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ABSTRACT

We use a new approach based on self-supervised deep learning networks originally applied to transparency separation in order to
simultaneously extract the components of the extragalactic submillimeter sky, namely the cosmic microwave background (CMB), the
cosmic infrared background (CIB), and the Sunyaev–Zeldovich (SZ) effect. In this proof-of-concept paper, we test our approach on
the WebSky extragalactic simulation maps in a range of frequencies from 93 to 545 GHz, and compare with one of the state-of-the-art
traditional methods, MILCA, for the case of SZ. We first visually compare the images, and then statistically analyse the full-sky
reconstructed high-resolution maps with power spectra. We study the contamination from other components with cross spectra, and
particularly emphasise the correlation between the CIB and the SZ effect and compute SZ fluxes around positions of galaxy clusters.
The independent networks learn how to reconstruct the different components with less contamination than MILCA. Although this is
tested here in an ideal case (without noise, beams, or foregrounds), this method shows significant potential for application in future
experiments such as the Simons Observatory (SO) in combination with the Planck satellite.
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1. Introduction

The first light ever propagated in our Universe, namely
the cosmic microwave background (CMB), is still detectable
today and remains a major probe in observational cosmol-
ogy. Its spatial anisotropies have been observed and anal-
ysed over recent decades by many instruments such as
COBE (Smoot et al. 1992; Mather et al. 1994), Boomerang
(Lange et al. 2001), and WMAP (Bennett et al. 2003). The most
up-to-date full-sky picture of the CMB was observed in the
2010s by the Planck satellite (Planck HFI Core Team 2011),
while more detailed CMB features are being observed nowa-
days in smaller portions of the sky by ground-based experi-
ments such as ACT (Fowler et al. 2010), Advanced ACTPol
(Henderson et al. 2016), SPT (Carlstrom et al. 2011), and SPT-
pol (Austermann et al. 2012). All these instruments have led to
unprecedented precision on the computation of the six cosmo-
logical parameters of the concordance ΛCDM model, which
include ΩM and σ8 (Planck Collaboration VI 2020; Aiola et al.
2020; Aylor et al. 2017). In the coming years, other experiments
with even greater spatial resolution, such as the Simons Observa-
tory (SO, Ade et al. 2019) and CMB-S4 (Abazajian et al. 2016),
will provide a huge amount of new data and will lead to exciting
times for data analysis and cosmology with the CMB.

In the submillimetre frequencies, where the CMB is observ-
able, other sources of emission are also present, which makes
it difficult to disentangle the different components. Some are

emissions from objects between our detectors and the CMB;
these are the so-called foregrounds, containing for example dust
from our galaxy, radio emission, molecular gas emission (CO),
and the integrated diffuse infrared emission from all galaxies: the
cosmic infrared background (CIB, Dole et al. 2006). Other com-
ponents are distortions of the CMB itself due to its interaction
with the objects within the path of the photons; one such distor-
tion is the Sunyaev–Zel’dovich effect (SZ, Sunyaev & Zeldovich
1970). The known spectral signatures of the different compo-
nents can potentially be used to separate them, within limita-
tions.

Over recent decades, several algorithms have been devel-
oped to separate the different components or clean the
CMB; for example, the spectral matching independent compo-
nent analysis (SMICA, Delabrouille et al. 2003; Cardoso et al.
2008) and the generalized morphological component anal-
ysis (GMCA, Bobin et al. 2007), as well as the sparsity-
based algorithms (Bobin et al. 2008, 2013), Commander
(Eriksen et al. 2008), needlet internal linear combination (NILC,
Delabrouille et al. 2009), generalized needlet internal liner
combination (GNILC, Remazeilles et al. 2011), spectral esti-
mation via expectation maximisation (SEVEM, Leach et al.
2008; Fernández-Cobos et al. 2012), modified internal lin-
ear combination algorithm (MILCA, Hurier et al. 2013), and
reduced wavelet scattering transform (RWST, Allys et al. 2019).
These have been successfully applied in order to sepa-
rate the CMB (e.g., Planck Collaboration I 2020), but have
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also been used to differentiate between components, such
as the SZ effect, in different experiments; for example,
in Planck (Planck Collaboration XXI 2016; Tanimura et al.
2022a), ACT (Madhavacheril et al. 2020), SPT (Bleem et al.
2022), and a combination of them such as Planck+ACT (PACT,
Aghanim et al. 2019; Naess et al. 2020) and SPT+Planck for
CMB lensing (Omori et al. 2017). However, for the reconstruc-
tion of the SZ effect in particular, one of the main challenges is
to confront the contamination from the CIB (e.g., Hurier et al.
2013; Planck Collaboration XIV 2016). The CIB signal at high
frequencies often leaks in SZ spectral filters and can potentially
induce extra power at small scales in SZ power spectra, and
vice versa. This is an important effect to take into account when
computing cosmological parameters with the SZ power spec-
trum (e.g., Salvati et al. 2018; Douspis et al. 2022; Gorce et al.
2022; Tanimura et al. 2022a). Another important source of con-
tamination in any CMB component-separation analysis is the
galactic dust and the CIB in polarisation data, specifically when
aiming to detect the B-mode in polarization (Allys et al. 2019;
Lenz et al. 2019; Regaldo-Saint Blancard et al. 2020), which is
the main future challenge in CMB data analysis.

Deep learning networks, and especially UNets
(Ronneberger et al. 2015), are very sensitive to both spec-
tral and morphological information and can capture highly
non-Gaussian distributions (such as some of the components
in CMB frequency maps). This makes those networks partic-
ularly suited to studying CMB data and indeed they have been
applied with increasing frequency over recent years for different
purposes, such as galaxy cluster detection via the SZ signal
(e.g., Bonjean 2020; Lin et al. 2021), inpainting of the CMB
signal (e.g., Puglisi & Bai 2020; Montefalcone et al. 2021),
detection of the kinetic SZ (kSZ) effect (e.g., Tanimura et al.
2022a), galaxy cluster mass estimations in CMB frequency
maps (e.g., Gupta & Reichardt 2020; de Andres et al. 2022),
and even foreground cleaning or component separation (e.g.,
Caldeira et al. 2019; Grumitt et al. 2020; Petroff et al. 2020;
Lin et al. 2021; Hurier et al. 2021; Li et al. 2022; Wang et al.
2022); also, see Dvorkin et al. (2022) for a review. In some cases
of machine learning applications, the networks can perform
very well (even better than standard methods or than a human)
with the condition that very robust, balanced, and well-labelled
data is available. Without any known labels – as in our case,
where the exact different component maps (SZ, CIB, CMB)
are not familiar to us –, self-supervised learning can be used
instead. In this kind of machine learning approach, the output Y
is reconstructed from the input X without any need for human
labelling. Component separation in CMB data is very similar
to, for example, transparency separation, dehazing, or mixture
images, to which the above-mentioned self-supervised deep
learning networks have recently been successfully applied (e.g.,
Gandelsman et al. 2018).

In this paper, we perform component separation of all
components of the extragalactic sky simultaneously and in an
unsupervised way (specifically, in a self-supervised way). The
network, the design of which is inspired by techniques used in
transparency separation applied on images (Gandelsman et al.
2018), does not rely on known, labelled data for training and
could be trained either on numerical simulations to check the
performance or directly on real data. Here we apply our algo-
rithm to high-resolution numerical simulations of the extragalac-
tic submillimetre sky from WebSky (Stein et al. 2020). Maps
are input and reconstructed in HEALPIX format (Górski et al.
2005), with nside = 4096. Contrary to the methods devel-
oped to work in the HEALPIX 1D vector (Perraudin et al.

2019; Krachmalnicoff & Tomasi 2019), we perform the train-
ing on small projected patches in two dimensions. We are able
to efficiently and simultaneously recover all the input signals
(CMB, CIB, and SZ), without any strong contamination from the
other components. In this proof-of-concept paper, we demon-
strate the potential of this method by applying it to an ideal
case of numerical simulation and by comparing the results –
when possible – with a state-of-the-art traditional method,
MILCA (used to construct the Planck y maps; Hurier et al.
2013; Planck Collaboration XXI 2016; Tanimura et al. 2022b,
described in Sect. 2.4).

Our paper is organised as follows: in Sect. 2, we present the
component maps from the WebSky simulations that we used and
describe how we constructed mock maps of the total submil-
limetre emission at different frequencies, together with MILCA.
In Sect. 3, we present the method, the network architecture,
and the training procedure in detail. We present our results in
Sect. 4, performing different kinds of comparison between the
reconstructed component and the original ones, first visually, and
then in more quantitative ways, analysing full-sky power spec-
tra, cross-spectra, and SZ fluxes from clusters. In Sect. 5, we
discuss our results and present our conclusions and perspectives
for future studies.

2. Data

In this section, we describe the data used in the present study, that
is, the WebSky extragalactic simulation maps from Stein et al.
(2020) and the derived frequency emission maps.

2.1. WebSky extragalactic component maps

The WebSky extragalactic simulation full-sky maps are a mod-
elisation of the extragalactic components of the submillimetre
sky in HEALPIX format, with nside = 4096. They include maps
of the infrared emission (CIB) from dusty star-forming galaxies
from z = 0 to z = 4.6, a map of the thermal SZ emission from
groups and clusters of galaxies, a map of the kinetic SZ effect
(kSZ) produced by the Doppler boosting by Thomson scattering
of the CMB by bulk flows, and a map of weak gravitational lens-
ing of primary CMB anisotropies by the large-scale distribution
of matter in the Universe. The maps are constructed based on
a light-cone projection on the full sky of a simulation of halos
computed with ellipsoidal collapse dynamics and Lagrangian
perturbation theory in the redshift range 0 < z < 4.6 (with a
volume of ∼600

(
Gpc h−1

)3
resolved with ∼1012 resolution ele-

ments). The distribution of halos is then converted into inten-
sity maps of the different components using models based on
existing observations and on hydrodynamical simulations (see
Stein et al. 2020 for details). The WebSky maps and halo cata-
logues are publicly available1. The WebSky collaboration also
provides the conversion factors to apply to the CIB maps and to
the SZ map in order to reconstruct the full modelisation of the
three components (SZ, CIB, and CMB) on the sky per frequency
in units of µKCMB. These latter authors modelled the compo-
nents in 12 frequencies in total from SO and Planck High Fre-
quency Instrument (HFI), that is, at 27, 39, 93, 100, 143, 145,
217, 225, 280, 353, 545, and 857 GHz. In our study, we discard
the frequencies where the radio emission or the dust emission
from extragalactic objects are dominant, and so we focus on nine

1 https://mocks.cita.utoronto.ca/index.php/WebSky_
Extragalactic_CMB_Mocks
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frequencies between 93 GHz and 545 GHz (see e.g., Fig. 4 in
Planck Collaboration I 2020). We use the maps of the different
components (here SZ, CMB, and CIB) to model the extragalactic
submillimetre sky at each frequency in Sect. 2.2, and we use the
catalogue of halos to construct a pixel weight map w in Sect. 2.3.

2.2. Mock submillimetre sky maps

In this study, we focus on extragalactic signals. Therefore, all
emissions from our galaxy (i.e., CO, galactic dust, and syn-
chrotron) are not taken into account to model the total emission
maps per frequency. We do not take into account either the noise
or the effects of beams of the instruments. These effects will be
addressed in a future paper. We thus use the components of the
WebSky extragalactic simulation maps, namely CMB, SZ, and
CIB, at 93, 100, 143, 145, 217, 225, 280, 353, and 545 GHz. The
observed maps Ci at frequency i can then be expressed in µKCMB
as

Ci = 1 × CMB + fi × SZ + CIBi, (1)

where fi are the frequency-dependent weights of the SZ effect
and CIBi is the CIB in the ith frequency. As mentioned in Sect.1,
all the maps are constructed in HEALPIX format with nside =
4096.

2.3. Weight map from bright clusters

We focus in particular on the SZ effect and on its correlation with
the CIB. As the SZ effect is mainly produced from galaxy clus-
ters, the coverage on the sky is very small; that is, only a very
small percentage of the pixels of the HEALPIX maps actually
contain a significant SZ signal. As the error on the reconstruc-
tion in the case of a UNet approach is based on the mean of
all the pixels, we rebalance the statistics of the pixels by con-
structing a map of weights, w, in order to emphasise the regions
associated with galaxy clusters. A catalogue of the coordinates
on the sky of the halos from the numerical simulations of Web-
Sky was also delivered by Stein et al. (2020), together with some
physical properties, such as the redshift z and the mass M200.
We use this catalogue to compute the SZ flux for all clusters in
the WebSky SZ map and select only the ones with an SZ flux
detected with more than 5σ from a distribution of fluxes com-
puted at random positions on the sky. We select only the bright-
est ones in order to apply a strategy that could also be applied in
real data (in which we would have only the brightest SZ clusters
with which to apply weights). We construct the weight map w
in HEALPIX, with 1 at the position of the approximately 13 000
selected clusters, and put 0 otherwise. We then convolved the
map with an FWHM of 5 arcmin (chosen arbitrarily; we further
checked that changing this value does not affect the results), and
squared the weight-map to further emphasise the central pixels
of clusters. We divided by the sum of the pixels so that the aver-
age of the map on the pixels is equal to 1, as in the case of a
uniform weight map. By weighting the pixels is this way, the
very central regions of the clusters account for about 50%, and
the remaining 50% are associated with the external regions. We
later show that this weighting procedure simply helps the net-
work to converge faster but is not dependent on the catalogue of
clusters for which we weight the pixels. As all the clusters in the
real sky are not known, this is a very important statement, and
subsequently allows us to apply this self-supervised method to
real data.

2.4. MILCA maps

We use MILCA-based reconstructed maps of SZ and CMB
applied in the WebSky submillimetre maps as a reference com-
parison in our study. MILCA (Hurier et al. 2013; Tanimura et al.
2022b) is based on the internal linear combination (ILC)
approach, which preserves an astrophysical component given
the known spectrum by minimising the variance in the recon-
structed signal. In MILCA, extra degrees of freedom are used
to null-out other components (such as CMB for SZ) and min-
imize noises using noise maps estimated from split maps such
as half-mission maps. This approach was used to extract the
SZ signal using Planck data (Planck Collaboration XXI 2016;
Tanimura et al. 2022b) and Planck+ACT data (Aghanim et al.
2019). However, the correlation between SZ and CIB is
known to induce a certain level of contamination in the
resulting y-map (Planck Collaboration XIV 2016), especially at
small scales, and causes a large uncertainty in astrophysical
(Vikram et al. 2017) and cosmological analyses (Hill & Spergel
2014; Planck Collaboration XXI 2016; Tanimura et al. 2022b).

3. Method

In this section, we explain our model of the submillimetre extra-
galactic sky, the architecture of the network used, and the con-
struction of the training set we use.

3.1. Model

The aim of the study is to separate the CMB, the SZ, and the CIB
emissions as efficiently as possible using both frequency and
spatial morphologies. Unlike the CMB or the SZ emissions, the
weights of the CIB spectrum are different at each line of sight,
meaning that there should be as many CIB maps as frequencies
used. To perfectly recover all the components, one should then
recover (i) the CMB, (ii) the SZ y map, and (iii) the CIB at all
the frequencies used, which gives 2 + n components (where n is
the number of frequency used, here n = 9); meaning a total of
11 in our case. However, it is impossible to recover more com-
ponents than the number of maps in inputs because of the impor-
tant degeneracies between solutions. Hence, we assume that the
CIB in the different frequencies, CIBi, can be approximated by
one CIB map fixed at one frequency CIB (here the maximum
frequency f = 545 GHz) weighted by the values ψi(z), which
represent a modified black body per pixel at a mean redshift z.
This enables the frequency dependency of the weights, and both
the maps CIB and z to be learned at the same time during the
training. The model can be written as

CIBi = ψi (z) × CIB, (2)

with

ψi (z) =

( i
545

)β+3

×
exp

(
h×545×109(1+z)

kBT0(1+z)α

)
− 1

exp
(

h×i×109(1+z)
kBT0(1+z)α

)
− 1

, (3)

where β is the slope of the power law of the modified black body,
T0 is the effective dust temperature, α is the parameter for the
redshift dependency of the dust temperature, h is the Planck con-
stant, and kB is the Boltzmann constant. In this study, we fixed
β = 1.6, T0 = 20.7 K, and α = 0.2 following Stein et al. (2020).
While it is a rough approximation to consider the CIB as a mod-
ified black body with a fixed β per pixel (i.e., per line of sight),
it is still a reasonable approximation for this work. In a forth-
coming analysis, we will consider more realistic models of the
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spectrum of the CIB using for example the Taylor expansion of
the modified black body proposed in Chluba et al. (2017).

Merging Eqs. (1) and (2), the maps Ci can then be modelled
by

Ci = 1 × CMB + fi × SZ + ψi (z) CIB, (4)

where CMB is the extracted CMB component, SZ is the recon-
structed SZ component, CIB is the extracted CIB component at
545 GHz, and z is the spatially dependent map of the mean red-
shift of the modified black body of the CIB per pixel. Here, we
simultaneously fit the four components CMB, SZ, CIB, and z,
still allowing nine different CIBs.

3.2. Network architecture

In this study, we use a combination of specific architectures
of deep convolutional neural networks (CNNs), the so-called
ResUNets – which have been shown to be very efficient in image
regression (Zhang et al. 2018) –, to reconstruct the three compo-
nents CMB, SZ, and CIB directly from the input maps Ci. Our
approach is based on transparency separation for dehazing of
images developed in Gandelsman et al. (2018). Indeed, in this
domain, they have a very similar goal; they are all designed to
reconstruct a blurred image by decomposing it into a dehazed
image and an image of the haze. Another application is the
recovery of two images that are superposed on each other, or
the removal of water droplet marks on the camera lens and seen
in pictures. This technique is quite simple: the goal is to out-
put two images from one, reconstructed by two different net-
works in parallel (allowing the non-correlation between the two
images as each network is independent from the other), and by
adding a term in the loss function that minimises the cross-
correlation between the two reconstructed images. This tech-
nique has shown surprisingly good results, especially in the
domain of dehazing images (Gandelsman et al. 2018; Feng et al.
2021; Ge et al. 2021; Miao et al. 2022). This is somewhat sim-
ilar to separation techniques for emission in submillimetre. We
apply our knowledge of the physics concerning the frequency
dependency of the components to the outputs of the ResUNets
in parallel (that are images) in order to construct a final com-
bined output Ci (given by Eq. (4)) that has to match the input
maps. We apply a loss function Lrec between the final outputs
Ci and the inputs Ci, and the component is extracted by the out-
puts of each ResUNet. We can put different priors by modify-
ing the activation function on the different outputs of each net-
work. Doing this helps the networks to converge faster to the
accurate solution and helps avoid degeneracies. For CMB, we
choose an activation function that is a Sigmoid between −1000
and +1000 µKCMB. For CIB, we choose a Softmax function that
outputs only positive numbers (CIB being a positive luminos-
ity). For the redshift of CIB z, we choose a Sigmoid function
between 0 and 5. For SZ, we choose a Softmax function remov-
ing −20 × 106 so that y > −20 × 106. Although we know the y
Compton parameter cannot be negative, forcing it to be positive
only leads to a non-Gaussian error on the reconstruction map.
This effect produces a bias in all the mean values of the differ-
ent components in an attempt to reproduce Gaussian noise in
the total reconstruction of the frequency maps (characteristics of
the MSE loss function). A diagram of our architecture is shown
in Fig. 1.

We define the reconstruction loss Lrec as the sum of the
weighted mean squared errors (wMSE) in the different fre-

Fig. 1. Diagram of our architecture. Four ResUNets are used to con-
struct CMB, SZ, CIB, and z directly from the input Ci, and a recon-
struction loss Lrec is applied between the inputs Ci and the models Ci
obtained with Eq. (4).

quencies i divided by the standard deviation of the maps σi,
namely

Lrec =
1
nf

nf∑
i=0

wMSE
(
Ci,Ci

)
σi

, (5)

where nf is the number of frequencies (here, nf = 9),
wMSE

(
Ci,Ci

)
is the MSE in the ith frequency weighted by the

weight map w, and σi is the standard deviation of the map Ci.

3.3. Training set

Our network architecture is applied to sets of 2D patches pro-
jected on the sky. We extracted n = 100 000 multi-channel 2D
patches from the Ci maps, with the nine frequencies from 93
to 545 GHz. The images are 64 × 64 pixels with a resolution of
θpix ∼ 0.8 arcmin (giving a field of view of ∼0.8◦ × ∼0.8◦).

The dimensions of the input data are thus 100 000×64×64×
9 pixels. As in Bonjean (2020), we train our network on 90% of
the sky and leave 10% of the sky completely unseen by the net-
work (as commonly done in machine learning applications). We
also tried a ratio of 80%–20% and checked that this choice was
not affecting the results. In this first application, the 10% unseen
fraction of the sky is randomly selected on the sphere. One could
however use a clean area of the sky (away from galaxy contam-
ination) for a study including dust and radio emission. In this
configuration, we can compute global properties of the differ-
ent extracted components at each epoch of the training, such as
the means and the variances, and compare them to the expected
values. When those values converge into a good solution and
reach a plateau together with the loss value on this very same
10% unseen area, we consider that the network has reached con-
vergence and stop it. With the trained models, we subsequently
reconstruct the full-sky HEALPIX maps entirely by estimating
projected patches on the full sky and averaging the pixels, at
nside = 4096, for the different components.

4. Results

In this section, we present the results and compare the recon-
structed HEALPIX maps of the different extracted components
to the original one from WebSky in several ways.

First, we visually inspect the maps by showing projections
of the components centred on the brightest SZ cluster to quickly
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check the contrasts and the non-Gaussian aspects of the pixel
distributions of the different fields. We then present further quan-
titative statistical comparisons and show the power spectra and
the PDF of the pixels of the full-sky maps for all the com-
ponents. We also compare the cross power spectra with the
original components. For the case of the SZ effect, we also
compare with the outputs of a traditional but state-of-the-art
method, MILCA (Hurier et al. 2013; Planck Collaboration XXI
2016; Tanimura et al. 2022b). We compute the cross spectra
between all the different components to study the contamina-
tion of the maps coming from the leakage from other compo-
nents. Finally, we put particular emphasis on the regions around
galaxy clusters, and perform an SZ flux comparison between
those extracted from the reconstructed components and those
from the WebSky maps.

4.1. Frequency settings

First, we explore the impact of the choice of the frequency set-
ting on the results and for this we define two combinations of
frequencies: one with seven frequencies, from 93 to 280 GHz,
and another combination adding the 353 and 545 GHz frequency
maps in which the CIB is dominant. We compared the global
properties of the components in the unseen area for each of the
epochs and for the different combinations. The means and vari-
ances of the reconstructed components for the two frequency
combinations are shown in Fig. 2. We directly see that the config-
uration with seven frequencies is not evolving into an expected
solution (shown by the dashed lines), but rather shows biases in
the mean values of all components and a lack of variance for the
CIB. In the other configuration, the mean and variances are well
recovered, except for the variance of SZ, which is expected as
SZ is a very weak signal and hence some reconstruction noise
is expected, adding extra variance. This is due to the spectral
dependencies of the SZ and the CIB in the range 100–250 GHz,
which are too similar, making it difficult to break the degener-
acy between the two components. Instead of learning a lower
redshift z of the CIB at the position of the clusters as we expect
(as CIB at the positions of clusters is dominated by the galaxies
from the galaxy clusters itself), it does the opposite and tends
to learn a higher redshift. This produces a lower bias in the
SZ flux to balance the total emission and the model hence con-
verges to an inaccurate solution. For these reasons, considering
our model, we must take into account the higher frequency maps
at 353 and 545 where the CIB is dominant and where the spec-
tral dependencies of the two components SZ and CIB start to
differ one from another. In the following, our results are thus
obtained in the configuration with nine frequencies, including
the 353 and 545 GHz maps. We also note that in Fig. 2, the val-
ues of the means and variances of the CIB are not the same
for seven and nine frequencies, as we are computing the CIB
at 280 GHz for the first case and the CIB at 545 GHz for the
second case.

4.2. Visual inspection

We trained our network with nine frequencies and reconstructed
the HEALPIX maps of the four extracted components: CMB,
SZ, CIB, and z. The training lasted six days on a Tesla V100
GPU. A first comparison can be made visually to qualitatively
check the ranges of pixel values, contrasts, and the non-Gaussian
distribution of the pixels of the fields. We present an example in
Fig. 3, where we show the projection of the different maps on a

5◦×5◦ patch centred around the position of the brightest SZ clus-
ter. The left column shows the WebSky maps of CMB, SZ, and
CIB; the middle column shows the reconstructed maps CMB,
SZ, and CIB, and the right column shows the residuals between
the true and reconstructed components. The reconstructed
components appear, visually, to be in good agreement with the
WebSky original components, with clusters well recovered, and
without any significant features seen in the residual
images.

4.3. PDF comparison

We pursue our comparison by checking the PDF of the pixels
for the different components. In Fig.4, we show the distribution
of the pixels for the CMB, SZ, and CIB, where we compare to
the original distributions from WebSky maps. For the case of SZ,
we also compare to the distribution of pixels from the SZ maps
reconstructed with MILCA. We see a very good match between
the distributions of pixels for CMB and CIB, while the distri-
bution is more flattened for the recovered SZ maps from our
method and from MILCA. This indicates a noisy reconstruction
of the SZ signal, which is expected considering the very low
amplitude of the SZ effect compared to CMB or CIB, which are
the dominant signals in some frequencies. However, the variance
of the reconstructed SZ map with our method seems larger than
that of the map obtained with MILCA, which is also expected
as our model contains a greater number of free parameters than
MILCA (simultaneously constraining CMB, SZ, z, and CIB).
This is discussed in more detail when comparing cross-spectra
and contamination from other components below.

4.4. Power-spectra comparison

We computed the auto power spectra for all the recovered com-
ponents and compared them to the power spectra of the original
WebSky components. For each component, we also compare the
cross power spectra between the recovered components and the
original ones to check whether or not the signal is fully recovered
when removing the reconstructed noise of the estimated com-
ponents. In Fig. 5, we show the resulting power spectra for the
CMB in the left panel, SZ in the middle one, and CIB on the
right. We also show the C` residuals as a percentage at the bot-
tom of each plot. For the case of CMB, we recover the signal
very well, with reconstructed noise dominating from ` > 1000.
Removing the reconstructed noise in the cross spectrum with the
WebSky CMB leads to very good recovery of the CMB signal,
with below 1% error up to ` = 2500. For the CIB, we see very
good agreement between the two power spectra, with less than
3% error and a bias of below 2% up to ` = 2500. The cross
spectrum between CIB and CIB also shows a good recovery of
the signal. For the SZ reconstructed maps, the power spectra are
above the expected signal for both MILCA and our method SZ,
especially at small scales. This indicates the presence of addi-
tional signal – for example, noise –, which is in good agreement
with the effect seen in the distributions of the PDF in Sect. 4.3
(greater noise for SZ than for MILCA). By performing the cross
spectra with the SZ WebSky map, interesting observations can
be made. At all `, we see a lack of signal in the cross spec-
trum between MILCA and the true SZ emission from WebSky
(MILCAxSZ), leading to a bias of between 10% and 25% within
10 < ` < 2500, which is not seen in the cross-spectrum SZ×SZ.
This effect is due to the contamination of the CIB in the MILCA
SZ map, itself attributable to the correlation between SZ and
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Fig. 2. Evolution of the different statistical quantities of the extracted components in the unseen area of the sky. Top: evolution of the means of
the components on the left for the seven-frequency configuration and on the right for the nine-frequency configuration. Bottom: evolution of the
variances of the components on the left for the seven-frequency configuration and on the right for the nine-frequency configuration. Dashed lines
represent the expected values. The values for the CIB are not the same for the seven and the nine frequencies models, as we are computing the
CIB at 280 GHz for the first case and the CIB at 545 GHz for the second case. Units are different for each map: SZ and z are without units (y and
redshift), CMB is in µK, and CIB is in MJy sr−1.

CIB. The residuals of the cross-spectrum SZ×SZ indicate a good
recovery of the signal within an error of 5% up to ` = 2500
and with a bias of below 3% at all `. We confirm this result
in the following section, where we demonstrate how we com-
pute the cross-spectra between all the components to study the
contamination.

4.5. Cross-spectra between components

We computed the cross-power spectra between all the compo-
nents CMB×SZ, CMB×CIB, and CIB×SZ. In each case, we
cross correlated all combinations between the original WebSky
components and the reconstructed ones, either from MILCA or
with our method for the cases where SZ is involved. Figure 6
shows the results for all the different components. We detail the
different cases hereafter.

4.5.1. CMB×CIB

For the CMB×CIB case (left panel of Fig. 6), where there is no
correlation expected (blue line), we did not find any correlation

between the different combinations, except for CMB×CIB. This
means that the reconstructed CMB is not contaminated by the
CIB, and that the reconstructed CIB is not contaminated by the
CMB. On the other hand, the correlation between CMB and CIB
is expected (but not necessarily problematic), as this correlation
is coming from the correlated reconstructed noise between the
two components, which is not expected to be independent, as
the two components are reconstructed at the same time.

4.5.2. CIB×SZ

For the CIB×SZ case (middle panel of Fig. 6), there is an
expected correlation between the two components (shown in
blue) (Planck Collaboration XIV 2016; Stein et al. 2020). This
correlation comes from the fact that the dominant part of the
CIB in clusters, which is where the SZ signal is dominant, is
generated from the dust emission of galaxies in these very same
clusters. This correlation is a bias in the SZ reconstruction (e.g.,
Planck Collaboration XIV 2016) that we recover in CIB × SZ
(in red), indicating that the reconstructed CIB is not contami-
nated by the SZ. However, CIB×MILCA (in green) is below
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Fig. 3. Projection in a 5◦ × 5◦ patch of the HEALPIX maps of the different components around the brightest SZ cluster. Left column: from top to
bottom, the SZ, CMB, and CIB from WebSky simulation maps. Middle column: from top to bottom, the reconstructed SZ, CMB, and CIB. Right
column: residuals between the WebSky component and the reconstructed ones. Very good agreement is seen visually between the reconstructed
maps and the expected map, without structures in the residuals.

the correlation line, indicating that the MILCA SZ map is per-
turbed by the CIB and might lack flux. This translates into a
lack of SZ power at small scales, which is also seen in the SZ
auto power spectra in Sect. 4.4. However, the cross-spectrum
CIB × SZ (in orange) is closer to the expected correlation in
blue, indicating a weaker contamination from the CIB in the

SZ reconstructed map. In conclusion, the reconstructed SZ map
is noisier than that produced with MILCA (with noise coming
from the reconstruction method and larger than that produced
by MILCA, as our model contains a greater number of free
parameters, as it simultaneously constrains CIB, SZ, z, and CIB;
this would also be the case for MILCA (noise would increase
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Fig. 4. PDF comparison between the reconstructed components and the WebSky ones. Left: case for the CMB. Middle: case for the SZ. Right:
case for the CIB.

Fig. 5. Power spectra of the components, the recovered components, and the cross power spectra between the two. C` residuals as a percentage are
also shown in the bottom of each plot, where residuals are defined as x−x

x × 100 for the quantity x. Left: case for the CMB. Middle: case for the
SZ. MILCA is also shown in this plot. Right: case for the CIB.

Fig. 6. Cross power spectra between the different components. Left: case for CMBxCIB. Middle: case for CIBxSZ. MILCA is also considered in
this plot. Right: case for CMBxSZ.

if we increase the number of constraints), albeit less contami-
nated by the CIB. Having a noisier SZ map might be a disad-
vantage if we use auto power spectra or maps, but this is not
an issue if we want to cross-correlate the maps with other trac-
ers (e.g., galaxy densities or weak lensing maps) and we should
prioritise maps that are less biased by CIB. For example, the
extra SZ power coming from CIB contamination is a poten-
tial source of bias for the study of the cosmological parameters
from the SZ angular power spectrum (Komatsu & Seljak 2002;
Horowitz & Seljak 2017; Douspis et al. 2022; Tanimura et al.
2022b), and is reduced in our method compared to MILCA, at
the cost of slightly poorer precision.

4.5.3. CMB×SZ

For the CMB×SZ case (right panel of Fig. 6), no correlation is
expected (blue line). We do not find any correlation, either with
the recovered components – indicating that there is no contam-
ination from CMB in the reconstructed SZ map – or with the
SZ in the reconstructed CMB map. This is also the case for the
SZ map derived by MILCA; we do not see any correlation with
CMB, as expected.

4.6. SZ fluxes from clusters

After studying the statistics and contamination of the recovered
component maps, we focus on the SZ fluxes from galaxy clus-
ters. For each of the SZ maps, that is, WebSky, MILCA, and SZ,
we computed the SZ fluxes around a selection of the most mas-
sive low-redshift clusters (M200 > 4 × 1014 M� and z < 1) in the
exact same way – using aperture photometry – from the numer-
ical simulation (SZ fluxes for lower masses or higher redshift
clusters become too low and noisy). We compare the SZ fluxes in
Fig. 7, showing those from MILCA in green and those from SZ
in orange and red. The fluxes displayed in orange are obtained
in the training region of the sky while the fluxes displayed in red
are obtained in the unseen area of the sky. The very good consis-
tency between all the fluxes indicates a very good recovery of the
SZ fluxes for this selection of clusters with all methods, mean-
ing that the network can recover the SZ fluxes well, even in the
unseen area, and with an error of the same order of magnitude
as that for the fluxes obtained with the traditional state-of-the-
art method MILCA. The dashed blue line in the figure indicates
the SZ flux beyond which the clusters have been enhanced in the
weight map w used to rebalance the weight of the pixels inside
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Fig. 7. Comparison of the SZ fluxes computed with aperture photometry in the exact same way in the SZ WebSky map, in the SZ map, and in the
MILCA SZ map. Left: fluxes on the reconstructed maps as a function of the SZ WebSky fluxes. The blue dashed line represents the SZ flux have
been enhanced in the weight map w. Right: histograms of the residuals. The dashed lines show the median values of the distributions.

clusters. We see a good correlation even before the vertical line,
meaning that even clusters that have not been enhanced are very
well recovered. This indicates that the weight map w is helping
the network to learn the SZ spectral and spatial features faster
but does not bias the results to the typical objects for which
w are input (otherwise, we would see a good agreement only
beyond the vertical flux limit and no correlation before). In the
right panel of Fig. 7, we compare the residuals of the SZ fluxes
for MILCA and SZ. We see that the fluxes computed in SZ have
an error on the same order of magnitude as that for the fluxes
computed with MILCA, with a standard deviation of percentage
residuals of σ = 40.44% and σ = 42.9%, respectively. How-
ever, we obtain biased fluxes, which is due to the contamination
of CIB. The biases are quite important in MILCA, with 4.97%
bias, while the biases are reduced significantly in the case of SZ,
with a bias of 1.39%. These biases obtained with MILCA should
be investigated in a more detailed study and confirmed with
other standard methods, as they might be an important source of
contamination in cosmological analyses using SZ fluxes or SZ
spectra.

5. Discussion and summary

We explored a new way of performing component separa-
tion using machine learning networks in a self-supervised way.
Focusing on the extragalactic submillimetre sky, this method
allows us to extract CMB, CIB, and SZ effect maps, and can
already be applied to the clean part of the sky (free from fore-
ground emissions), for example to some of the cleanest regions
(at very high Galactic latitudes) of the Planck frequency maps.
Being self-supervised, this method has the potential to be applied
directly to data without the need for known labels (the model
that is trained here on numerical simulations will not be the one
applied to real data). In this paper, we show how we applied
our new method to numerical simulations from WebSky and
achieved good results when focusing on the power spectra and
cross spectra of the different reconstructed components, as well
as interesting results regarding the contamination from other
components. Our method still has some limitations, which will
be investigated in future studies. For example, we did not include
a model of the foreground galactic emissions; that is, dust, radio,
and CO sources. These emissions could be accounted for by
adding other ResUNets in parallel, allowing the reconstruction
of these very same components all at once. We also did not

include models of either noise or the effect of the instrumen-
tal beams, as the aim of this study is to investigate the theoreti-
cal response of these networks in an ideal case and to compare
this with the results of a traditional but state-of-the-art method
(here, MILCA). Focusing on the individual results for each com-
ponent: for the CMB case, we obtain a very good reconstruction
of the signal, albeit slightly noisy. When we cross-match with
the CMB from WebSky, we obtain a very good reconstruction
of the signal up to ` = 2500 at least. We obtain a very good
reconstructed CIB, within a 3% error and a bias of below 2%
up to ` = 2500. For the SZ, we also very nicely recover the
signal, with both an advantage and a disadvantage compared to
the result obtained with MILCA. Two things can be said about
SZ: first, the signal retrieved using our new method is less con-
taminated by the CIB than that obtain with MILCA. This aspect
has very important consequences for the ability to perform cos-
mology using the SZ signal or to compute cluster masses, and is
particularly emphasised in this study. Second, this lower contam-
ination comes with the price of a higher variance, coming from
the reconstruction noise that is higher than that obtained with
MILCA. Indeed, our method simultaneously constrains CMB,
CIB, z, and SZ, and therefore entails a greater number of free
parameters than MILCA, which constrains only SZ and removes
the CMB. This produces a larger variance in the reconstructed
maps at the end. Neither of the reconstructed components, CMB
or CIB, is contaminated by other components, as seen in the
cross power spectra, and the contamination from CIB in the SZ
reconstructed maps is lower than in MILCA, as seen in Fig. 6.
To completely remove the contamination of the CIB, our spec-
tral CIB model could be improved to take into account the fact
that the emission of the CIB is not a power law but rather the
sum of a power law, which could be modelled in greater detail
(e.g., in Taylor expansion, Chluba et al. 2017; Vacher et al. 2023,
2022), but the modelling and reconstruction of the CIB repre-
sent a significant challenge, especially for the dust–CIB sepa-
ration for the detection of the B-modes (e.g., Remazeilles et al.
2011; Remazeilles 2018; Allys et al. 2019; Aylor et al. 2021;
Regaldo-Saint Blancard et al. 2021). For example, Allys et al.
(2019, 2020) developed an algorithm of wavelet scattering trans-
form (WST, Allys et al. 2019; Regaldo-Saint Blancard et al.
2020) similar to convolutional neural networks.The main dif-
ference is that the filters of the layers of convolution are fixed
instead of learned, and the statistics of the CIB within this trans-
form can later be input as a prior for the extraction of the CIB in
component separation.
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Compared to other methods using a deep learning network
to extract components from CMB data (e.g., Caldeira et al.
2019; Grumitt et al. 2020; Li et al. 2022; Wang et al. 2022;
Petroff et al. 2020; Lin et al. 2021), in our approach we estimate
all components simultaneously. This allows a less biased recon-
struction, taking into account the dependencies and the correla-
tions with the other components during the training.

The lower effect of the CIB contamination in the power
spectra, especially in the reconstruction of the SZ effect, could
decrease a potential bias in the computation of the cosmologi-
cal parameters using the SZ power spectra (Salvati et al. 2018;
Douspis et al. 2022; Gorce et al. 2022; Tanimura et al. 2022b).
Going a step further, and modelling the polarisation, this method
could be used in the future for the detection of the B-mode by
combining the data of Planck, ACT2, SPT, SO (Ade et al. 2019),
and CMB-S4 (Abazajian et al. 2019).
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