricity consumption. The data reveal a gentle decrease
in electricity consumption even as daylight hours increase in the transition months
of March and April. This trend suggests that the amount of natural light entering
the buildings during these months is adequate enough to offset the need for artificial
lighting to a certain degree. Moreover, this period marks the shift from winter to
spring, where the intensity and angle of sunlight can have a more pronounced effect
on interior illumination, reducing the demand for electrical lighting. Despite the
prolonged daylight hours, electricity consumption rises from May to July. This can
be explained by the increased activity in the buildings, as well as the potential use
of shading devices like blinds or curtains to mitigate heat and glare from the sun.
While these devices aid in temperature control, they can also obscure natural light,
thereby necessitating the use of artificial lights. As daylight hours start to decrease
post-summer solstice from the end of July to the end of the year, the data showcases a
declining pattern in electricity consumption. A combination of factors may influence
this drop: the reduction in daylight requiring more artificial lighting as the year
progresses and potential changes in building occupancy and usage as the academic
and work year winds down.

It’s also crucial to note that while daylight duration undeniably impacts elec-
tricity consumption, other factors, such as cloud cover, building orientation, window
design, and the use of daylighting controls, can influence the actual lighting needs
and resultant electricity usage.
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4.3. Response to a public health crisis: Impact of Covid-19 lockdowns on electricity
consumption

The COVID-19 pandemic, which started in early 2020, presented unparalleled
challenges that impacted daily life and operations worldwide. One significant aspect
affected by the pandemic was energy consumption patterns, including electricity
consumption in commercial and educational buildings. As countries imposed varying
degrees of lockdown measures to curb the spread of the virus, a shift in energy use was
observed. In France, where multiple lockdown phases were introduced in response
to the pandemic’s progression, the changes in electricity consumption provide an
interesting case study. In this section, we delve into the influence of these lockdown
measures on both buildings, examining how their electricity consumption patterns
evolved during three distinct lockdown periods and what these shifts reveal about
broader societal and operational changes during the pandemic.

Our study investigated the influence of COVID-19 lockdown measures on electric-
ity consumption in two buildings. We conducted a detailed analysis of three distinct
lockdown periods to examine their effects on electricity usage patterns in each build-
ing. The results are shown in figures 15a and 15b for Building 1 and 2, respectively. In
Building 1, during the initial lockdown period, we observed a substantial reduction in
electricity consumption. The daily values, presented as reductions in kilowatt-hours
(kWh) from the baseline, showed consistent and significant decreases of 1764 kWh on
a daily average, equal to a 13.9% decrease compared to the average consumption in
2019. In Building 2, similar to Building 1, the first lockdown resulted in a significant
reduction in electricity consumption equal to 213 kWh per day, which is a 12.1%
decrease compared to the average consumption in 2019. This effect was particularly
pronounced on weekends for both buildings, when consumption reached its lowest
points, showing a sharp decline in energy demand. In the second lockdown phase,
we again noted a noticeable reduction in electricity consumption, which is a 6.1%
decrease for Building 1 and a 3.7% decrease for Building 2, compared to the average
consumption in 2019. Similar to the first lockdown, weekends exhibited the most sig-
nificant decreases, indicating a recurring pattern in response to lockdown measures.
The third lockdown period demonstrated a trend similar to the previous lockdowns,
with a decrease of 5.3% in Building 1 and 3.4% in Building 2 compared to average
consumption in 2019. As observed in the other lockdowns, weekends displayed the
most substantial declines.

We observe that the impact of the second and third lockdowns was less significant
when compared to the initial lockdown. This variation is attributed to differences
in the severity and nature of the lockdown measures imposed during each phase in
France. The first lockdown, which started with stringent measures, represented the
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initial and most comprehensive response to the COVID-19 pandemic. During this
phase, restrictions encompassed various aspects of daily life, including the closure of
schools and strict limitations on non-essential services. In contrast, the second and
third lockdowns exhibited differences in terms of severity. In particular, primary-
and secondary schools were not closed during these later phases, reflecting a more
nuanced approach to education continuity and societal functioning. It is also very
important to note that the evolving nature of lockdown measures led to varying public
responses. The severity of the first lockdown has prompted a more immediate and
drastic reduction in electricity consumption. In contrast, the subsequent lockdowns,
with their comparatively milder restrictions, have resulted in different patterns of
energy usage.

(a) Building 1

(b) Building 2

Figure 15: Impact of COVID-19 on electricity data (three lockdown periods)

4.4. Response to an energy crisis: Impact of 2022 global energy crisis on electricity
consumption

In our study, we extended our analysis beyond the impact of COVID-19 lockdowns
to examine the influence of an additional explanatory variable known as the ”Energy
Sobriety Plan” introduced by the French government in response to the energy crisis
followed by the geopolitical issues that started with the war in Ukraine in winter
2022. This plan called for a reduction in gas and electricity consumption, aiming
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to promote energy conservation and sustainability. Our findings reveal insights into
the effectiveness of this governmental initiative on electricity consumption patterns
in institutional buildings.

(a) Building 1

(b) Building 2

Figure 16: Impact of the energy crisis on electricity data

As shown in Figure 16, we observe an average daily decrease of 421 kWh and 362
kWh in electricity consumption in Building 1 and Building 2 following the energy
crisis generated by the war in Ukraine that started in early 2022.

These results highlight the significant impact of the Energy Crisis on electricity
consumption and provide valuable insights into how individuals and institutions re-
spond to energy supply constraints and related energy-saving recommendations in
France. The reductions observed in both buildings, particularly Building 2, suggest
a high level of awareness and willingness to contribute to energy conservation efforts.
However, it is important to consider that while the energy crisis affected electricity
consumption, the changes it caused were not as big as the significant shifts during
the COVID-19 lockdowns. Additionally, during the period in which we evaluated the
effects of the energy crisis, many individuals and organizations had already adapted
to new operational modes due to the pandemic. Specifically, some people contin-
ued teleworking, either full-time or in hybrid formats. This behavioral modification,
which persisted even after the official lockdowns, would naturally result in decreased
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electricity consumption in institutional buildings. Thus, while the energy crisis un-
deniably prompted conservation efforts, it’s essential to acknowledge the residual
influence of pandemic-induced teleworking habits that weren’t entirely eliminated.

5. Conclusion

This research has provided valuable insights into the complex dynamics of daily
electricity demand in institutional buildings over several years, with a focus on the
impact of external factors, external unpredicted shocks, and government initiatives.
Several key findings emerge from this study.

First and foremost, Dynamic Linear Modeling (DLM) proves to be a robust
method for capturing and explaining changes in electricity consumption patterns over
time. It provides a reliable framework for understanding the evolving dynamics of
energy use in institutional buildings. The Mean Absolute Percentage Error (MAPE)
values, 4.7% for Building 1 and 7.8% for Building 2, underscore the model’s efficacy
in aligning with actual consumption data. DLM’s ability to distinguish the impact of
different periods of lockdowns from other factors has allowed us to uncover essential
details about electricity consumption behavior . A slight decrease in consumption
over the years was observed, with Building 1 and Building 2 showing a total decrease
of 0.3% and 4.8%, respectively. The study further explored the impact of yearly
and weekly seasonality on consumption patterns, revealing significant fluctuations
linked to vacations, temperature variations, and weekly operational rhythms. No-
tably, the electricity consumption increased by 3483 kWh in Building 1 and 1072
kWh in Building 2 post-New Year’s holiday, with substantial drops during summer
vacations, indicating a strong correlation between vacation periods and consumption
patterns. The temperature analysis highlighted a marked increase in consumption
during colder months and a decrease during warmer months, affirming the influence
of temperature on consumption patterns.

As expected, the COVID-19 pandemic had a significant impact on electricity
consumption in these institutional buildings, particularly during lockdown periods.
With DLM, we discerned and quantified the distinct impact of various lockdown
phases. The study unveiled substantial reductions in electricity consumption during
these lockdowns, with the most pronounced decrease occurring during the initial lock-
down. On average, both buildings experienced a remarkable reduction of 13% during
the first lockdown, followed by 4.9% and 4.4% reductions during the subsequent lock-
downs though to a lesser extent, reflecting the varying severity and public response
to the measures. These findings underscore the adaptability of energy consumption
in times of crisis, its response to external shocks and emphasize the importance of
flexible energy management strategies in institutional settings.
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Furthermore, the global energy crisis resulting from the war in Ukraine starting
in the winter of 2022 resulted in noteworthy reductions in electricity consumption in
both buildings. Energy consumption reduction is probably a consequence of the gen-
eral crisis effects (reduced fuels supply, prices run-up) and governmental initiatives
to mitigate the crisis such as the ’Energy Sobriety Plan’ implemented in France. This
governmental initiative not only showcases institutions’ willingness to contribute to
energy conservation efforts but also highlights the potential impact of policy mea-
sures on consumption behaviors. In addition to the ’Energy Sobriety Plan’ reducing
electricity use in the buildings, the adoption of teleworking, especially among univer-
sity researchers, also played a significant role in these reductions. This combination
of government policy and flexible work arrangements that has been continued after
COVID-19, demonstrates how both top-down initiatives and individual choices can
contribute to energy consumption reduction. In conclusion, this research not only
encapsulates the dynamic nature of electricity consumption in response to external
factors but also provides valuable insights for energy management and policy-making
in the face of crises and environmental changes.

5.1. Actionable insights and future directions

The findings of this research have broader implications. Policymakers can draw
valuable lessons from this study to have more effective energy conservation policies.
Recommendations can be tailored to promote flexible energy management during
crises and sustainable practices during regular times.

In practical terms, the outcomes of this research can serve as a decision-support
tool for authorities and policymakers. They can utilize these insights to develop real-
time monitoring systems that incorporate dynamic linear models, allowing for the
immediate detection of consumption pattern changes due to policy implementations
or external events. Such systems could enable a proactive response to unforeseen
events, such as public health emergencies, by adjusting energy strategies accord-
ingly. Policymakers can use these findings to create energy policies that adapt and
prescribe specific measures for reducing consumption, such as the ’Energy Sobriety
Plan’. Furthermore, this study highlights the effectiveness of flexible work policies,
which could inform future urban and transportation planning to reduce peak energy
demand. By integrating predictive analytics with policy-making, authorities can fos-
ter an environment of continuous improvement in energy efficiency, contributing to
the broader goals of GHG emission reductions and sustainability. This study, there-
fore, not only provides a framework for understanding energy consumption dynamics
but also offers a guide for making practical, data-driven policies.

Future research can delve deeper into the precise mechanisms and efficacy of
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energy-related policies in shaping consumption behaviors. A focused examination
of residuals from DLM can uncover outlier events or system inefficiencies, aiding
in the identification of areas for improvement. Additionally, the fusion of DLM’s
robustness with the predictive power of machine learning models holds promise for
accurate forecasting of electricity consumption, which is crucial for informed decision-
making in the face of evolving energy landscapes Yusupova et al. (2023). Additional
developments can also enable the applications of such models to hourly and sub-
hourly data, which can be useful for energy system flexibility and demand response
solutions.

In a broader context, these findings contribute to the global effort to address
climate change and energy conservation challenges. Understanding and effectively
managing electricity consumption in institutional buildings are critical steps toward
a more sustainable future.
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Appendix A. DLM steps for electricity data modeling

Algorithm 1 Electricity consumption modeling using DLM

Input: Time series of electricity demand y
Output: Smoothed time series and components of electricity demand

1. Define the model components:
Trend component: dlmModPoly
Yearly seasonality component: dlmModTrig
Weekly seasonality component: dlmModSeas

2. Define the regressors dlmModReg:
Calendar events: vacations
Covid-19 lockdowns
Start of energy crisis
Weather condition: outside temperature and daylight duration
Evolution of population in the building

3. Combine the model components and regressors to build the initial model

4. Maximum likelihood estimation to estimate the parameters of the initial model

5. Save the estimated parameters for the initial model

6. Start the next optimization using new initialization

7. Repeat steps 4-6 for a predefined number of iterations

8. Calculate the log-likelihood of each estimated model

9. Select the best model with the highest log-likelihood

10. Use the estimated parameters from the best model to build the final model

11. Smooth the time series using the final model

12. Calculate the error variance of the smoothed time series

13. Define the components of the smoothed time series

14. Calculate the error variance of each component using the smoothed error variance
and the corresponding factor loading vector

15. Return: Smoothed time series and components of electricity demand
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Appendix B. Model calibration

Table B.5: AIC and RMSE criteria for different configurations of the model: Order (trend compo-
nent) and Number of Harmonics (yearly component)

Order Harmonics
Building 1 Building 2

AIC RMSE AIC RMSE
1 2 -33136.93 2443.19 -25973.06 552.19
2 2 -33130.61 2443.22 -25954.55 552.87
3 2 Not converged - Not converged -
1 3 -33137.94 2443.29 -25963.34 552.47
1 4 -33147.15 2443.30 -25980.23 552.60
1 5 -33153.95 2443.26 -25992.55 552.32
1 6 -33163.16 2443.17 -26002.26 549.35
1 7 -33173.65 2443.05 -26006.97 549.15
1 8 -33178.26 2444.82 -26014.64 549.04
1 9 -33186.89 2444.96 -26028.28 549.36
1 10 -33198.14 2445.34 -26046.58 549.27
1 11 -33211.11 2445.51 -26062.86 549.28
1 12 -33224.30 2445.63 -26078.35 549.04
1 13 -33233.61 2447.93 -26095.21 549.65
1 14 -33244.34 2447.78 -26114.66 549.61
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