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Abstract

Functional connectivity derived from functional Magnetic Resonance Imaging
(fMRI) data has been increasingly used to study brain activity. In this study, we
model brain dynamic functional connectivity during narrative tasks as a temporal
brain network and employ a machine learning model to classify in a supervised
setting the modality (audio, movie), the content (airport, restaurant situations) of
narratives, and both combined. Leveraging Shapley values, we analyze subnetwork
contributions within Yeo parcellations (7- and 17-subnetworks) to explore their
involvement in narrative modality and comprehension. This work represents the
first application of this approach to functional aspects of the brain, validated by
existing literature, and provides novel insights at the whole-brain level. Our findings
suggest that schematic representations in narratives may not depend solely on pre-
existing knowledge of the top-down process to guide perception and understanding,
but may also emerge from a bottom-up process driven by the ventral attention
subnetwork.

1 Introduction

Understanding the principles of representation and computation in the human brain, and developing
corresponding predictive models, remains one of the great open challenges in neuroscience. fMRI
provides a rich window into the dynamics of the whole human brain with a certain level of spatial
and temporal resolution. From the beginning, human language processing has been a target of
investigation with fMRI [21]. Experiments with words and sentences allowed the identification of
language processing areas and networks at different levels of structure [13]. More recently, evidence
has emerged that language processing involves even broader recruitment across the brain, which might
be obscured by time averaging and thresholding [1]. This is consistent with studies that revealed how
language recruits an extended fronto-temporo-parietal semantic system beyond the classic perisylvian
language network [33, 11, 5]. This has been demonstrated in the processing of narrative, full stories,
which produce wide recruitment of whole brain networks for memory, visuospatial representation,
and emotion [33, 12, 26]. Thus, narrative processing is a privileged context for the investigation
of brain functional dynamics [32]. How can these functional dynamics be characterized? Analysis
methods based on time averaging and subtraction tend to ignore the contribution of brain systems
whose activity is variable and averaged out during thresholding. Functional connectivity analysis can
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be used to capture and characterize these dynamic interactions of brain regions over time [28, 20].
Temporal brain networks model the evolution of functional connectivity over time and thus have
the desired properties of capturing the full brain dynamics that may be lost in time averaging and
thresholding. Here, we exploit the representational richness of dynamic functional connectivity in
temporal brain networks to characterize brain dynamics during narrative processing using machine
learning.

In particular, we propose a simple machine learning model to classify in a supervised setting fMRI data
collected during a narrative comprehension task. The model is mainly composed of a convolutional
layer and a multi-layer perceptron (MLP). It is trained to classify the modality of the narrative (audio
or video), the content of the narrative (airport or restaurant situations) and these two together in a
four-class classification. We use the model to investigate the importance of temporal dynamics in
narrative processing and combined with the powerful explainability technique of Shapley values we
delve deeper into the model’s decision-making process. Specifically, we quantify the subnetwork
contributions in the classification of two different parcellation methods (Yeo 7-subnetwork and 17-
subnetwork) and this allows us to identify the most involved subnetworks in the narrative processing
task. Our work is the first to apply this approach to functional aspects of the brain, validated by
existing literature, and provides novel insights at the whole-brain level.

The results provide valuable insights, validated by existing research on narrative comprehension
[3, 27], and contribute to a broader understanding of how we process narratives. Our findings
challenge the initial assumption that narrative comprehension relies solely on top-down activation
of scripts, where prior knowledge, experiences, and expectations solely guide interpretation [7].
The prominent role of the ventral attention subnetwork in content classification suggests a more
nuanced model. This network is associated with bottom-up attentional control, implying that narrative
processing might involve the assembly and integration of sensory information from the environment
alongside top-down influences. This possibility aligns with the notion that schematic representations
may not solely be driven by top-down activation but could be built upon bottom-up processing
mediated by the ventral attention subnetwork [31].

2 Related works

Classification of tasks from fMRI data Numerous studies have explored classifying tasks and
subject characteristics (such as age and sex) from functional brain connectivity data using fMRI,
primarily aiming to develop powerful architectures. Examples include the work by Kim et al. [14],
where they propose a Spatio-Temporal Attention Graph Isomorphism Network model for high-
accuracy prediction of 7 tasks (memory, social, relational, motor, language, gambling, and emotion)
alongside sex. Another approach by Kim et al. [15] utilizes a transformer to classify age, sex, and
cognitive intelligence, with an integrated gradient technique for interpreting sex classification results.
The latter explainability technique is also employed in a parallel similar work by Ryali et al. [22],
where they classify sex using a simpler spatio-temporal deep neural network. Other papers by Huang
et al. [9] and Saeidi et al. [23] use a deep learning model, mainly composed of a convolutional neural
network and a recurrent neural network, and a graph neural network, respectively, to classify the 7
tasks.

Narratives classification In contrast to the aforementioned papers, our work focuses on a more
detailed classification domain, specifically the classification of modalities (movie, story) and the
thematic content of the script (airport, restaurant). Baldassano et al. [3] exemplify this approach,
using a stochastic Hidden Markov Model to classify, based on the activation of a selection of regions
of interest (ROIs) in the default attention networks, thematic content while also incorporating event
alignment.

Shapley values in brain networks The use of Shapley values has become a popular approach to
explain the predictions of machine learning models. In neuroscience, for instance, Amoroso et al.
[2] classify three conditions (Alzheimer’s disease, mild cognitive impairment, and healthy controls)
based on brain structural connectivity data from MRI scans. They then leverage Shapley values to
identify the most influential "patch" for classification. Another study by Kotter et al. utilizes Shapley
ratings in macaque brain networks, employing a graph theory approach to analyze these networks.
Here, the number of strongly connected components within a subgraph serves as the Shapley value
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function [16]. The most similar work to ours is by Li et al. [17]. They propose a new estimation
method for Shapley values and apply it when classifying functional connectivity data from fMRI. In
their example, they classify patient conditions (autism spectrum disorder or healthy) and compute
the importance of different ROIs in classification, though they don’t delve into the neuroscientific
interpretation of the results.

3 Our contribution

This study combines machine learning with explainable AI to investigate the specific roles of brain
subnetworks during tasks involving narratives. We leverage functional connectivity, extracted from
fMRI data, and Shapley values to identify which brain subnetworks are most influential in classifying
narrative modality (audio and movie), thematic content (airport and restaurant situation) and their
combination. The fMRI data are segmented into 7 or 17 Yeo subnetworks using the Schaefer 100
element parcellation [24]. Our machine learning model, composed of a convolutional neural network
and multi-layer perceptron, achieves high accuracy and reveals the specific contributions of Yeo
subnetworks in narrative processing. Importantly, the focus of our analysis is functional connectivity,
rather than activation. This analysis, validated by neuroscientific interpretation aligned with existing
literature, offers new insights into the functional roles of these subnetworks and the factor of time
during narrative classification. Our work demonstrates the power of explainable AI in unveiling
the complex interplay between brain activity and narrative comprehension. It not only helps to
understand narrative processing but also paves the way for applying this approach to other areas of
brain research.

4 Model

Our model takes as input a temporal brain network. This network is a sequence of brain networks,
each reflecting the brain’s functional connectivity at a specific time step (further details regarding
the data processing are provided in the Experiments section). Mathematically, the temporal brain
network can be represented as a three-dimensional tensor, denoted by X ∈ [−1, 1]R×R×T , where R
represents the number of brain regions and T represents the number of time steps. In our case, R is
100 and T is 8.

The model architecture consists of a single-layer three-dimensional convolutional neural network,
followed by a max pooling layer and a multi-layer perceptron for classification. The convolution
filter has size (R,R, τ) with no padding, where the two first dimensions match with those of the
input. This design focuses on capturing temporal features within the brain network by restricting
filter movement to the temporal axis. Max pooling is then applied to reduce the dimensionality of
the extracted features. Finally, a multi-layer perceptron performs the classification task. A visual
representation of the model architecture is provided in Figure 1.

Notably, when the filter size in the temporal dimension is set to 1 (τ = 1), the model becomes
invariant to the specific order of time steps in the input data. An analysis of the model’s performance
with different filter sizes is provided in the Appendix section.

Formally, given an input tensor X ∈ [−1, 1]R×R×T , the output of the convolutional layer is defined
as

Yk,c = σ(X ∗W + b)k,c = σ(

R∑
i=1

R∑
j=1

τ∑
p=1

Xi,j,k+p−1 ·Wi,j,p,c + bk,c)

where Y ∈ RK×C is the output tensor, W ∈ RR×R×τ×C is the learnable filter tensor, b ∈ RK×C is
the bias matrix and C is the number of output channels. The operations ·,+ and σ, which represents
the ReLU(x) = max({0, x}) activation function, are applied component-wise. The output tensor is
then passed through a max pooling layer so that the output vector Z ∈ RC is defined as

Z = max
k

Y [k, c].

Finally, the output passed through a multi-layer perceptron of three fully connected layers with ReLU
activation functions. A fully connected layer can be defined as V = σ(W · Z + b) where V is the
output of the fully connected layer, W is the weight matrix, and b is the bias vector.
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Figure 1: Pipeline from the extraction of temporal brain networks to the classification of the narrative
aspects. The first step is the division of the brain into regions according to an atlas. The second step
is the sliding window method, which individuates rectangular windows within which the Pearson
correlation coefficient is computed between each pair of brain region time series. The output is then
fed into the model, which consists of a convolutional layer, a max-pooling layer, and a multi-layer
perceptron.

5 Shapley Values

Shapley values were introduced by Lloyd Shapley in 1951 in the context of cooperative game theory
[25]. They quantify the contribution of each player in a coalition game. Recently, they have been
adopted in machine learning to explain the predictions of models. Shapley values can be calculated
using different methods including sampling or exact computation for smaller player sets [18]. In our
case, we leverage Shapley values to understand the influence of specific brain subnetworks on the
prediction of our model. Because of the limited number of brain subnetworks defined by the 7 Yeo
parcellation method [29], we can compute the exact Shapley values. The exact Shapley value of a
brain subnetwork i is defined as

φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) (1)

where N is the set of brain subnetworks, v is the accuracy of our model when considering the set
S of brain subnetworks. To isolate the brain subnetworks in the temporal brain network X we
set the entries of the other subnetworks to zero. The Shapley value φi(v) is the average marginal
contribution of the brain subnetwork i over all possible combinations of brain subnetworks, the higher
the Shapley value, the more important the brain subnetwork is for the prediction of the model. For the
17 Yeo subnetwork parcellation, the exact computation of Shapley values becomes computationally
expensive. Therefore, we employ a sampling method that approximates the Shapley values using the
same formula but instead of summing over all possible subnetwork combinations, we sample a large
number of combinations (100 samples in our case) to approximate the average marginal contribution.

6 Experiments

Experiments were performed to determine if the temporal brain networks can be used to discriminate
brain functional connectivity patterns in response to audio vs. movie narratives, airport vs. restaurant
situations, and the combination of these two dimensions. We trained a machine learning model in a
supervised setting to classify these aspects and used Shapley values to interpret the model’s decisions.
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6.1 Data

Dataset Our analysis used fMRI data from the study of Baldassano [3] archived as part of the
Narratives dataset created by Nastase et al. (https://openneuro.org/datasets/ds002345/
versions/1.1.4) [19]. The Baldassano dataset includes brain activity recordings from 31 partici-
pants engaged in a narrative task. In this task, each subject is exposed to 16 3-minute stories (4 per
run over 4 runs), from two different scripts (eating at a restaurant or going through the airport). While
the stories within each category share a similar high-level sequence of events, there are variations in
the specific details of these events. Each run presents 2 movies and 2 audio stories, for a total of 8
movies and 8 audio segments over the course of the experiment. The dataset is balanced in terms of
the number of samples per modality and content.

Preprocessing The fMRI data has a spatial resolution of 91×91×109 voxels in the x, y, and z axes,
respectively, for a total of 902, 629 voxels. Each voxel measures 2× 2× 2 mm. The repetition time is
1.5 seconds, for a total of 490 time points and a total duration of 12 minutes per run approximatively.

Preprocessing involved transforming the blood-oxygen-level-dependent (BOLD) signals from each
voxel into temporal graphs. We implemented a pipeline to reduce motion artifacts by performing
linear regression on the movement parameters. Additionally, a bandpass filter (0.01− 0.08 Hz) was
applied to remove noise arising from respiration and cardiac pulsations [30].

To define the network nodes, we employed the Schaefer et al. brain atlas (after having put the data in
the MNI152 space), parcellating the brain into 100 ROIs based on anatomical and functional criteria
[24]. ROIs were created by averaging the BOLD time series of voxels within gray matter regions. We
then utilized a sliding window approach with 30-second windows and 7.5 seconds overlap to divide
the data into time steps. The Pearson correlation coefficient was computed between each pair of ROI
time series within each window, with the resulting correlation value assigned as the weight of the
edge connecting the corresponding ROI nodes. This process yielded an adjacency matrix for each
time window, and the sequence of these matrices formed the temporal brain networks (see Figure 1).

6.2 Experimental setting

The experiments were conducted on a workstation equipped with a single NVIDIA Quadro RTX
8000 graphics card. We utilized the Julia programming language for the workflow, from network
creation starting from the clean signal to the model development [4]. The Flux.jl library was
used for neural network implementation and the Makie.jl library was used for visualization [10,
6]. The source code is available at the GitHub repository https://github.com/aurorarossi/
fMRINarrativeClassification.

Hyperparameters The hyperparameters were chosen based on empirical observations. The con-
volutional filter τ parameter was set to 4 for the modality classification task and 8 for the content
and the combined classification task (see the Appendix for more details). The number of output
channels was set to 128 for all the tasks. The MLP had two hidden layers with 64 and 32 units each
with a ReLU activation function. The output dimension of the MLP was set to 2 for the modality
classification task, 2 for the content classification task, and 4 for the combined classification task.

Training Given the limited size of the dataset, we employed a batch size of 1 during training. We
used the Adam optimizer with a learning rate of 0.0001. The training process lasted for 20 epochs.
The choice of 20 epochs was determined through experiments to achieve a good balance between
training time and model performance. For the loss function, we used either logit binary cross-entropy
or logit cross-entropy depending on the number of classes in the task. To ensure robustness against
potential variations due to model initialization, we retrain the model 15 times with different random
splits of the data (80% training, 20% testing). During each iteration, we compute both the Shapley
values and the model’s accuracy. Finally, we report the mean and standard deviation to account for
variability for the accuracy, and for Shapley values of each subnetwork, we present the mean values
along with error bars representing the standard deviation. This approach ensures a comprehensive
understanding of the model’s performance, the contribution of individual brain subnetworks to its
classifications, and the robustness of these findings across model initializations.
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7 Results

In this section, we describe the results of our experiments. We present the performance of the model
on three classification tasks:

• Modality classification: this task focuses on classifying the brain network based on the
modality of the stimuli, audio or movie.

• Content classification: the model classifies the brain network based on the content of the
stimuli, airport or restaurant situations.

• Combined Modality and Content Classification: this task evaluates the model’s ability to
jointly classify both the modality and the content of the stimuli.

Modality Content Both Modality and Content

Accuracy 96.32%± 1.36% 80.9%± 1.75% 80.70%± 2.97%

Precision 95.64%± 1.43% 84.55%± 2.29% 81.54%± 5.34%

Recall 97.08%± 2.20% 75.69%± 3.02% 80.70%± 5.23%

F1-Score 96.34%± 1.36% 79.84%± 1.96% 80.92%± 6.06%

Accuracy permuting times 86.60%± 3.36% 63.19%± 4.40% 53.12%± 5.85%

Table 1: Performance metrics of the model on the modality, content, and combined classification
tasks. The last row shows the model’s performance when the time steps of the brain networks are
permuted.

The results in Table 1 show that the model performs well on the modality classification task, achieving
an accuracy of 96.32% ± 1.36%. While still a good performance considering the complexity, the
model’s accuracy on the content classification task was slightly lower at 80.9% ± 1.75%. This
difference might be attributed to the inherent difficulty of content classification compared to modality
identification. Furthermore, the combined modality and content classification task resulted in an
accuracy of 80.70%± 2.97%, which is consistent with the content classification task. Notably, the
model displayed consistent performance across all metrics.

(a)
(b)

Figure 2: Yeo parcellations used in the Shapley value analysis. The 7-subnetwork parcellation is
shown on the left (a), while the 17-subnetwork parcellation is shown on the right (b).

To assess the importance of the time dimension in the classification tasks, we permuted the time steps
of the brain networks and retrained the model. The results in the last row of Table 1 demonstrate
a significant drop in accuracy: 10% for modality classification, 17% for content classification,
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and a substantial 27% for the combined task. These drops strongly suggest that the temporal
dynamics of the brain networks play a crucial role in all classification tasks and that the model
leverages this information effectively. The performance decrease is more pronounced in content and
combined classification tasks compared to modality classification. This aligns with our expectations.
Understanding content, which often unfolds over time and involves complex relationships between
brain regions, is likely more dependent on the temporal dynamics of brain activity compared to
simply identifying the modality.

To gain deeper insights into how the model leverages brain activity for classification, we employed
Shapley values. Here, we focus on subnetworks defined by the Yeo parcellation method [29],
specifically the 7-subnetwork and 17-subnetwork parcellations. Visualizations of these parcellations
are provided in Figure 2. Black and white compatible versions of these figures can be found in the
Appendix.

(a) (b)

(c)

Figure 3: This figure shows the contribution of Yeo 7-subnetworks computed with Shapley values for
classifying narrative using a machine learning model. The bars represent the average contribution
of each subnetwork to the model’s predictions, with higher values indicating greater influence. The
error bars represent the standard deviation of the Shapley values.

Figure 3 presents the Shapley values for the 7-subnetwork parcellation. In the modality classification
task, the visual subnetwork emerges as the most influential, followed by the default mode subnetwork
(Figure 3a). This aligns with the intuitive notion that processing visual information plays a key
role in distinguishing modalities. For the content classification task, the high value of the default
mode subnetwork suggests its influence in understanding the meaning and content of the stimuli as
suggested by previous studies [3, 27] (Figure 3b). Finally, the combined classification task reveals
the importance of both the visual and default mode networks (Figure 3c), suggesting that the model
utilizes a combination of visual features and higher-order processing for accurate content and modality
classification.

Figure 4 presents the Shapley values for the 17-subnetwork parcellation. In the modality classification
task, the visual A and B, default A and B and somatomotor A subnetworks emerge as the most
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(a) (b)

(c)

Figure 4: This figure shows the contribution of Yeo 7-subnetworks computed with Shapley values for
classifying narrative using a machine learning model. The bars represent the average contribution
of each subnetwork to the model’s predictions, with higher values indicating greater influence. The
error bars represent the standard deviation of the Shapley values.

influential (Figure 4a). For the content classification task, the default A and B subnetworks, the
somatomotor A and the ventral attention B also play crucial roles (Figure 4b). Finally, the combined
classification task reveals the importance of the visual A and B, default A and B, and somatomotor A
subnetworks (Figure 4c).

8 Discussion

This work investigated the neural basis of narrative processing using a machine learning model that
classifies narrative aspects (modality, content, combined) based on functional connectivity networks
derived from fMRI data. The model’s performance aligned with expectations: higher accuracy for
modality classification, which is a simpler task because it relies on sensory information, compared to
content classification which requires a deeper understanding of the narrative. Permuting time steps
in the temporal brain network significantly reduced accuracy, particularly in content and combined
tasks, suggesting that temporal dynamics rely on the sequence of events to understand the content.

To delve deeper into the model’s decision-making process, we employed Shapley values, a powerful
explainable AI technique that quantifies subnetwork contributions. The results provide insights into
the importance of brain subnetworks of two different parcellation methods (Yeo 7-subnetwork and
17-subnetwork) during narrative comprehension and contribute to the broader understanding of how
the brain processes narratives.

Our findings revealed that in the 7-subnetwork analysis, the visual and default subnetworks are
key for modality classification, reflecting the intuitive notion that visual processing is essential
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for distinguishing between movies and audio stories. In content classification, the default mode
subnetwork emerged as the most influential, suggesting its essential function in understanding the
meaning and content of the stimuli. This aligns with existing research that has highlighted the default
mode subnetwork’s involvement in higher-order cognitive functions, such as narrative comprehension
[3, 27]. The combined classification task emphasized the importance of both visual and default mode
networks, as expected.

A more fine-grained analysis using the 17-subnetwork parcellation revealed additional insights. While
visual and default mode networks remained dominant for modality classification, the somatomotor
subnetwork also showed a high Shapley value. The latter can be better understood in the context of
embodied cognition and language comprehension. A seminal study of embodied language compre-
hension demonstrated that passive reading of action words produces a corresponding somatotopic
activation of the motor and premotor cortex [8]. Likewise, viewing images or reading sentences
describing everyday actions produces a distributed activation in fronto-temporo-parietal network that
includes sensory-motor and premotor cortex [11]. Similar to the 7-subnetwork analysis, the default
mode subnetwork was most influential for content classification. Interestingly, the ventral attention
subnetwork also played a significant role. This finding is a step further to answer the open question
raised by the Baldassano et al. 2018 study [3]. They proposed that schematic representations in the
brain might not solely rely on top-down activation of scripts in the medial prefrontal cortex. They
suggested these representations could serve as building blocks for a complete narrative script formed
through a bottom-up process. Our observation of a high Shapley value for the ventral attention
subnetwork, which is known to be also associated with bottom-up attentional control, aligns with
this possibility. Finally, the combined classification task again highlighted the importance of visual,
default mode, and somatomotor A networks.

Limitations and Future Works It is important to acknowledge that the primary limitation of this
study is the size of the dataset used. This may limit the generalizability of our findings to other
populations or narrative stimuli. Future research could address this by employing larger datasets, if
available. Additionally, exploring the generalizability of these findings across diverse datasets would
be valuable. Within the context of the current dataset size, future work could delve deeper into other
aspects of narrative processing. One potential direction is to investigate the impact of individual
differences in narrative comprehension. For instance, research could explore how factors such as age,
reading experience, or cultural background might influence how individuals process narratives based
on brain network activity. Another promising avenue for future research involves investigating the
impact of different parcellation methods on the results of Shapley values. Currently, we employ the
Yeo 7-subnetwork and 17-subnetwork parcellations. However, more fine-grained parcellations might
reveal even more nuanced insights into the specific subnetworks involved in narrative processing.
Exploring these possibilities could lead to a more comprehensive understanding of the role of brain
regions in narrative comprehension.

Conclusion Overall, our work demonstrates the potential of combining machine learning models
with explainable AI techniques like Shapley values to understand the role of brain subnetworks during
narrative processing. Our findings not only contribute to a deeper understanding of how the brain
processes narratives but also showcase the broader applicability of this approach. In tasks where the
role of specific brain regions remains unclear, this methodology can provide valuable new insights.
By highlighting subnetwork contributions through Shapley values, we can generate novel hypotheses
about the functional roles of these regions. In our case, the model’s performance aligns with existing
literature on narrative comprehension, validating the approach. Importantly, this research validates an
alternative and complementary method for investigating brain function in human cognition, which
involves functional connectivity. This successful validation paves the way for further exploration of
brain networks not only in higher-order cognition, motor tasks, and emotional processing but also in
any domain where the neural basis remains partially understood.
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A Appendix

A.1 Choice of parameter τ

The following figure shows the evolution of the model’s accuracy as a function of the third dimension
of the convolutional filter (i.e. τ ). For the modality classification, we set τ = 4, since model
performance seems not to increase significantly beyond this value (Figure 5a). For the content and
combined classification, we set τ = 8m since the model performance seems the best for this value
(Figure 5b and Figure 5c). It is important to highligh that when τ = 8 the convolution behaviour is
similar to the one of dense layer.

(a) (b)

(c)

Figure 5: Model’s accuracy as a function of the third dimension of the convolutional filter.
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A.2 Yeo parcellations black and white compatible

Figure 6: Yeo 7-subnetworks
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Figure 8: Yeo 17-subnetworks
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