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Abstract6

Functional connectivity derived from functional Magnetic Resonance Imaging (fMRI) data has been7

increasingly used to study brain activity. In this study, we model brain dynamic functional connectivity during8

narrative tasks as a temporal brain network and employ a machine learning model to classify in a supervised9

setting the modality (audio, movie), the content (airport, restaurant situations) of narratives, and both10

combined. Leveraging Shapley values, we analyze subnetwork contributions within Yeo parcellations (7- and11

17-subnetworks) to explore their involvement in narrative modality and comprehension. This work represents12

the first application of this approach to functional aspects of the brain, validated by existing literature,13

and provides novel insights at the whole-brain level. Our findings suggest that schematic representations in14

narratives may not depend solely on pre-existing knowledge of the top-down process to guide perception and15

understanding, but may also emerge from a bottom-up process driven by the ventral attention subnetwork.16

Keywords fMRI; dynamic functional connectivity; narratives; shapley values; machine learning; convolutional17

neural networks18
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1 Introduction23

Understanding the principles of representation and computation in the human brain, and developing corresponding24

predictive models, remains one of the great open challenges in neuroscience. fMRI provides a rich window25

into the dynamics of the whole human brain with a certain level of spatial and temporal resolution. From the26

beginning, human language processing has been a target of investigation with fMRI [Price, 2012]. Experiments27

with words and sentences allowed the identification of language processing areas and networks at different levels of28

structure [Keller et al., 2001]. More recently, evidence has emerged that language processing involves even broader29

recruitment across the brain, which might be obscured by time averaging and thresholding [Aliko et al., 2023].30

This is consistent with studies that revealed how language recruits an extended fronto-temporo-parietal semantic31

system beyond the classic perisylvian language network [Xu et al., 2005, Jouen et al., 2015, Binder and Desai,32

2011]. This has been demonstrated in the processing of narrative, full stories, which produce wide recruitment of33
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whole brain networks for memory, visuospatial representation, and emotion [Xu et al., 2005, Jääskeläinen et al.,34

2021, Silbert et al., 2014]. Thus, narrative processing is a privileged context for the investigation of brain functional35

dynamics [Willems et al., 2020]. How can these functional dynamics be characterized? Analysis methods based36

on time averaging and subtraction tend to ignore the contribution of brain systems whose activity is variable37

and averaged out during thresholding. Functional connectivity analysis can be used to capture and characterize38

these dynamic interactions of brain regions over time [Sizemore and Bassett, 2018, Preti et al., 2017]. Temporal39

brain networks model the evolution of functional connectivity over time and thus have the desired properties40

of capturing the full brain dynamics that may be lost in time averaging and thresholding. Here, we exploit the41

representational richness of dynamic functional connectivity in temporal brain networks to characterize brain42

dynamics during narrative processing using machine learning.43

In particular, we propose a simple machine learning model to classify in a supervised setting fMRI data44

collected during a narrative comprehension task. The model is mainly composed of a convolutional layer and45

a multi-layer perceptron (MLP). It is trained to classify the modality of the narrative (audio or video), the46

content of the narrative (airport or restaurant situations) and these two together in a four-class classification.47

We use the model to investigate the importance of temporal dynamics in narrative processing and combined48

with the powerful explainability technique of Shapley values we delve deeper into the model’s decision-making49

process. Specifically, we quantify the subnetwork contributions in the classification of two different parcellation50

methods (Yeo 7-subnetwork and 17-subnetwork) and this allows us to identify the most involved subnetworks in51

the narrative processing task. Our work is the first to apply this approach to functional aspects of the brain,52

validated by existing literature, and provides novel insights at the whole-brain level.53

The results provide valuable insights, validated by existing research on narrative comprehension [Baldassano54

et al., 2018, Simony et al., 2016], and contribute to a broader understanding of how we process narratives. Our55

findings challenge the initial assumption that narrative comprehension relies solely on top-down activation of56

scripts, where prior knowledge, experiences, and expectations solely guide interpretation [Dubin and Bycina, 1991].57

The prominent role of the ventral attention subnetwork in content classification suggests a more nuanced model.58

This network is associated with bottom-up attentional control, implying that narrative processing might involve59

the assembly and integration of sensory information from the environment alongside top-down influences. This60

possibility aligns with the notion that schematic representations may not solely be driven by top-down activation61

but could be built upon bottom-up processing mediated by the ventral attention subnetwork [Vossel et al., 2014].62

1.1 Related works63

Classification of tasks from fMRI data Numerous studies have explored classifying tasks and subject64

characteristics (such as age and sex) from functional brain connectivity data using fMRI, primarily aiming to65

develop powerful architectures. Examples include the work by Kim et al. [2021], where they propose a Spatio-66

Temporal Attention Graph Isomorphism Network model for high-accuracy prediction of 7 tasks (memory, social,67

relational, motor, language, gambling, and emotion) alongside sex. Another approach by Kim et al. [2023] utilizes68

a transformer to classify age, sex, and cognitive intelligence, with an integrated gradient technique for interpreting69

sex classification results. The latter explainability technique is also employed in a parallel similar work by Ryali70

et al. [2024], where they classify sex using a simpler spatio-temporal deep neural network. Other papers by Huang71

et al. [2021] and Saeidi et al. [2022] use a deep learning model, mainly composed of a convolutional neural network72

and a recurrent neural network, and a graph neural network, respectively, to classify the 7 tasks.73

Narratives classification In contrast to the aforementioned papers, our work focuses on a more detailed74

classification domain, specifically the classification of modalities (movie, story) and the thematic content of the75

script (airport, restaurant).Baldassano et al. [2018] exemplify this approach, using a stochastic Hidden Markov76

Model to classify, based on the activation of a selection of regions of interest (ROIs) in the default attention77

networks, thematic content while also incorporating event alignment.78

Shapley values in brain networks The use of Shapley values has become a popular approach to explain79

the predictions of machine learning models. In neuroscience, for instance, Amoroso et al. [2023] classify three80

conditions (Alzheimer’s disease, mild cognitive impairment, and healthy controls) based on brain structural81

connectivity data from MRI scans. They then leverage Shapley values to identify the most influential "patch" for82

classification. Another study by Kotter et al. utilizes Shapley ratings in macaque brain networks, employing a83

graph theory approach to analyze these networks. Here, the number of strongly connected components within a84

subgraph serves as the Shapley value function [Kötter, 2007]. The most similar work to ours is by Li et al. [2020].85

They propose a new estimation method for Shapley values and apply it when classifying functional connectivity86

data from fMRI. In their example, they classify patient conditions (autism spectrum disorder or healthy) and87
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compute the importance of different ROIs in classification, though they don’t delve into the neuroscientific88

interpretation of the results.89

1.2 Our contribution90

This study combines machine learning with explainable AI to investigate the specific roles of brain subnetworks91

during tasks involving narratives. We leverage functional connectivity, extracted from fMRI data, and Shapley92

values to identify which brain subnetworks are most influential in classifying narrative modality (audio and movie),93

thematic content (airport and restaurant situation) and their combination. The fMRI data are segmented into 794

or 17 Yeo subnetworks using the Schaefer 100 element parcellation [Schaefer et al., 2018]. Our machine learning95

model, composed of a convolutional neural network and multi-layer perceptron, achieves high accuracy and reveals96

the specific contributions of Yeo subnetworks in narrative processing. Importantly, the focus of our analysis is97

functional connectivity, rather than activation. This analysis, validated by neuroscientific interpretation aligned98

with existing literature, offers new insights into the functional roles of these subnetworks and the factor of time99

during narrative classification. Our work demonstrates the power of explainable AI in unveiling the complex100

interplay between brain activity and narrative comprehension. It not only helps to understand narrative processing101

but also paves the way for applying this approach to other areas of brain research.102

2 Methods103

2.1 Model104

Our model takes as input a temporal brain network. This network is a sequence of brain networks, each reflecting105

the brain’s functional connectivity at a specific time step (further details regarding the data processing are106

provided in the Experiments section). Mathematically, the temporal brain network can be represented as a107

three-dimensional tensor, denoted by X ∈ [−1, 1]R×R×T , where R represents the number of brain regions and T108

represents the number of time steps. In our case, R is 100 and T is 8.109

The model architecture consists of a single-layer three-dimensional convolutional neural network, followed110

by a max pooling layer and a multi-layer perceptron for classification. The convolution filter has size (R,R, τ)111

with no padding, where the two first dimensions match with those of the input. This design focuses on capturing112

temporal features within the brain network by restricting filter movement to the temporal axis. Max pooling is113

then applied to reduce the dimensionality of the extracted features. Finally, a multi-layer perceptron performs the114

classification task. A visual representation of the model architecture is provided in Figure 1.115

Notably, when the filter size in the temporal dimension is set to 1 (τ = 1), the model becomes invariant to the116

specific order of time steps in the input data. An analysis of the model’s performance with different filter sizes is117

provided in the Appendix section.118

Formally, given an input tensor X ∈ [−1, 1]R×R×T , the output of the convolutional layer is defined as119

Yk,c = σ(X ∗W + b)k,c = σ(

R∑
i=1

R∑
j=1

τ∑
p=1

Xi,j,k+p−1 ·Wi,j,p,c + bk,c)

where Y ∈ RK×C is the output tensor, W ∈ RR×R×τ×C is the learnable filter tensor, b ∈ RK×C is the bias matrix120

and C is the number of output channels. The operations ·,+ and σ, which represents the ReLU(x) = max({0, x})121

activation function, are applied component-wise. The output tensor is then passed through a max pooling layer122

so that the output vector Z ∈ RC is defined as123

Z = max
k

Y [k, c].

Finally, the output passed through a multi-layer perceptron of three fully connected layers with ReLU activation124

functions. A fully connected layer can be defined as V = σ(W ·Z+ b) where V is the output of the fully connected125

layer, W is the weight matrix, and b is the bias vector.126

2.2 Shapley Values127

Shapley values were introduced by Lloyd Shapley in 1951 in the context of cooperative game theory [Shapley,128

1951]. They quantify the contribution of each player in a coalition game. Recently, they have been adopted in129

machine learning to explain the predictions of models. Shapley values can be calculated using different methods130

including sampling or exact computation for smaller player sets [Lundberg and Lee, 2017]. In our case, we leverage131
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Figure 1: Pipeline from the extraction of temporal brain networks to the classification of the narrative aspects.
The first step is the division of the brain into regions according to an atlas. The second step is the sliding
window method, which individuates rectangular windows within which the Pearson correlation coefficient is
computed between each pair of brain region time series. The output is then fed into the model, which consists of
a convolutional layer, a max-pooling layer, and a multi-layer perceptron.

Shapley values to understand the influence of specific brain subnetworks on the prediction of our model. Because132

of the limited number of brain subnetworks defined by the 7 Yeo parcellation method [Thomas Yeo et al., 2011],133

we can compute the exact Shapley values. The exact Shapley value of a brain subnetwork i is defined as134

φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) (1)

where N is the set of brain subnetworks, v is the accuracy of our model when considering the set S of brain135

subnetworks. To isolate the brain subnetworks in the temporal brain network X we set the entries of the other136

subnetworks to zero. The Shapley value φi(v) is the average marginal contribution of the brain subnetwork i137

over all possible combinations of brain subnetworks, the higher the Shapley value, the more important the brain138

subnetwork is for the prediction of the model. For the 17 Yeo subnetwork parcellation, the exact computation of139

Shapley values becomes computationally expensive. Therefore, we employ a sampling method that approximates140

the Shapley values using the same formula but instead of summing over all possible subnetwork combinations,141

we sample a large number of combinations (100 samples in our case) to approximate the average marginal142

contribution.143

2.3 Experiments144

Experiments were performed to determine if the temporal brain networks can be used to discriminate brain145

functional connectivity patterns in response to audio vs. movie narratives, airport vs. restaurant situations, and146

the combination of these two dimensions. We trained a machine learning model in a supervised setting to classify147

these aspects and used Shapley values to interpret the model’s decisions.148

2.3.1 Data149

Dataset Our analysis used fMRI data from the study of Baldassano et al. [2018] archived as part of the150

Narratives dataset created by Nastase et al. (https://openneuro.org/datasets/ds002345/versions/1.1.4)151

[Nastase et al., 2020]. The Baldassano dataset includes brain activity recordings from 31 participants engaged in152

a narrative task. In this task, each subject is exposed to 16 3-minute stories (4 per run over 4 runs), from two153

different scripts (eating at a restaurant or going through the airport). While the stories within each category154

share a similar high-level sequence of events, there are variations in the specific details of these events. Each155

run presents 2 movies and 2 audio stories, for a total of 8 movies and 8 audio segments over the course of the156

experiment. The dataset is balanced in terms of the number of samples per modality and content.157
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Preprocessing The fMRI data has a spatial resolution of 91×91×109 voxels in the x, y, and z axes, respectively,158

for a total of 902, 629 voxels. Each voxel measures 2× 2× 2 mm. The repetition time is 1.5 seconds, for a total of159

490 time points and a total duration of 12 minutes per run approximatively.160

Preprocessing involved transforming the blood-oxygen-level-dependent (BOLD) signals from each voxel into161

temporal graphs. We implemented a pipeline to reduce motion artifacts by performing linear regression on the162

movement parameters. Additionally, a bandpass filter (0.01− 0.08 Hz) was applied to remove noise arising from163

respiration and cardiac pulsations [Van Dijk et al., 2010].164

To define the network nodes, we employed the Schaefer et al. brain atlas (after having put the data in the165

MNI152 space), parcellating the brain into 100 ROIs based on anatomical and functional criteria [Schaefer et al.,166

2018]. ROIs were created by averaging the BOLD time series of voxels within gray matter regions. We then167

utilized a sliding window approach with 30-second windows and 7.5 seconds overlap to divide the data into time168

steps. The Pearson correlation coefficient was computed between each pair of ROI time series within each window,169

with the resulting correlation value assigned as the weight of the edge connecting the corresponding ROI nodes.170

This process yielded an adjacency matrix for each time window, and the sequence of these matrices formed the171

temporal brain networks (see Figure 1).172

2.3.2 Experimental setting173

The experiments were conducted on a workstation equipped with a single NVIDIA Quadro RTX 8000 graphics174

card. We utilized the Julia programming language for the workflow, from network creation starting from the175

clean signal to the model development [Bezanson et al., 2017]. The Flux.jl library was used for neural network176

implementation and the Makie.jl library was used for visualization [Innes et al., 2018, Danisch and Krumbiegel,177

2021]. The source code is available at the following GitHub repository: https://github.com/aurorarossi/178

fMRINarrativeClassification.179

Hyperparameters The hyperparameters were chosen based on empirical observations. The convolutional filter180

τ parameter was set to 4 for the modality classification task and 8 for the content and the combined classification181

task (see the Appendix for more details). The number of output channels was set to 128 for all the tasks. The182

MLP had two hidden layers with 64 and 32 units each with a ReLU activation function. The output dimension183

of the MLP was set to 2 for the modality classification task, 2 for the content classification task, and 4 for the184

combined classification task.185

Training Given the limited size of the dataset, we employed a batch size of 1 during training. We used the Adam186

optimizer with a learning rate of 0.0001. The training process lasted for 20 epochs. The choice of 20 epochs was187

determined through experiments to achieve a good balance between training time and model performance. For the188

loss function, we used either logit binary cross-entropy or logit cross-entropy depending on the number of classes189

in the task. To ensure robustness against potential variations due to model initialization, we retrain the model 15190

times with different random splits of the data (80% training, 20% testing). During each iteration, we compute191

both the Shapley values and the model’s accuracy. Finally, we report the mean and standard deviation to account192

for variability for the accuracy, and for Shapley values of each subnetwork, we present the mean values along with193

error bars representing the standard deviation. This approach ensures a comprehensive understanding of the194

model’s performance, the contribution of individual brain subnetworks to its classifications, and the robustness of195

these findings across model initializations.196

3 Results197

In this section, we describe the results of our experiments. We present the performance of the model on three198

classification tasks:199

• Modality classification: this task focuses on classifying the brain network based on the modality of the200

stimuli, audio or movie.201

• Content classification: the model classifies the brain network based on the content of the stimuli, airport202

or restaurant situations.203

• Combined Modality and Content Classification: this task evaluates the model’s ability to jointly204

classify both the modality and the content of the stimuli.205
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Modality Content Both Modality and Content

Accuracy 96.32%± 1.36% 80.9%± 1.75% 80.70%± 2.97%

Precision 95.64%± 1.43% 84.55%± 2.29% 81.54%± 5.34%

Recall 97.08%± 2.20% 75.69%± 3.02% 80.70%± 5.23%

F1-Score 96.34%± 1.36% 79.84%± 1.96% 80.92%± 6.06%

Accuracy permuting network windows 86.60%± 3.36% 63.19%± 4.40% 53.12%± 5.85%

Accuracy permuting time series 50.76%± 2.74% 47.22%± 2.45% 26.18%± 2.64%

Static functional connectivity accuracy 86.11%± 2.38% 75.07%± 2.44% 62.71%± 3.18%

Table 1: Performance metrics of the model across modality, content, and combined classification tasks. The
row ‘Accuracy permuting network windows‘ reflects the model’s performance when brain network time steps are
permuted, while ‘Accuracy permuting time series‘ shows performance when the time series are permuted prior
to constructing the network. The last row reports the model’s performance using static functional connectivity
matrices.

The results in Table 1 show that the model performs well on the modality classification task, achieving an206

accuracy of 96.32%± 1.36%. While still a good performance considering the complexity, the model’s accuracy207

on the content classification task was slightly lower at 80.9% ± 1.75%. This difference might be attributed to208

the inherent difficulty of content classification compared to modality identification. Furthermore, the combined209

modality and content classification task resulted in an accuracy of 80.70%± 2.97%, which is consistent with the210

content classification task. Notably, the model displayed consistent performance across all metrics.211

(a)
(b)

Figure 2: Yeo parcellations used in the Shapley value analysis. The 7-subnetwork parcellation is shown on the left
(a), while the 17-subnetwork parcellation is shown on the right (b).

To assess the importance of the time dimension in classification tasks, we performed two types of permutation:212

first, we shuffled the time series before constructing the network; second, we shuffled the network windows while213

keeping the time steps within each window intact, followed by retraining the model. As expected, shuffling the214

entire time series led to significantly lower accuracy compared to shuffling the network windows.215

When shuffling the network windows, the time evolution within each window remains consistent with the216

original data, essentially creating a block permutation. This means that while the order of windows is altered, the217

temporal relationships within each window are preserved. In contrast, shuffling the entire time series disrupts218

the sequential flow, completely dismantling its temporal structure. This disruption impacts both content and219

modality classification, as both rely heavily on the temporal context of the brain activity being analyzed.220

In the case of shuffling network windows, the results show a notable drop in accuracy compared to the unshuffled221
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data: 10% for modality classification, 17% for content classification, and a substantial 27% for the combined222

task. These drops indicate that the temporal dynamics within brain networks are crucial for all classification223

tasks and that the model effectively utilizes this information. The performance decrease is more pronounced in224

content and combined classification tasks compared to modality classification, which aligns with our expectations.225

Understanding content, which often unfolds over time and involves complex interactions between brain regions,226

likely depends more on temporal dynamics than modality identification alone.227

For static functional connectivity matrices, the results remain relatively high: 86.11%± 2.38% for modality228

classification, 75.07%± 2.44% for content classification, and 62.71%± 3.18% for the combined task. While these229

results indicate that static features provide valuable information, the performance is notably lower compared to230

when the model incorporates dynamic time series data. This suggests that while static functional connectivity231

offers useful insights, integrating temporal information significantly improves the model’s ability to accurately232

classify brain activity.233

To gain deeper insights into how the model leverages brain activity for classification, we employed Shapley234

values. Here, we focus on subnetworks defined by the Yeo parcellation method [Thomas Yeo et al., 2011],235

specifically the 7-subnetwork and 17-subnetwork parcellations. Visualizations of these parcellations are provided236

in Figure 2. Black and white compatible versions of these figures can be found in the Appendix.237

(a) (b)

(c)

Figure 3: This figure shows the contribution of Yeo 7-subnetworks computed with Shapley values for classifying
narrative using a machine learning model. The bars represent the average contribution of each subnetwork to
the model’s predictions, with higher values indicating greater influence. The error bars represent the standard
deviation of the Shapley values.

Figure 3 presents the Shapley values for the 7-subnetwork parcellation. In the modality classification task, the238

visual subnetwork emerges as the most influential, followed by the default mode subnetwork (Figure 3a). This239

aligns with the intuitive notion that processing visual information plays a key role in distinguishing modalities.240

For the content classification task, the high value of the default mode subnetwork suggests its influence in241
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understanding the meaning and content of the stimuli as suggested by previous studies [Baldassano et al., 2018,242

Simony et al., 2016] (Figure 3b). Finally, the combined classification task reveals the importance of both the243

visual and default mode networks (Figure 3c), suggesting that the model utilizes a combination of visual features244

and higher-order processing for accurate content and modality classification.245

(a) (b)

(c)

Figure 4: This figure shows the contribution of Yeo 7-subnetworks computed with Shapley values for classifying
narrative using a machine learning model. The bars represent the average contribution of each subnetwork to
the model’s predictions, with higher values indicating greater influence. The error bars represent the standard
deviation of the Shapley values.

Figure 4 presents the Shapley values for the 17-subnetwork parcellation. In the modality classification task,246

the visual A and B, default A and B and somatomotor A subnetworks emerge as the most influential (Figure247

4a). For the content classification task, the default A and B subnetworks, the somatomotor A and the ventral248

attention B also play crucial roles (Figure 4b). Finally, the combined classification task reveals the importance of249

the visual A and B, default A and B, and somatomotor A subnetworks (Figure 4c).250

Figure 5 shows the Shapley scores for the 100 parcellations of the Schaefer subnetworks, which are consistent251

with the results of the Yeo parcellations. The visual network emerges as the most significant for modality252

classification. For content classification, the default mode network is dominant, while for combined classification,253

both networks are most significant.254
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(a)

(b)

(c)

Figure 5: This figure shows the contribution of 100 Schaefer subnetworks, computed using Shapley values, for
classifying narratives with our machine learning model. The bars represent the average contribution of each
subnetwork to the model’s predictions, with higher values indicating greater influence. The error bars denote
the standard deviation of the Shapley values. Additionally, the color of each bar corresponds to one of the 7
subnetworks in the Yeo 7-parcellation.

4 Discussion255

This work investigated the neural basis of narrative processing using a machine learning model that classifies256

narrative aspects (modality, content, combined) based on functional connectivity networks derived from fMRI257

data. The model’s performance aligned with expectations: higher accuracy for modality classification, which258

is a simpler task because it relies on sensory information, compared to content classification which requires a259

deeper understanding of the narrative. Permuting time steps in the temporal brain network significantly reduced260

accuracy, particularly in content and combined tasks, suggesting that temporal dynamics rely on the sequence of261

events to understand the content.262

To delve deeper into the model’s decision-making process, we employed Shapley values, a powerful explainable263

AI technique that quantifies subnetwork contributions. While techniques like Grad-CAM and Eigen-CAM provide264

valuable insights in image data, where spatial localization is crucial, they are less applicable in our context265

[Muhammad and Yeasin, 2020, Selvaraju et al., 2020]. The rows and columns of the functional connectivity matrix266

capture the correlations among respective brain regions, but without a clear invariance relationship motivating267

the use of convolutional kernels across regions. Conversely, it is natural to assume the existence of time-invariant268

features for our task. This assumption is validated by our results, which demonstrate performance degradation269

when the sequence of connectivity graphs is randomly shuffled across time. This motivation supports the use270

of our convolutional neural network operating on the temporal dimension of the data. Class Activation Map271

9



techniques would highlight salient time-steps determining the output, but would not provide insights into the272

relevant brain regions. In contrast, our use of Shapley coefficients allows us to control the masking of specific273

subnetworks, enabling an analysis of individual brain regions’ contributions to the model’s predictions while274

accommodating our temporal data setup.275

Our findings revealed that in the 7-subnetwork analysis, the visual and default subnetworks are key for276

modality classification, reflecting the intuitive notion that visual processing is essential for distinguishing between277

movies and audio stories. In content classification, the default mode subnetwork emerged as the most influential,278

suggesting its essential function in understanding the meaning and content of the stimuli. This aligns with existing279

research that has highlighted the default mode subnetwork’s involvement in higher-order cognitive functions,280

such as narrative comprehension [Baldassano et al., 2018, Simony et al., 2016]. The combined classification task281

emphasized the importance of both visual and default mode networks, as expected.282

A more fine-grained analysis using the 17-subnetwork parcellation revealed additional insights. While visual283

and default mode networks remained dominant for modality classification, the somatomotor subnetwork also284

showed a high Shapley value. The latter can be better understood in the context of embodied cognition and285

language comprehension. A seminal study of embodied language comprehension demonstrated that passive286

reading of action words produces a corresponding somatotopic activation of the motor and premotor cortex [Hauk287

et al., 2004]. Likewise, viewing images or reading sentences describing everyday actions produces a distributed288

activation in fronto-temporo-parietal network that includes sensory-motor and premotor cortex [Jouen et al., 2015].289

Similar to the 7-subnetwork analysis, the default mode subnetwork was most influential for content classification.290

Interestingly, the ventral attention subnetwork also played a significant role. This finding is a step further to291

answer the open question raised by the study Baldassano et al. [2018] study. They proposed that schematic292

representations in the brain might not solely rely on top-down activation of scripts in the medial prefrontal cortex.293

They suggested these representations could serve as building blocks for a complete narrative script formed through294

a bottom-up process. Our observation of a high Shapley value for the ventral attention subnetwork, which is295

known to be also associated with bottom-up attentional control, aligns with this possibility. Finally, the combined296

classification task again highlighted the importance of visual, default mode, and somatomotor A networks.297

Limitations and Future Works It is important to acknowledge that the primary limitation of this study is298

the size of the dataset used. This may limit the generalizability of our findings to other populations or narrative299

stimuli. Future research could address this by employing larger datasets, if available. Additionally, exploring the300

generalizability of these findings across diverse datasets would be valuable. Within the context of the current301

dataset size, future work could delve deeper into other aspects of narrative processing. One potential direction302

is to investigate the impact of individual differences in narrative comprehension. For instance, research could303

explore how factors such as age, reading experience, or cultural background might influence how individuals304

process narratives based on brain network activity. In addition, it would be beneficial to explore the model’s305

decision-making process in more detail. Analyzing the learned weights of our neural architectures could provide306

complementary insights to those obtained from Shapley scores, which focus on model predictions. This approach307

could provide a clearer understanding of how specific brain regions contribute to the classification task. Finally,308

future work could explore the temporal dynamics of narrative processing by examining the role of specific time309

windows in the classification task. Masking entire time steps and assessing the effect of window size on classification310

performance may shed light on how temporal information is integrated to understand narratives.311

Conclusion Overall, our work demonstrates the potential of combining machine learning models with explainable312

AI techniques like Shapley values to understand the role of brain subnetworks during narrative processing. Our313

findings not only contribute to a deeper understanding of how the brain processes narratives but also showcase314

the broader applicability of this approach. In tasks where the role of specific brain regions remains unclear, this315

methodology can provide valuable new insights. By highlighting subnetwork contributions through Shapley values,316

we can generate novel hypotheses about the functional roles of these regions. In our case, the model’s performance317

aligns with existing literature on narrative comprehension, validating the approach. Importantly, this research318

validates an alternative and complementary method for investigating brain function in human cognition, which319

involves functional connectivity. This successful validation paves the way for further exploration of brain networks320

not only in higher-order cognition, motor tasks, and emotional processing but also in any domain where the neural321

basis remains partially understood.322

10



Author contributions323

A.R. processed the data, designed the model, performed the experiments, drafted the original manuscript and324

contributed to its revisions. Y.A. preprocessed the data. E.N. designed the model, supervised the project, reviewed325

and edited the manuscript. S.D.G. and P.F.D. conceived and supervised the project, reviewed and edited the326

manuscript.327

References328

Sarah Aliko, Bangjie Wang, Steven L Small, and Jeremy I Skipper. The entire brain, more or less, is at work329

: ‘Language regions’ are artefacts of averaging, September 2023. URL http://biorxiv.org/lookup/doi/10.330

1101/2023.09.01.555886.331

Nicola Amoroso, Silvano Quarto, Marianna La Rocca, Sabina Tangaro, Alfonso Monaco, and Roberto Bellotti.332

An eXplainability Artificial Intelligence approach to brain connectivity in Alzheimer’s disease. Frontiers in333

Aging Neuroscience, 15, August 2023. doi: 10.3389/fnagi.2023.1238065. URL https://www.frontiersin.org/334

articles/10.3389/fnagi.2023.1238065/full.335

Christopher Baldassano, Uri Hasson, and Kenneth A. Norman. Representation of Real-World Event Schemas336

during Narrative Perception. The Journal of Neuroscience, 38(45):9689–9699, November 2018. doi: 10.1523/337

JNEUROSCI.0251-18.2018. URL https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0251-18.338

2018.339

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to numerical computing.340

SIAM review, 59(1):65–98, 2017. URL https://doi.org/10.1137/141000671.341

Jeffrey R. Binder and Rutvik H. Desai. The neurobiology of semantic memory. Trends in Cognitive Sciences,342

15(11):527–536, November 2011. doi: 10.1016/j.tics.2011.10.001. URL https://linkinghub.elsevier.com/343

retrieve/pii/S1364661311002142.344

Simon Danisch and Julius Krumbiegel. Makie.jl: Flexible high-performance data visualization for Julia. Journal345

of Open Source Software, 6(65):3349, 2021. doi: 10.21105/joss.03349. URL https://doi.org/10.21105/joss.346

03349.347

Fraida Dubin and David Bycina. Academic reading and the esl/efl teacher. Teaching English as a second or348

foreign language, 2:195–215, 1991.349

Olaf Hauk, Ingrid Johnsrude, and Friedemann Pulvermüller. Somatotopic Representation of Action Words in350

Human Motor and Premotor Cortex. Neuron, 41(2):301–307, January 2004. doi: 10.1016/S0896-6273(03)00838-9.351

URL https://linkinghub.elsevier.com/retrieve/pii/S0896627303008389.352

Xiaojie Huang, Jun Xiao, and Chao Wu. Design of Deep Learning Model for Task-Evoked fMRI Data Classification.353

Computational Intelligence and Neuroscience, 2021:1–10, August 2021. doi: 10.1155/2021/6660866. URL354

https://www.hindawi.com/journals/cin/2021/6660866/.355

Michael Innes, Elliot Saba, Keno Fischer, Dhairya Gandhi, Marco Concetto Rudilosso, Neethu Mariya Joy, Tejan356

Karmali, Avik Pal, and Viral Shah. Fashionable modelling with flux. CoRR, abs/1811.01457, 2018. URL357

https://arxiv.org/abs/1811.01457.358

A.L. Jouen, T.M. Ellmore, C.J. Madden, C. Pallier, P.F. Dominey, and J. Ventre-Dominey. Beyond the word359

and image: characteristics of a common meaning system for language and vision revealed by functional and360

structural imaging. NeuroImage, 106:72–85, February 2015. doi: 10.1016/j.neuroimage.2014.11.024. URL361

https://linkinghub.elsevier.com/retrieve/pii/S1053811914009410.362

Iiro P. Jääskeläinen, Mikko Sams, Enrico Glerean, and Jyrki Ahveninen. Movies and narratives as naturalistic363

stimuli in neuroimaging. NeuroImage, 224:117445, 2021. doi: https://doi.org/10.1016/j.neuroimage.2020.117445.364

URL https://www.sciencedirect.com/science/article/pii/S1053811920309307.365

Timothy A. Keller, Patricia A. Carpenter, and Marcel Adam Just. The Neural Bases of Sentence Comprehension:366

a fMRI Examination of Syntactic and Lexical Processing. Cerebral Cortex, 11(3):223–237, 03 2001. ISSN367

1047-3211. doi: 10.1093/cercor/11.3.223. URL https://doi.org/10.1093/cercor/11.3.223.368

11

http://biorxiv.org/lookup/doi/10.1101/2023.09.01.555886
http://biorxiv.org/lookup/doi/10.1101/2023.09.01.555886
http://biorxiv.org/lookup/doi/10.1101/2023.09.01.555886
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1238065/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1238065/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1238065/full
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0251-18.2018
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0251-18.2018
https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0251-18.2018
https://doi.org/10.1137/141000671
https://linkinghub.elsevier.com/retrieve/pii/S1364661311002142
https://linkinghub.elsevier.com/retrieve/pii/S1364661311002142
https://linkinghub.elsevier.com/retrieve/pii/S1364661311002142
https://doi.org/10.21105/joss.03349
https://doi.org/10.21105/joss.03349
https://doi.org/10.21105/joss.03349
https://linkinghub.elsevier.com/retrieve/pii/S0896627303008389
https://www.hindawi.com/journals/cin/2021/6660866/
https://arxiv.org/abs/1811.01457
https://linkinghub.elsevier.com/retrieve/pii/S1053811914009410
https://www.sciencedirect.com/science/article/pii/S1053811920309307
https://doi.org/10.1093/cercor/11.3.223


Byung-Hoon Kim, Jong Chul Ye, and Jae-Jin Kim. Learning dynamic graph representation of brain connectome369

with spatio-temporal attention. In Advances in Neural Information Processing Systems, volume 34, pages370

4314–4327. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/371

2021/file/22785dd2577be2ce28ef79febe80db10-Paper.pdf.372

Peter Kim, Junbeom Kwon, Sunghwan Joo, Sangyoon Bae, Donggyu Lee, Yoonho Jung, Shinjae Yoo, Jiook373

Cha, and Taesup Moon. Swift: Swin 4d fmri transformer. In Advances in Neural Information Processing374

Systems, volume 36, pages 42015–42037. Curran Associates, Inc., 2023. URL https://proceedings.neurips.375

cc/paper_files/paper/2023/file/8313b1920ee9c78d846c5798c1ce48be-Paper-Conference.pdf.376

Rolf Kötter. Shapley ratings in brain networks. Frontiers in Neuroinformatics, 1, 2007. ISSN 1662-5196.377

doi: 10.3389/neuro.11.002.2007. URL http://journal.frontiersin.org/article/10.3389/neuro.11.002.378

2007/abstract.379

Xiaoxiao Li, Yuan Zhou, Nicha C. Dvornek, Yufeng Gu, Pamela Ventola, and James S. Duncan. Efficient380

Shapley Explanation for Features Importance Estimation Under Uncertainty. In Medical Image Computing and381

Computer Assisted Intervention – MICCAI 2020, volume 12261. Springer International Publishing, 2020. doi:382

10.1007/978-3-030-59710-8_77.383

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Proceedings of the384

31st International Conference on Neural Information Processing Systems, NIPS’17, page 4768–4777. Curran385

Associates Inc., 2017. ISBN 9781510860964.386

Mohammed Bany Muhammad and Mohammed Yeasin. Eigen-cam: Class activation map using principal387

components. In 2020 international joint conference on neural networks (IJCNN), pages 1–7. IEEE, 2020.388

Samuel A. Nastase, Yun-Fei Liu, Hanna Hillman, Asieh Zadbood, Liat Hasenfratz, Neggin Keshavarzian, Janice389

Chen, Christopher J. Honey, Yaara Yeshurun, Mor Regev, Mai Nguyen, Claire H. C. Chang, Christopher390

Baldassano, Olga Lositsky, Erez Simony, Michael A. Chow, Yuan Chang Leong, Paula P. Brooks, Emily391

Micciche, Gina Choe, Ariel Goldstein, Tamara Vanderwal, Yaroslav O. Halchenko, Kenneth A. Norman, and392

Uri Hasson. "narratives", 2020.393

Maria Giulia Preti, Thomas AW Bolton, and Dimitri Van De Ville. The dynamic functional connec-394

tome: State-of-the-art and perspectives. NeuroImage, 160:41–54, 2017. ISSN 1053-8119. doi: https:395

//doi.org/10.1016/j.neuroimage.2016.12.061. URL https://www.sciencedirect.com/science/article/pii/396

S1053811916307881. Functional Architecture of the Brain.397

Cathy J. Price. A review and synthesis of the first 20years of PET and fMRI studies of heard speech, spoken language398

and reading. NeuroImage, 62(2):816–847, August 2012. ISSN 10538119. doi: 10.1016/j.neuroimage.2012.04.062.399

URL https://linkinghub.elsevier.com/retrieve/pii/S1053811912004703.400

Srikanth Ryali, Yuan Zhang, Carlo de Los Angeles, Kaustubh Supekar, and Vinod Menon. Deep learning models401

reveal replicable, generalizable, and behaviorally relevant sex differences in human functional brain organization.402

Proceedings of the National Academy of Sciences, 121(9):e2310012121, 2024.403

Maham Saeidi, Waldemar Karwowski, Farzad V. Farahani, Krzysztof Fiok, P. A. Hancock, Ben D. Sawyer, Leonardo404

Christov-Moore, and Pamela K. Douglas. Decoding Task-Based fMRI Data with Graph Neural Networks,405

Considering Individual Differences. Brain Sciences, 12(8):1094, August 2022. doi: 10.3390/brainsci12081094.406

URL https://www.mdpi.com/2076-3425/12/8/1094.407

Alexander Schaefer, Ru Kong, Evan M Gordon, Timothy O Laumann, Xi-Nian Zuo, Avram J Holmes, Simon B408

Eickhoff, and BT Thomas Yeo. Local-global parcellation of the human cerebral cortex from intrinsic functional409

connectivity mri. Cerebral cortex, 28(9):3095–3114, 2018.410

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv411

Batra. Grad-cam: visual explanations from deep networks via gradient-based localization. International journal412

of computer vision, 128:336–359, 2020.413

Lloyd S Shapley. Notes on the n-person game—ii: The value of an n-person game. 1951.414

Lauren J. Silbert, Christopher J. Honey, Erez Simony, David Poeppel, and Uri Hasson. Coupled neural systems415

underlie the production and comprehension of naturalistic narrative speech. Proceedings of the National416

Academy of Sciences, 111(43), October 2014. doi: 10.1073/pnas.1323812111. URL https://pnas.org/doi/417

full/10.1073/pnas.1323812111.418

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/22785dd2577be2ce28ef79febe80db10-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/22785dd2577be2ce28ef79febe80db10-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/22785dd2577be2ce28ef79febe80db10-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8313b1920ee9c78d846c5798c1ce48be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8313b1920ee9c78d846c5798c1ce48be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8313b1920ee9c78d846c5798c1ce48be-Paper-Conference.pdf
http://journal.frontiersin.org/article/10.3389/neuro.11.002.2007/abstract
http://journal.frontiersin.org/article/10.3389/neuro.11.002.2007/abstract
http://journal.frontiersin.org/article/10.3389/neuro.11.002.2007/abstract
https://www.sciencedirect.com/science/article/pii/S1053811916307881
https://www.sciencedirect.com/science/article/pii/S1053811916307881
https://www.sciencedirect.com/science/article/pii/S1053811916307881
https://linkinghub.elsevier.com/retrieve/pii/S1053811912004703
https://www.mdpi.com/2076-3425/12/8/1094
https://pnas.org/doi/full/10.1073/pnas.1323812111
https://pnas.org/doi/full/10.1073/pnas.1323812111
https://pnas.org/doi/full/10.1073/pnas.1323812111


Erez Simony, Christopher J Honey, Janice Chen, Olga Lositsky, Yaara Yeshurun, Ami Wiesel, and Uri Hasson.419

Dynamic reconfiguration of the default mode network during narrative comprehension. Nature Communications,420

7(1):12141, July 2016. doi: 10.1038/ncomms12141. URL https://www.nature.com/articles/ncomms12141.421

Ann E. Sizemore and Danielle S. Bassett. Dynamic graph metrics: Tutorial, toolbox, and tale. NeuroImage,422

180:417–427, 2018. ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2017.06.081. URL https:423

//www.sciencedirect.com/science/article/pii/S1053811917305645. Brain Connectivity Dynamics.424

B. T. Thomas Yeo, Fenna M. Krienen, Jorge Sepulcre, Mert R. Sabuncu, Danial Lashkari, Marisa Hollinshead,425

Joshua L. Roffman, Jordan W. Smoller, Lilla Zöllei, Jonathan R. Polimeni, Bruce Fischl, Hesheng Liu, and426

Randy L. Buckner. The organization of the human cerebral cortex estimated by intrinsic functional connectivity.427

Journal of Neurophysiology, 106(3):1125–1165, September 2011. doi: 10.1152/jn.00338.2011.428

Koene R. A. Van Dijk, Trey Hedden, Archana Venkataraman, Karleyton C. Evans, Sara W. Lazar, and Randy L.429

Buckner. Intrinsic Functional Connectivity As a Tool For Human Connectomics: Theory, Properties, and430

Optimization. Journal of Neurophysiology, 103(1):297–321, January 2010. doi: 10.1152/jn.00783.2009. URL431

https://www.physiology.org/doi/10.1152/jn.00783.2009.432

Simone Vossel, Joy J. Geng, and Gereon R. Fink. Dorsal and Ventral Attention Systems: Distinct Neural Circuits433

but Collaborative Roles. The Neuroscientist, 20(2):150–159, April 2014. doi: 10.1177/1073858413494269.434

Roel M. Willems, Samuel A. Nastase, and Branka Milivojevic. Narratives for Neuroscience. Trends in Neurosciences,435

43(5):271–273, May 2020. ISSN 01662236. doi: 10.1016/j.tins.2020.03.003. URL https://linkinghub.436

elsevier.com/retrieve/pii/S0166223620300497.437

Jiang Xu, Stefan Kemeny, Grace Park, Carol Frattali, and Allen Braun. Language in context: emergent features438

of word, sentence, and narrative comprehension. NeuroImage, 25(3):1002–1015, April 2005. doi: 10.1016/j.439

neuroimage.2004.12.013. URL https://linkinghub.elsevier.com/retrieve/pii/S1053811904007748.440

13

https://www.nature.com/articles/ncomms12141
https://www.sciencedirect.com/science/article/pii/S1053811917305645
https://www.sciencedirect.com/science/article/pii/S1053811917305645
https://www.sciencedirect.com/science/article/pii/S1053811917305645
https://www.physiology.org/doi/10.1152/jn.00783.2009
https://linkinghub.elsevier.com/retrieve/pii/S0166223620300497
https://linkinghub.elsevier.com/retrieve/pii/S0166223620300497
https://linkinghub.elsevier.com/retrieve/pii/S0166223620300497
https://linkinghub.elsevier.com/retrieve/pii/S1053811904007748


5 Appendix441

5.1 Choice of parameter τ442

The following figure shows the evolution of the model’s accuracy as a function of the third dimension of the443

convolutional filter (i.e. τ). For the modality classification, we set τ = 4, since model performance seems not to444

increase significantly beyond this value (Figure 6a). For the content and combined classification, we set τ = 8445

since the model performance seems the best for this value (Figure 6b and Figure 6c). It is important to highlight446

that when τ = 8 the convolution behaviour is similar to the one of dense layer.

(a) (b)

(c)

Figure 6: Model’s accuracy as a function of the third dimension of the convolutional filter.
447

5.2 Destrieux parcellation448

The following figure shows the Shapley values for the Destrieux parcellation in Figure 7. The Shapley values are449

calculated for the modality classification (Figure 7a), content classification (Figure 7b), and combined classification450

(Figure 7c). Shapley values were calculated for 75 brain regions, with area 34 consistently highlighted as a451

significant region across all tasks. Area 34, located in the superior temporal gyrus, includes key structures such as452

Brodmann’s areas, which contain the auditory cortex responsible for sound perception. It also includes Wernicke’s453

area, which is essential for processing speech into understandable language. Given these critical functions, it is454

not surprising that area 34 plays a central role in narrative-related tasks. In addition, its involvement in the455

default mode network and the ventral attention network, both of which are essential for narrative processing, is456

consistent with Yeo’s parcellation findings.457
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(a)

(b)

(c)

Figure 7: This figure shows the contribution of 75 Destrieux regions, computed using Shapley values, for classifying
narratives with our machine learning model. The bars represent the average contribution of each region to the
model’s predictions, with higher values indicating greater influence. The error bars denote the standard deviation
of the Shapley values. The correspondence between label and region can be found in the Table 2
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Destrieux labels
0 null
1 Fronto-marginal_gyrus+sulcus
2 Inferior_occipital_gyrus+sulcus
3 Paracentral_lobule+sulcus
4 Subcentral_gyrus+sulci
5 Transverse_frontopolar_gyri+sulci
6 Cingulate_gyrus+sulcus_anterior_part
7 Cingulate_gyrus+sulcus_middle-anterior_part
8 Cingulate_gyrus+sulcus_middle-posterior_part
9 Cingulate_gyrus_posterior-dorsal_part
10 Cingulate_gyrus_posterior-ventral_part
11 Cuneus
12 Inferior_frontal_gyrus_opercular_part
13 Inferior_frontal_gyrus_orbital_part
14 Inferior_frontal_gyrus_triangular_part
15 Middle_frontal_gyrus
16 Superior_frontal_gyrus
17 Insula_insular_gyrus+central_sulcus
18 Insular_gyri_short
19 Middle_occipital_gyrus
20 Superior_occipital_gyrus
21 Lateral_occipito-temporal_gyrus
22 Lingual_gyrus
23 Parahippocampal_gyrus
24 Orbital_gyri
25 Angular_gyrus
26 Supramarginal_gyrus
27 Superior_parietal_lobule
28 Postcentral_gyrus
29 Precentral_gyrus
30 Precuneus
31 Straight_gyrus
32 Subcallosal_area+gyrus
33 Anterior_transverse_temporal_gyrus
34 Superior_temporal_gyrus_lateral_aspect
35 Superior_temporal_gyrus_planum_polare
36 Planum_temporale
37 Inferior_temporal_gyrus

38 Middle_temporal_gyrus
39 Anterior_segment_of_lateral_sulcus_horizontal_ramus
40 Anterior_segment_of_lateral_sulcus_vertical_ramus
41 Lateral_sulcus_posterior_ramus
42 null
43 Occipital_pole
44 Temporal_pole
45 Calcarine_sulcus
46 Central_sulcus
47 Cingulate_sulcus_marginal_branch
48 Insula_circular_sulcus_anterior_part
49 Insula_circular_sulcus_inferior_part
50 Insula_circular_sulcus_superior_part
51 Anterior_transverse_collateral_sulcus
52 Posterior_transverse_collateral_sulcus
53 Inferior_frontal_sulcus
54 Middle_frontal_sulcus
55 Superior_frontal_sulcus
56 Sulcus_intermedius_primus
57 Intraparietal_sulcus+transverse_parietal_sulci
58 Middle_occipital+lunatus_sulcus
59 Superior+transverse_occipital_sulcus
60 Anterior_occipital_sulcus+preoccipital_notch
61 Lateral_occipito-temporal_sulcus
62 Collateral+lingual_sulcus
63 Lateral_orbital_sulcus
64 Olfactory_sulcus
65 Orbital_sulci
66 Parieto-occipital_sulcus
67 Pericallosal_sulcus
68 Postcentral_sulcus
69 Precentral_sulcus_inferior_part
70 Precentral_sulcus_superior_part
71 Suborbital_sulcus
72 Subparietal_sulcus
73 Inferior_temporal_sulcus
74 Superior_temporal_sulcus
75 Transverse_temporal_sulcus

Table 2: Correspondence between Destrieux labels and regions
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5.3 Desikan parcellation458

The following figure shows the Shapley values for the Desikan parcellation in Figure 8. The Shapley values are459

calculated for the modality classification (Figure 8a), content classification (Figure 8b), and combined classification460

(Figure 8c). Shapley values were calculated for 70 brain regions, showing that area 34, associated with the461

temporal pole, has the highest value in modality classification. This region is associated with several high-level462

cognitive processes, particularly visual processing of complex objects and face recognition. This is followed by463

region 22, the pericalcarine cortex or primary visual cortex, which is primarily responsible for processing visual464

information. In content classification, the right and left banks of the superior temporal sulcus stand out. These465

regions serve as hubs for social perception and cognition, including recognition of faces and human movement, as466

well as understanding actions, mental states and language. In addition, region 31, the superior temporal gyrus,467

remains important, consistent with previous findings. In the combined classification task, the middle temporal468

gyrus, the pericalcarine cortex and the superior temporal sulcus emerge as the most involved regions.469

5.4 Inter-intra subject variability470

Intra-subject standard deviation (SD):We calculated the intra-subject standard deviation by first computing471

the standard deviation of accuracy for each individual subject. These individual standard deviations were then472

averaged across all subjects. The intra-subject standard deviation is given by:473

SD =
1

N

N∑
i=1

SDi

where N is the total number of subjects and SDi is computed as follows:474

SDi =

√√√√ 1

M − 1

M∑
k=1

(Accuracyi,k −MeanAccuracyi)2

Here Accuracyi,k is represents the accuracy for the k-th sample of subject i, MeanAccuracyi is the mean accuracy475

for subject i, and M is the number of samples for each subject (16).476

Inter-subject standard deviation (SD):The inter-subject standard deviation was calculated by taking the477

standard deviation of the mean accuracy values across all subjects:478

SD = SD(
1

N

N∑
j=1

MeanAccuracyj)

where Accuracyj is the mean accuracy for subject j and N is the total number of subjects.479

Results:480

For modality classification:481

• Intra-subject standard deviation: 16.90%482

• Inter-subject standard deviation: 4.91%483

• Total variability: 21.68%484

For content classification:485

• Intra-subject standard deviation: 37.05%486

• Inter-subject standard deviation: 8.04%487

• Total variability: 38.02%488

For combined classification:489

• Intra-subject standard deviation: 37.74%490

• Inter-subject standard deviation: 9.21%491

• Total variability: 38.92%492

We observed that the intra-subject variability is notably higher compared to the inter-subject variability. This493

disparity could be attributed to the larger number of subjects (31) relative to the smaller number of samples per494

subject (16).495
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(a)

(b)

(c)

Figure 8: This figure shows the contribution of 70 Desikan regions, computed using Shapley values, for classifying
narratives with our machine learning model. The bars represent the average contribution of each region to the
model’s predictions, with higher values indicating greater influence. The error bars denote the standard deviation
of the Shapley values. The correspondence between label and region can be found in the Table 3
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Desikan labels
1 L_white_matter
2 L_Banks_superior_temporal_sulcus
3 L_caudal_anterior_cingulate_cortex
4 L_caudal_middle_frontal_gyrus
5 L_corpus_calosum
6 L_cuneus_cortex
7 L_entorhinal_cortex
8 L_fusiform_gyrus
9 L_inferior_parietal_cortex
10 L_inferior_temporal_gyrus
11 L_isthmus-cingulate_cortex
12 L_lateral_occipital_cortex
13 L_lateral_orbitofrontal_cortex
14 L_lingual_gyrus
15 L_medial_orbitofrontal_cortex
16 L_middle_temporal_gyrus
17 L_parahippocampal_gyrus
18 L_paracentral_lobule
19 L_pars_opercularis
20 L_pars_orbitalis
21 L_pars_triangularis
22 L_pericalcarine_cortex
23 L_postcentral_gyrus
24 L_posterior-cingulate_cortex
25 L_precentral_gyrus
26 L_precuneus_cortex
27 L_rostral_anterior_cingulate_cortex
28 L_rostral_middle_frontal_gyrus
29 L_superior_frontal_gyrus
30 L_superior_parietal_cortex
31 L_superior_temporal_gyrus
32 L_supramarginal_gyrus
33 L_frontal_pole
34 L_temporal_pole
35 L_transverse_temporal_cortex

36 R_white_matter
37 R_Banks_superior_temporal_sulcus
38 R_caudal_anterior_cingulate_cortex
39 R_caudal_middle_frontal_gyrus
40 R_corpus_calosum
41 R_cuneus_cortex
42 R_entorhinal_cortex
43 R_fusiform_gyrus
44 R_inferior_parietal_cortex
45 R_inferior_temporal_gyrus
46 R_isthmus-cingulate_cortex
47 R_lateral_occipital_cortex
48 R_lateral_orbitofrontal_cortex
49 R_lingual_gyrus
50 R_medial_orbitofrontal_cortex
51 R_middle_temporal_gyrus
52 R_parahippocampal_gyrus
53 R_paracentral_lobule
54 R_pars_opercularis
55 R_pars_orbitalis
56 R_pars_triangularis
57 R_pericalcarine_cortex
58 R_postcentral_gyrus
59 R_posterior-cingulate_cortex
60 R_precentral_gyrus
61 R_precuneus_cortex
62 R_rostral_anterior_cingulate_cortex
63 R_rostral_middle_frontal_gyrus
64 R_superior_frontal_gyrus
65 R_superior_parietal_cortex
66 R_superior_temporal_gyrus
67 R_supramarginal_gyrus
68 R_frontal_pole
69 R_temporal_pole
70 R_transverse_temporal_cortex

Table 3: Correspondence between Desikan labels and regions
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5.5 Yeo parcellations black and white compatible496

Figure 9: The Yeo 7-subnetwork parcellation illustrates seven distinct functional networks within the brain,
each associated with specific cognitive functions. The regions shown in red correspond to areas included in each
subnetwork, while the rest of the brain remains in grayscale for contrast. Each pair of images shows the subnetwork
from different angles to highlight the distribution of each functional network across the brain. This figure is
optimized for black-and-white printing, with clear contrast to make the subnetworks easily distinguishable.
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Figure 11: The Yeo 17-subnetwork parcellation illustrates seventeen distinct functional networks within the brain,
each associated with specific cognitive functions. The regions shown in red correspond to areas included in each
subnetwork, while the rest of the brain remains in grayscale for contrast. Each pair of images shows the subnetwork
from different angles, highlighting the distribution of each functional network across the brain. This figure is
optimized for black-and-white printing, with clear contrast to make the subnetworks easily distinguishable.
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