
HAL Id: hal-04596816
https://hal.science/hal-04596816v2

Submitted on 24 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

CARTE: Pretraining and Transfer for Tabular Learning
Myung Jun Kim, Léo Grinsztajn, Gaël Varoquaux

To cite this version:
Myung Jun Kim, Léo Grinsztajn, Gaël Varoquaux. CARTE: Pretraining and Transfer for Tabular
Learning. Forty-first International Conference on Machine Learning, ICML 2024, Jul 2024, Vienna,
Austria. �hal-04596816v2�

https://hal.science/hal-04596816v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

CARTE: Pretraining and Transfer for Tabular Learning

Myung Jun Kim 1 Léo Grinsztajn 1 Gaël Varoquaux 1 2

Abstract

Pretrained deep-learning models are the go-to
solution for images or text. However, for tabu-
lar data the standard is still to train tree-based
models. Indeed, transfer learning on tables hits
the challenge of data integration: finding corre-
spondences, correspondences in the entries (en-
tity matching) where different words may denote
the same entity, correspondences across columns
(schema matching), which may come in differ-
ent orders, names... We propose a neural archi-
tecture that does not need such correspondences.
As a result, we can pretrain it on background
data that has not been matched. The architec-
ture –CARTE for Context Aware Representation
of Table Entries– uses a graph representation of
tabular (or relational) data to process tables with
different columns, string embedding of entries
and columns names to model an open vocabulary,
and a graph-attentional network to contextualize
entries with column names and neighboring en-
tries. An extensive benchmark shows that CARTE
facilitates learning, outperforming a solid set of
baselines including the best tree-based models.
CARTE also enables joint learning across tables
with unmatched columns, enhancing a small table
with bigger ones. CARTE opens the door to large
pretrained models for tabular data.

1. Introduction
The wide availability of pre-trained models has greatly fa-
cilitated machine learning for various data modalities, for
example with images (Simonyan & Zisserman, 2015) or
texts (Devlin et al., 2019). These models can be downloaded
from model hubs, embarking a lot of implicit information
and transformations that unleashes the power of deep learn-
ing even on small datasets. This paradigm has led to the

1SODA Team, Inria Saclay, France 2Probabl.ai, France. Corre-
spondence to: Myung Jun Kim <myung.kim@inria.fr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

revolution of foundation models (Bommasani et al., 2021)
such as large language models (Touvron et al., 2023). But
this revolution has not happened for tabular data despite its
huge importance for enterprise and institutional data. One
roadblock is that integrating data from tables in the wild is
often difficult, sometimes impossible. Different tables might
not have any related data and when they do, data integration
is a whole field of database research (Doan et al., 2012).
One might need to solve correspondence across columns
–schema matching– or across data sources with different
naming conventions for entries –entity matching. For lack
of matching schemas and entities, pretraining across tables
in the wild has not been possible. Without pretraining, deep
learning is less practical, and tree-based methods are often
preferable (Grinsztajn et al., 2022).

Here we introduce a learning architecture that learns across
tables without schema and string matching. The key is to
represent tables with a graph and all symbols with embed-
dings (for column names and table entries). The architecture,
dubbed CARTE (Context-Aware Representation of Table
Entries), is pretrained on a large knowledge base, to capture
information on a vast amount of entities and relations. It
can then be fine-tuned on a given downstream task, helping
learning even in few shot settings. It can also be used for
joint learning across multiple tables, enriching a target ta-
ble with weakly related sources. CARTE brings a sizable
performance gain, outperforming markedly a set of 42 solid
baselines (including the best tree-based methods and vari-
ous feature engineering). It benefits particularly tables with
string entries, frequent in applications but seldom present in
machine learning benchmarks.

Section 2 presents related work; section 3 describes the
CARTE architecture and training procedures; and section 4
provides an extensive empirical study across many tabular
datasets, benchmarking the settings of a single downstream
table as well as multiple related ones.

2. Related Works
Tabular deep learning Tables are central to many applica-
tions. As a result, numerous deep learning methods tailored
for this modality have been proposed (Abutbul et al., 2020;
Arik & Pfister, 2020; Popov et al., 2019; Gorishniy et al.,
2023b; Somepalli et al., 2021). However, they typically

1

CARTE: Pretraining and Transfer for Tabular Learning

under-perform tree-based methods (Grinsztajn et al., 2022;
Shwartz-Ziv & Armon, 2021; Gardner et al., 2022). While
McElfresh et al. (2023) argue that neural networks perform
well on certain types of tables, and promising architectures
are continuously published (Gorishniy et al., 2023a; Chen
et al., 2023), the difficulty of improving over tree-based
methods suggests that deep learning must bring something
more to the fight, such as background knowledge.

Transfer learning for tabular data Transfer learning
mostly focuses on the “conventional” settings of transfer-
ring across datasets with the same features, i.e. columns.
Somepalli et al. (2021) demonstrates pre-training on a larger
unlabeled version of the table, while Levin et al. (2023)
argues that transfer learning bridges the gap between deep
learning and tree-based models when there are few data
points but large related datasets, as in their medical setting.
They consider new or missing features in the downstream
table, but require exact matching between most features.

XTab (Zhu et al., 2023) can work on tables with different
columns using data-specific featurizers that map instances
to the same dimension followed by federated learning on
the common block. However, they did not outperform tree-
based models (CatBoost, Dorogush et al., 2018). Transtab
(Wang & Sun, 2022) also vectorizes each row of tables into
an embedding space to learn across tables, demonstrating
data accumulation across multiple clinical trials to outper-
form baselines including XGBoost (Chen & Guestrin, 2016).
These approach benefit from a pool of tables in the subtopic,
but it is not clear if they can be adapted to build pretrained
models for a wide set of applications.

Pretrained models for tabular data TabPFN (Hollmann
et al., 2023) made headway in pre-training models for tab-
ular learning: it uses a transformer model pre-trained on
large amounts of synthetic data to capture the inductive bi-
ases of tabular data, leading to strong performance on small
datasets, though it has no dedicated handling for categori-
cal columns, a challenge of tables where trees historically
shine. Large language models (LLMs) can also work as
pretrained models for tabular data. In TabLLM (Hegsel-
mann et al., 2023), tabular data are represented as a set of
tokens which are leveraged to fine-tune an LLM. However,
the difficulty of handling numerical values in LLMs makes
them a suboptimal choice compared to trees or TabPFN.

Discrete entries One challenge of tables –much more
tackled by the database literature than the machine learn-
ing one– is that many of the entries are discrete, repre-
sented as strings. Cerda & Varoquaux (2022) created
string-based representations that facilitate learning. The
TableVectorizer in Skrub (2024) uses these heuris-
tically to turn columns of different types into numerical

matrices well suited for learning. KEN (Cvetkov-Iliev et al.,
2023) is another approach to embed table entities closer
to our goals of pretraining. It provides embeddings of all
entities in a knowledge graph, capturing the information in
a source such as Wikipedia. These embeddings facilitate
learning, but the challenge is that each entry of a column
must be linked to a Wikipedia entry, an entity matching task.

Data integration Traditional statistical models need data
assembled in a single consistent table, a task tackled by
the data integration literature (Doan et al., 2012). Finding
correspondences between columns across data sources is
known as schema matching. Entity matching is a challenge
common to data integration and natural language processing
(NLP), where a string must be linked to an entity: a unique
concept. For instance “Davinci” may denote the historical
figure “Leonardo da Vinci”, but also OpenAI “Text-Davinci-
003” GPT3 API. Entity matching must be robust to string
variations, but most importantly it must account for the
context in which an entity appears to disambiguate potential
matches. In NLP, pretrained attention-based models, such
as BERT (Devlin et al., 2019), have been crucial to capture
the corresponding context.

These pretrained language models also are useful on tables
to automate data normalization and integration tasks with
few manually-supplied examples (Narayan et al., 2022).
Deep learning, and recently attention-based models, is pro-
gressing on tasks to structure databases, e.g., column typing,
entity linking (Hulsebos et al., 2019; Deng et al., 2020).

We are interested in a different problem: rather than explicit
matching, at the entity or schema level, we aim to capture
only implicit data structure and integration to enhance down-
stream machine learning task without any manual operation
such as finding related sources. The problem is timely: re-
searchers sharing this vision are assembling large corpora
of tables (Hulsebos et al., 2023; Eggert et al., 2023). Yet,
the small scale of most tables available and the variability
between tabular datasets has so far made this vision elusive.

3. The CARTE Model to Learn Across Tables
The ability of CARTE to learn across tables stems from
the combination of two elements: a novel representation of
table entities with graphs and a deep neural network archi-
tecture that captures the context that reside within a table. In
particular, the former endows synchronization of multiple ta-
bles to the same graph domain, which makes pretraining on
formerly unmatched background data possible. Moreover,
the context-aware deep neural network trained on broad
spectrum of knowledge can readily spread the background
information to downstream tasks at our hands. In this sec-
tion, we introduce CARTE with detailed implementations.

2

CARTE: Pretraining and Transfer for Tabular Learning

Title ISSN Publisher Country Region H index

Nature 14764687

Nature

Publishing

Group

United

Kingdom

Western

Europe
1331

JMLR 15337928 NaN
United

States

Northern

America
239

Feature Initialization: Language Model

Northern

America
⋯

United

States
⋯

239
⋯

JMLR
⋯

15337928
⋯

⋯
Title

⋯
Region

⋯
Country

⋯

H index
⋯

ISSN

⨀

Num. Values

Figure 1. Graphlet representation of tabular entities. From a
table, CARTE represents each row as a star-like graph. Excluding
for missing values, the leaf-nodes and the edges are annotated
by the cell values and their corresponding column names. Then,
CARTE initializes the features of each with a language model.
The nodes of numerical values are initialized by the elementwise
product with its corresponding column feature. For the center
node, it is initially set as the average of the leaflets. It will later act
as a readout that captures the overall information of the graphlet.

3.1. Graph Representation of Table Entities

The graph representation is crucial for facilitating the gener-
alization of table entities. In general, a graph, G, consists of
nodes and edges, where the former denote the entities and
the latter denote the relations between the nodes. Graphs
are useful for capturing relational information between en-
tities, and graph deep learning is promising for relational
databases (Fey et al., 2023). CARTE considers each of the
row as a small graph, as shown in Figure 1. From a table
with k columns, CARTE represents each of the i-th instance
as a graph, Gi(X,E), where the components X and E de-
note the node and edge features, respectively, embeddings
in Rd. The structure of Gi(X,E) is a star-like graph with
k − pi leaf-nodes, with pi as the number of columns with
missing values for row i. On the resulting graphlet, each
of the leaf-nodes are annotated by the cell values and their
corresponding column names. To make these graphlets vi-
able inputs for neural networks, we initialize X and E by
using a language model. For categorical values and column
names, CARTE simply places a d-dimensional embedding
that is generated from a language model. For numerical
values, the features are initialized by the product of its value
with the embedding of the corresponding column name. For
instance, the node feature X(239) in Figure 1 is equal to
239 × E(H index). Lastly, the center node is initialized with
the mean of the leaflets, and will later serve as the readout
node that captures the overall information of the graph.

This design serves several purposes. First it represents con-
text: for tabular data, an entry is best interpreted accounting
for its column’s name. In Figure 1, for example, it would
be difficult to grasp the row (blue-box) only with the entries
of ‘JMLR’, ‘15337928’, ‘239’. The column names ‘Title’,
‘ISSN’, and ‘H index’ clarifies that it is an instance of a

journal. CARTE represents context in tables through the
nodes and edge, exposed to its neural network architecture.
This representation also bridges tables with different column
order, or more generally different columns.

Second, CARTE uses language models on non-numerical
entries, such as strings, categories, and names. Thus, the
graph transformation in CARTE does not require any in-
tervention on discrete entries, as opposed to typical data
preprocessing or cleaning (deduplication, categorical encod-
ings) used on strings. Moreover, CARTE works with an
open set of vocabularies. Problems of typos or wordings of
the same meaning, such as ‘North America’ to ‘Northern
America’, are readily resolved for CARTE.

Together, these features of the proposed graph represen-
tation enable generalization across heterogeneous tables.
CARTE’s graph transformation puts in the same graph do-
main instances from different tables, without requiring any
schema matching for columns or entity matching for en-
tries. Thus, learning process can operate across many tables,
which opens the door for pretraining or transfer.

3.2. Pretrained Model from a Large Knowledge Base

CARTE is pretrained on YAGO3 (Mahdisoltani et al., 2013),
a large knowledge base built from Wikidata and other
sources that contain facts about real-world. YAGO stores
information as a knowledge graph, which is a collection of
triplets (head, relation, tail). For instance, the triplet (Lou-
vre, is located in, Paris) from Figure 2 would be a sample
that we can find in YAGO. Our current version of YAGO
contains over 18.1 million triplets of 6.3 million entities.

In this subsection, we describe the pretraining process of
CARTE, summarized in Figure 2. From the knowledge
graph, we first extract small graphlets of entities suitable
as inputs for CARTE. For self-supervised learning with a
contrastive loss, we add to the batch truncated versions of
selected graphlets. Through the training process, CARTE
learns to aggregate information based on the given context.

Graphlets for pretraining From the large knowledge
graph of YAGO, we construct small graphlets of the enti-
ties that can be used as inputs for CARTE. To construct a
suitable graphlet for an entity, we first extract its subgraph
within a user-specified k-hop relations. To resemble the
structure outlined in Figure 1 while benefiting from addi-
tional information through multiple hops, we set k = 2,
but restricting the maximum number of 1-hop and 2-hop
relations to 100 and 10 respectively. Graphlets from tables
(Figure 1) have as center node a token for the row, while
the knowledge-graph procedure could use the entity name
(for instance ‘Louvre’). To avoid a difference, we use a
token as a center node with an additional neighbor which
is comprised of the name as its node and ‘has name’ as its

3

CARTE: Pretraining and Transfer for Tabular Learning

Smithsonian

Institution

British

Museum

CARTE Neural Network

(Contrastive Loss)

Louvre

Extracted Subgraph

Louvre

has name

louvre.fr

has

website

is located in

France
Paris

is located in

is located in

Mona Lisa
is known for

has

population

67413000

has economic

growth

1.8 percent

Louvre

has name

louvre.fr

has

website

is located in

France

has

population

67413000

has economic

growth

1.8 percent

Positive SampleKnowledge Graph

Truncation for pos. samples

Neg.

samples
Pos.

samples

Batch

Extract
subgraph

Figure 2. CARTE pretraining process. From a large knowledge
graph, CARTE begins by constructing graphlets and their positives
variants. The extracted samples are then fed into the CARTE neural
network and trained with a self-supervised scheme. The neural net-
work learns to aggregate information within the graphlets, which
reflect the combination of table entries across columns (edges).

relation. Finally, as in subsection 3.1, we initialize node and
edge features using FastText embeddings (Mikolov et al.,
2017) as the language model.

Batch samples To construct a batch sample of size Nb, we
first select which of the YAGO entities to include, generating
the corresponding graphlets. For this, we sample 0.9 of
Nb from entities with 6 or more 1-hop relations and the
remaining 0.1 from the other subset. The main reason for
such sampling scheme is that a large portion of entities in
YAGO only have one or two 1-hop relations, while tabular
data typical has more (more columns). Moreover, the value
6 was selected so that the rough median of 1-hop relations
in the batch samples is 15. To enable the self-supervised
contrastive loss, we include positive samples, which are
simply truncations of original graphlets: deleting a random
fraction (varying from 0.3 to 0.7) of the edges. Figure 2
gives an exemple graphlet of ‘Louvre’ and its positive.

Model architecture Figure 3 depicts the model structure
of CARTE. At its basis, CARTE takes the classical Trans-
former encoder model of Vaswani et al. (2017), and adapts to
a graph attentional network. A key component in CARTE’s
architecture is a self-attention layer computing attention
from both node and edge features. In graph models, atten-
tion modulates the importance of neighbors for a given node
of interest (Velickovic et al., 2017). For table entries, it trans-
lates to the importance of the entries for a given instance
with the context supplemented by the column information.

CARTE Model ArchitectureInput graph

Contrastive Loss

Linear

Aggregation & Readout (Center Node)

Mask

𝑋⨀𝐸

Softmax

Matmul

𝑋

Matmul & Scale

Graph Structure

Feed Forward

Add & Norm

Add & Norm

Feed Forward

Add & Norm

𝑿 𝒍+𝟏 , 𝑬 𝒍+𝟏

× heads

𝑋⨀𝐸

× layers

𝑸 𝒍 𝑲 𝒍 𝑽 𝒍

𝑋

𝑬 𝒍

𝐸
𝑬 𝒍

Linear

(Edges)

𝑿 𝒍

Linear

(Nodes)

Louvre

has name

louvre.fr

has

website

is located in

France
Paris

is located in

is located in

Mona Lisa
is known for

has

population

67413000

has economic

growth

1.8 percent

Figure 3. CARTE architecture The inputs of CARTE are graphs
that contain node (X) and edge (E) features, both used in self-
attention layers (shown in grey). The attention layers update node
features using the context embodied with the edge information; the
graph structure of the input is reflected by attention masks. The
Aggregate & Readout layer consists of the attention layer (without
the edge update) followed by feature extraction on the center node.
The outputs are then processed for the contrastive loss.

We now detail on CARTE’s attention mechanism used to
capture context and relations. For consistent notations, we
write vectors with an arrow on top A⃗, matrices in bold A,
and scalars A. To ease reading, we present a single-head
attention layer, but it can easily be extended to multi-head
schemes of concatenating or averaging the attention outputs.

For a graph with N nodes, let X⃗(l)
i ∈ Rd denote the feature

of node i and E⃗
(l)
ij ∈ Rd the feature of the edge directed

from node j to i. By design, graphlets for CARTE always
hold the center node, which we denote with an index i = 1.
The representation from the attention layer is a function of
query, key, and value, crucial elements to account for con-
text. The query is the vectors corresponding to our values of
interest: the nodes. Thus, we take the conventional approach
and parameterize it with solely the node information. On
the other hand, the key-value pairs should convey the ele-
ments that the neighboring nodes can offer. Therefore, we
add edge information in the corresponding parameterization.
With this in mind we set the three components as1:

Query: Q⃗i = X⃗
(l)
i ·WQ (1)

Key: K⃗ij = (X⃗
(l)
i ⊙ E⃗

(l)
ij) ·WK (2)

Value: V⃗ij = (X⃗
(l)
i ⊙ E⃗

(l)
ij) ·WV (3)

where ⊙ denotes the element-wise multiplication and WQ,

1Here, we omit the superscripts indicating layers for Aij , eij ,
and projection weights for Q, K, V for clarity of presentation.

4

CARTE: Pretraining and Transfer for Tabular Learning

WK, and WV are trainable weights that reside on Rd×d.
Here, the choice of element-wise product is motivated from
a knowledge graph embedding technique in Balazevic et al.
(2019); Cvetkov-Iliev et al. (2023). These works showed
that modeling relations (i.e. column name) as element-wise
multiplication on the node vectors works best, compared
to e.g., vector additions. Following the scaled dot-product
attention with the above three equations, the attention score
of node j from node i, Aij , is derived as:

Aij =
exp (eij)∑

k∈Ni
exp (eik)

, where eij =
Q⃗i · K⃗T

ij√
d

(4)

where the calculation of Aij only takes the sum with respect
to the connected neighbors of node i. This corresponds to a
masking step, which takes the graph structure of the input.
Accounting for the relation type (i.e. column name) in the
attention scores (E⃗ in eq 2 and 3) is important for proper
re-contextualization of the entries, that is to capture their
meaning. For instance, an entry “George Bush” may denote
the 41st or 43rd US presidents, an aircraft carrier... The
ambiguity is raised by the relation (“George Bush”, “son of ”,
“George Bush”), however capturing fully the information
does require knowing the nature of the relation, as “father
of ” would lead to a different entity resolution. Ablations
reveal the importance of attention (Appendix C.3).

Outputs of the attention layers are, for nodes and edges:

transformed entry X⃗
(l+1)
i = σX

(∑
j

Aij · V⃗ij

)
transformed relation E⃗

(l+1)
ij = σE(E

(l)
ij ·WE)

where σ denote the appropriate consecutive operations (see
Figure 3). The final layers consist of the attention layer
without the edge update, followed by the readout layer that
extracts the representation of the center node. For pretrain-
ing, the outputs are then processed for the contrastive loss.
Appendix A.1 details model specification and training.

Contrastive loss For the self-supervised contrastive loss,
we adapt the framework of Chen et al. (2020b). The original
graphlet and one truncation are set as positives while the
other graphlets in the batch are considered as negatives. The
learning loss is then based on the cosine similarity of the
network outputs, fed in the InfoNCE loss (Oord et al., 2018).

3.3. Fine-tuning for Downstream Tasks

For a given downstream task, fine-tuning CARTE proceeds
by reusing only part of the pretrained architecture (as shown
in Figure 3): the initial layers for nodes and edges (blue
and red blocks) and the ‘Aggregation & Readout’ layer.
Though such simplification differs from many fine-tuning
approaches, it stems from the behavior of graph-neural net-
works. Indeed, downstream table entities form simpler

graphs than during pre-training. First they are star-like
(Figure 1). Second, the downstream tables contain less vari-
ability in graph structures and less cardinality of discrete
variables compared to YAGO. Too deep an architecture risks
washing out discriminant characteristics in the output repre-
sentations (the over-smoothing problem, Chen et al., 2020a;
Rusch et al., 2023, studied in Appendix C.4). Therefore, we
use a convention common in graph models: setting the num-
ber of attention layers as the maximum k-hop relation, here
k = 1. For the final classifier, we simply attach the linear
layers. With the base model for fine-tuning, we consider
two different settings of downstream inference.

Inference on single tables This is the well-known setting
in which we are given a single table with a target variable
to predict. Before transforming table entities into graphs,
we preprocess numerical variables with a power transform
(Yeo & Johnson, 2000). The power transform has shown to
be effective in several works (e.g., Hollmann et al., 2023;
Cvetkov-Iliev et al., 2023), and likewise, gives stability to
the fine-tuning process of CARTE. Moreover we employ a
bagging strategy (Breiman, 1996), in which different mod-
els, based on different train-validation splits used for early-
stopping, are trained. The prediction outputs are calculated
as the average of the outputs from each model.

Transfer from one source table to a target We also use
CARTE in transfer learning settings where we are given a
source table XS that can aid predictions on our target table
XT . Importantly, the source table may have larger train
samples than the target. We fine-tune CARTE on both tables
jointly. The graph representation enables such joint fine
tuning without correspondences in the columns; however,
we do need to have similar outcomes yS and yT on both
tables. The source outcomes yS are transformed to match
the first moment of the target outcome yT using as above
a power transform (Yeo & Johnson, 2000, note that here
we use the inverse transform). If the target and source table
differ on the classification / regression nature of the outcome,
we adapt yS as the following: for a classification target yT ,
we binarize regression outcomes in the source table, and for
a regression target yT , we use binary classification outcomes
of the source table, encoded as {0, 1} and standard scaled.
We then proceed to fine tune CARTE by drawing batches
with a fixed proportion of rows from the target and source
tables (we use a batch size of 64, 8 of which come from
the target). We use early stopping on a validation set of the
target table, and still rely on the bagging strategy of building
multiple learners on different random validation sets and
averaging the predictions. Often, early stopping kicks in
before all the data points of the source have been covered.
This prevents overfitting the source data, which may be less
important than the target data for predicting yT . We use the
hyperparameters selected in the single-table setting.

5

CARTE: Pretraining and Transfer for Tabular Learning

As we choose source tables quite loosely from weakly-
related data, the resulting pairwise learner may not actually
improve upon the single-table learner if the source table
does not bring in enough related information. We thus
combine the pairwise learner with the single-table learner
ensembling the predictors by combining their output with a
softmax. The weights of the softmax are computed using the
prediction score computed in the internal validation set of
these learners, but divided by the standard deviation across
the learners to set the temperature of the softmax.

Joint learning across multiple tables The key to transfer
learning, as above, is finding the right source table. If we
have multiple tables from a given domain or institution,
CARTE can be adapted to use them all, finding the most
useful information for transfer. In these settings we are given
a target table XT and a set of source tables XS,1...XS,m.
We proceed to build individual learners: first the single-
table learner on XT , then each pair2 of one source table
XS,i and the target table XT using the pairwise joint learner
described above. Here again, not every pairwise learning
brings the same amount of useful information. Thus, to
find the optimal combination of datasets, we use the same
strategy as above of ensembling all the pairwise predictors
as well as the single-table predictor. As a consequence, if all
source tables lead to predictors that work as well, they are
combined with equal weights, but if one source dominates,
the prediction is anchored on this one.

4. Experimental Study
4.1. Experimental Setup

Datasets We use 51 tabular learning datasets, all with
an associated learning task –40 regressions and 11
classification–, gathered across multiple sources, mainly
from previous machine learning studies and kaggle compe-
titions. They cover a variety of topics of society and busi-
nesses: accidents, elections, remunerations, food, restau-
rants, etc. We select datasets representative of modern data
science applications: tables with meaningful columns and
discrete entries (Table 3), unlike many datasets from UCI.
Appendix B gives the specific list of datasets.

Baselines We evaluate different baselines with the follow-
ing abbreviations (specific details on experiment settings
and hyper-parameter tuning are presented in Appendix A.2):

CatBoost (Dorogush et al., 2018) A gradient-boosted trees
package commonly used to learn on tables. We treat
text features as categorical, encoded by CatBoost’s
categorical encoding, an improved version of target

2To limit computation cost, we do not explore the full combi-
natorials of source tables.

encoding (Micci-Barreca, 2001).
TabVec The TableVectorizer from the Skrub package

(Skrub, 2024) to encode tables that contain string en-
tries into numerical arrays. Columns with low car-
dinality (number of categories) are one-hot encoded
while those with high cardinality are encoded using
the Gamma-Poisson encoder from skrub, introduced
in Cerda & Varoquaux (2022), which extracts latent
categories from substrings. For non tree-based models,
missing values are imputed with the mean for numeri-
cal features, and treated as another category for cate-
gorical features. For neural network models, minmax
scale is applied to set values between zero and one.

XGB, HGB, and RF Tree-based models: XGBoost (Chen
& Guestrin, 2016), HistGradientBoosting and Random-
Forest (from scikit-learn, Pedregosa et al., 2011).

MLP and ResNet The classical Multilayer Perceptron
(MLP) and its extension with additional layer-
norm/batchnorm and skip-connections (ResNet).

Ridge and Logistic Linear models, Ridge and Logistic re-
gression for regression and classification tasks.

S-LLM Inspired by TabLLM (Hegselmann et al., 2023),
we investigate encoding each row of a table with
a large language model (LLM). We represent
each row as a sentence, and encode them with
intfloat/e5-small-v2 (Wang et al., 2022)
from HuggingFace. Unlike TabLLM, however, the
encoded table is passed to the XGB estimator to en-
able learning for both regression and classification. For
numerical entries, we investigate either concatenating
them as additional features outside of the LLM (CN),
or passing them as strings to the LLM (EN).

TabPFN (Hollmann et al., 2023) is a transformer model
pretrained on synthetic data to generate predictions for
new (small) datasets in one forward pass. We treat the
text features as categorical and encode them with a
target encoder (Micci-Barreca, 2001).

4.2. Results on Single Tables

CARTE outperforms alternatives for learning on single
tables Figure 4 compares the prediction performance of
the multiple methods, summarizing the different datasets.
We see that CARTE consistently outperforms alternatives
across the different sample sizes, whether it is with nor-
malized score3 or critical difference diagrams based on the
Conover post hoc test after the Friedman test to detect pair-
wise significance (Conover, 1999). Another important point
is that the bagging strategy used for CARTE also has pos-
itive impacts for neural network models: such a bagging

3The calculation of the normalized score was adapted from
Grinsztajn et al. (2022), in which the minimum score is fixed at a
value ρ: ρ = 0 for regression and ρ = 0.5 for classification.

6

CARTE: Pretraining and Transfer for Tabular Learning

a. Regression – 40 datasets
TabVec – skrub’s TableVectorizer
XGB – XGBoost
RF – RandomForest
CN – Concat Numerical
EN – Embed Numerical

b. Classification – 11 datasets

Figure 4. CARTE performs best for learning on single tables. Learning curve on (a) regression and (b) classification tasks. Top:
normalized score (1 is the best performer across all methods and train size for a dataset, and 0 the worst), averaged across datasets. Bottom:
critical difference diagrams (Terpilowski, 2019), for all train sizes. Figure 9 gives critical difference diagram for all methods studied.

with different train/validation splits for early stopping may
be beneficial for deep learning in general. Appendix C.1
gives comprehensive results of CARTE and 42 baselines.

CARTE is robust to missing values. When handling
missing values, CARTE discards columns with the missing
value in the graph construction step. For example, a data
point with one missing value on a table with 10 columns
would have nine leaf-nodes after the graph construction
step. Table 1 compares the percentage drop in performance
and its normalized scores (in comparison to Figure 4) of
CARTE and several decision tree baselines that inherently
handle the missing values. In the experiment, we randomly
drop a proportion of features for each sample (train/test
inclusive). The fraction of dropped columns are set as 0.1
(10 % features dropped) and 0.3. The table shows that
CARTE continues to outperform the baselines with smaller
decrease in performance created by missing values.

Computation time trade-off for CARTE Table 2 shows
the average computation time (in seconds) of the top-four
baselines. The strong prediction performance of CARTE
comes at a cost in computation time, and the gap increases
with train size (n). This cost calls for further optimizations.

Table 1. CARTE is robust to missing values. Percentage drop
in performance and its normalized scores with missing values in
which a proportion (0.1 or 0.3) of features are randomly dropped.

Percentage decrease created by missing values

Methods Train size (Missing fraction)

64 (0.1) 64 (0.3) 512 (0.1) 512 (0.3)

CARTE 13.28% 38.35% 10.19% 24.42%
CatBoost 21.70% 53.32% 12.23% 29.70%
TabVec-XGB 15.11% 51.27% 12.61% 30.35%
TabVec-RF 7.68% 44.43% 12.77% 29.79%

Normalized absolute score (as in Figure 4)

CARTE 0.44(0.20) 0.29(0.18) 0.75(0.12) 0.61(0.14)
CatBoost 0.31(0.22) 0.17(0.17) 0.65(0.15) 0.50(0.15)
TabVec-XGB 0.19(0.20) 0.11(0.15) 0.65(0.17) 0.50(0.17)
TabVec-RF 0.23(0.21) 0.14(0.16) 0.63(0.15) 0.49(0.15)

Entity matching not required for CARTE The hypothe-
sis to explain the good performance of CARTE is that has
integrated information on many entities because it has been
pretrained on the YAGO knowledge base. However, in a
given downstream table, entities might appear written in a

7

CARTE: Pretraining and Transfer for Tabular Learning

Table 2. Computation time (in seconds) for top-four baselines
for preprocessing, training and testing, across the 51 datasets.

Methods Preprocessing Learning Learning
n = 64 n = 512

CARTE 50.20±63.68 85.43±60.30 315.49±119.84
CatBoost - 0.98±1.19 1.05±1.06
TabVec-XGB 64.72±139.23 0.40±0.21 1.19±0.94
S-LLM-XGB 207.87±361.56 0.87±0.71 3.49±1.79

different way: for instance “Londres” instead of “London”.
This begs the question of whether CARTE transfers well
useful information if the string representation of the enti-
ties differs. String matching is necessary for instance when
using as features vector embeddings of the entries such as
KEN embeddings (Cvetkov-Iliev et al., 2023).

On four of our datasets (company employees, movies, US
accidents, and US election), we performed manual entity
matching of the entries to their corresponding YAGO entity.
Figure 5 shows that while using KEN requires entity match-
ing to have good performance, the string-level modeling in
CARTE make its performance robust to entity variants: us-
ing manually matched entities or original entries. Ablations
confirm the importance of string-level representations that
also capture semantic similarity (Appendix Figure 10).

0.5 0.4 0.3 0.2 0.1 0.0 0.1
Improvement over CatBoost

KEN

KEN on
YAGO entities

CARTE

CARTE on
YAGO entities

Entities
Manual matching
Original entries

Figure 5. Entity matching not required for CARTE, and down-
stream entities do not need to be in YAGO. We evaluate CARTE
and KEN either on the full datasets, or on a reduced version of the
datasets corresponding to entities present in YAGO. In addition,
when entities are present in YAGO, we either match them to their
canonical names in YAGO (blue) or keep the original names (or-
ange). When KEN is used to enrich the dataset, CatBoost is used as
the estimator, and entities without matching are replaced with miss-
ing values. Each point on the figure correspond to an improvement
in performance with respect to Catboost without any enrichment.
That KEN brings performance gains to CatBoost on YAGO entities
confirms the added value of background information. Appendix
C.5 gives detailed results.

Table 3. Difference between this study’s benchmark and
TabLLM datasets. Our benchmark datasets contain more cat-
egorical columns, in particular with higher cardinality (|C|).

Characteristics This study’s TabLLMbenchmark

Fraction of numerical cols. 0.194 0.613
Fraction of cols. with |C| > 10 0.625 0.043
Cardinality over data size 0.263 0.001

4 3 2 1

TabLLM
XGBoost

 TabPFN
 CARTE

Figure 6. Comparison to three baselines in TabLLM (Hegsel-
mann et al., 2023). The datasets contain mostly numerical features
or low-cardinality categorical columns. In such settings, TabPFN
performs best, followed by CARTE, XGBoost, and TabLLM.

Comparison to TabLLM baselines We compare CARTE
to three baselines over nine datasets presented TabLLM
(Hegselmann et al., 2023). Compared to the datasets in
Figure 4, the datasets in TabLLM contain higher fraction
of numerical features with less cardinality of categorical
columns (see Table 3). Figure 6 gives the critical difference
diagram of the baselines. TabPFN shows strength in such
settings. Yet, CARTE can attain competitive performances
although it is geared towards handling both numerical values
and strings. Detailed results are analyzed in Appendix C.2.

4.3. Learning Across Multiple Tables

We investigate learning across multiple tables without ex-
plicit correspondences across columns. We use tables “in
the wild”: in our 51 datasets, we find groups covering the
same general topic (bike prices, restaurant ratings) though
they come from different sources (Appendix B.3). In this
setting, we can readily use CARTE and S-LLM approaches
as they use an open-vocabulary representation of the col-
umn to embed entries (but only the EN, Embed Numerical,
version of S-LLM, as the CN, Concat Numerical, needs
correspondence for the numerical columns). As CatBoost
natively deals with missing values, we use it by concatenat-
ing the datasets and adding missing values for mismatch
columns. We also investigate manual matching of columns.

Schema matching not required for CARTE Figure 7
shows results for transfer learning across only two tables.
We see that for all approaches transfer learning can help
(the dashed line, representing the learning only on the tar-
get table, is below), but only CARTE provides consistent
improvements without requiring manual column matching.

8

CARTE: Pretraining and Transfer for Tabular Learning

Joint Learning – 125 cases
HGB – sklearn’s HistGradientBoosting

8 7 6 5 4 3 2

S-LLM-Single dataset
S-LLM-Not matched

S-LLM-Matched
CatBoost-Not matched

CatBoost-Single dataset

 CARTE-Matched
 CARTE-Not matched
 CARTE-Single dataset
 CatBoost-Matched

Figure 7. Schema matching not required for CARTE, with con-
sistent improvements through joint learning. We compare three
scenarios (style) – single (dashed lines): only the target tables; joint
(full lines): the automated transfer learning without any manual
operation; matched (dotted lines): transfer learning after manually
matching the columns.

For CatBoost, the matching (dotted line) is crucial, which
is not the case for the other approaches. For S-LLM, the
benefit of transfer drops rapidly with respect to the number
of training samples. The results show that CARTE does not
need schema matching, and it provides consistent improve-
ments in the target table with transfer. Extended results of
schema-matching can be found in Appendix C.6.

Joint learning from multiple tables The difficulty for
transfer learning may be finding good source tables. In
Figure 8, we investigate bringing in more source tables, up
to a total of 4 tables (1 target, and 3 sources, with a total
of 245 cases). CARTE benefits from adding source tables:
not only does the median performance improve but also, the
lower bound in variability improves. In other words, more
source tables give higher chances of finding a beneficial one,
and thus the worst-case scenario becomes better.

5. Discussion and Conclusion
Strings and numbers in tables Our study touches on
the importance of strings in tabular data. They are often
overlooked in tabular machine learning (Table 3 shows how

32 64 128 256
Number of training samples

-10%

-1%
0%
1%

10%

100%

Im
pr

ov
em

en
t o

ve
r

 si
ng

le
 ta

bl
e

se
tti

ng

Num Sources
1
2
3

Figure 8. CARTE further benefits from additional source ta-
bles.

datasets are mostly numerical or low-cardinality categories),
but central to database research, which focuses on discrete
entries. Compared to most tabular-learning models (whether
tree-based, or neural networks as TabPFN), the edge of
CARTE is on the strings. String preprocessing in skrub’s
TableVectorizer also boosts baselines (Figure 9). Conversely,
language models, as LLMs, focus on strings, enabling pre-
training on huge corpora. They give great preprocessing
of strings but must be combined with tree-based methods
to handle numbers (S-LLM-CN-XGB in our benchmark).
CARTE is is tailored to both strings and numbers.

An architecture that boosts performance By using an
architecture that models table entries not as a ith feature in a
data matrix but as a function of its context (column names
and neighboring entries) as well open-vocabulary embed-
ding of strings, CARTE enables consistent representations
of very different tables. This opens the door to pre-training
across background tables, and fine-tuning to downstream
tasks without matched entities or schema. Results show that
after pretraining on a large knowledge base, the resulting
model brings marked benefits to downstream analytic tasks,
consistently outperforming a broad range of baselines both
for learning on a single table or transfer learning on tables
with imperfect correspondences. It enables transfer from
tables in the wild, a setting so far never studied.

Toward tabular foundation models Pre-training has
been key to the wide application of deep learning on images
and text. We hope that the ideas behind CARTE will bring
these benefits to tabular learning, leading to tabular foun-
dation models. This will call for further improved architec-
tures: optimizing for larger train-sizes; refining numerical
representations with ideas of Gorishniy et al. (2022); lever-
aging more training information and expressive attention
as in large language models; merging with the complemen-
tary meta-learning ideas of TabPFN (Hollmann et al., 2023),
which shines on heavily-numerical tables.

9

CARTE: Pretraining and Transfer for Tabular Learning

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal con-
sequences of our work, none which we feel must be specif-
ically highlighted here. The societal impact of a method
depends on how it is used. We do note, however, that tabular
data are central to fields such as healthcare which uses a
lot codes and more or less normalized entities (e.g., ICD10
codes for diseases, medical informatics as a field has in-
vested hugely on data integration). We thus hope that pre-
training a tabular model on health data could provide value
to this field, and in turn positive societal impact.

On another topic, we note that our model, CARTE, comes
with additional computational cost compared to baselines.
We do expect that further research and engineering will
bring these costs down. However, our work opens the door
to pre-trained models for tabular data, one day maybe foun-
dation models. These models have led to a race for ever-
increasing size, which comes with dire consequences in
terms of energy and financial cost, carrying over to ecology
and concentration of power.

Acknowledgments
The authors acknowledge the support in part by the French
Agence Nationale de la Recherche under Grant ANR-20-
CHIA-0026 (LearnI).

We also would like to thank the ICML reviewers, who chal-
lenged us in a good way, leading to improved empirical
study of CARTE, and hence a better manuscript.

References
Abutbul, A., Elidan, G., Katzir, L., and El-Yaniv, R. DNF-

Net: A Neural Architecture for Tabular Data, June 2020.

Arik, S. O. and Pfister, T. TabNet: Attentive Interpretable
Tabular Learning, December 2020.

Balazevic, I., Allen, C., and Hospedales, T. Multi-relational
poincaré graph embeddings. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

Breiman, L. Bagging predictors. Machine learning, 24:
123–140, 1996.

Cerda, P. and Varoquaux, G. Encoding high-cardinality
string categorical variables. IEEE Transactions on Knowl-
edge and Data Engineering, 34(3):1164–1176, March

2022. ISSN 1041-4347, 1558-2191, 2326-3865. doi:
10.1109/TKDE.2020.2992529.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X.
Measuring and relieving the over-smoothing problem for
graph neural networks from the topological view. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 3438–3445, 2020a.

Chen, J., Yan, J., Chen, D. Z., and Wu, J. ExcelFormer:
A Neural Network Surpassing GBDTs on Tabular Data,
January 2023.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785–794, 2016.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020b.

Conover, W. J. Practical nonparametric statistics, volume
350. john wiley & sons, 1999.

Crossley, S., Heintz, A., Choi, J. S., Batchelor, J., Karimi,
M., and Malatinszky, A. A large-scaled corpus for assess-
ing text readability. Behavior Research Methods, 55(2):
491–507, 2023.

Cvetkov-Iliev, A., Allauzen, A., and Varoquaux, G. Rela-
tional data embeddings for feature enrichment with back-
ground information. Machine Learning, 112(2):687–720,
2023.

Deng, X., Sun, H., Lees, A., Wu, Y., and Yu, C. TURL:
Table Understanding through Representation Learning,
December 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding, May 2019.

Doan, A., Halevy, A., and Ives, Z. Principles of data inte-
gration. Elsevier, 2012.

Dorogush, A. V., Ershov, V., and Gulin, A. CatBoost: Gra-
dient boosting with categorical features support. arXiv
preprint arXiv:1810.11363, 2018.

Eggert, G., Huo, K., Biven, M., and Waugh, J. TabLib: A
Dataset of 627M Tables with Context, October 2023.

Fey, M., Hu, W., Huang, K., Lenssen, J. E., Ranjan, R.,
Robinson, J., Ying, R., You, J., and Leskovec, J. Rela-
tional deep learning: Graph representation learning on
relational databases. arXiv preprint arXiv:2312.04615,
2023.

10

CARTE: Pretraining and Transfer for Tabular Learning

Gardner, J., Popovic, Z., and Schmidt, L. Subgroup Robust-
ness Grows On Trees: An Empirical Baseline Investiga-
tion. Advances in Neural Information Processing Systems,
35:9939–9954, December 2022.

Gorishniy, Y., Rubachev, I., and Babenko, A. On embed-
dings for numerical features in tabular deep learning. Ad-
vances in Neural Information Processing Systems, 35:
24991–25004, 2022.

Gorishniy, Y., Rubachev, I., Kartashev, N., Shlenskii, D.,
Kotelnikov, A., and Babenko, A. TabR: Tabular Deep
Learning Meets Nearest Neighbors in 2023, October
2023a.

Gorishniy, Y., Rubachev, I., Khrulkov, V., and Babenko,
A. Revisiting Deep Learning Models for Tabular Data,
October 2023b.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do tree-
based models still outperform deep learning on tabular
data?, July 2022.

Hegselmann, S., Buendia, A., Lang, H., Agrawal, M., Jiang,
X., and Sontag, D. TabLLM: Few-shot Classification of
Tabular Data with Large Language Models, March 2023.

Hollmann, N., Müller, S., Eggensperger, K., and Hutter,
F. TabPFN: A Transformer That Solves Small Tabular
Classification Problems in a Second, September 2023.

Hulsebos, M., Hu, K., Bakker, M., Zgraggen, E., Satya-
narayan, A., Kraska, T., Demiralp, Ç., and Hidalgo, C.
Sherlock: A deep learning approach to semantic data type
detection. In Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data
Mining, pp. 1500–1508, 2019.

Hulsebos, M., Demiralp, Ç., and Groth, P. GitTables: A
Large-Scale Corpus of Relational Tables. Proceedings of
the ACM on Management of Data, 1(1):1–17, May 2023.
ISSN 2836-6573. doi: 10.1145/3588710.

Levin, R., Cherepanova, V., Schwarzschild, A., Bansal, A.,
Bruss, C. B., Goldstein, T., Wilson, A. G., and Goldblum,
M. Transfer Learning with Deep Tabular Models, August
2023.

Mahdisoltani, F., Biega, J., and Suchanek, F. M. Yago3: A
knowledge base from multilingual wikipedias. In CIDR,
2013.

McElfresh, D., Khandagale, S., Valverde, J., C, V. P., Feuer,
B., Hegde, C., Ramakrishnan, G., Goldblum, M., and
White, C. When Do Neural Nets Outperform Boosted
Trees on Tabular Data?, October 2023.

Micci-Barreca, D. A preprocessing scheme for high-
cardinality categorical attributes in classification and pre-
diction problems. ACM SIGKDD Explorations Newslet-
ter, 3(1):27–32, 2001.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and
Joulin, A. Advances in pre-training distributed word
representations. arXiv preprint arXiv:1712.09405, 2017.

Narayan, A., Chami, I., Orr, L., and Ré, C. Can foundation
models wrangle your data? Proceedings of the VLDB
Endowment, 16(4):738–746, 2022.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830, 2011.

Popov, S., Morozov, S., and Babenko, A. Neural Oblivious
Decision Ensembles for Deep Learning on Tabular Data,
September 2019.

Rusch, T. K., Bronstein, M. M., and Mishra, S. A survey on
oversmoothing in graph neural networks. arXiv preprint
arXiv:2303.10993, 2023.

Sanjib, D., AnHai, D., Suganthan, P., Chaitanya, G., Pradap,
K., Yash, G., and Derek, P. The Magellan Data Reposi-
tory, 2023.

Shwartz-Ziv, R. and Armon, A. Tabular Data: Deep Learn-
ing is Not All You Need, November 2021.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representations (ICLR
2015), 2015.

Skrub. Skrub, prepping tables for machine learning.
https://skrub-data.org, 2024.

Somepalli, G., Goldblum, M., Schwarzschild, A., Bruss,
C. B., and Goldstein, T. SAINT: Improved Neural Net-
works for Tabular Data via Row Attention and Contrastive
Pre-Training, June 2021.

Terpilowski, M. scikit-posthocs: Pairwise multiple compari-
son tests in python. The Journal of Open Source Software,
4(36):1169, 2019. doi: 10.21105/joss.01169.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

11

https://skrub-data.org

CARTE: Pretraining and Transfer for Tabular Learning

UCI. UC Irvine Machine Learning Repository. https:
//archive.ics.uci.edu.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., Bengio, Y., et al. Graph attention networks. stat, 1050
(20):10–48550, 2017.

Wang, L., Yang, N., Huang, X., Jiao, B., Yang, L.,
Jiang, D., Majumder, R., and Wei, F. Text embeddings
by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Wang, Z. and Sun, J. Transtab: Learning transferable tabular
transformers across tables. Advances in Neural Informa-
tion Processing Systems, 35:2902–2915, 2022.

Yeo, I.-K. and Johnson, R. A. A new family of power
transformations to improve normality or symmetry.
Biometrika, 87(4):954–959, 2000.

Zhu, B., Shi, X., Erickson, N., Li, M., Karypis, G., and
Shoaran, M. Xtab: Cross-table pretraining for tabular
transformers. arXiv preprint arXiv:2305.06090, 2023.

12

https://archive.ics.uci.edu
https://archive.ics.uci.edu

CARTE: Pretraining and Transfer for Tabular Learning

A. Detailed Information on Training
A.1. Pretrained Model of CARTE

Model specification and training details The model specification and training details were largely referenced from
the work of (Devlin et al., 2019). We set 12 attention layers, each consisting of 12 multi-head attentions, and the hidden
dimension was fixed to the same size as the inputs (300). The resulting model contains over 9.3 million parameters. To run
the pretraining, we selected 128 entities with one additional positive, resulting in the batch size of 256. The total number
of steps for training was 1, 000, 000, which approximately covers 40 epochs with respect to YAGO entities. We use the
AdamW optimizer accompanied by the cosine scheduler with lrmin = 5× 10−6, lrmax = 1× 10−4 and a warmup over the
first 10, 000 steps. The dropout rate was fixed to 0.1 and the gelu activation function was used.

A.2. Details on Experiment Settings for Downstream Tasks

Single tables To evaluate the performances of baselines on single tables, we focused on the setting with limited train-size
for each table varying from 32, 64, 128, 256, 512, 1, 024, and 2, 048; the rest of the remaining data were set as the test set.
To find the optimal hyperparameters of the baselines, 5-fold cross-validation over 100 random search iteration were carried
out on all the comparing methods except for CARTE and TabPFN. For CARTE, the same 5-fold cross-validation, but only
the grid-search over the learning rate was conducted. For TabPFN, we ran with the default values, as suggested in the paper.
For detailed information the hyperparameter spaces of each method, please refer to the Hyperparmeter tuning paragraph
below. The performance was recorded on 10 different train/test splits, with the performance measure set as the R2 score for
regression and the Area Under Receiver Operating Curve (AUROC) for classification tasks.

Joint learning across multiple tables The experiment settings for joint learning is almost the same as in the single table
setting, except for minor details. The number of train-set on the target was varied across 32, 64, 128, 256, while the same
split was set as in the case of single-tables to make the results comparable. In terms of hyperparameter optimization, CARTE
only takes the best values obtained from the the single-table case (section 3). For other baselines, the same scheme for
hyperparameter search was conducted.

Hyperparameter space The hyperparameter tuning was done using grid search for CARTE, as we only tune the learning
rate, and with random search for the baselines as these come with more than two hyperparameters to tune. The hyperparmeter
spaces for XGBoost, HistGradientBoosting, RandomForest, Resnet, and MLP baselines are based on that used in Grinsztajn
et al. (2022); for CatBoost we follow that used in the CatBoost paper (Dorogush et al., 2018). For the baselines in joint
learning across multiple tables, we employ an additional hyperparameter ‘fraction source’, which denote the fraction of
source data used for training. Table 4 below summarizes the hyperparameter spaces for each of the estimators.

A.3. Hardware Specifications

The pretrained model for CARTE was trained on GPUs. For rest of our experiments, they were run on 32 cores of CPU and
the hardware was chosen based on availability.

GPUs: NVIDIA V100 (32GB VRAM)

CPUs: AMD EPYC 7742 64-Core Processor, AMD EPYC 7702 64-Core Processor (512GB RAM), Intel(R) Xeon(R) CPU
E5-2660 v2, Intel(R) Xeon(R) Gold 6226R CPU (256GB RAM)

A.4. Implementation of CARTE

The implementation and datasets will be avaliable at:

Implementation: https://github.com/soda-inria/carte.

Datasets: https://huggingface.co/datasets/inria-soda/carte-benchmark

13

https://github.com/soda-inria/carte
https://huggingface.co/datasets/inria-soda/carte-benchmark

CARTE: Pretraining and Transfer for Tabular Learning

Table 4. Hyperparameter space for CARTE and baseline estimators.

Methods Parameters Grid

CARTE Learning rate [2.5, 5, 7.5] × [1e−4, 1e−3]

CatBoost

Max depth UniformInt [2, 10]
Learning rate LogUniform [1e−5, 1]
Bagging temperature Uniform [0, 1]
l2-leaf regularization LogUniform [1, 10]
One hot max size UniformInt [2, 25]
Iterations UniformInt [400, 1000]

XGBoost

Num estimators UniformInt [50, 1000]
Max depth UniformInt [2, 10]
Learning rate LogUniform [1e−5, 1]
Min child weight LogUniform [1, 100]
Subsample Uniform [0.5, 1]
Colsample by level Uniform [0.5, 1]
Colsample by tree Uniform [0.5, 1]
Gamma LogUniform [1e−8, 7]
Lambda LogUniform [1, 4]
Alpha LogUniform [1e−8, 100]

HistGradientBoosting

Learning rate LogUniform [1e−2, 10]
Max depth [None, 2, 3, 4]
Max leaf nodes NormalInt [31, 5]
Min samples leaf NormalInt [20, 2]
l2-regularization LogUniform [1e−6, 1e3]

RandomForest

Num estimators UniformInt [50, 250]
Max depth [None, 2, 3, 4]
Max features [sqrt, sqrt, log2, None, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
Min samples leaf LogUniform [1.5, 50.5]
Bootstrap [True, False]
Min impurity decrease [0, 0.01, 0.02, 0.05]

ResNet

Num layers UniformInt [1, 8]
Layer size UniformInt [32, 512]
Hidden factor UniformInt [1, 3]
Hidden dropout Uniform [0, 0.5]
Residual dropout Uniform [0, 0.5]
Learning rate LogUniform [1e−5, 1e−2]
Weight decay LogUniform [1e−8, 1e−2]
Normalization [batchnorm, layernorm]
Batch size [16, 32]

MLP

Num layers UniformInt [1, 4]
Layer size UniformInt [16, 1024]
Dropout Uniform [0, 0.5]
Learning rate LogUniform [1e−5, 1e−2]
Weight decay LogUniform [1e−8, 1e−2]
Batch size [16, 32]

Ridge Regression Solver [svd, cholesky, lsqr, sag]
Alpha LogUniform [1e−5, 100]

Logistic Regression
Solver [newton-cg, lbfgs, liblinear]
Penalty [none, l1, l2, elasticnet]
C LogUniform [1e−5, 100]

Baselines in joint learning Source fraction Uniform [0, 1]

14

CARTE: Pretraining and Transfer for Tabular Learning

B. Data Description
B.1. Data Preprocessing

Only minimal data preprocessing were carried out in data preparation. For all datasets, we excluded columns that contained
only one unique value or had missing values over half the size of the dataset.

B.2. Datasets

We provide detailed description of the datasets used in our experiment study.

1. Anime Planet4 This dataset contains information about anime scrapped from the website Anime-Planet. The task is to
predict the average rating of the anime on this site.

2. Babies R Us (Sanjib et al., 2023)5 Information of baby products scraped from the Babies R Us website. The task is to
predict the price of baby products.

3. Buy Buy Baby (Sanjib et al., 2023)6 Information of baby products scraped from the Buy Buy Baby website. The task
is to predict the price of baby products.

4. Beer Ratings7 The dataset contains tasting profiles and consumer reviews for 3197 unique beers from 934 different
breweries. The task is to predict overall review ratings of different beers.

5. Bikedekho (Sanjib et al., 2023)8 Information on bikes and scooters from bikedekho website in India. The task is to
predict the price of bikes.

6. Bikewale (Sanjib et al., 2023)9 Information on bikes and scooters from bikewale website in India. The task is to predict
the price of bikes.

7. Cardekho10 This dataset contains information on used cars, with their listing price in the websit Cardekho. The task is
to predict the price.

8. Chocolate Bar Ratings11Dataset containing information and expert rating on cocoa batches. The task is to predict the
rating.

9. Clear Corpus (Crossley et al., 2023)12 Generic information about the reading passage excerpts for elementary school
students. The task is to predict the readability of the excerpts. The text feature is the name of the book, not the excerpt.

10. Coffee Ratings13 Dataset scraped from coffeereview.com containing information on various coffees. The task is to
predict the review ratings of the coffees.

11. Company Employees14 Information on companies with over 1, 000 employees. The task is to predict the number of
employees of each company.

12. Employee remuneration and expenses earning over 7500015 Remuneration and expenses for employees earning
over $75,000 per year. The task is to predict the remuneration of employees.

4https://www.kaggle.com/datasets/hernan4444/animeplanet-recommendation-database-2020
5http://pages.cs.wisc.edu/˜anhai/data/784_data/bikes/csv_files/babies_r_us.csv
6http://pages.cs.wisc.edu/˜anhai/data/784_data/bikes/csv_files/buy_buy_baby.csv
7https://www.kaggle.com/datasets/ruthgn/beer-profile-and-ratings-data-set
8http://pages.cs.wisc.edu/˜anhai/data/784_data/bikes/csv_files/bikedekho.csv
9http://pages.cs.wisc.edu/˜anhai/data/784_data/bikes/csv_files/bikewale.csv

10https://www.kaggle.com/datasets/sukritchatterjee/used-cars-dataset-cardekho
11https://www.kaggle.com/datasets/rtatman/chocolate-bar-ratings
12https://www.commonlit.org/blog/introducing-the-clear-corpus-an-open-dataset-to-advance-

research-28ff8cfea84a
13https://www.kaggle.com/datasets/hanifalirsyad/coffee-scrap-coffeereview
14https://www.kaggle.com/peopledatalabssf/free-7-million-company-dataset
15https://opendata.vancouver.ca/explore/dataset/employee-remuneration-and-expenses-

earning-over-75000/information/?disjunctive.department&disjunctive.title

15

https://www.kaggle.com/datasets/hernan4444/animeplanet-recommendation-database-2020
http://pages.cs.wisc.edu/~anhai/data/784_data/bikes/csv_files/babies_r_us.csv
http://pages.cs.wisc.edu/~anhai/data/784_data/bikes/csv_files/buy_buy_baby.csv
https://www.kaggle.com/datasets/ruthgn/beer-profile-and-ratings-data-set
http://pages.cs.wisc.edu/~anhai/data/784_data/bikes/csv_files/bikedekho.csv
http://pages.cs.wisc.edu/~anhai/data/784_data/bikes/csv_files/bikewale.csv
https://www.kaggle.com/datasets/sukritchatterjee/used-cars-dataset-cardekho
https://www.kaggle.com/datasets/rtatman/chocolate-bar-ratings
https://www.commonlit.org/blog/introducing-the-clear-corpus-an-open-dataset-to-advance-research-28ff8cfea84a
https://www.commonlit.org/blog/introducing-the-clear-corpus-an-open-dataset-to-advance-research-28ff8cfea84a
https://www.kaggle.com/datasets/hanifalirsyad/coffee-scrap-coffeereview
https://www.kaggle.com/peopledatalabssf/free-7-million-company-dataset
https://opendata.vancouver.ca/explore/dataset/employee-remuneration-and-expenses-earning-over-75000/information/?disjunctive.department&disjunctive.title
https://opendata.vancouver.ca/explore/dataset/employee-remuneration-and-expenses-earning-over-75000/information/?disjunctive.department&disjunctive.title

CARTE: Pretraining and Transfer for Tabular Learning

13. Employee Salaries16 Information on salaries for employees of the Montgomery County, MD. The task is to predict the
current annual salary range of the employees.

14. Fifa22 Players17 Information on soccer players and their ability scores in Fifa22 game. The task is to predict the
player’s wage.

15. Filmtv Movies18 Information of movies and ratings scraped from an Italian movie review website Filmtv Movies. The
task is to predict the public vote on movies.

16. Journal Score JCR Scientific journals and their descriptive features from Journal Citation Reports. The task is to
predict the impact factors of the journals.

17. Journal Score SJR Scientific journals and their descriptive features from Scimago journal rank. The task is to predict
the H-index of journals.

18. Japanese Anime19 List of Japanese animes and their relevant information. The task is to predict score for the animes.

19. K-Drama20 List of korean drama and their basic information from mydramalist website. The task is to predict the
score of the Korean dramas.

20. Michelin21 List of restaurants along with additional details curated from the Michelin Restaurants guide. The task is to
predict the award of the restaurants.

21. ML/DS Salaries22 salary and basic information of workers in machine learning and data science industry. The task is
to predict the salary of workers.

22. Movie Revenues23 Metadata of movies released on or before July 2017. The task is to predict the range of the
box-office revenues.

23. Museums24 General information on the US museums. The task is to predict the revenues across the museums.

24. Mydramalist25 General information on Asian drama scraped from mydramalist website. The task is to predict the
ratings of Asian dramas.

25. NBA Draft26 Information on all NBA Draft picks from 1989-2021. The task is to predict the ‘value over replacement’
of players.

26. Prescription Drugs27 The data contains new prescription drugs introduced to market in California with a Wholesale
Acquisition Cost (WAC) that exceeding Medicare Part D. The task is to predict WAC at introduction.

27. Ramen ratings28 The dataset contains ratings and characteristics of various ramens produced from multiple countries.
The task is to predict the range of ratings of the ramens.

28. Roger Ebert29 The dataset contains movies ratings by famous critic Rogert Ebert. The task is to predict the range of
ratings.

16https://openml.org/d/42125
17https://www.kaggle.com/datasets/joebeachcapital/fifa-players
18https://www.kaggle.com/datasets/stefanoleone992/filmtv-movies-dataset/data
19https://www.kaggle.com/datasets/dbdmobile/myanimelist-dataset
20https://www.kaggle.com/datasets/noorrizki/top-korean-drama-list-1500
21https://www.kaggle.com/datasets/ngshiheng/michelin-guide-restaurants-2021
22https://ai-jobs.net/salaries/download/salaries.csv
23https://www.kaggle.com/rounakbanik/the-movies-dataset
24https://www.kaggle.com/datasets/markusschmitz/museums
25https://www.kaggle.com/datasets/rajchinagundi/mydramalist-complete-dataset
26https://www.kaggle.com/datasets/mattop/nba-draft-basketball-player-data-19892021
27https://data.ca.gov/uk/dataset/prescription-drugs-introduced-to-market
28https://www.kaggle.com/datasets/ankanhore545/top-ramen-ratings-2022
29https://github.com/gabrielcs/movie-ratings-prediction

16

https://openml.org/d/42125
https://www.kaggle.com/datasets/joebeachcapital/fifa-players
https://www.kaggle.com/datasets/stefanoleone992/filmtv-movies-dataset/data
https://www.kaggle.com/datasets/dbdmobile/myanimelist-dataset
https://www.kaggle.com/datasets/noorrizki/top-korean-drama-list-1500
https://www.kaggle.com/datasets/ngshiheng/michelin-guide-restaurants-2021
https://ai-jobs.net/salaries/download/salaries.csv
https://www.kaggle.com/rounakbanik/the-movies-dataset
https://www.kaggle.com/datasets/markusschmitz/museums
https://www.kaggle.com/datasets/rajchinagundi/mydramalist-complete-dataset
https://www.kaggle.com/datasets/mattop/nba-draft-basketball-player-data-19892021
https://data.ca.gov/uk/dataset/prescription-drugs-introduced-to-market
https://www.kaggle.com/datasets/ankanhore545/top-ramen-ratings-2022
https://github.com/gabrielcs/movie-ratings-prediction

CARTE: Pretraining and Transfer for Tabular Learning

29. Rotten Tomatoes (Sanjib et al., 2023)30 Contain information on movies that can be found in Rotten Tomatoes movie
rating website. The task is to predict the rating values of the movies.

30. Spotify31 Generic information on Spotify tracks with some associated audio features. The task is to predict the
popularity of the albums.

31. US Accidents32 Information of accidents in US cities between 2016 and 2020. From this dataset, two tasks are
conducted: (1) the range of accident counts for the US cities (2) the severity of the reported accidents.

32. US Presidential (Cvetkov-Iliev et al., 2023) Voting statistics in the 2020 US presidential election along with information
on US counties. The task is to predict the range of voting numbers across US counties.

33. Used Cars 2433 Information on used cars. The task is to predict the price.

34. Used Cars Benz Italy34 Dataset containing information on used cars sold in Italy. The task is to predict the price.

35. UsedCars.com Dataset containing information on used cars usedcars.com. The task is to predict the price.

36. Used Cars Pakistan35 Dataset containing information on used cars sold in Pakistan. The task is to predict the price.

37. Used Cars Saudi Arabia36 Dataset containing information on used cars sold in Saudi Arabia from the Syarah Website.
The task is to predict the price of used cars.

38. Videogame Sales37 This dataset contains a list of video games with sales greater than 100,000 copies (scrape of
vgchartz.com). The task is to predict the global sales of the videogames.

39. Whisky38 Basic and tasting information on whiskies form the whiskyanalysis.com. The task is to predict the range of
meta critic of the whiskies.

40. Wikiliq39 Information on alcohol that can be found in the Wikiliq website. We conducted two tasks to predict the
prices of (1) beer and (2) spirits.

41. Wina Poland40 Information about wines on the polish market. The task is to predict the price.

42. Wine.com41 Information on wines scraped from the wine.com website. We conducted two tasks on prediction of (1)
wine ratings and (2) wine prices.

43. WineEnthusiasts42 Information about a wine and a taster from winemag.com. We conducted two tasks on prediction
of (1) wine ratings and (2) wine prices.

44. WineVivino43 Information about wine bottles scrapped from Vivino’s website. We conducted two tasks on prediction
of (1) wine ratings and (2) wine prices.

45. Yelp44 The Yelp Open dataset for academic research. We extracted information on the restaurants from the original
dataset. The task is to predict the range of stars for the restaurants. https://www.yelp.com/dataset

30http://pages.cs.wisc.edu/˜anhai/data/784_data/movies1/csv_files/rotten_tomatoes.csv
31https://www.kaggle.com/datasets/maharshipandya/-spotify-tracks-dataset
32https://smoosavi.org/datasets/us_accidents
33https://www.kaggle.com/datasets/avikasliwal/used-cars-price-prediction
34https://www.kaggle.com/datasets/bogdansorin/second-hand-mercedes-benz-registered-2000-

2023-ita
35https://www.kaggle.com/datasets/mustafaimam/used-car-prices-in-pakistan-2021
36https://www.kaggle.com/datasets/turkibintalib/saudi-arabia-used-cars-dataset
37https://www.kaggle.com/datasets/gregorut/videogamesales
38https://whiskyanalysis.com/index.php/database/
39https://www.kaggle.com/datasets/limtis/wikiliq-dataset
40https://www.kaggle.com/datasets/skamlo/wine-price-on-polish-market
41https://www.kaggle.com/datasets/manyregression/updated-wine-enthusiast-review
42https://www.kaggle.com/datasets/manyregression/updated-wine-enthusiast-review
43https://www.kaggle.com/datasets/joshuakalobbowles/vivino-wine-data
44https://www.yelp.com/dataset

17

http://pages.cs.wisc.edu/~anhai/data/784_data/movies1/csv_files/rotten_tomatoes.csv
https://www.kaggle.com/datasets/maharshipandya/-spotify-tracks-dataset
https://smoosavi.org/datasets/us_accidents
https://www.kaggle.com/datasets/avikasliwal/used-cars-price-prediction
https://www.kaggle.com/datasets/bogdansorin/second-hand-mercedes-benz-registered-2000-2023-ita
https://www.kaggle.com/datasets/bogdansorin/second-hand-mercedes-benz-registered-2000-2023-ita
https://www.kaggle.com/datasets/mustafaimam/used-car-prices-in-pakistan-2021
https://www.kaggle.com/datasets/turkibintalib/saudi-arabia-used-cars-dataset
https://www.kaggle.com/datasets/gregorut/videogamesales
https://whiskyanalysis.com/index.php/database/
https://www.kaggle.com/datasets/limtis/wikiliq-dataset
https://www.kaggle.com/datasets/skamlo/wine-price-on-polish-market
https://www.kaggle.com/datasets/manyregression/updated-wine-enthusiast-review
https://www.kaggle.com/datasets/manyregression/updated-wine-enthusiast-review
https://www.kaggle.com/datasets/joshuakalobbowles/vivino-wine-data
https://www.yelp.com/dataset

CARTE: Pretraining and Transfer for Tabular Learning

46. Zomato45 Information and reviews of restaurants found in the zomato websites. The task is to predict the range of
ratings for each restaurants.

B.3. Datasets from multi-table experiments

For the multi-table experiments we extract from the list above groups of tables that are related to the same topics:

Wine prices: Wina Poland, WineEnthusiasts, WineVivino, Wine.com

Wine ratings: WineEnthusiasts, WineVivino, Wine.com

Beers: Beer Ratings, Wikiliq-Beer

Used Car: Used Cars 24, Used Cars Benz Italy, UsedCars.com, Used Cars Pakistan, Used Cars Saudi Arabia

Films: Filmtv Movies, Rotten Tomatoes

Dramas: K-Drama, Mydramalist

Animes: Anime Planet, Japanese Anime

Baby products: Buy Buy Baby, Babies R Us

Bike sales: Bikedekho, Bikewale

Employee remunerations: Company Employees, Employee remuneration and expenses earning over 75000, ML/DS
Salaries

Restaurant ratings: Zomato, Michelin, Yelp

Journal scores: Journal Score JCR, Journal Score SJR

C. Extended Results
C.1. Performance Comparison of CARTE with 42 Baselines for Learning on Single Tables

As an extension to the results shown in subsection 4.2, Figure 9 shows the overall comparison of CARTE with 42
baselines that additionally accounts for Scikit-Learn’s HistGradientBoosting (HGB), target encoding for categorical
variables (Micci-Barreca, 2001) (TarEnc), employing external information from language models of Fasttext (FT) and
intfloat/e5-small-v2 (Wang et al., 2022) (LLM), and the ‘Bagging’ strategy. We see that CARTE attains the
pronounced lead to all the baselines for both regression and classification tasks. Moreover, it is interesting to observe that
the bagging strategy has positive impacts for neural network models, while the effect is limited on linear or ensembling
baselines (tree-based models or TabPFN). This may hint that bagging with different train/validation splits is an important
setups for other deep learning architectures, especially for limited train-sizes.

C.2. Detailed Results for TabLLM Datasets

Table 5 shows the dataset specifications and detailed results on performance comparison between CARTE and baselines
presented in Hegselmann et al. (2023). The datasets generally contain high fraction of numerical features (four datasets) or
categorical columns with low cardinality (eight datasets). In such settings, TabPFN tends to outperform other methods. For
the dataset ‘bank’, however, CARTE outperforms other baselines. In particular, the dataset is in line with the 51 datasets
that contain both numerical and categorical features with relatively high cardinality of the latter. In a sense, CARTE is in
the middle of both TabPFN (suitable for numerical features) and TabLLM (representing information as tokens), with an
attentional architecture that has been designed to handle both numerical values and strings.

45https://www.kaggle.com/datasets/anas123siddiqui/zomato-database?select=restaurant.csv

18

https://www.kaggle.com/datasets/anas123siddiqui/zomato-database?select=restaurant.csv

CARTE: Pretraining and Transfer for Tabular Learning

(a) Regression
35 30 25 20 15 10 5

TarEnc-ResNet [33.613]
TarEnc-MLP [32.602]

S-LLM-EN-HGB [31.320]
S-LLM-EN-HGB-Bagging [30.994]

TabVec-ResNet [29.606]
TabVec-MLP [29.199]

TarEnc-Ridge-Bagging [27.587]
TarEnc-ResNet-Bagging [26.849]

TarEnc-MLP-Bagging [26.753]
TarEnc-Ridge [26.746]

S-LLM-EN-XGB-Bagging [26.162]
TabVec-Ridge-Bagging [26.039]

S-LLM-EN-XGB [24.534]
TabVec-RandomForest-Bagging [24.500]

TabVec-ResNet-Bagging [23.306]
TabVec-MLP-Bagging [23.168]

TabVec-HGB-Bagging [22.940]
TabVec-LLM-HGB-Bagging [22.804]

S-LLM-CN-HGB [22.642]
S-LLM-CN-HGB-Bagging [22.599]

TabVec-HGB [22.184]
TarEnc-HGB [21.869]

 [4.332] CARTE
 [14.675] CatBoost
 [15.171] S-LLM-CN-XGB
 [15.450] TabVec-LLM-XGB
 [15.574] TabVec-FT-XGB
 [16.478] TarEnc-XGB-Bagging
 [16.753] TabVec-XGB
 [17.069] CatBoost-Bagging
 [17.198] TarEnc-XGB
 [17.788] TabVec-XGB-Bagging
 [18.115] S-LLM-CN-XGB-Bagging
 [18.393] TarEnc-RandomForest
 [18.576] TabVec-FT-XGB-Bagging
 [19.003] TabVec-Ridge
 [19.257] TarEnc-RandomForest-Bagging
 [19.966] TabVec-LLM-XGB-Bagging
 [20.079] TarEnc-HGB-Bagging
 [20.134] TabVec-RandomForest
 [20.786] TabVec-FT-HGB
 [21.322] TabVec-LLM-HGB
 [21.866] TabVec-FT-HGB-Bagging

(b) Classification
35 30 25 20 15 10

TarEnc-ResNet [33.857]
TarEnc-MLP [33.617]

TabVec-ResNet [31.417]
S-LLM-EN-HGB [31.157]

TarEnc-HGB [30.111]
TabVec-FT-HGB [29.265]

TarEnc-MLP-Bagging [29.211]
TabVec-HGB [29.050]

TabVec-LLM-HGB [28.832]
TabVec-MLP [28.803]

TarEnc-ResNet-Bagging [28.589]
TarEnc-HGB-Bagging [27.538]

TarEnc-Logistic [27.233]
TarEnc-Logistic-Bagging [26.983]

S-LLM-CN-HGB [26.401]
TarEnc-TabPFN-Bagging [26.265]

TabVec-HGB-Bagging [25.463]
TabVec-TabPFN-Bagging [25.270]

TarEnc-XGB [24.849]
TarEnc-RandomForest [24.707]

TabVec-FT-HGB-Bagging [24.611]
TabVec-ResNet-Bagging [24.561]

TarEnc-XGB-Bagging [24.213]
TabVec-TabPFN [24.002]

 [9.047] CARTE
 [11.218] S-LLM-CN-XGB-Bagging
 [14.678] S-LLM-CN-XGB
 [16.454] S-LLM-EN-XGB-Bagging
 [16.929] CatBoost
 [17.158] TabVec-Logistic
 [17.455] S-LLM-CN-HGB-Bagging
 [17.912] TabVec-Logistic-Bagging
 [19.559] TabVec-LLM-XGB-Bagging
 [20.287] S-LLM-EN-XGB
 [20.903] CatBoost-Bagging
 [21.058] TabVec-LLM-XGB
 [21.901] TabVec-FT-XGB-Bagging
 [22.191] TabVec-LLM-HGB-Bagging
 [22.480] TabVec-XGB
 [22.482] TabVec-XGB-Bagging
 [22.552] S-LLM-EN-HGB-Bagging
 [22.554] TarEnc-TabPFN
 [22.573] TabVec-RandomForest
 [22.610] TabVec-FT-XGB
 [22.732] TabVec-RandomForest-Bagging
 [23.335] TarEnc-RandomForest-Bagging
 [23.859] TabVec-MLP-Bagging

Figure 9. Comparison of CARTE with 42 baselines on single tables. The critical difference diagram for CARTE and 42 baselines for
(a) regression (b) classification tasks. In addition to the methods in Figure 4 (with the same coloring), we include additional baselines
with HistGradientBoosting, target encoding, and external information from language models. The figure shows that CARTE attains the
pronounced lead to all the baselines for both regression and classification tasks. Moreover, the bagging strategy brings larger benefits to
neural networks compared to linear or ensembling baselines, which suggests an important setups for other deep learning architectures.

19

CARTE: Pretraining and Transfer for Tabular Learning

Table 5. Detailed results of TabLLM datasets. Dataset specification and performance comparison among CARTE and three baselines
presented in TabLLM (Hegselmann et al., 2023). The datasets contain high fraction of numerical features or categorical columns with low
cardinality. As observed from the comparison results, TabPFN performs the best followed by CARTE, XGBoost, and TabLLM.

TabLLM dataset specificiations

Datasets Fraction of Average
numerical columns cardinality

bank 0.40 38.44
blood 1.00 0.00

calhousing 1.00 0.00
car 0.00 3.50

creditg 0.33 3.79
diabetes 1.00 0.00

heart 0.45 2.67
income 0.33 12.38
jungle 1.00 0.00

Performance comparison

Datasets Methods Number of Shots

32 64 128 256 512

bank

CARTE 0.81±0.03 0.83±0.03 0.87±0.04 0.89±0.03 0.90±0.01
XGBoost 0.76±0.03 0.83±0.02 0.85±0.03 0.88±0.01 0.90±0.01
TabPFN 0.76±0.03 0.82±0.03 0.86±0.02 0.89±0.00 0.90±0.00
TabLLM 0.64±0.06 0.69±0.03 0.82±0.05 0.87±0.01 0.88±0.01

blood

CARTE 0.68±0.01 0.68±0.01 0.72±0.02 0.72±0.0 0.71±0.01
XGBoost 0.67±0.06 0.68±0.05 0.71±0.06 0.70±0.07 0.67±0.06
TabPFN 0.70±0.04 0.73±0.04 0.75±0.04 0.76±0.04 0.76±0.03
TabLLM 0.68±0.04 0.68±0.04 0.68±0.06 0.70±0.08 0.68±0.04

calhousing

CARTE 0.79±0.02 0.83±0.03 0.85±0.04 0.87±0.05 0.89±0.05
XGBoost 0.79±0.04 0.82±0.04 0.87±0.01 0.90±0.01 0.92±0.01
TabPFN 0.85±0.03 0.89±0.01 0.91±0.01 0.92±0.00 0.93±0.00
TabLLM 0.77±0.08 0.77±0.04 0.81±0.02 0.83±0.01 0.86±0.02

car

CARTE 0.87±0.06 0.94±0.07 0.98±0.03 0.99±0.03 1.00±0.02
XGBoost 0.82±0.03 0.91±0.02 0.95±0.01 0.98±0.01 0.99±0.01
TabPFN 0.92±0.02 0.97±0.00 0.99±0.01 1.00±0.00 1.00±0.00
TabLLM 0.91±0.02 0.96±0.02 0.98±0.01 0.99±0.00 1.00±0.00

creditg

CARTE 0.67±0.03 0.68±0.01 0.70±0.02 0.75±0.01 0.77±0.02
XGBoost 0.66±0.03 0.67±0.06 0.68±0.02 0.73±0.02 0.75±0.03
TabPFN 0.69±0.07 0.70±0.07 0.72±0.06 0.75±0.04 0.75±0.02
TabLLM 0.72±0.06 0.70±0.07 0.71±0.07 0.72±0.03 0.72±0.02

diabetes

CARTE 0.76±0.06 0.79±0.02 0.81±0.01 0.82±0.01 0.81±0.00
XGBoost 0.69±0.08 0.73±0.05 0.78±0.05 0.80±0.03 0.80±0.01
TabPFN 0.77±0.03 0.82±0.03 0.83±0.03 0.83±0.03 0.81±0.02
TabLLM 0.68±0.04 0.73±0.03 0.79±0.04 0.78±0.02 0.78±0.04

heart

CARTE 0.90±0.02 0.91±0.02 0.92±0.02 0.93±0.01 0.93±0.01
XGBoost 0.88±0.04 0.91±0.01 0.91±0.01 0.90±0.01 0.92±0.01
TabPFN 0.91±0.02 0.92±0.02 0.92±0.02 0.92±0.01 0.92±0.02
TabLLM 0.87±0.06 0.91±0.01 0.90±0.01 0.92±0.01 0.92±0.01

income

CARTE 0.84±0.09 0.84±0.02 0.85±0.03 0.87±0.01 0.88±0.01
XGBoost 0.79±0.03 0.82±0.02 0.84±0.01 0.87±0.01 0.88±0.00
TabPFN 0.80±0.04 0.82±0.04 0.84±0.01 0.86±0.01 0.87±0.01
TabLLM 0.84±0.01 0.84±0.02 0.86±0.01 0.87±0.00 0.89±0.01

jungle

CARTE 0.71±0.03 0.80±0.02 0.81±0.02 0.86±0.02 0.90±0.02
XGBoost 0.78±0.03 0.81±0.02 0.84±0.02 0.87±0.01 0.91±0.01
TabPFN 0.78±0.02 0.81±0.01 0.84±0.01 0.88±0.01 0.91±0.00
TabLLM 0.71±0.02 0.78±0.02 0.81±0.02 0.84±0.01 0.89±0.01

20

CARTE: Pretraining and Transfer for Tabular Learning

(a) Regression

32 64 128 256 512 1024
Number of training samples

0

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
sc

or
e

Models (ordered by value n=1024)
CARTE
Exclude Att. Layer
Exclude Edge Info.
Exclude Initial Edge Layer
Graph Construction with Minhash
Exclude Att. Layer & Edge Info.

(b) Classification

32 64 128 256 512 1024
Number of training samples

0

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
sc

or
e

Models (ordered by value n=1024)
CARTE
Exclude Att. Layer
Exclude Edge Info.
Exclude Initial Edge Layer
Graph Construction with Minhash
Exclude Att. Layer & Edge Info.

Figure 10. Ablation on various components of CARTE. The learning curves from the train size of 32 up to 1,024 on various cases
excluding or switching the components. Each are crucial for gaining the performance of CARTE. In particular, there is significant decrease
with the exclusion of edge information and the attention layer, which are essential for leveraging context within a given table. Moreover,
the result with Minhash (A string-level representation without any semantic content, Cerda & Varoquaux, 2022) shows that language
models are crucial for effectively using external information.

C.3. Ablation Study on the Components of CARTE

To study the effect of various components of CARTE, we conducted additional experiments in which we exclude or change
the associated components. Figure 10 shows the learning curves from the train size of 32 up to 1,024 for each case of
excluding or switching the components. For the graph construction with Minhash, we change the feature initialization step
with Skrub’s Minhash encoder (Skrub, 2024), which encode string categorical features by applying the MinHash method
to n-gram decompositions of strings. The figure shows that each are crucial for gaining the performance of CARTE. In
particular, it is interesting to observe the significant decrease with the exclusion of edge information and the attention
layer. Since both are essential for leveraging context within a given table, it implies that capturing context is pivotal for
attaining the strong performances in predictions. Moreover, the performance gap between CARTE and Minhash confirm
that string-level models, that also capture semantic similarity, is important and the use of language models are pivotal for
effectively using external information, especially when information given in the table is limited.

C.4. The Effect of Oversmoothing

Figure 11 show that representations extracted from deeper layers of the Graph Neural Networks (GNNs) are less useful for
prediction on downstream tasks46. We interpret this as an effect of oversmoothing, a well known problem in GNNs (Chen
et al., 2020a; Rusch et al., 2023).

46Here, they are used inside a HistGradientBoosting predictor from scikit-learn.

21

CARTE: Pretraining and Transfer for Tabular Learning

Figure 11. The effect of oversmoothing: comparing prediction
from representations extracted from the GNN from the 2nd, 4th, 8th,
and 12th layers, with that build from the first layer. We see that the
deeper we go in the GNN, the less useful the representation is for
downstream task. We interpret this as an effect of oversmoothing.

2-layers 4-layers 8-layers 12-layers
Number of layers

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Im
pr

ov
em

en
t o

ve
r 1

-la
ye

r
C.5. Details of the Entity Matching Experiment

The experiments were conducted with the same experiment settings as that of the singletable experiments. Table 6 gives the
specific results behind each dataset used in the entity matching experiment Figure 5. The specific datasets are

• CE = Company employees : 32% of the companies matched to YAGO
• MV = movie revenues : 84% of the movies matched to YAGO
• US-Acc = US accidents : 67% of the cities matched to YAGO
• US-Elec = US elections : 98% of the counties matched to YAGO

C.6. Schema-matching Results on Joint Learning Across Multiple Tables

Figure 12 gives a direct comparison of performance between CARTE with and without schema-matching over 275 different
cases in number of source data (ranging from one source to five sources). Each point represents a comparison of the average
score over a dataset with different train/test split for a given size of train data. If a point is located below the diagonal
line, it indicates a higher performance of x-axis. The figures shows that dots align along the diagonal line, indicating
similar performance between CARTE with and without schema-matching (also with p-value of 0.728 for two-sided t-test on
difference in means). The results suggest schema-matching is not required for CARTE on transfer across multiple tables.

22

CARTE: Pretraining and Transfer for Tabular Learning

Table 6. Detailed results of the entity matching experiment: individual scores on each dataset. The abbreviations are as follows:
O-Original entries, M-Matched entries, R-Reduced dataset, and F-Full dataset.

CatBoost-MR CatBoost-MF CatBoost-OR CatBoost-OF

CE-32 0.673±0.036 0.672±0.063 0.683±0.052 0.668±0.062
CE-64 0.707±0.021 0.72±0.013 0.702±0.025 0.718±0.017
CE-128 0.734±0.007 0.739±0.024 0.731±0.011 0.745±0.01
CE-256 0.739±0.008 0.747±0.014 0.74±0.009 0.749±0.008
CE-512 0.744±0.005 0.758±0.005 0.744±0.005 0.758±0.004
CE-1024 0.752±0.006 0.763±0.004 0.752±0.006 0.764±0.003

MV-32 0.4±0.058 0.398±0.049 0.394±0.058 0.403±0.042
MV-64 0.436±0.043 0.449±0.045 0.426±0.059 0.453±0.035
MV-128 0.484±0.027 0.492±0.028 0.482±0.018 0.495±0.019
MV-256 0.511±0.011 0.515±0.017 0.51±0.017 0.523±0.012
MV-512 0.545±0.007 0.55±0.007 0.545±0.009 0.552±0.008
MV-1024 0.559±0.007 0.574±0.007 0.563±0.005 0.573±0.005

US-Acc-32 -0.016±0.063 -0.018±0.064 -0.023±0.076 -0.02±0.058
US-Acc-64 0.007±0.055 -0.01±0.069 0.028±0.036 -0.023±0.087
US-Acc-128 0.082±0.026 0.055±0.029 0.084±0.028 0.057±0.026
US-Acc-256 0.129±0.018 0.089±0.031 0.129±0.015 0.089±0.025
US-Acc-512 0.163±0.02 0.12±0.022 0.163±0.021 0.121±0.02
US-Acc-1024 0.214±0.007 0.157±0.01 0.217±0.005 0.155±0.009

US-Elec-32 0.31±0.133 0.318±0.142 0.34±0.118 0.285±0.161
US-Elec-64 0.433±0.062 0.441±0.068 0.449±0.038 0.445±0.056
US-Elec-128 0.512±0.019 0.505±0.02 0.511±0.02 0.51±0.02
US-Elec-256 0.547±0.009 0.543±0.011 0.546±0.009 0.544±0.011
US-Elec-512 0.572±0.007 0.571±0.01 0.57±0.009 0.571±0.008
US-Elec-1024 0.586±0.004 0.586±0.006 0.586±0.005 0.587±0.005

CARTE-MR CARTE-MF CARTE-OR CARTE-OF KEN-R KEN-F

CE-32 0.699±0.023 0.69±0.034 0.693±0.023 0.692±0.029 0.518±0.11 0.459±0.119
CE-64 0.729±0.019 0.744±0.025 0.733±0.01 0.747±0.022 0.612±0.077 0.434±0.284
CE-128 0.755±0.007 0.763±0.012 0.755±0.01 0.763±0.014 0.708±0.019 0.409±0.305
CE-256 0.762±0.009 0.776±0.01 0.763±0.008 0.781±0.007 0.738±0.02 0.368±0.812
CE-512 0.773±0.011 0.785±0.007 0.778±0.012 0.789±0.008 0.757±0.006 0.267±0.494
CE-1024 0.783±0.008 0.793±0.006 0.787±0.01 0.798±0.006 0.772±0.008 0.486±0.301

MV-32 0.3±0.057 0.313±0.083 0.329±0.066 0.322±0.095 0.301±0.057 0.318±0.033
MV-64 0.452±0.044 0.471±0.027 0.458±0.025 0.461±0.038 0.42±0.035 0.369±0.055
MV-128 0.521±0.022 0.523±0.022 0.519±0.023 0.515±0.018 0.493±0.024 0.384±0.08
MV-256 0.556±0.022 0.562±0.02 0.554±0.021 0.555±0.014 0.543±0.014 0.464±0.089
MV-512 0.594±0.013 0.597±0.013 0.595±0.014 0.595±0.011 0.589±0.012 0.517±0.04
MV-1024 0.62±0.008 0.622±0.008 0.62±0.008 0.618±0.009 0.616±0.007 0.544±0.032

US-Acc-32 0.061±0.054 0.053±0.055 0.054±0.067 0.048±0.045 0.062±0.094 0.047±0.045
US-Acc-64 0.112±0.057 0.114±0.046 0.122±0.056 0.105±0.051 0.146±0.038 0.051±0.09
US-Acc-128 0.155±0.06 0.136±0.053 0.16±0.058 0.14±0.051 0.175±0.025 0.117±0.026
US-Acc-256 0.225±0.024 0.197±0.023 0.232±0.02 0.2±0.024 0.225±0.029 0.152±0.014
US-Acc-512 0.278±0.008 0.237±0.01 0.275±0.015 0.235±0.014 0.27±0.012 0.173±0.029
US-Acc-1024 0.303±0.01 0.263±0.008 0.304±0.008 0.265±0.012 0.298±0.004 0.205±0.006

US-Elec-32 0.387±0.082 0.387±0.083 0.393±0.08 0.393±0.082 0.149±0.193 0.209±0.159
US-Elec-64 0.467±0.031 0.467±0.032 0.465±0.021 0.465±0.022 0.432±0.089 0.454±0.073
US-Elec-128 0.52±0.021 0.52±0.021 0.52±0.022 0.52±0.022 0.564±0.038 0.571±0.035
US-Elec-256 0.552±0.011 0.553±0.011 0.546±0.013 0.546±0.013 0.625±0.019 0.628±0.011
US-Elec-512 0.586±0.008 0.586±0.008 0.58±0.007 0.581±0.007 0.667±0.006 0.664±0.01
US-Elec-1024 0.615±0.007 0.615±0.007 0.612±0.007 0.613±0.007 0.7±0.009 0.697±0.005

23

CARTE: Pretraining and Transfer for Tabular Learning

Figure 12. Performance comparison of CARTE with and with-
out schema-matching: The figures portrays a direct compari-
son of performance between CARTE with and without schema-
matching over 275 different cases in number of source data. A
point below the diagonal line indicate better performance of the
method in x-axis. We see that the dots align along the diagonal
line, showing similar performance both approaches of CARTE on
joing learning (p-value of 0.728). The results bolster no schema-
matching for CARTE.

0.0 0.2 0.4 0.6 0.8 1.0
CARTE without schema-matching

0.0

0.2

0.4

0.6

0.8

1.0

CA
RT

E
wi

th
 sc

he
m

a-
m

at
ch

in
g

24

