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Abstract

Operations like belief change or merging have been adapted to the context of abstract ar-
gumentation. However, these operations may require to express some uncertainty or some
disjunction in the result, which is not representable in classical AFs. For this reason, some of
these earlier works require a set of AFs or a set of extensions as the outcome of the operation,
somehow to represent a “disjunction” of AFs or extensions. In parallel, the notion of Incomplete
AFs (IAFs) has been developed recently. It corresponds to AFs where the existence of some
arguments or attacks may be uncertain. Each IAF can be associated with a set of classical AFs
called completions, that correspond to different ways of resolving the uncertainty. While these
IAFs could be good candidates for a compact representation of a disjunction of AFs, we prove
that this model is not expressive enough. Then we introduce Constrained IAFs, that include
a propositional formula allowing to select the set of completions used for reasoning. We prove
that this model is expressive enough for representing any set of AFs, or any set of extensions.
Moreover, we study the complexity of various decision problems related to the verification of
extensions and the acceptability of arguments. While some of them are one level higher in the
polynomial hierarchy (compared to their counterpart with standard IAFs), most of them have
the same complexity than in the case of IAFs. Finally, we show that CIAFs can be used to
model a new form of extension enforcement, where the possible evolutions of an AF are taken
into account and modeled by the completions of the CIAF.

Keywords: Abstract Argumentation, Uncertainty, Extension Enforcement

Note: This work was accepted for publication in a journal. If you refer this work, please cite Jean-
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Enforcement, AI Communications (2024), doi:10.3233/AIC-220298.

1 Introduction

Representing uncertainty and reasoning with uncertain information is of utmost importance in ar-
tificial intelligence. Indeed, there are many reasons that may lead an intelligent agent to face
uncertainty or impossibility to choose between alternatives. For instance, she can receive informa-
tion from different sources, which can have different degrees of reliability. This information can be
incompatible with her previous knowledge, or with information provided by other sources. This
kind of problem can be formalized as belief change operations (“How to incorporate a new piece of
information to my knowledge if it is not logically consistent?”) [1, 2, 3] or belief merging (“How to
give a coherent representation of several agent’s knowledge even if they are globally inconsistent?”)
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[4]. In these kinds of applications, a simple way to deal with the uncertainty of the result is the
logical disjunction: if the result of revising an agent’s knowledge is “I am not sure whether a is
true or b is true.”, then it can be expressed with a ∨ b. This is of course a weak representation of
uncertainty, but it is sufficient when there is no more information about the uncertain state of the
world (for instance, when there is no available probability regarding the three possible worlds which
satisfy a ∨ b). However, there are formalisms where this kind of simple representation of undecid-
edness cannot be done. For instance, in abstract argumentation frameworks (AFs) [5], either there
is certainly an attack between two arguments, or there is certainly no attack between them. But
an agent cannot express something like “I am not sure whether a attacks b or not.” AFs have been
extended in this direction: Partial AFs (PAFs) [6] allow to represent uncertain attacks, and they
were first used in a context of merging several AFs. Later, Incomplete AFs (IAFs) [7, 8] have been
proposed, as a generalization of PAFs where also arguments can be uncertain. Reasoning with a
PAF or an IAF is possible thanks to a set of completions, that are classical AFs that correspond to
the different possible worlds encoded in the uncertain information. While this framework allows to
express uncertainty in abstract argumentation in a rich way, there are still situations that cannot
be modeled. Consider, e.g., that an agent faces the information “Either a attacks b, or b attacks
a, but I am not sure which one is true.”. There is no way to represent this information with an
IAF. However, this may be necessary in some situations. For instance, several adaptations of belief
change [9, 10] or merging [6, 11] to abstract argumentation lead to results that can contain such an
uncertainty over the result, impossible to be represented by a single AF. So, these works propose to
represent the “disjunction” in the result as a set of AFs, or even as a set of extensions (and it is also
known that not every set of extensions can be represented by a single AF [12]).

A natural question is then “Can we use a framework more expressive than standard AFs to
represent the result of these operations (i.e. AF revision or merging) with a single argumentation
graph?”. IAFs are a natural candidate to help answer positively to this question, but in this paper
we show that IAFs are actually not expressive enough to be used with this purpose. So, our main
achievement here is to define a more expressive formalism, and to be precise a formalism that allows
to represent any set of completions or any set of extensions with a single argumentation graph. In
this formalism, named Constrained IAF (CIAF), we add a propositional formula to an IAF, that
allows to specify which subset of the completions of the IAF should be used for reasoning. We
show that this framework is more expressive than IAFs, in the sense that any set of AFs can be
the set of completions of a CIAF. Also, any set of extensions can be obtained from (the completions
of) a CIAF. For this reason, CIAFs provide the positive answer to our question, where IAFs could
not. We prove that, despite being more expressive than IAFs, the complexity of reasoning does not
increase compared to IAFs under various classical semantics, in most cases, and in the few cases
where CIAFs are harder than IAFs, the complexity goes from polynomial to the first level of the
polynomial hierarchy.

Interestingly, we also identify a relation between our CIAFs and extension enforcement [13, 14].
This operation consists in modifying an AF such that a given set of arguments becomes part of
an extension. Classical enforcement operators are based on expansions, i.e. addition of arguments
and attacks such that the attack relation between former arguments remain unchanged. Theoretical
results show under which conditions enforcement is possible under expansions. However, these
results may suppose the possibility to perform unnatural expansions, like adding a new argument
that attacks all the undesired arguments. In a real dialogue, such an “ultimate attacker”, that
defeats every unwanted argument, is not likely to exist. We show that completions of a CIAF can be
used to model the set of expansions that are available to an agent, and then enforcement is possible
if and only if the desired set of arguments is credulously accepted with respect to the CIAF.

This paper extends the conference paper [15, 16] as follows:
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• we provide all the proofs of the results;

• we give background notions on logic and computational complexity (Section 2.1) and discuss
more in depth the so-called disjunction problem which motivates this work (Section 2.4);

• we provide new complexity results, for verification problems (Section 3.3.1), as well as possible
skeptical and necessary credulous acceptability (Section 3.3.2), which were absent from the
initial paper;

• we provide the complexity of non-strict parameterized enforcement (Section 4.2);

• we discuss the relative expressiveness of CIAFs with Rich IAFs, a framework that was defined
in [17] with a similar purpose to provide a more expressive framework than IAFs (Section 5).

The paper is organized as follows. Section 2 describes background notions of classical logic and
computational complexity, as well as the basic notions of (incomplete) abstract argumentation. Our
main contributions are presented in Section 3, where we define Constrained Incomplete Argumen-
tation Frameworks, then we prove that this framework allows to express any set of completions or
extensions, and finally we study the computational complexity of several classical problems. Sec-
tion 4 discusses the use of CIAFs to model scenarios of extension enforcement. In Section 5 we
formally compare CIAFs with Rich IAFs, and prove that our new framework is strictly more expres-
sive than the previous one. We discuss related work in Section 6, and finally Section 7 concludes
the paper and highlights some topics of interest for future research.

2 Background

2.1 Basic Notions of Logic and Complexity

2.1.1 Classical Logic

We first quickly introduce propositional logic. We assume the existence of a set of Boolean variables
V, where each x ∈ V can be assigned a truth value in B = {0, 1}, where 0 means false et 1 means
true. Given such a set of variables V, a propositional language LV (or simply L when there is no
ambiguity on V) is defined recursively as follows:

• if x ∈ V, then x ∈ LV (x is an atomic formula);

• if ϕ ∈ LV , then ¬ϕ ∈ LV (negation);

• if ϕ, ψ ∈ LV then ϕ ∧ ψ ∈ LV (conjunction);

• if ϕ, ψ ∈ LV , then ϕ ∨ ψ ∈ LV (disjunction).

The semantics of such formulas is defined thanks to interpretations, which are mappings from V
to B, i.e. assignment of a truth value to each variable. Given such a mapping ω, we extend it to
arbitrary formulas in LV as follows:

• ω(¬ϕ) = 1− ω(ϕ);

• ω(ϕ ∧ ψ) = min(ω(ϕ), ω(ψ));

• ω(ϕ ∨ ψ) = max(ω(ϕ), ω(ψ)).
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We say that ω is a model of ϕ (denoted by ω |= ϕ) if ω(ϕ) = 1. In that case, we also say that ω
satisfies ϕ, and ϕ is satisfiable (or consistent). We write mod(ϕ) the set of models of ϕ. A formula
ϕ entails another formula ψ (denoted by ϕ ⊢ ψ) if mod(ϕ) ⊆ mod(ψ). Finally, two formulas are
equivalent if and only if they entail each other, i.e. ϕ ≡ ψ if and only if mod(ϕ) = mod(ψ).

Additional connectives can be defined, such that their semantics can be obtained from the se-
mantics of the basic connectives. In particular,

• (ϕ→ ψ) ≡ (¬ϕ ∨ ψ) (material implication);

• (ϕ↔ ψ) ≡ ((ϕ→ ψ) ∧ (ψ → ϕ)) (equivalence);

• (ϕ⊕ ψ) ≡ ¬(ϕ↔ ψ) (exclusive or).

2.1.2 Computational Complexity

We focus on decision problems, i.e. questions that expect a binary answer (roughly speaking, “YES”
or “NO”). For such a problem, we want to determine how hard it is (i.e. how much time or how much
space we need to solve it) with respect to its size. The size parameter depends on the actual problem
(number of variables in a propositional formula, number of nodes in a graph,. . . ). A complexity class
is then a set of (decision) problems which are, in a way, similarly hard to solve.

We will consider three types of algorithms for characterizing the complexity classes mentioned in
this paper. First, a deterministic algorithm is an algorithms where, at each step of the algorithm, a
given configuration always leads to the same result. This means that applying several time this algo-
rithm with the same input data always gives the same result. On the contrary, a non-deterministic
algorithm includes operations which may have several results for a single configuration, so applying
this algorithm to the same input data can lead to different results. Finally, let us mention oracle-
based algorithms: this may be any kind of algorithm (deterministic or non-deterministic), with an
access to an oracle for a given problem, i.e. a black-box that solves this problems in one computation
step.

The first complexity class of interest for us is P, which is the set of decision problems that can
be solved in polynomial time with a deterministic algorithm, i.e. with O(nk) time steps, where n is
the size of the problem instance and k is a given natural number. NP is the equivalent of P, where
non-deterministic algorithms are used instead of deterministic ones. It is well-known that P ⊆ NP,
but the question whether the inclusion is strict or not is still open. Then, coNP is the complement
class of NP, i.e. the set of decision problems P such that their complement problem is in NP.1

P ⊆ coNP holds as well. These classes form the first levels of the polynomial hierarchy, which is
defined recursively by:

• ΣP
0 = ΠP

0 = ∆P
0 = P,

• ΣP
k = NPΣP

k−1 ,

• ΠP
k = coNPΣP

k−1 ,

• ∆P
k = PΣP

k−1 ,

where CC2
1 means that the decision problems can be solved by an algorithm of type C1 with access

to an oracle of type C2. For instance, Σ
P
2 = NPNP is the set of decision problems that can be solved

in polynomial time by a non-deterministic algorithms, using a NP oracle.

1The complement of a decision problem is obtained by simply “reversing the polarity” of instances, i.e. “YES”
instances of P are “NO” instances of its complement, and vice-versa.
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Decision problems can be compared thanks to the notion of polynomial-time functional reduction,
which is a mapping f from the instances of the first problem P1 to instances of the second problem
P2 such that :

• for any instance i of P1, f(i) can be computed in polynomial time with respect to the size of
i,

• i is a “YES” instance of P1 if and only if f(i) is a “YES” instance of P2.

In this case, we write P1 ≤P
f P2, which means that P2 is at least as hard as P1. For a given complexity

class C, we say that the decision problem P is C-hard if and only if P ′ ≤P
f P for every P ′ ∈ C,

meaning that P is at least as hard as all the problems in C. Then P is C-complete if it is C-hard
and it belongs to C. In this case, P is one of the hardest problems in C.

Membership can be shown by a classical non-deterministic guess and check approach: for in-
stance, to prove that a problem P is in NP, for a given instance i of P, guess a potential proof that
i is a “YES” instance, and then check in polynomial time that i is actually a “YES” instance. As
an example, consider SAT, which was the first problem to be proven NP-complete [18]. This famous
decision problem consists in verifying whether a given propositional formula is satisfiable. To prove
that SAT ∈ NP, assume we are given a formula ϕ, and guess an interpretation ω. Checking whether
ω |= ϕ holds is doable in polynomial time with a deterministic algorithm, so SAT is a NP problem.
More generally, if the last step of the non-deterministic guess and check approach is doable in the
kth level of the polynomial hierarchy, then the given decision problem belongs to the k + 1th level.
A variant of this approach also works for the classes based on coNP instead of NP.

2.2 Dung’s Abstract Argumentation

Abstract argumentation was introduced in [5], where arguments are abstract entities whose origin
or internal structure are ignored. The acceptance of arguments is purely defined from the relations
between them.

Definition 1 (Abstract AF). An abstract argumentation framework (AF) is a directed graph F =
⟨A,R⟩, where A is a set of arguments, and R ⊆ A×A is an attack relation.

We say that a attacks b when (a, b) ∈ R. If (b, c) ∈ R also holds, then a defends c against b.
Attack and defense can be adapted to sets of arguments: S ⊆ A attacks (respectively defends) an
argument b ∈ A if ∃a ∈ S that attacks (respectively defends) b.

Example 1. Let F = ⟨A,R⟩ be the AF depicted in Figure 1, with A = {a, b, c, d, e} and R =
{(b, a), (c, a), (c, d),
(d, b), (d, c), (e, a)}. Each arrow represents an attack. d defends a against both b and c, since these
are attackers of a that are, in turn, both attacked by d.

a b

c de

Figure 1: The AF F

Different semantics have been introduced to evaluate the acceptability of arguments [5], relying
on two basic concepts: conflict-freeness and admissibility.
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Definition 2 (Conflict-freeness and Admissibility). Given F = ⟨A,R⟩, a set of arguments S ⊆ A
is:

• conflict-free if and only if ∀a, b ∈ S, (a, b) ̸∈ R;

• admissible if and only if it is conflict-free, and defends each a ∈ S against all its attackers.

We use cf(F) and ad(F) for denoting the sets of conflict-free and admissible sets of an argumenta-
tion framework F . The intuition behind these principles is that a set of arguments may be accepted
only if it is internally consistent (conflict-freeness) and able to defend itself against potential threats
(admissibility). The semantics proposed by [5] can be defined as follows.

Definition 3 (Extension Semantics). Given F = ⟨A,R⟩, an admissible set S ⊆ A is:

• a complete extension if and only if it contains every argument that it defends;

• a preferred extension if and only if it is a ⊆-maximal complete extension;

• the unique grounded extension if and only if it is the ⊆-minimal complete extension;

• a stable extension if and only if it attacks every argument in A \ S.

The sets of extensions of an AF F , for these semantics, are denoted (respectively) co(F), pr(F),
gr(F) and st(F). Based on these semantics, we can define the status of any (set of) argument(s),
namely skeptically accepted (belonging to each σ-extension), credulously accepted (belonging to some
σ-extension) and rejected (belonging to no σ-extension). Given an AF F and a semantics σ, we use
(respectively) skσ(F), crσ(F) and rejσ(F) to denote these sets of arguments.

Example 2. We consider again F given in Figure 1. Its extensions for the different semantics, as
well as the sets of accepted arguments, are given in Table 1.

σ σ(F) crσ(F) skσ(F) rejσ(F)

co {e}, {d, e}, {b, c, e} {b, c, d, e} {e} {a}
pr {d, e}, {b, c, e} {b, c, d, e} {e} {a}
gr {e} {e} {e} {a,b,c,d}
st {d, e}, {b, c, e} {b, c, d, e} {e} {a}

Table 1: Extensions and accepted arguments of F for σ ∈ {co,pr, gr, st}

For more details about argumentation semantics and their properties, we refer the interested
reader to [5, 19].

Classical reasoning problems in abstract argumentation include the verification that a set of
arguments is an extension of a given semantics, i.e. the decision problem σ-Ver, and the verification
that an argument is credulously (respectively skeptically) accepted with respect to a given semantics,
i.e. σ-CA (respectively σ-SA). Formally:

σ-Ver Given an AF F = ⟨A,R⟩ and a set of arguments S ⊆ A, does S ∈ σ(F) hold?

σ-CA Given an AF F = ⟨A,R⟩ and an argument a ∈ A, does a ∈ crσ(F) hold?

σ-SA Given an AF F = ⟨A,R⟩ and an argument a ∈ A, does a ∈ skσ(F) hold?
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σ σ-Ver σ-CA σ-SA

ad in L NP-c trivial
co in L NP-c P-c
pr coNP-c NP-c ΠP

2 -c
gr P-c P-c P-c
st in L NP-c coNP-c

Table 2: Complexity of σ-Ver, σ-CA and σ-SA for σ ∈ {ad, co,pr, gr, st}

Table 2 summarizes the complexity of these decision problems for classical semantics. See e.g.
[20] for an overview of computational complexity in formal argumentation.

Finally, let us mention the issue of realizability [12]. Intuitively, it consists in a “reverse” ar-
gumentation problem: while classically, ones computes extensions from a given AF, realizability is
the question of whether a given set of sets of arguments may be the set of extensions of an AF.
Formally, given A a set of arguments, and S ⊆ 2A a set of sets of arguments, we say that S is
σ-realizable if there exists some AF F = ⟨A′, R⟩ such that A ⊆ A′ and σ(F) = S.2 Realizability
(or more precisely, non-realizability) is a major problem in applications like revision or merging of
argumentation frameworks [9, 11]. This is precisely the reason why the result of these operations
is defined as a “disjunction” of AFs (i.e. a set of AFs). One possible solution consists in adapting
the operators for guaranteeing that the resulting extensions will be realizable. While it is doable in
some cases (like AF revision [22]), this forbids some natural approaches (for instance, distance-based
revision is not possible with the approach from [22]). Moreover, this technique is not applied in the
case of AF merging [11]. This is what motivates the study conducted in the present paper, we come
back more in depth on this issue in Section 2.4.

2.3 Incomplete AFs

Now, we describe Incomplete Argumentation Frameworks [6, 7, 8].

Definition 4 (Incomplete AF). An Incomplete Argumentation Framework (IAF) is a tuple I =
⟨A,A?, R,R?⟩, where A and A? are disjoint sets of arguments, and R,R? ⊆ (A∪A?)× (A∪A?) are
disjoint sets of attacks.

Elements from A and R are certain arguments and attacks, i.e. the agent is sure that they
appear in the framework. On the opposite, A? and R? represent uncertain arguments and attacks.
For each of them, there is a doubt about their actual existence.

Example 3. Let us consider I = ⟨A,A?, R,R?⟩ given in Figure 2. We use plain nodes and arrows to
represent certain arguments and attacks, i.e. A = {a, b, c, d, e} and R = {(b, a), (c, a), (d, b), (d, c)}.
Uncertain arguments are represented as dashed square nodes (i.e. A? = {f}) and uncertain attacks
are represented as dotted arrows (i.e. R? = {(e, a), (f, d)}).

The notion of completion in abstract argumentation was first defined in [6] for Partial AFs (i.e.
IAFs with A? = ∅), and then adapted to IAFs. Intuitively, a completion is a classical AF which
describes a situation of the world coherent with the uncertain information encoded in the IAF.

2Moreover, we say that S is compactly σ-realizable if A′ = A [21].

7



a b

c de f

Figure 2: The IAF I

Definition 5 (Completion of an IAF). Given I = ⟨A,A?, R,R?⟩, a completion of I is F = ⟨A′, R′⟩,
such that A ⊆ A′ ⊆ A∪A? and R|A′ ⊆ R′ ⊆ R|A′ ∪R?

|A′ , where R|A′ = R∩ (A′ ×A′) (and similarly

for R?
|A′).

The set of completions of an IAF I is denoted comp(I).

Example 4. We consider again the IAF from Figure 2. Its set of completions is described at
Figure 3.

a b

c de

(a) F1

a b

c de f

(b) F2

a b

c de f

(c) F3

a b

c de

(d) F4

a b

c de f

(e) F5

a b

c de f

(f) F6

Figure 3: The completions of I

Concerning the question of compact representation of a set of AFs by means of an incomplete
AF, the following example illustrates that some sets of AFs (even simple ones) cannot be represented
by an IAF.

Example 5. Suppose that the result of revising an AF [9] is the set F = {F1 = ⟨{a, b}, {(b, a)}⟩,F2 =
⟨{a, c}, {(c, a)}⟩}. The question is to determine whether this set can be compactly represented by a
single IAF. Towards a contradiction, suppose that there is an IAF I = ⟨A,A?, R,R?⟩ such that
comp(I) = F. Since a belongs to both F1 and F2, it must belong to the certain arguments A. On
the contrary, the uncertain arguments are A? = {b, c}, each of them belongs to some (but not all)
completions. A = {a} and A? = {b, c} imply the existence of some completions that only contain a,
and some completions that contain the three arguments a, b, c. This is not the case. So I does not
exist.

Classical reasoning problems have been adapted to IAFs. These adaptations take into account the
set of completions of IAFs. Similarly to credulous (respectively skeptical) reasoning that quantify
existentially (respectively universally) over the set of extensions of an AF, possible (respectively
necessary) reasoning quantify existentially (respectively universally) over the set of completions.
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The possible and necessary views for reasoning with IAFs can be applied to any decision problems.
This leads to the definition of the following four verification problems: IncPV (respectively IncNV)
is the Incomplete Possible (respectively Necessary) Verification and IncPV∗ (respectively IncNV∗)
is a variant of it; and the four acceptability problems: PCA, NCA, PSA, NSA where P stands for
Possible, N for Necessary, C for Credulous and S for Skeptical.

σ-IncPV Given an IAF I = ⟨A,A?, R,R?⟩ and a set of arguments S ⊆ A∪A?, is there F = ⟨A′, R′⟩ ∈
comp(I) such that S ∩A′ ∈ σ(F)?

σ-IncNV Given an IAF I = ⟨A,A?, R,R?⟩ and a set of arguments S ⊆ A∪A?, is S ∩A′ ∈ σ(F) true
for each F = ⟨A′, R′⟩ ∈ comp(I)?

σ-IncPV∗ Given an IAF I = ⟨A,A?, R,R?⟩ and a set of arguments S ⊆ A ∪ A?, is there F =
⟨A′, R′⟩ ∈ comp(I) such that S ∈ σ(F)?

σ-IncNV∗ Given an IAF I = ⟨A,A?, R,R?⟩ and a set of arguments S ⊆ A ∪ A?, is S ∈ σ(F) true
for each F = ⟨A′, R′⟩ ∈ comp(I)?

σ-PCA Given an IAF I = ⟨A,A?, R,R?⟩ and an argument a ∈ A, is there F = ⟨A′, R′⟩ ∈ comp(I)
such that a ∈ crσ(F)?

σ-NCA Given an IAF I = ⟨A,A?, R,R?⟩ and an argument a ∈ A, is a ∈ crσ(F) true for each
F = ⟨A′, R′⟩ ∈ comp(I)?

σ-PSA Given an IAF I = ⟨A,A?, R,R?⟩ and an argument a ∈ A, is there F = ⟨A′, R′⟩ ∈ comp(I)
such that a ∈ skσ(F)?

σ-NSA Given an IAF I = ⟨A,A?, R,R?⟩ and an argument a ∈ A, is a ∈ skσ(F) true for each
F = ⟨A′, R′⟩ ∈ comp(I)?

Their complexity for classical semantics has been established, and we summarize the results in
Table 3.

σ σ-IncPV σ-IncNV σ-IncPV∗ σ-IncNV∗ σ-PCA σ-PSA σ-NCA σ-NSA

ad NP-c P P P NP-c trivial ΠP
2 -c trivial

co NP-c P P P NP-c NP-c ΠP
2 -c coNP-c

pr ΣP
2 -c coNP-c ΣP

2 -c coNP-c NP-c ΣP
3 -c ΠP

2 -c ΠP
2 -c

gr NP-c P P P NP-c NP-c coNP-c coNP-c
st NP-c P P P NP-c ΣP

2 -c ΠP
2 -c coNP-c

Table 3: Complexity of reasoning with IAFs, for σ ∈ {ad, co,pr, gr, st} [7, 23, 24]

While all the acceptability problems are quite intuitive, it was shown in [23] that the original
definitions of the verification problems (i.e. IncPV and IncNV) exhibit some bad properties. In
particular, if we call a possible (respectively necessary) extension of the IAF a set of arguments such
that the answer to IncPV (respectively IncNV) is true, then an extension of the IAF can violate the
basic conflict-freeness property (in particular, in the case of the possible view). For this reason, [23]
define the IncPV∗ and IncNV∗ versions, which do not exhibit this bad behavior, and guarantee better
computational properties in the case of the possible view.
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2.4 Motivation: The Disjunction Problem

As mentioned in the introduction, one of the main motivations that conducted to the work presented
in this paper is one of the main criticism that was made regarding the approaches defined in earlier
work on belief revision [9, 10] or belief merging [6, 11] applied to abstract argumentation. In these
works, the result is in general a set of AFs, while it may seem natural to obtain a single AF. In
particular, let us illustrate the process underlying the revision operators defined in [9]. As shown by
Figure 4, the input of the revision operator is a single AF, and a formula which expresses the new
information to be incorporated in the agent’s knowledge. Then, a revision in the style of Katsuno
and Mendelzon [3] is performed on the set of extensions of F , which play here a role similar to
the models of formulas in propositional belief revision. So we obtain the extensions of the result
(σ(F ⋆ϕ)) before obtaining the result itself (F ⋆ϕ). To get the latter, a second step called generation
returns a set of AFs such that the union of their extensions is equal to the revised extensions that
were provided by the first step.

F , ϕ σ(F ⋆ ϕ) F ⋆ ϕ = {F ′
1, . . . ,F ′

k}

KM revision generation

Figure 4: Schematic explanation of the AF revision from [9]

There is no simple way to be sure that the result is a single AF, since the revised extensions
may not be realizable, i.e. there may be an impossibility to represent these extensions with a single
AF [12]. This may not be a strong problem, since as explained before, the result of a revision is by
nature uncertain, in the sense that the agent may not be sure of what is the state of the world when
she received the new information. In classical logic, this is expressed by the notion of disjunction
which exists in the language (corresponding to the fact that the revised formula can have several
models). As an analogy with this notion of disjunction, we may assume, in abstract argumentation,
that the uncertain knowledge of the agent about the state of the world (or the state of the debate)
is expressed as a “disjunction” of extensions or a “disjunction” of AFs. However, continuing the
analogy with revision in a classical setting, we would like to have a single graphical structure to
represent this disjunction, exactly like any set of models can be represented as a single propositional
formula. So, the main question we ask is “Is there an abstract argumentation formalism that allows
to represent any set of extensions or AFs thanks to a single instance of this formalism?”.

We can show easily that IAFs are not sufficiently expressive to answer positively to this question.

Example 6. We want to represent with a single IAF the set of AFs F = {F1,F2} from Figure 5.
Assume there is such an IAF I = ⟨A,A?, R,R?⟩ with comp(I) = {F1,F2}. Since a belongs to
every completions, and b and c belong to some (but not each) completion, we need to have A = {a}
and A? = {b, c}. Then, since the attack (b, a) appears in every completion where both a and b
appear, this attack must belong to R, and the same reasoning applies to (c, a). This means that
I should be the IAF depicted in Figure 6a. However, this IAF has two additional (unwanted)
completions F3 and F4 (respectively Figure 6b and 6c). So we deduce that there is actually no I
with comp(I) = F = {F1,F2}.

In Section 3, we answer positively to our question by defining Constrained Incomplete Argumen-
tation Frameworks.

10



a b

(a) F1

ac

(b) F2

Figure 5: Two AFs that cannot be represented by a single IAF

ac b

(a) I

a

(b) F3

ac b

(c) F4

Figure 6: A potential IAF for representing {F1,F2}, and the additional (unwanted) completions

3 Constrained Incomplete Argumentation Frameworks

Now we introduce the Constrained Incomplete Argumentation Frameworks, that generalize IAFs
by adding a constraint on the set of possible completions. We show that this new framework is
expressive enough to solve the disjunction problem illustrated in Section 2.4.

3.1 Constraints on Completions

Intuitively, for a given IAF I, a constrained version of it is a pair ⟨I, C⟩ where C ⊆ comp(I).
Then, reasoning on ⟨I, C⟩ requires to use only C instead of the full set of completions of I. But
rather than defining the constraint with a set of completions, we define a logical language to express
information on the structure of an AF, i.e. a propositional language such that the models of a
formula ϕ correspond to AFs, inspired by [25] for selecting extensions. This option may provide
a more compact representation of the constraint. Moreover, we show later that any ⟨I, C⟩ can be
equivalently represented as ⟨I, ϕ⟩.

Definition 6 (Constraint). Given A a set of arguments, we define the set of propositional atoms
PropA = ArgA ∪AttA where:

• ArgA = {arga | a ∈ A};

• AttA = {atta,b | (a, b) ∈ A×A}.

Then, LA is the propositional language built from PropA.

Any set of connectives can be used for defining PropA formulas, e.g. {¬,∨,∧} (representing
respectively the negation, the disjunction and the conjunction). Classical syntactic sugar can be
used, e.g. ϕ→ ψ for ¬ϕ ∨ ψ (material implication), ϕ↔ ψ for (ϕ→ ψ) ∧ (ψ → ϕ) (equivalence), or
(ϕ⊕ ψ) for ¬(ϕ↔ ψ) (exclusive disjunction).

The satisfaction of a constraint by an AF is defined as follows.

Definition 7 (Constraint Satisfaction). Given A a set of arguments, and ϕ ∈ LA a formula, the
set of models of ϕ is denoted mod(ϕ). An AF F = ⟨A′, R⟩ with A′ ⊆ A and R ⊆ A′ ×A′ satisfies ϕ
if and only if there is a model ω ∈ mod(ϕ) such that

• A′ = {a ∈ A | ω(arga) = 1}, and
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• R = {(a, b) ∈ A×A | ω(atta,b) = 1)}.

Example 7. We consider the three AFs F1, F2 and F3 depicted respectively in Figure 7a, 7b and 7c.
Assume that the constraints are built on the propositional vocabulary PropA, where A = {a, b, c, d, e}.
The formula ϕ1 = arga ∧(attb,a⊕ attb,c) expresses the fact that a should appear in the AF, and exactly
one of the attacks (b, a) and (b, c) should appear as well. This formula is satisfied by F1, but not
by F2 and F3. Now let us define the formula ϕ2 = (arga ∨ argd) ∧ ¬ arge ∧(arga → atta,b). It is
satisfied if the AF contains either a or d (or both) but not e, and also if a appears in the AF then
it must attack b. This formula is satisfied by the three AFs considered here.

a b c

(a) F1

a b c

(b) F2

d b c

(c) F3

Figure 7: Three examples of AFs

3.2 Definition and Expressiveness of CIAFs

Now we formally define Constrained IAFs, and prove that this framework solves the Disjunction
Problem introduced in Section 2.4.

Definition 8 (Constrained IAF). A Constrained Incomplete Argumentation Framework (CIAF) is
a tuple C = ⟨A,A?, R,R?, ϕ⟩, where ⟨A,A?, R,R?⟩ is an IAF, and ϕ ∈ LA∪A? is a constraint.

The constraint ϕ is used to select a subset of the completions of the IAF IC = ⟨A,A?, R,R?⟩.
The completions of a CIAF are then defined as follows.

Definition 9 (Completions of a CIAF). Given C = ⟨A,A?, R,R?, ϕ⟩ a CIAF, we define its set of
completions by comp(C) = {c ∈ comp(IC) | c satisfies ϕ} where IC = ⟨A,A?, R,R?⟩.

Example 8. Let C = ⟨A,A?, R,R?, ϕ⟩ be a CIAF such that IC = ⟨A,A?, R,R?⟩ is the IAF from
Figure 2, and ϕ = atte,a ∧ argf . Recall that the completions of IC are given in Figure 3. Only two
of them satisfy ϕ, namely F5 (Fig. 3e) and F6 (Fig. 3f). So comp(C) = {F5,F6}.

Let us mention that, in order to be meaningful, the constraint ϕ must satisfy some conditions.
Indeed, there must be at least one model of ϕ such that arga is true for each a ∈ A, atta,b is true
for each (a, b) ∈ R, and atta,b is false for each (a, b) ∈ ((A ∪A?)× (A ∪A?)) \ (R ∪R?). Otherwise,
comp(C) is trivially empty. More generally, a CIAF C is over-constrained when comp(C) = ∅.

Now, we focus on the expressiveness of CIAFs, i.e. given a set of AFs (or a set of extensions),
is there a CIAF such that its completions (or the extensions of its completions) correspond to the
given set? We show that, in both cases, the answer is yes.

Representing a Set of AFs First, we define a particular formula, that is only satisfied by one
given AF.

Definition 10. Given A a set of arguments, and F = ⟨A′, R⟩ with A′ ⊆ A, and R ⊆ A′ × A′, we
define ψF ∈ LA as

ψF = (
∧
a∈A′

arga) ∧ (
∧

a∈A\A′

¬ arga) ∧ (
∧

(a,b)∈R

atta,b) ∧ (
∧

(a,b)∈(A×A)\R

¬ atta,b)
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Proposition 1. Let F = {F1 = ⟨A1, R1⟩, . . . ,Fn = ⟨An, Rn⟩} be a set of AFs. There is a CIAF
C = ⟨A,A?, R,R?, ϕ⟩ such that comp(C) = F.

Intuitively, a simple CIAF that does the job consists of all the arguments and attacks from F
defined as uncertain, and then ϕ is the disjunction of the ψF formulas, for F ∈ F.

Proof. Let us build a CIAF C = ⟨A,A?, R,R?, ϕ⟩ such that comp(C) = F. To do that, we first
choose A = ∅ and A? =

⋃n
i=1Ai, i.e. all the arguments that appear in an AF from F are uncertain.

Similarly, all the attacks are uncertain, i.e. R = ∅ and R? =
⋃n
i=1Ri. With all these choices, we

define an IAF that has all the possible completions on arguments and attacks from F. In order to
restrict the completions to exactly the AFs in F, we define ϕ =

∨n
i=1 ψFi

, where ψFi
is the formula

that is only satisfied by the AF Fi, following Definition 10. The AFs that satisfy ϕ are exactly the
ones in F, so we have comp(C) = F.

Example 9. We continue Example 5. For F = {F1 = ⟨{a, b}, {(b, a)}⟩,F2 = ⟨{a, c}, {(c, a)}⟩}, we
define C = ⟨A,A?, R,R?, ϕ, ⟩, with A = ∅, A? = {a, b, c}, R = ∅, R? = {(b, a), (c, a)}, ϕ = ψF1

∨ψF2
,

where
ψF1 = arga ∧ argb ∧¬ argc ∧ attb,a ∧(

∧
(x,y)∈({a,b,c}×{a,b,c})\{(b,a)}

¬ attx,y)

and
ψF2

= arga ∧¬ argb ∧ argc ∧ attc,a ∧(
∧

(x,y)∈({a,b,c}×{a,b,c})\{(c,a)}

¬ attx,y)

We have comp(C) = F.

Representing a Set of Extensions Now, we focus on the expressibility of a set of extensions
with a CIAF.

Proposition 2. Let E = {E1, . . . , En} be a set of extensions, and σ ∈ {co,pr, gr}. There is a CIAF
C = ⟨A,A?, R,R?, ϕ⟩ such that

⋃
c∈comp(C) σ(c) = E. Moreover, if Ei ̸= ∅ for all i ∈ {1, . . . , n}, then

there is a CIAF C = ⟨A,A?, R,R?, ϕ⟩ such that
⋃
c∈comp(C) st(c) = E.

Proof. We consider first the case where Ei ̸= ∅ for all i ∈ {1, . . . , n}. Let us define A =
⋃n
i=1Ei, i.e.

it is the set of all the arguments that appear in some extension. Then, for each Ei ∈ E, we define
Fi = ⟨A,Ri⟩ such that Ri = {(a, b) | a ∈ Ei, b ∈ A \ Ei}, i.e. each argument in Ei is unattacked,
and it attacks all the arguments that are not in the extension. For any σ defined in this paper,3

Ei is the only extension of Fi. Thus,
⋃n
i=1 σ(Fi) = E. From Proposition 1, there is C such that

comp(C) = {F1, . . . ,Fn}.
Now, suppose that σ ∈ {co,pr, gr}, and Ei = ∅ for some i ∈ {1, . . . , n}. For each Ej ̸= Ei, the

AF Fj can be constructed with the same method as in the previous case. The AF Fi corresponding
to Ei = ∅ is constructing by making each argument self-attacking, i.e. Fi = ⟨A, {(a, a) | a ∈ A}⟩,
which satisfies σ(Fi) = {∅}. Again, Proposition 1 implies the existence of a C such that comp(C) =
{F1, . . . ,Fn}.

This concludes the proof.

Of course, the constructions described in the previous proofs only show the existence of a CIAF
that satisfies the expected property (i.e. representing a given set of AFs, or a given set of extensions).
This does not mean that this CIAF is the best way to represent the set of AFs (or extensions). A

3And arguably most semantics defined in the literature.
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first possible simplification consists in choosing A =
⋂n
i=1Ai and A

? =
⋃n
i=1Ai \ A. This natural

simplification means that an argument that appears in every AF must be considered as certain. A
similar reasoning can be made with the attacks, and the constraint can also be simplified. In a
context of belief revision [9, 10] or belief merging [6, 11], it is important to ensure that the resulting
CIAF is as close as possible to the initial AF(s). This question is out of the scope of this paper, and
is kept for future research.

3.3 Complexity Issues

Let us start with this basic observation:

Observation 3. Given an AF F = ⟨A′, R⟩ with A′ ⊆ A and a constraint ϕ ∈ LA, checking whether
F satisfies ϕ is doable in polynomial time.

Proof. Build ωF such that ω(arga) = 1 if and only if a ∈ A′ and ω(atta,b) = 1 if and only if
(a, b) ∈ R. This is a polynomial task. Checking whether ωF satisfies ϕ is also a (well-known)
polynomial task.

This means that, given a CIAF C = ⟨A,A?, R,R?, ϕ⟩, guessing a completion of C is equivalent
to guessing a set of arguments A ⊆ A′ ⊆ A?, a set of attacks R|A′ ⊆ R′ ⊆ R?

|A′ , and verifying (in

polynomial time) whether ⟨A′, R′⟩ satisfies ϕ. This will be useful in the proofs of complexity results.
Now we formally adapt classical decision problems from IAFs to CIAFs. We split our study in

two parts, the first one concerning verification problems, namely Incomplete Possible Verification
(IncPV∗) and Incomplete Necessary Verification (IncNV∗):

σ-IncPV∗ Given a CIAF C = ⟨A,A?, R,R?, ϕ⟩ and a set of arguments S ⊆ A ∪ A?, is there F =
⟨A′, R′⟩ ∈ comp(C) such that S ∈ σ(F)?

σ-IncNV∗ Given a CIAF C = ⟨A,A?, R,R?, ϕ⟩ and a set of arguments S ⊆ A∪A?, is S ∈ σ(F) true
for each F = ⟨A′, R′⟩ ∈ comp(C)?

We study these problems in Section 3.3.1. Notice that we ignore here the original versions of the
verification problem [7], because the second version due to [23] seems more intuitive, and as it was
shown in [23], the original definition of the verification problem yields extensions with bad properties
(e.g. violating conflict-freeness), especially in the case of possible verification.

The second part concerns acceptability problems, where P stands again for Possible and N for
Necessary, while C and S respectively mean Credulous and Skeptical:

σ-PCA Given a CIAF C = ⟨A,A?, R,R?, ϕ⟩ and an argument a ∈ A, is there F = ⟨A′, R′⟩ ∈ comp(C)
such that a ∈ crσ(F)?

σ-NCA Given a CIAF C = ⟨A,A?, R,R?, ϕ⟩ and an argument a ∈ A, is a ∈ crσ(F) true for each
F = ⟨A′, R′⟩ ∈ comp(C)?

σ-PSA Given a CIAF C = ⟨A,A?, R,R?, ϕ⟩ and an argument a ∈ A, is there F = ⟨A′, R′⟩ ∈ comp(C)
such that a ∈ skσ(F)?

σ-NSA Given a CIAF C = ⟨A,A?, R,R?, ϕ⟩ and an argument a ∈ A, is a ∈ skσ(F) true for each
F = ⟨A′, R′⟩ ∈ comp(C)?

We focus on these problems in Section 3.3.2.
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3.3.1 Complexity of Verification

Recent work has shown that σ-IncPV∗ is NP-c for σ ∈ {ad, st, co, gr} and ΣP
2 -c for σ = pr, for some

subclasses of CIAFs [26, 27] (namely, the Arg-IAFs and Att-IAFs with dependencies4 that we discuss
in Section 6). This provides lower bounds for the complexity of σ-IncPV∗ for CIAFs, we show here
that the complexity of this problem for the general CIAF model is the same as for these subclasses.

Proposition 4. The following holds:

1. For σ ∈ {ad, st, co, gr}, σ-IncPV∗ is NP-complete.

2. pr-IncPV∗ is ΣP
2 -complete.

Proof. Hardness comes from the known complexity of σ-IncPV∗ for Arg-IAFs with dependencies
and Att-IAFs with dependencies [26, 27], i.e. it is NP-hard for σ ∈ {ad, st, co, gr} and ΣP

2 -hard for
σ = pr. Membership comes from the following classical verification algorithm:

1. Non-deterministically guess a completion F of ⟨A,A?, R,R?⟩.

2. Check (in polynomial time, see Observation 3) whether F satisfies ϕ.

3. Check whether S is a σ-extension of F .

The last check is either polynomial (for σ ∈ {ad, st, co, gr}), or in coNP (for σ = pr) [20], hence the
result.

Now we focus on the necessary verification problem.

Proposition 5. For σ ∈ {ad, st, co, gr,pr}, σ-IncNV∗ is coNP-complete.

Proof. The proof for the membership follows the same mechanism as the proof of Proposition 4.
More precisely, considering σ ∈ {ad, st, co, gr}, for solving the complement problem of σ-IncNV∗ (let

us write σ − IncNV∗ this complement problem):

1. Non-deterministically guess a completion F of ⟨A,A?, R,R?⟩.

2. Check (in polynomial time, see Observation 3) whether F satisfies ϕ.

3. Check whether S is not a σ-extension of F .

Since the last check is polynomial for all the considered semantics, we deduce the NP upper bound
for σ − IncNV∗, and thus the coNP upper bound for σ-IncNV∗.

For σ = pr, the process is almost the same:

1. Non-deterministically guess a completion F of ⟨A,A?, R,R?⟩, and a set of arguments S′ such
that S ⊂ S′.

2. Check (in polynomial time, see Observation 3) whether F satisfies ϕ.

3. Check whether S is not an admissible set in F , or whether S′ is an admissible set in F .

4An Arg-IAF [28] is an IAF where only arguments can be uncertain, i.e. R? = ∅, while an Att-IAF [29] is an IAF
where only attacks can be uncertain, i.e. A? = ∅. Arg-IAFs and Att-IAFs with dependencies [26, 27] also take into
consideration some constraint over the set of completions.
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This non-deterministic algorithm polynomially check whether S is not a necessary preferred exten-
sion of C, so we can conclude that pr–IncNV∗ is in coNP.

Now let us prove the coNP-hardness. We consider the NP-complete problem SAT, and for each
propositional formula ψ we will build a CIAF Cψ and a set of arguments S such that ψ is satisfiable
if and only if S is not a σ extension of some completion of Cψ. This will prove the NP-hardness of

the σ − IncNV∗, and thus the coNP-hardness of IncNV∗.
The reduction is as follows. Assume that the formula ψ is built on the set of Boolean variables

Y = {y1, . . . , yn}. We build the CIAF Cψ = ⟨A,A?, R,R?, ϕ⟩ with A = {y1, . . . , yn}, A? = {s},
R = {(s, yi) | yi ∈ Y}, R? = ∅ and ϕ = ψ′ ∨ args, where ψ

′ is a transformed version of ψ such that
each variable yi is replaced by the variable argyi . The reduction is illustrated by Figure 8, which

shows the “IAF part” of Cψ, i.e. ⟨A,A?, R,R?⟩. The goal is to determine whether S = {s} is a
necessary σ-extension of Cψ, under σ ∈ {ad, st, co, gr,pr}.

y1 . . . yn

s

Figure 8: An illustration of the reduction from SAT, with ψ built on {y1, . . . , yn}

It is obvious that any interpretation ω over Y can be transformed into an interpretation ω′ over
Y ′ = {argy1 , . . . , argyn} such that ω |= ψ′ if and only if ω′ |= ψ′. Then, assume that ψ is satisfiable,
and let ω′ be such an interpretation satisfying ψ′. ω′ can be extended into a model ω∗ of ϕ by
stating ω∗(argyi) = ω′(argyi) for any yi ∈ Y, and ω∗(args) = 0. This means that F∗

1 = ⟨A, ∅⟩ is a
completion of Cψ, where s does not appear, and so obviously S = {s} is not a σ extension of F∗

1 for
any σ.

Now, assume that ψ is not satisfiable, then ψ′ is not satisfiable either, and so any model of
ϕ = ψ′ ∨ args must assign to args the value 1. This implies that the single completion of Cψ is
F∗

2 = ⟨A ∪ A?, R⟩, which has a single extension S = {s} under all semantics σ considered here
except σ = ad. For this last case, we observe that ad(F∗

2 ) = {∅, {s}}. So S = {s} is a necessary
σ-extension for all the semantics σ considered.

This concludes the proof that SAT ≤P
f σ − IncNV∗, thus σ − IncNV∗ is NP-hard, and σ-IncNV∗ is

coNP-hard.

3.3.2 Complexity of Acceptability

Now we focus on the various acceptability problems for CIAFs, and we show that they have the
same complexity as their counterpart for (standard) IAFs.

First of all, notice that all the hardness results can be deduced from the know results for IAFs
[8], since any IAF can be transformed into a CIAF with a tautological constraint.

Let us start with both variants of credulous acceptability.

Proposition 6. For σ ∈ {ad, st, co, gr,pr}, σ-PCA is NP-complete.

Proof. Recall that an IAF is a CIAF with ϕ = ⊤, and σ-PCA is NP-complete for IAFs under all the
considered semantics [8], hence the NP-hardness for CIAFs.

We prove membership by the following non-deterministic polynomial algorithm. Guess a comple-
tion F = ⟨A′, R′⟩ of C, and a set of arguments S ⊆ A′ such that a ∈ S. Checking whether F satisfies
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ϕ is polynomial. Checking whether S is a σ-extension of F is polynomial for σ ∈ {ad, st, co, gr}.
For σ = pr, checking whether S is admissible is enough for proving that a belongs to some preferred
extension. Hence the result.

Proposition 7. For σ ∈ {ad, st, co,pr}, σ-NCA is ΠP
2 -complete, and gr-NCA is coNP-complete.

Proof. Hardness results come again from the known complexity of σ-NCA for IAFs, which is ΠP
2 -

complete for σ ∈ {ad, st, co,pr} and coNP-complete for σ = gr [8].
The membership proof uses again a non-deterministic guess and check algorithm. Guess a com-

pletion F , check whether it satisfies ϕ, and check whether a is credulously accepted in F . Credulous
acceptability for AFs is in NP for σ ∈ {ad, st, co,pr} [20], so σ-NCA is in ΠP

2 for these semantics.
Since credulous acceptability for AFs is polynomial for σ = gr, we obtain the last result.

Concerning skeptical reasoning, the problem is trivial under σ = ad, as usual, since ∅ is admissible
in any AF, there is no skeptically accepted argument in any completion.

Proposition 8. For σ ∈ {st, co, gr}, σ-NSA is coNP-complete, and pr-NSA is ΠP
2 -complete.

Proof. coNP-hardness (for σ ∈ {st, co, gr}) and ΠP
2 -hardness (for σ = pr) can be deduced from the

same hardness for σ-NSA in the case of IAFs [8].
For σ ∈ {st, co, gr}, we prove the membership thanks to the following non-deterministic algorithm

for checking that a is not necessarily skeptically accepted, i.e. this algorithm solves the complement
problem of σ-NSA.. Guess a completion and a set of arguments S that does not contain a, and check
(in polynomial time) whether the completion satisfies the constraint ϕ. Then check (in polynomial
time) whether S is a σ-extension. This is a NP algorithm, so we deduce that σ-NSA is in coNP.
Finally, the algorithm is the same for σ = pr, except that the last check is in coNP, hence the higher
complexity upper bound.

We conclude with possible skeptical acceptability.

Proposition 9. For σ ∈ {co, gr}, σ-PSA is NP-complete, st-PSA is ΣP
2 -complete, and pr-PSA is

ΣP
3 -complete.

Proof. Hardness results follow from the known complexity of σ-PSA for IAFs [8], namely NP-hardness
for σ ∈ {co, gr}, ΣP

2 -hardness for σ = st and ΣP
3 -hardness for σ = pr.

The generic non-deterministic algorithm for solving σ-PSA is as follows: guess a completion F ,
check in polynomial time whether it satisfies ϕ, and finally check whether a is skeptically accepted
in F . This algorithm (non-deterministically) solves σ-PSA since it returns “YES” if the guessed
completion is a valid completion of the CIAF (with respect to ϕ) which skeptically accepts a. Since
the last check is polynomial for σ ∈ {co, gr}, in coNP for σ = st, and in ΠP

2 for σ = pr [20], we can
deduce the membership result.

3.3.3 Summary

Table 4 summarizes our complexity results regarding CIAFs. We observe that verifying whether a
set is a (possible or necessary) extension is one level higher in the polynomial hierarchy compared to
standard IAFs, except for the preferred semantics which remains at the second level for the possible
variant and the first level for the necessary variant. However, we observe that all the acceptability
problems have the same complexity as in the case of standard IAFs. This interesting results suggests
that acceptability of arguments in CIAFs could be computed with similar approaches to the ones
used for IAFs [30, 24]. Finally, let us mention that credulous and skeptical acceptability can be
generalized to sets of arguments without increasing the complexity.
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σ σ-IncPV∗ σ-IncNV∗ σ-PCA σ-PSA σ-NCA σ-NSA

ad NP-c coNP-c NP-c trivial ΠP
2 -c trivial

co NP-c coNP-c NP-c NP-c ΠP
2 -c coNP-c

pr ΣP
2 -c coNP-c NP-c ΣP

3 -c ΠP
2 -c ΠP

2 -c
gr NP-c coNP-c NP-c NP-c coNP-c coNP-c
st NP-c coNP-c NP-c ΣP

2 -c ΠP
2 -c coNP-c

Table 4: Summary of complexity results for CIAFs, for σ ∈ {ad, co,pr, gr, st}. Cells with grey
background correspond to cases where the complexity is higher than for standard IAFs.

4 CIAFs and Extension Enforcement

This section focuses on extension enforcement [13, 14, 31], a major approach for argumentation
dynamics [32]. We show that CIAFs can be useful for defining new extension enforcement operators.

4.1 Expansion-based Enforcement

Now we introduce the notions of AF expansion and extension enforcement [13, 14, 31].

Definition 11. Let F = ⟨A,R⟩ be an AF. An expansion of F is an AF F ′ = ⟨A ∪ A′, R ∪ R′⟩
such that A′ ̸= ∅ and A ∩ A′ = ∅. An expansion is called normal if ∀(a, b) ∈ R′, a ∈ A′ or b ∈ A′.
Moreover, a normal expansion is strong (respectively weak) if ∀(a, b) ∈ R′, a ̸∈ A (respectively
b ̸∈ A).

In words, an expansion adds some arguments, and possibly attacks. In the case of a normal
expansion, the only added attacks concern at least one new arguments, i.e. the attacks between
the former arguments are not modified. Finally, a normal expansion is strong (respectively weak)
if it adds only strong (respectively weak) arguments, i.e. arguments that are not attacked by
(respectively do not attack) the former arguments. The fact that F ′ is an expansion of F is denoted
F ⪯E F ′ (and normal, strong, weak expansions are denoted by ⪯N ,⪯S ,⪯W ).

Example 10. Let F = ⟨A,R⟩ be the AF depicted in Figure 9a. Figure 9b shows an expansion of F :
some argument f has been added, as well as some attacks (including an attack between the previous
arguments a and c). Then, F2 from Figure 9c is a normal expansion of F : there is no new attack
between the previous arguments (but the new arguments can attack each other, attack the previous
arguments, or be attacked by the previous arguments). Finally, F3 (Figure 9d) is a strong expansion
of F (the new arguments cannot be attacked by the previous ones), while F4 (Figure 9e) is a weak
expansion (the new arguments cannot attack the previous ones).

Expansions can be used to modify an AF such that a given set of arguments becomes (a part
of) an extension in the new AF. This operation is called the (expansion-based) enforcement of the
set of arguments.

Definition 12. Given F = ⟨A,R⟩, a set of arguments S ⊆ A, and a semantics σ, the AF F ′ is a
non-strict normal (respectively strong, weak) σ-enforcement of S in F if and only if F ′ is a normal
(respectively strong, weak) expansion of F , and ∃E ∈ σ(F ′) such that S ⊆ E.

Definition 12 considers non-strict enforcement, i.e. the desired set of arguments must be included
in an extension of the new AF. Strict enforcement is defined in a similar manner, but the desired
set of arguments must exactly correspond to an extension:
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a bc

d e

(a) F

a bc

d ef

(b) F ⪯E F1

a bc

d ef

g

(c) F ⪯N F2

a bc

d ef

g

(d) F ⪯S F3

a bc

d ef

g

(e) F ⪯W F4

Figure 9: An AF and several possible expansions

Definition 13. Given F = ⟨A,R⟩, a set of arguments S ⊆ A, and a semantics σ, the AF F ′ is
a strict normal (respectively strong, weak) σ-enforcement of S in F if and only if F ′ is a normal
(respectively strong, weak) expansion of F , and S ∈ σ(F ′).

Some (im)possibility results for these operations have been presented in [13]. However, some
of these results rely on examples that do not seem realistic in argumentation-based dialogues, like
the existence of one argument that could defeat all the arguments that the agent performing the
enforcement wants to defeat. The following example is inspired by [13, Theorem 4].

Example 11. Let F = ⟨A,R⟩ be the AF given in Figure 1. Recall that its stable extensions are
st(F) = {{d, e}, {b, c, e}}. Now let S = {a, d} be the set of arguments to be enforced. We can define
the (strong) expansion F ′ = ⟨A ∪ {x}, R ∪ R′⟩ where x is a fresh argument, and R′ = {(x, y) |
y ∈ A \ S}. F ′ is shown at Figure 10. With this new AF F ′, st(F ′) = {{x, a, d}}, thus F ′ is a
(non-strict) strong enforcement of S in F .

a b

c de x

Figure 10: The expansion F ′ enforces S = {a, d}

Example 11 illustrates the (theoretical) possibility to enforce any (conflict-free) set of arguments
if strong (or normal) expansions are permitted. However, in an application context like dialogue
(e.g. argument-based negotiation [33] or persuasion [34]), the existence of an “ultimate” attacker
like x, that defeats all the undesired arguments, is unlikely.

19



4.2 Non-Strict Enforcement as Possible Credulous Acceptability in CIAFs

To handle the problem highlighted by Example 11, we propose to take into account the set of
arguments A and attacks R that an agent has at her disposal for participating to the debate. This
means that we parameterize the expansion operation by the set of possible expanded AFs resulting
of using some of the available arguments and attacks.

Definition 14. Given F = ⟨A,R⟩ an AF, A a set of available arguments such that A∩A = ∅, and
R ⊆ ((A ∪ A) × (A ∪ A)) \ (A × A), we say that F ′ = ⟨A′, R′⟩ is an A-R-parameterized expansion
of F (denoted by F ⪯A,R F ′) if and only if

• F ⪯E F ′,

• A ⊆ A′ ⊆ A ∪ A,

• R′ = (R ∪R) ∩ (A′ ×A′).

We use ⪯A,R
N (respectively ⪯A,R

S , ⪯A,R
W ) to denote A-R-parameterized normal (respectively

strong, weak) expansions, i.e. A-R-parameterized expansions where F ′ is (additionally) normal
(respectively strong, weak). This definition allows to take into account the arguments and attacks
that are actually known by an agent that participates in a debate. We can show that a set of
arguments that can be enforced with an arbitrary (strong) expansion (like in Example 11) may not
be enforceable with parameterized expansions.

Example 12. We continue Example 11. Suppose that the available arguments and attacks are
A = {f, g} and R = {(f, c), (g, b)}. Figure 11 depicts the agent’s possible actions: say nothing (i.e.
keep the initial AF, Fig. 11a), say “f attacks c” (Fig 11b), say “g attacks b” (Fig 11c), or both
(Fig. 11d). In all the possible cases, S = {a, d} is not enforced, since a is never defended against e.

a b

c de

(a)

a b

c de f

(b)

a b

c de

g

(c)

a b

c de f

g

(d)

Figure 11: The agent’s possible actions

What we call here the “possible actions” of the agent can actually be seen as the set of completions
of a CIAF, and the possibility of enforcing a set of arguments corresponds to the credulous acceptance
of this set with respect to the CIAF.
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Definition 15. Given F an AF, A a set of arguments, R a set of attacks, and X ∈ {E,N, S,W}
denoting the type of expansion, we define F = {F}∪{F ′ | F ⪯A,R

X F ′}. Then, CA,R
F,X is a CIAF such

that comp(CA,R
F,X ) = F.

The existence of CA,R
F,X is guaranteed by Proposition 1. The construction illustrated by Example 9

provides a suitable CA,R
F,X . However, other CIAFs can be defined, for instance it seems natural that

all the arguments and attacks from the initial F can be defined as certain elements. Proposition 10
states that CIAFs can be used as a computational tool for determining the possibility of enforcement.
Before proving this result, we need to generalize the decision problem σ-PCA to take into account a
set of arguments:

σ-SPCA Given a CIAF C = ⟨A,A?, R,R?, ϕ⟩ and a set of arguments S ⊆ A, is there F = ⟨A′, R′⟩ ∈
comp(C) such that S ⊆ E for some E ∈ σ(F)?

This set-based version of possible credulous acceptability is obviously NP-complete as well for usual
semantics: NP-hardness is deduced from the NP-hardness of σ-PCA, and NP-membership is deduced
thanks to the classical non-deterministic guess and check algorithm that was used to prove other
membership results (guess a completion and a superset S′ of S, check whether the completion satisfies
the constraint, and check whether S′ is an extension). Now we show that non-strict enforcement
can be reduced to σ-SPCA.

Proposition 10. Given an AF F = ⟨A,R⟩, a set of arguments S ⊆ A, X ∈ {E,N, S,W}, A a set
of arguments and R a set of attacks, and a semantics σ, S can be non-strictly σ-enforced in F by
means of a A-R-parameterized X-expansion if and only if S is possibly credulously accepted in CA,R

F,X
with respect to σ.

Proof. The result is a consequence of the definitions: S can be enforced if and only if one of the
“possible actions” yields an AF F ′ such that S ⊆ S′ for some S′ ∈ σ(F ′). This is equivalent to

saying that S is included in some σ-extension of some completion of CA,R
F,X .

Now we prove that determining whether a set of arguments can be enforced with a A-R-
parameterized X-expansion is a NP-complete problem under various classical semantics.

Proposition 11. Given an AF F = ⟨A,R⟩, a set of arguments S ⊆ A, X ∈ {E,N, S,W}, A
a set of arguments and R a set of attacks, and a semantics σ, determining whether S can be
non-strictly σ-enforced in F by means of a A-R-parameterized X-expansion is NP-complete under
σ ∈ {co, st,pr, ad}.

Proof. For proving the lower bound, we consider the problem of credulous acceptability in AFs.
This problem is NP-complete under σ ∈ {co, st,pr, ad} [20]. Given an instance (F = ⟨A,R⟩, a ∈ A)
of this problem, we build an instance of our problem by defining S = {a}, A = ∅ and R = ∅. For
any X ∈ {E,N, S,W}, the only A-R-parameterized X-expansion of F is F itself. This means that
a is credulously acceptable in F with respect to the semantics σ if and only if S can be enforced.
This concludes the proof that the problem is NP-hard.

Now let us prove that the problem belongs to NP. First, we consider the following non-deterministic
algorithm for σ ∈ {co, st, ad}:

1. Non-deterministically guess a set of arguments A′ ⊆ A, a set of attacks R′ ⊆ R, and a set of
arguments S′ with S ⊆ S′ ⊆ A ∪A′;

2. Compute F ′ = ⟨A ∪A′, R ∪R′⟩, and check (in polynomial time) whether S′ ∈ σ(F ′).
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A positive answer to the test at step (2) proves that the considered instance of the problem is a
“YES” instance. This means that this non-deterministic algorithm solves the problem in polynomial
time, thus the problem is in NP for σ ∈ {co, st, ad}. Finally, for σ = pr, notice that the algorithm
for ad works as well, since a set of arguments is included in a preferred extension if and only if it is
included in an admissible set.

Intuitively, we could adapt our approach to strict enforcement (i.e. the set S must be exactly
an extension of the new AF), using the possible verification of the set S (i.e. σ-IncPV∗). However,
strict enforcement based on the addition of new arguments is rarely possible: in most cases, either
the set S is already an extension (and thus there is nothing to do), or it will be included in an
extension where the new arguments also appear. Strict enforcement is mainly achievable through
other techniques, where the attacks between existing arguments can be modified [35, 36].

5 Relative Expressiveness of CIAFs vs RIAFs

In a recent work [17], we have studied another generalization of Incomplete AFs. In this section, we
compare the expressiveness of this formalism, called Rich IAFs (RIAFs), with the expressiveness of
CIAFs. We show that RIAFs are strictly more expressive than IAFs, but strictly less than CIAFs.

The idea behind the definition of RIAFs is to add another kind of (uncertain) attack relation to
IAFs, ↔?, such that (a, b) ∈↔? means that there (certainly) is a conflict between a and b, but there
is some uncertainty on the direction of the attack: either a attacks b, or b attacks a, or both at the
same time. This concept was first defined in the context of Control AFs [37]. Formally,

Definition 16 (Rich IAF). A Rich Incomplete Argumentation Framework (RIAF) is a tuple R =
⟨A,A?, R,R?,↔?⟩, where A and A? are disjoint sets of arguments, and R,R?,↔?⊆ (A∪A?)×(A∪A?)
are disjoint sets of attacks such that ↔? is symmetric.

Example 13. Let R = ⟨A,A?, R,R?,↔?⟩ be the RIAF depicted at Figure 12, where A = {a, b, c},
A? = {d}, R = {(d, b)}, R? = {c, b} and ↔?= {(a, b), (b, a)}. While A,A?, R and R? have the same

a b c d

Figure 12: An example of RIAF

meaning as in IAFs, the relation ↔? (represented by the two-headed dashed arrow) means that there
is a conflict between a and b, but we are not sure of the direction of this conflict.

The notion of completion is adapted to RIAFs as follows.

Definition 17 (Completions of RIAFs). Given R = ⟨A,A?, R,R?,↔?⟩, a completion of R is F =
⟨A′, R′⟩, such that

• A ⊆ A′ ⊆ A ∪A?;

• R|A′ ⊆ R′ ⊆ (R ∪R?∪ ↔?)|A′ ;

• if (a, b) ∈↔?, then (a, b) ∈ R′ or (b, a) ∈ R′ (or both);

where R|A′ = R ∩ (A′ ×A′) (and similarly for (R ∪R?∪ ↔?)).
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a b c a b c a b c

a b c a b c a b c

a b c d a b c d a b c d

a b c d a b c d a b c d

Figure 13: The completions of R from Figure 12

Example 14. The completions of R from Figure 12 are given in Figure 13.

It is proven in [17, Proposition 2] that RIAFs are strictly more expressive than IAFs. Trivially,
any IAF I = ⟨A,A?, R,R?⟩ is a particular RIAF with ↔?= ∅, while the converse is not true: there
are some RIAFs that cannot be “translated” into an IAF with the same set of completions. This
increase of expressiveness does not come at the price of a complexity shift.

Proposition 12 ([17]). • For any IAF I, there exists a RIAF R such that comp(I) = comp(R).

• There exists a RIAF R such that there is no IAF I with comp(I) = comp(R).

Proof. The first item is straightforward: any IAF is a RIAF with ↔?= ∅. For the second item,
consider R = ⟨{a, b}, ∅, ∅, ∅, {(a, b), (b, a)}⟩. This RIAF and its three completions {F1,F2,F3} are
given at Figure 14.

a b

(a) The RIAF R

a b

(b) F1

a b

(c) F2

a b

(d) F3

Figure 14: A RIAF and its Completions

Now, let us prove that there is no IAF with the same set of completions. Reasoning towards a
contradiction, suppose that such a IAF I = ⟨A,A?, R,R?⟩ exists. Since all the completions have the
same set of arguments {a, b}, there cannot be uncertain argument, i.e. A? = ∅.

Let us now consider the different options for R and R?. If (a, b) ∈ R (respectively (b, a) ∈ R),
then there is an attack from a to b (respectively from b to a) in every completion. This is not the
case. Similarly, there cannot be any self attack in R (since there is no such attack in any completion).
Thus R = ∅.

In the case where only (a, b) (respectively (b, a)) belongs to R?, then the completions with (b, a)
(respectively (a, b)) do not belong to comp(I). On the contrary, if both (a, b) and (b, a) belong to
R?, then a fourth completion where there is no attack between a and b belongs to comp(I). Of
course, self-attacks in R? are not possible, since they would yield additional completions (with the
same self-attack appearing in them).

So we can conclude that I does not exist.
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Now, we prove that CIAFs are more expressive than RIAFs.5

Proposition 13. For any RIAF R = ⟨A,A?, R,R?,↔?⟩, there is a CIAF C such that comp(C) =
comp(R). The converse does not hold.

Proof. The first part is a corollary of Proposition 1. Let us thus prove that not all CIAFs can be ex-
pressed as RIAFs. Consider C = ⟨A,A?, R,R?, ϕ⟩ depicted at Figure 15a, where ϕ = arga⊕ argb. Its
completions are F1 (Figure 15b) and F2 (Figure 15c). Suppose the existence ofR = ⟨A,A?, R,R?

R,↔?

⟩ with the same set of completions. If (a, b), (b, a) ∈ R?
R, then there are four completions (the one with

none of the attacks, and the one with both attacks, must be considered as well). If (a, b), (b, a) ∈↔?,
then there are three completions (only the one without any attack is forbidden). There is no such
R with comp(R) = comp(C).

a b

(a) C

a b

(b) F1

a b

(c) F2

Figure 15: The CIAF C and its completions

6 Related Work

6.1 Other Work on CIAFs

Interestingly, other authors have investigated Constrained Incomplete AFs (or subclasses thereof)
independently of the original conference paper on CIAFs [15, 16]. Let us briefly discuss these
related contributions. We start with [38, 39]. The first contribution of this papers is the encoding
of reasoning tasks of Incomplete AFs and Control AFs [37, 40, 41] in dynamic logic of propositional
assignments (DL-PA) [42]. The authors compare the expressiveness of these frameworks, and propose
a maximally expressive framework that they also call Constrained IAF. However, contrary to our
approach, they remove the graphical part and only keep the propositional formula which characterizes
the set of authorized completions. We believe that our framework offers an advantage regarding the
syntax of the formula, which can be simpler with our formalism. Indeed, we express the certain
information about (non-)existence of arguments and attacks in the graph part of the CIAF, which
is more natural in the abstract argumentation literature. Only the constraints on the uncertain
elements need to appear in the formula. However, from the point of view of expressiveness, both
frameworks are equivalent: a CIAF as defined here can be translated into a CIAF as defined by
[38, 39], by simply adding to the logical formula some information about the arguments and attacks
that certainly exist (or certainly do not exist); and the other way around a CIAF as defined by
[38, 39] can be seen as a CIAF as defined here, we just need to consider that all arguments (and
all possible attacks between them) are uncertain, and then the constraint remains the same. This
means that both approaches can be used to represent the result of AF revision or merging, or for
reasoning with the enforcement scenario mentioned before.

Then, [26] study what they call dependencies in Argument-Incomplete AFs (recall that these are
IAFs with only incomplete knowledge regarding arguments, i.e. R? = ∅). These dependencies are
expressed as formulas of a simple nature (e.g. disjunctions or implications), and they are obviously
special cases of our propositional constraints. They study the complexity of the decision problems

5The same question has been recently studied independently by [38].
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DSAT and PDVER, respectively deciding whether the set of dependencies is satisfiable and deciding
whether a set of arguments is an extension of some completion which satisfies the dependencies (the
equivalent of IncPV∗). The complexity is established with respect to some categories of dependencies
(e.g. only disjunctions, only implications, or some combinations of the various kinds of dependen-
cies). Their most general case is then a special case of IncPV∗ studied in this paper. A similar study
was then conducted about Attack-Incomplete AFs (i.e. IAFs with A? = ∅) [27].

6.2 Other Related Work

We have already mentioned the main results on Incomplete Argumentation Frameworks. The inter-
ested reader can find a recent overview in [43]. Besides IAFs, our contribution is related to other
previous works. Using propositional formulas as constraints in an argumentation framework has been
originally proposed in [25], which defines Constrained Argumentation Frameworks. In this setting,
the propositional formula is a constraint on arguments that is used for selecting the best extensions.
Intuitively, we use here the constraint in CIAFs in a similar way, but for selecting completions of an
IAF instead of selecting the extensions of a (classical) AF.

We have shown how to represent any set of extensions with a single CIAF. The question of
representing sets of extensions has already arisen in classical AFs. This corresponds to the notion of
realizability in the literature [21, 12], i.e. given a set of extensions E and a semantics σ, is there an
AF F such that σ(F) = E. Existing results show that it is not possible in general for most classical
semantics. The non-realizability of some sets of extensions is the reason why some operations (like
belief revision or merging) cannot be easily adapted to AFs, as mentioned in the introduction. With
Proposition 2, we continue this line of research, by proving the realizability of any set of extensions
by means of CIAFs. Another recent work has focused on the issue of realizability, proposing logical
encodings for the (newly introduced) problem of k-m-realizability, i.e. determining whether a set of
extensions can be realized by a set of m AFs using k auxiliary arguments (those which do not appear
in any of the given extensions) [44]. This work is clearly related to the contributions described in
this paper since it proposes a way to compute the result in the AF revision or merging scenario.
The set of AFs provided by this approach could be used to provide a “better” CIAF than the one
which is built in the proof of Proposition 2, where one completion corresponds to one extension. A
deeper study of the connection between the present paper and [44] is kept for future work.

Regarding extension enforcement, it has been proven that (non-strict) enforcement is NP-complete
[36] for another type of authorized change: argument-fixed enforcement [35], where the set of argu-
ments cannot be modified, but all the attacks (or non-attacks) can be questioned. Although this
is out of the scope of this paper, we believe that this kind of enforcement can also be captured by
the CIAF setting, which will allow to define a parameterized version of argument-fixed enforcement.
The parameters A and R are also reminiscent of the “control part” of Control AFs [37, 40, 41], that
allows to enforce a set of arguments in presence of uncertainty.

Constraints that express dependencies between arguments of an ADF [45] in a dynamic context
have been studied in [46]. While there is some similarity between these constraints and the ones
defined here, both studies have different purposes. Indeed, [46] does not focus on uncertain envi-
ronment as we do here, but only on dynamic scenarios. Connections with enforcement based on
A-R-parameterized expansions will be studied.

Finally, [47] proposes the notion of abstract argumentation framework with attack points. These
attack points are the “weaknesses” of an arguments, that could be source of contradiction coming
from other arguments. An example of an attack point would be an assumption in an Assumption-
based Argumentation (ABA) framework [48]. The possible expansions of an AF with attack points
are then constrained by the attack points: for instance, if the argument a has no attack point, then
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no expansion of the AF can contain a new argument that attacks a. The notion of allowed expansion
seems to be similar to our approach for expansion-based extension enforcement (Section 4), and it
would be interesting to investigate the connexions between CIAFs and AFs with attack points.
Notice however that the main study of [47] is the individual dialectical strength of arguments, so it
is not concerned with extension-based semantics like our work.

7 Conclusion

We have defined Constrained Incomplete Argumentation Frameworks (or CIAFs, for short) that
generalize IAFs by adding a constraint over the set of completions. This new framework increases the
expressiveness of IAFs without a gap in complexity for the standard acceptability decision problems,
and paves the way for the definition of revision or merging operators for AFs that return a CIAF, i.e.
a more compact result than a (potentially exponentially large) set of AFs or extensions. However,
the CIAF that we have exhibited here to prove the representability of any set of AFs or extensions
may not be a suitable solution in scenarios like belief revision or belief merging, where the notion of
minimal change is important. We will study how to generate a CIAF that is optimal in such contexts.
Knowledge compilation [49] is an interesting way for providing a succinct equivalent propositional
constraint such that relevant reasoning tasks are polynomially doable. Another interesting future
work is the implementation of efficient algorithms (e.g. based on Boolean encoding, in the line
of [30]) for reasoning with CIAFs. We will also study how to encode other extension enforcement
operators as CIAF-based reasoning, in particular operators in the vein of the so-called argument-
fixed enforcement from [35]. Finally, it would be interesting to generalize IAFs and CIAFs to take
into account information like “I am less sure of the existence of the argument a then the existence
of the argument b”. This would induce a plausibility ordering of completions, and decision problems
like “does the argument a belong to some extension of one of the most plausible completions?”, which
allows to provide a better representation and reasoning capability about argumentative scenarios
with uncertainty.

Acknowledgement

The author warmly thanks Antonio Yuste-Ginel for the interesting discussion that lead to this work,
as well as the reviewers that provided valuable feedback on this paper and the preliminary conference
versions.

This work benefited from the support of the project AGGREEY ANR-22-CE23-0005 of the
French National Research Agency (ANR).

References

[1] C.E. Alchourrón, P. Gärdenfors and D. Makinson, On the Logic of Theory Change: Partial
Meet Contraction and Revision Functions, J. Symb. Log. 50(2) (1985), 510–530.

[2] H. Katsuno and A.O. Mendelzon, On the Difference between Updating a Knowledge Base and
Revising It, in: Proc. of KR’91, 1991, pp. 387–394.

[3] H. Katsuno and A.O. Mendelzon, Propositional Knowledge Base Revision and Minimal Change,
Artif. Intell. 52(3) (1992), 263–294.

26
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