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Abstract. The natural transition of hypersonic boundary layers (HBLs) is often expressed in
terms of discrete modes and their linear stability. A frequent interpretation revolves around
fast and slow acoustic modes interacting in the vicinity of the vortical/entropic branches
of the continuous spectrum found from stability analyses. Yet several transition scenarios
are contingent upon factors such as the spectral content of the free-stream disturbances, or
the interactions between the discrete modes within the boundary layer and the free-stream
disturbances near the leading edge which can be decomposed into vortical, acoustic and entropic
nature based on the fluid-thermodynamic (FT) components. Yet the interpretations of linear
stability applied to discrete modes can lead to semantic conflicts with the terminology of FT
components. To clarify the current description of the processes involved, this study chooses an
approach aimed at characterizing the dynamics of the second Mack mode in transitional HBLs
through coherent structure tracking. The method involves decomposing the flow perturbations
into acoustic, vortical and entropic content, and following their associated coherent structures
over time. For this purpose, direct numerical simulations are carried out to investigate the
dynamics of the second Mack mode instability in two-dimensional HBLs, considering a flow
at Mach 6 over a cooled and an insulated wall. It is found that vortical structures coexist at
different heights along the wall surface, forming alternating sign doublets around the critical
layer and above the relative sonic line. These structures are found to merge in the region of
maximum second Mack mode instability.

1. Introduction
The pursuit of hypersonic-capable vehicles represents a complex technological challenge and
a profound scientific endeavor. Among the myriad hurdles, the comprehension and mastery
of hypersonic aerodynamics stands as paramount. At these high velocities, the transition
to turbulence in the near-wall flow introduces a substantial increase in surface skin friction
and significant wall heating. Consequently, unraveling the transition mechanisms within the
hypersonic boundary layer (HBL) takes on pivotal importance in shaping the design of high-
performance hypersonic vehicles. According to our current understanding of the physics
governing this phenomenon, transition is a complex process that varies depending on numerous
parameters such as environmental conditions, mean flow properties, and vehicle geometry. In
the vicinity of hypersonic vehicles, the boundary layer is susceptible to various disturbances
that can impact its dynamics, ultimately leading to the onset of turbulence [1]. In light of the
consensus that atmospheric conditions during hypersonic flight correspond to a low-disturbance
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environment, the pathway toward turbulence follows the “natural transition” scenario which
predominantly hinges on the modal growth of the relevant instabilities [2]. In the initial phase,
the freetream disturbances enter the boundary layer and excite its wave modes through the
receptivity process. Subsequently, unstable eigenmodes (when present) undergo exponential
growth up to certain amplitudes past which secondary instabilities, nonlinear interactions and
three-dimensional effects enter the picture, leading ultimately to breakdown and turbulence.
It is important to note that in the hypersonic regime, multiple instability mechanisms coexist
within the boundary layer. This is in contrast with two-dimensional (2D) low-speed boundary
layers, which typically exhibit only the viscous Tollmien–Schlichting (T–S) wave instability [3].
A specific characteristic of a 2D hypersonic boundary layer lies in the existence of a family of
inviscid unstable modes: the Mack modes. In the terminology of Mack [4], they are denoted as
first, second and higher modes. In his study, Mack revealed the influence of wall temperature on
their stability. Wall cooling destabilizes the second and higher mode instabilities while stabilizing
the first one [5]. Moreover, an increase in the Mach number at the boundary layer edge (Me)
produces similar effects. In the case of insulated 2D boundary layers at hypersonic speeds,
starting from about Me > 4, the transition is primarily governed by second-mode waves [6].
The Mack second, third, and higher modes are convectively-amplified waveguide normal modes
arising from an inviscid instability which is characterized by trapped acoustic waves [7, 8, 9].
The existence of these waves is sustained by the existence of a relative sonic line at a wall height

ys, where M̄(ys) = ū(ys)−c
ā(ys)

= -1 [10, 5]. Here, M̄ , ā, and c are the relative Mach number,

the speed of sound and the disturbance propagation speed, respectively. The presence of such
a line implies that relative to the flow speed, disturbances travel subsonically above it and
supersonically below it. Hence the lower part of the boundary layer behaves as an acoustic
waveguide, where acoustic rays are reflected off the wall and turn around near the relative
sonic line towards the wall. Above this turning point at y = ys, the disturbance generates a
distinctive “rope-like” wave pattern, as observed by numerous researchers both experimentally
and numerically [11, 12]. These structures are centered around M̄(yc) = 0, where yc denotes
the critical layer height. A schematic view in Figure 1, adapted from [13], concisely summarizes
previous authors explanations on the behavior of the second Mack mode.

Figure 1: Schematic view of the Mack second mode in a high-speed boundary layer, adapted
from Knisely et al. [13]

The term “acoustic” has been resorted to in order to classify the physical nature of the
second and higher Mack modes. It is common practice in this field to sort the various boundary
layer modes into categories that link them in one way or another to a type of physical process
or quantity. Examples include entropy modes, vorticity modes, fast or slow acoustic modes.
This habit feeds from results provided by linear stability analysis, a tool that has significantly
shaped our understanding of hypersonic boundary layer transition mechanisms. The spectrum
obtained from such analysis and the structure of the normal modes have led to a refinement
in the terminology used to describe the unstable modes in the hypersonic boundary layer. Yet
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the nomenclature of Mack’s first and second modes is not particularly descriptive and can
be limiting, both in qualitatively describing the transition mechanisms associated with these
instabilities and in interpreting the physical aspects of these phenomena. In fact, it turns out
that the first and second modes are not truly distinct modes. Notably, the works of Fedorov
and Khokhlov [14] have revealed the continuity of the spectrum between Mack’s so-called first
and second modes. Fedorov and Tumin [15] subsequently introduced a new terminology based
on the behavior of truly distinct modes in the linear stability spectrum. Their new terminology
aimed to provide an alternative interpretation of the physical and mathematical description of
hypersonic boundary layer instabilities, introducing modes S and F1 alongside continuous modes
already identified previously: entropy, vorticity, fast and slow acoustic. For sake of simplicity,
we follow the notation introduced by Fedorov [9] and label mode F1 as F.

Near the leading edge, modes S and F initiate in the slow (S) and the fast (F) acoustic
part of the spectrum, respectively. Their initial phase velocity close to that of acoustic waves
promotes the receptivity of these two modes to acoustic disturbances in the flow. Moving
downstream, the phase velocity of mode F decreases to a point where it may synchronize with
the vortical and entropic modes of the continuous spectrum. At this point, mode F becomes
susceptible to free-stream temperature spottiness and turbulence [16]. Further downstream,
if the tendency of mode F to become slower and S to become faster is unaltered, a second
synchronization point occurs. Both synchronization points impact the stability of modes S and
F. Many studies employing direct numerical simulations have verified these observations [17, 18].
Figure 2 illustrates the different scenarios leading to the growth of Mack modes in relation to the
receptivity mechanisms of the flow disturbances. It is important to highlight that the evolution
of the S and F modes, their possible interaction and their stability are complex functions of
the flow conditions. Depending on the Mach number and the wall temperature, the stability
of the S and F branches can switch, or the synchronization point between S and F modes can
vanish [15].

Figure 2: Scenarios of Mack second mode evolution for a high-speed boundary layer on a flat
plate, adapted from Fedorov et al. [9]

While linear stability analysis have shed light on the role of the boundary layer modes in the
transition process, the method is far from complete when it comes to physical interpretation.
Its shortcomings motivated extensions or alternative approaches. Kuehl [19] proposed a
thermoacoustic analysis on the second mode using an inviscid, Lagrangian, cycle-averaged
disturbance acoustic energy formulation, leading to the hypothesis that the physical origins
of Mack’s second mode are in the thermoacoustic Reynolds stress. Tian et al. [20] performed
a stability analyses based on the rates of change of perturbations associated to the Mack
second mode. They found that the variation in fluctuating internal energy is maintained by
the advection of perturbed thermal energy near the critical layer (where the flow propagates at
the velocity of the disturbance) and the fluctuation in dilatation near the wall. Additionally,
streamwise velocity perturbations were attributed to the simultaneous influence of momentum
transfer from the wall-normal velocity fluctuation and the streamwise gradient of the pressure
perturbation near the wall. Chen et al. [21] conducted an analysis of the phase of each term
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in the linear stability equation to identify the significant physical sources of boundary layer
instabilities. Noteworthy among their observations is the role of wall cooling, which destabilizes
the second mode by establishing a pronounced region of wall-normal internal energy transport
beneath the second generalized inflection point (GIP).

Unnikrishnan et al. [22] caution against semantic misinterpretations made in the literature
associated with interpreting the nature of stability modes in terms of acoustic, vortical, or en-
tropic content through their trajectory in the eigenspectra, which prompts the questions: can
these three contributions be isolated in the flow? Can the dynamics of these contributions be
studied in order to elucidate their true role in the transition process? A first step towards this in-
volves being able to carry out an energy decomposition where each component can be assigned
a type of contribution: acoustic, vortical, or entropic. Such a classification for small energy
disturbances in a uniform flow can be inferred from the work of Chu [23], yet its limitations
have given rise to several studies on hypersonic flows which rely on the momentum potential
theory (MPT) decomposition by Doak [24] in order to individually analyse the different con-
tributions [25, 22, 26, 27, 28]. Based on Doak’s MPT, Unnikrishnan et al. [22] were able to
study the evolution of fluid-thermodynamic (FT) components associated with the Mack second
mode instability, revealing many interesting results. In particular, they showed that vortical
components are the most prominent in the Mack second mode instability, followed by thermal
and acoustic components. They also showed that the thermal component is the most significant
source term for the growth of acoustic perturbations, an effect which becomes pronounced under
wall cooling conditions. Their results highlight that the vortical structures manifest as a series of
rope-shaped cells across the GIP, and that both the acoustic and thermal components undergo
a change in structural shape downstream of the mode synchronization exhibiting a “trapped”
structure. The acoustic component displays alternating monopole arrays between the wall and
the critical layer, while the thermal component is confined to the region between the wall and a
line straddling the GIP. The MPT-based FT decomposition was also fruitfully used by Long et
al. [26] to study the “sound radiation” caused by the supersonic mode [29], and the influence of
a porous coating on this instability. All these studies seem to converge on the significant role of
the GIP and the critical layer in energy amplification mechanisms, as well as on the utility of
the Doak decomposition in studying the unstable modes in hypersonic boundary layers.

In the present study, we report on our progress towards exploring the dynamics of the
second-mode instability through FT components. The study begins with a linear stability
analysis to identify the distinct linear modes within hypersonic 2D flat plate boundary layers
under different wall temperature conditions. Following this, forced direct numerical simulations
(DNS) are conducted, introducing linear harmonic disturbances in the boundary layer that
excite the normal modes predicted by the stability analyses. We then employ the tracking
method pioneered by Lozano-Durán and Jiménez [30], and apply it to a temporal sequence
of the fluctuating vorticity. This preliminary step towards our final goal allows us to track
coherent structures over time, providing both qualitative and quantitative insights into their
temporal behaviour, their lifetimes, their geometrical characterization and their advection
velocities in a hypersonic boundary layer. Finally, the Doak decomposition is applied to
the DNS results in order to compute, for individual flow fields, the FT components of the
perturbations. Comparisons are drawn between the components observed over insulated and
cooled wall conditions.

2. Simulation conditions
We consider two cases of two-dimensional HBLs over a flat plate. One where the wall
temperature Tw is equal to the recovery temperature Tr (adiabatic case), another where
Tw/Tr = 0.145 with Tw = 300 K. The free-stream Mach and unit Reynolds numbers are given
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by:

M∞ =
U∞
a∞

= 6, (1)

Re∞ =
ρ∞U∞
µ∞

= 2 · 106 m−1, (2)

where ρ∞, U∞, and µ∞ are the density, velocity, and dynamic viscosity of the free-stream,
respectively. a∞ =

√
γRT∞ is the speed of sound based on the free-stream temperature T∞.

The flow is considered to be a calorically perfect gas, with specific heat ratio γ = 1.4 and gas
constant R = 287.05 J/(kg · K). The dynamic viscosity µ is chosen to follow Sutherland’s law,
and the heat conductivity κ is related to µ through a constant Prandtl number Pr = 0.72.

Figure 3: Sketch of the physical model and computational domains.

To initialize the forced simulations, a precursor simulation is run with the finite-volume flow
solver Cedre [31]. This first simulation computes the steady base flow over the flat plate with
a second-order finite volume spatial discretization, along with a first-order implicit temporal
scheme. The computational domain of the steady base flow is referred to as the “low-order”
region in Figure 3. Subsequently, the steady flow field is applied as both the initial condition
and as the inlet and outlet boundary conditions within a subdomain where we perform the high-
fidelity simulations, denoted as the “high-order computational domain” in Figure 3. The details
of the domain geometry for this study are summarized in Table 1. We used bilinear interpolation
to project the low-order solution onto the high-order domain. The high-fidelity simulations are
run with Jaguar [32, 33, 34, 35], a high-order spectral difference flow solver collaboratively
developed by CERFACS and ONERA. At first, Jaguar is run without any forcing applied to
it for long enough to evacuate initial transients. The latter are due to the fact that the two
solvers have different truncation errors. A steady-state is then achieved with Jaguar, which
is in excellent agreement with the low-order base flow solution given by Cedre. It should be
noted that in the case of the cold flat plate, the wall temperature is set to Tw = 300 K for both
Cedre and Jaguar. However, for the adiabatic wall, an isothermal wall boundary condition
is used in Jaguar to enforce the wall temperature to Tw = Tr(x), where Tr(x) is the adiabatic
wall temperature obtained from Cedre when enforcing an adiabatic boundary condition.

Once a newly converged steady solution is achieved with Jaguar, it serves as the initial steady
state for perturbed unsteady simulations with the same solver. To initiate the Mack second mode
instability in the boundary layer, a wall blowing-suction actuator is employed, located within
the region between xf1 and xf2, as depicted in Figure 3. The blowing/suction velocity follows
a sinusoidal space-time dependency given by:

v′(t) = Af sin

(
2π

x− xf2
xf1 − xf2

)
sin(ωt), xf1 ≤ x ≤ xf2 (3)
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The value of the frequency f is chosen to be 98 kHz while the forcing amplitude Af = 0.1 m/s
is set to trigger a linear response of the Mack second mode instability towards the outlet of the
high-order computational domain. The forcing frequency comes from the outcome of a linear
stability analysis of our base flow with the Mamout code [36], which indicates this frequency to
be linearly unstable and generating most of its amplification close to xm. The forcing amplitude
results from preliminary tests that confirmed the linear response of the Navier-Stokes solution
for this amplitude value. The Jaguar simulations use a constant number of cells in the wall-
normal direction set to 180 and 1505 cells in the streamwise direction. Given that the solution
vector within each cell is expressed through a p-order polynomial, which yields p + 1 internal
degrees of freedom within each cell along each spatial direction, the total number of degrees
of freedom along each direction can be obtained by multiplying these values by p + 1. The
computational grid used for solving the flow is refined near the wall, with a minimum cell size
of approximately ∆y ≃ 25 µm in the wall-normal direction and a constant streamwise spacing
of ∆x ≃ 0.85 mm. With this resolution, there are approximately 80 degrees of freedom within
a wavelength of Mack’s second mode in the streamwise direction. This oversampling is chosen
to ensure that coherent structures are defined by a sufficient number of computational cells in
the subsequent coherent structure tracking step.

Variable Value (m)

xc -0.3
x0 0.2
xf1 0.2225
xf2 0.2375

Variable Value (m)

xm 1.5
ys 0.03
yr 0.235
ym 0.3425

Table 1: Details on the sizing of the domain geometry in Figure 3.

3. Methodology and Mathematical Description
3.1. Direct Numerical Simulations
The physical problem under investigation is governed by the non-reacting Navier–Stokes
equations in 2D generalized coordinates (ξ, η), which consists of the mass conservation equation,
the two-component momentum conservation equations, and the energy equation :

∂Q

∂t
+
∂E

∂ξ
+
∂F

∂η
= 0 (4)

Here, the vector Q represents the array of conservative variables and E and F are flux vectors
in the ξ and η directions, respectively. These vectors are defined in relation to the corresponding
vectors Qc, Ec, and Fc in a cartesian coordinate system.

Q = JQc (5)

E = J

(
Ec
∂ξ

∂x
+ Fc

∂ξ

∂y

)
(6)

F = J

(
Ec
∂η

∂x
+ Fc

∂η

∂y

)
(7)
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The symbol J denotes the determinant of the transformation jacobian J = |∂(x, y)/∂(ξ, η)|.
The vector of conservative variables and the flux vectors can be expressed in the physical
coordinate system as:

Qc =


ρ
ρu
ρv
ρe

 (8)

Ec =


ρu

ρu2 + p− τxx
ρuv − τxy

u(ρe+ p)− (uτxx + vτyx + κ∂xT )

 (9)

Fc =


ρv

ρuv − τxy
ρv2 + p− τyy

v(ρe+ p)− (uτxy + vτyy + κ∂yT )

 , (10)

where ρ is the fluid density, u and v are the velocity components along physical coordinates
x and y, respectively, p is the static pressure, T the temperature, e = p/ρ(γ − 1) + (u2 + v2)/2
is the specific total energy and κ the heat conductivity. The components of the viscous stress
tensor are labeled τij .
The governing equations are solved with Jaguar employing a spectral difference scheme for the
spatial discretization. This method relies on a polynomial representation of the solution vec-
tor and the flux components inside each cell. The scheme’s order p + 1 is adjustable, with its
accuracy level determined by the degree p of the interpolating polynomial. For this study, a
fourth-order spectral difference scheme is used while the temporal integration is achieved using
a fourth-order five-stage Runge-Kutta time-stepping scheme.

Due to complex nature of the hypersonic boundary layer flow, which encompasses both
supersonic (M > 1) and subsonic (M < 1) regions (see Figure 3), distinct boundary treatments
are applied at the inflow and outflow boundaries. Non-reflecting boundary conditions based
on Navier–Stokes characteristic boundary conditions [37, 33] are set in the subsonic inflow and
outflow regions. For the super/hypersonic inflow ones, Dirichlet conditions are imposed for u,
v, p and T , while for the outflow the extrapolated solution from the inner domain is used to
define the boundary condition.

3.2. Momentum potential decomposition
Doak’s momentum potential theory (MPT) enables the decomposition of momentum density
ρui into a linear superposition of rotational, acoustic, and thermal components [24]. Following
the Helmholtz decomposition, one can first split ρui into a rotational (solenoidal) component B
and an irrotational component expressed as ∇ψ:

ρu = B−∇ψ, ∇ ·B = 0. (11)

Assuming the flow to be statistically time-stationary, each instantaneous flow quantity
consists of a mean (·) part and a fluctuation part (·′). In this context, the mean scalar potential,
denoted as ψ , is both irrotational and solenoidal and can thus be assumed to be zero, leading
to:

ρu = B, (ρu)′ = B′ −∇ψ′. (12)
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The fluctuating solenoidal B′ field represents the hydrodynamic component associated with
the momentum density field. The continuity equation can then be re-expressed as follows:

∂ρ′

∂t
+∇ · (ρu)′ = 0, ∇ · (ρu) = 0. (13)

By inserting equation (12) in (13), a Poisson equation is derived for the fluctuating scalar
potential field:

∇2ψ′ =
∂ρ′

∂t
. (14)

The irrotational field ψ′ can now be expressed as the linear superposition of an isentropic
(acoustic) ψ′

A and isobaric (thermal, or entropic) ψ′
T contribution as follows:

ψ′ = ψ′
A + ψ′

T , ∇2ψ′
A =

(
1

a2

)
∂p′

∂t
, ∇2ψ′

T =

(
∂ρ

∂S

)
∂S′

∂t
. (15)

The fluctuating momentum density is therefore depicted as a combination of a vortical
component B′ , an acoustic component −∇ψ′

A, and a thermal component −∇ψ′
T . Here,

a =

√(
∂p
∂ρ

)
S
represents the local speed of sound, and S denotes the entropy of the fluid.

In this study, the Poisson equations of the total irrotational component fluctuation ψ′ and the
acoustic component ψ′

A are solved. Following this, ψ′
T is determined by substitution. On the

outer boundaries, thermal fluctuations are considered to be negligible, while strictly vortical
disturbances are assumed (and introduced) within the forcing strip. As a result, identical
boundary conditions are enforced for both Poisson problems. The Dirichlet boundary conditions
for solving the Poisson problems are formulated by integrating along the boundaries, following
the procedure detailed in [38, 39, 22]. The Poisson equations are solved using the open-source
library Bcube written in the Julia language, employing finite elements (FE) with third-order
Lagrange polynomials. The consistency in order across the different interpolations (SD-based
Jaguar and FE-based Bcube) was favored with respect to other lower order, finite-volume based
Poisson solvers. The impact of the different interpolating schemes on the resulting ψ′ fields has
not been studied further. The time derivatives appearing on the right-hand sides of the Poisson
equations are computed in Jaguar through an upstream fourth-order finite difference scheme.

4. Identification of coherent structures
In the present work, the tracking method considered is based on the work by Lozano-Durán et
al. [30]. This section presents a definition of coherent structures and outlines the chosen
procedure for their identification and extraction.

It is important to recall that the disturbances of interest to us are of the harmonic type.
Hence, their characteristic size can be expressed in terms of their wave length Lλ. For the time
tracking of such structures of size roughly equal to Lλ/2 in length, we estimate that within
one forcing period Tf a sampling frequency of Tf/n is sufficient for time-tracking when n > 2.
We set n = 18 as a conservative choice, since the structures may be smaller depending on the
threshold. To be more precise, we conduct our analysis choosing a total of Ns = 365 flow
field snapshots that span approximately 20.6 Tf in time. These snapshots are stored at regular
intervals of ∆ts = 5.76 · 10−7 s, during which an object traveling at the phase speed of the
mode disturbance covers a distance equivalent to ca. 4.5 cells with our mesh resolution. Then,
we classify a structure as a cluster of spatially adjacent cells, or pixels, inside which a specific
quantity of interest Q exceeds a chosen threshold. More specifically, the structures are identified
based on satisfying the condition:
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Q(x, y, t) > αpH(x). (16)

Here, αp represents a threshold derived from percolation analysis [40, 41, 27], and H(x) is
a shape function that takes into account the streamwise evolution of the perturbation and is
defined as:

H(x) = max
x,y,t

(Q)
ln(Q′

w)

λmax
x,y,t

(ln(Q′
w))

, (17)

where λ a constant set to 1000 and the subscript ·w refers to the wall values. Given that the
dynamics of the second Mack mode are confined to a specific region within the boundary layer,
any structure with a barycentre position above twice the boundary layer thickness away from
the wall will be discarded. Similarly, any structure with an area l2 below a defined threshold,
set to l = 2.2 · 10−3 m, will be categorized as noise and consequently not recognized as a valid
structure. In comparison, note that the boundary layer thickness span the range of values from
3 to 8 mm. This area criterion resulted from an analysis of the distribution of the coherent
structure sizes.

5. Preliminary results and discussion
5.1. Steady state
The u-velocity and temperature profiles obtained from the DNS are plotted at the end of the
computational domain in Figure 4. The normalized wall-normal coordinate is determined using
the local boundary-layer thickness, which is based on the total enthalpy criterion h0(δh0) = Chh∞
[42], with Ch = 1.008. Over the insulated wall, the developed boundary layer is thicker,
approximately δh0 ≃ 14 mm, in contrast to δh0 ≃ 8 mm over the cold wall. Unnikrishnan
et al. [43] noted that second-mode instabilities tend to exhibit maximum amplitudes near high-
gradient regions. Consequently, amplification dynamics are intensified closer to the wall under
colder surface conditions. Moreover, as can be seen from the right-most panels of Figure 4, the
insulated configuration displays a GIP, while wall cooling suppresses the GIP. Similar behavior
has been observed in [44, 43].

5.2. Linear stability analysis
A spatial local linear stability analysis (see Appendix A) is performed on the HBL profiles for
the frequency f = 98 kHz. The resulting phase speeds and spatial growth rates associated with
F and S modes are plotted in Figure 5. Horizontal dashed lines in the left plots correspond to
the continuous branches of the eigenspectra, including the fast acoustic (cr/ue = 1 + 1/Me),
entropy/vorticity (cr/ue = 1), and slow acoustic branches (cr/ue = 1 − 1/Me). The dashed
vertical lines correspond to positions where specific intermodal interaction phenomena can occur
due to phase speed synchronisation between two modes. For both the adiabatic and cooled walls,
modes F and S appear to originate from the fast and slow acoustic branches near the leading
edge, respectively. Subsequently, tracking the trajectory of mode F reveals an intersection with
the vorticity/entropy branches. This coincides with the point where the amplification rate of
mode S starts moving sharply towards the unstable values (negative αi) . Further downstream,
the phase velocities of modes F and S synchronize for the adiabatic case. At this juncture,
mode S seems to reach its maximum instability. Conversely, under the cold wall condition, this
synchronization between the two discrete modes is absent, as observed in [15]. Establishing a
cause-and-effect relationship between the intermodal interaction phenomena in the eigenspectra
and the stability observations of the modes proves to be difficult. Despite this, insights from a
range of analytical and numerical receptivity studies [45, 18, 46] indicate that the synchronization
phenomena, characterized by phase velocity and eigenfunction interactions between different
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Figure 4: Streamwise velocity profile (left), temperature profile (center), and indicator function
for the existence of a GIP (right). Where the indicator function crosses the zero value (vertical
dashed line), a GIP exists. All profiles taken from x = 1.5 m for the cold wall (top) and the
insulated case (bottom).

modes, imply energy transfer processes between the modes involved. Therefore, we expect the
synchronization patterns (or lack thereof) observed through the LST results presented above to
be reflected in the FT-based analysis that will be presented later. Indeed, it is the scope of our
work to study in detail these interactions.
The total amplification rate of an unstable wave is quantified by the N -factor, representing the
overall exponential growth of an unstable perturbation. It is defined in relation to the final
amplitude A at location x and the initial amplitude A0 at the critical point xcr. The exact
definition is given by:

N(x, f) = ln

(
A

A0

)
=

∫ x

xcr

−αi(x, f) dx. (18)

The N -factor curves associated to the Mack second mode (mode S here) are presented in
Figure 6. The amplification of the second Mack mode is more pronounced on the cold wall
compared to the adiabatic case, in line with the fact that cooling destabilizes this mode [47].
Moreover, in the adiabatic case, the maximum amplification of this instability occurs more
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Figure 5: Phase velocities (left) and spatial growth rates (right) of discrete modes F and S at
a frequency f = 98 kHz computed by local LST for the cold wall (top) and the insulated case
(bottom).

upstream. This can be explained by the fact that the adiabatic boundary layer is thicker, and
that the frequency of the instability is inversely proportional to the thickness δ [48]. Hence at
equal frequency, the amplification peak is shifted upstream in the adiabatic case.

Figure 6: N -factor curves computed by local LST for the cold wall and the insulated case.

5.3. Coherent structures tracking based on fluctuating vorticity
In this section, the results of the time-tracking of structures associated with the fluctuations of
vorticity over the cold wall are discussed.
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5.3.1. Percolation Analysis In order to determine the threshold parameter αp in equation 16, we
conduct a percolation analysis by systematically varying αp over a range of values. Of particular
interest is the evolution of both the number and the area of structures that are identified
at the various thresholds. The methodology, as employed in previous studies [41, 30, 49], is
described in great detail in [27]. Within the context of our study, the structures based on the
fluctuating vorticity are studied in a first instance as a surrogate for the solenoidal component
of the Doak decomposition. We note in passing that we have preliminary knowledge suggesting
that the perturbations will organize themselves following a pattern of aligned sign-alternating
doublets. Hence, we plan to distinguish between structures with positive and negative vorticity
perturbations by treating them as distinct entities during the clustering process. A fluctuating
vorticity structure is therefore defined as a clustered set of spatially-connected pixels satisfying
the following conditions:

∇× u′ < −αpH(x),
∇× u′ > αpH(x).

(19)

The results of the percolation analysis are presented in Figure 7 with the ratio of the area of
the largest structure Amax divided by the total area Atot occupied by all the structures, and the
total number of structures Ns normalized by the largest number of identified structures Ns,max

over all the values of αp. Logically, at a low value of αp, a relatively small number of structures
are detected, covering a broad surface area. By increasing the value of αp, these large structures
will break down into several smaller but more numerous structures. This process is referred
to as the percolation crisis. If the value of αp is further increased, the ratio Amax/Atot tends
to increase slowly while the number of objects continues to decrease. We opt for a threshold
value of αp = 0.4, located in the range where the area ratio remains roughly constant and the
phenomenon of object splitting is still important.

It is worth noting some discrepancies in the percolation curves obtained in this study
compared to those commonly reported in the literature. Indeed, typically at a low value of αp, a
large number of pixels are clustered into a single large structure, causing the area curve to start
from the value of 1, and the ratio of the number of structures to be very low. Moreover, the area
ratio eventually tends to 0 as αp becomes large, as with a very high threshold, no structures
are detected. In our case study, the distinctive feature lies in the separate consideration of
structures exhibiting positive and negative vorticity fluctuations. Consequently, in regions
where perturbations manifest as sign-alternating doublets, the structures are inherently distinct,
irrespective of αp, justifying the observed evolution of the curves in Figure 7.

5.3.2. Branch classification The evolution of the structures over their lifetime can be organized
into branches. Additionally, these branches can be classified into several groups based on their
topology within a temporal graph that gathers them according to the procedure described by
Lozano-Durán and Jiménez [30]. A branch designated as “primary” is one associated with
a structure that can unequivocally be identified as an individual entity throughout its entire
lifespan. Secondary branches, on the other hand, encompass two classifications: “incoming”
for instances where the associated object merges with another to form a new entity, and
“outgoing” for scenarios involving the splitting of an object. The fourth category, called
“connectors,” consists of branches that originate from the splitting of a structure and conclude
by merging into another. Table 2 summarizes classification results for our coherent structures
based on fluctuating vorticity. We observe a predominance of primary branches. However,
this result is challenging to interpret because the saved temporal sequence does not cover a
sufficiently long time interval for the perturbations injected at the initial time to reach the
end of the computational domain. Indeed, the duration of the temporal sequence is 0.4τc,
where τc represents the advection time defined as the ratio of the average flow velocity outside
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Figure 7: Percolation analysis curves: the solid red line represents the ratio between the area of
the largest structure, Amax, and the total volume occupied by structures, Atot. The solid blue
line depicts the ratio between the number of structures, Ns, and the largest number of identified
structures, Ns,max.

of the boundary layer to the distance between the blowing/suction slot and the end of the
computational domain. Therefore, it is not possible to determine the lifespan of a branch from
its birth to its death when it lives for longer than 0.4τc. However, it is noteworthy that outgoing
branches are so underrepresented compared to the other branch types within the dynamics of
the vorticity fluctuation structures. Additionally, the incoming branches appear to be relatively
significant in terms of number and occupied area, showing that mergers occur very frequently.
Overall, however, we conclude that branch classification requires a longer time series to show
definite results and shed light on the merging/splitting processes. Future work will carry out
coherent structure tracking based on MPT components over a longer time series.

Branch type Nb/Nb,tot Ab/Ab,tot

Primary 0.498 0.447
Incoming 0.255 0.408
Outgoing 0.043 0.030
Connectors 0.204 0.115

Table 2: Branch number fraction and branch area fraction displayed for each branch type.

5.3.3. Vertical evolution Geometrical properties are derived from the temporal evolution along
the identified branches. This section investigates the dynamics of vorticity fluctuation structures
along the wall-normal direction by analyzing geometrical parameters, including the minimum
and maximum y coordinates along the streamwise direction (ymin and ymax, respectively).
Additionally, the study encompasses the structures’ heights, represented by Ly = ymax − ymin,
and the y-coordinate ycg of the structures’ barycentre. Figure 8 illustrates the spatial evolution
of these geometric properties of the structures. Dashed horizontal lines indicate, from top to
bottom, the boundary layer edge, the critical layer, and the relative sonic line. Additionally,
solid vertical lines mark positions where key phenomena in the structures’ behavior are observed,
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which will be clarified in the discussion that follows. A color code is also employed to categorize
structures with similar geometrical properties. Again, those properties will become apparent
below.

Observations reveal that slightly downstream from the perturbation injection slit, structures
attached to the wall coexist with other structures situated slightly above. Figure 9 provides a
snapshot view of the vorticity fluctuation contours zoomed in on this area, providing qualitative
insights into the behavior of the structures. The presence of elongated structures of vorticity
fluctuations with opposite signs overlaid is noticeable, indicating the presence of a shear layer
associated with the imposition of a blowing/suction condition at the wall. After x = 0.32 m, a
point marked by the first vertical line, the structures appear to organize into different patterns.
Two groups of structures are distinguishable in Figure 8: a first group of objects (in green)
attached to the wall and extending up to the relative sonic line, and a second group of objects
(in blue) between the sonic line and the boundary layer edge. It is also evident from the ycg
locations (see Figure 8) that this second group of objects organizes around the critical layer.
This spatial arrangement is clearly depicted in Figure 9, which provides a zoomed-in view of
this area. The presence of sign-alternating doublets is observed, with two regions of opposite
vorticity perturbation: one trapped between the wall and the relative sonic line, and the other
around the critical layer. It is noted that the behavior of vorticity fluctuation structures varies
according to the sign of the fluctuation. Structures exhibiting negative fluctuations display a
more significant size near the wall compared to their counterparts with positive fluctuations.
Conversely, this trend is reversed for the alternate set of structures situated above the relative
sonic line. From the position x = 0.83 m (marked by the second vertical line), corresponding
to the point at which the S mode of linear stability analysis becomes unstable (see Figure 5), a
change in the behavior of these structures becomes observable. The structures aligned with the
critical layer become thicker over time, mainly because they extend downward while remaining
aligned with the critical layer (see Figure 8). This phenomenon reaches a critical point at
x = 1.05 m, marked by the third vertical line, corresponding to the point where the S mode is
most unstable according to the LST (see Figure 5). At this point, the upper structures appear to
merge with objects attached to the wall, and the new structures obtained then extend from the
wall to the boundary layer edge (in yellow). In Figure 9, it is observed that this merging occurs
between regions of vorticity fluctuation with the same sign but located at two different heights.
These observations regarding the behavior of vorticity fluctuation structures seem to indicate
the generation of a shear layer that results from applying a perturbation to the wall in the
form of a blowing/suction source. This layer eventually gives rise to sign-alternating doublets
exhibiting trapped wave behavior between the wall and the relative sonic line. Additionally, a
zone of vorticity perturbation organizes around the critical layer. Finally, we observe that the
positions marking changes in the stability of the S mode from the LST play a crucial role in the
dynamics of vorticity fluctuation structures.

5.3.4. Advection velocities The streamwise advection velocity of the structures is computed
based on the temporal displacement of the structures’ streamwise barycenter position, xcg. In
Figure 10, we present a comparative analysis of the advection velocities of vorticity fluctuation
structures and the phase speeds of the discrete modes F and S obtained from LST analysis.
Interestingly, in the proximity of the excitation point, the structures seem to be advected at the
bulk flow velocity ue. Shortly after, their advection velocity follows a trend similar to that of
mode F, including the presence of multiple peaks. These could be indicative of the superposition
of multiple modes associated with the blowing/suction forcing, which excites mode F, mode S,
acoustic waves, and entropy/vorticity waves simultaneously just downstream of the actuator
[50]. What can be stated based on our current results is that this region of varying convection
speed also corresponds to significant topological changes in the structure’s shape as can be seen
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Figure 8: Spatial evolution of the geometrical features related to the vertical extent and position
of vortical coherent structures: maximum wall-normal coordinate (top left), minimum wall-
normal coordinate (bottom left), height (top right), wall-normal barycenter position (bottom
right). The vertical solid lines represent the delimitation of region of interest I, II, III and
IV. The dashed horizontal lines correspond to the boundary layer edge, the critical layer, and
the relative sonic line, from top to bottom, respectively. Structures within each region are
represented by distinct color: • for region I, • for regions II and III attached to the wall, • for
regions II and III not attached to the wall, and • for region IV. Additionally, +O and -O denote
structures associated with positive and negative fluctuations, respectively, where the distinction
is relevant.

on Figure 8.
Further downstream, the structures are advected with a velocity close to the phase velocity

of mode S. This transition appears to occur around x = 0.83 m, corresponding to the point
where the S mode becomes unstable according to linear stability analysis (see Figure 5), and
also coincides with a change in the vertical evolution behavior of the structures (Figure 8). Such
behavior appears to be explained by the stability of different modes present in the boundary
layer. Near the actuator, the modes of the fast acoustic branch and the vorticity/entropy branch
are excited in addition to the F and S modes, as mentioned earlier. Further downstream, the
F mode is relatively less stable (growth rate close to 0), along with certain hydrodynamic and
entropic modes. The perturbations propagating into the boundary layer are then dominated
by the latter. Finally, the S mode becomes unstable and eventually prevails. A comparison
of the wall-normal perturbation amplitudes obtained from DNS and the eigenfunctions of the
discrete modes F and S obtained by LST at two different locations, x = 0.55 m and x = 1.35 m,
is presented in Figure 11. The consistency between the wall-normal perturbation profiles and
the eigenfunctions of mode F at x = 0.55 m suggests that the fluctuations are dominated by
this mode in this region. At x = 1.35 m, the trend reverses, and the perturbation profiles
align closely with the eigenfunctions of mode S. These results support the analysis conducted
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Figure 9: Instantaneous magnified view of vorticity fluctuation in three zones of interest I, II
and IV. The black dashed lines correspond to the boundary layer edge, the critical layer, and
the relative sonic line, from top to bottom, respectively.

on the comparison of the phase velocities of the two discrete modes from LST and the advection
velocity of the fluctuating vorticity structures.

Figure 10: Phase speed velocity of the modes present in the cooled-wall boundary layer obtained
through LST, and mean advection velocity of the vorticity structures found through coherent
structure tracking.

5.4. Fluid-thermodynamic decomposition
We apply Doak’s MPT decomposition to instantaneous flow fields of fluctuating quantities
extracted from the DNS (cooled and adiabatic walls). Figure 12 presents snapshots of the
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Figure 11: Wall-normal perturbation amplitudes from DNS and F and S mode eigenfunctions
obtained by LST at x = 0.55 m (left) and x = 1.35 m (right). The black dashed lines correspond
to the boundary layer edge, the critical layer, and the relative sonic line, from top to bottom,
respectively.

magnitudes of the instantaneous vortical (||B||), acoustic (||∇ψA||), and thermal (||∇ψT ||)
fluctuations over the cold plate surface, shown for the entire computational domain. It is clear
from the contours that within the region where the second Mack mode experiences maximum
amplification (approximately x = 1.35 m as indicated by the LST), all three FT components
undergo amplification within the boundary layer, while outside of the boundary layer the vortical
and the acoustic components are the most intense. The three components maintain a relatively
low intensity until reaching the amplification region of the second Mack mode. The vortical and
acoustic components feature radiation outward from the boundary layer, guided by the oblique
shocklet induced by the blowing/suction source term. Simultaneously, this shocklet appears
to generate vortical fluctuations. In contrast, the thermal component is concentrated mainly
within the boundary layer, and displays no radiation tendency away from the boundary layer.
This observation aligns well with findings from previous studies [22, 26]. Similar observations
were made for the insulated flat plate case (not shown for brevity).

Figure 13 allows us to be more quantitative, illustrating the magnitudes of the FT components
at the wall surface for both the cold wall and the insulated wall cases. The first thing to note is
that the magnitudes are significantly lower over the adiabatic wall. This trend follows from the
fact that perturbations are able to grow significantly more in the cooled wall case, as shown by
the N -factor curves in Figure 6. Recalling from equation 18 that the amplitude grows as eN ,
differences in FT-component magnitudes of one order of magnitude can be expected and are
indeed observed.

The region of growth leading to the maximum magnitudes in these components is clearly
aligned with the location where the second Mack mode predicted by LST is most unstable in
both cases (see Figure 5). Moreover, the acoustic component is the most intense of the three
for both wall temperatures, followed by the thermal component, while the vortical component
experiences the mildest amplification. In the case of the cold wall, the acoustic component
appears to be much more predominant with respect to the other two components in the second
Mack mode amplification region. This observation is consistent with the destabilizing influence
of wall cooling and with the acoustic nature of this mode. The agreement observed between
our findings and the prior research conducted by Unnikrishnan et al. [22] and Long et al. [26]
validates our implementation of the Doak decomposition on flow fields of hypersonic boundary
layers.
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Figure 12: Instantaneous view of magnitudes of vortical (top), acoustic (center) and thermal
(bottom) perturbations over the cold plate surface.

Figure 13: Magnitudes of the fluid-thermodynamic components at y = 0 in the case of the cold
wall (left) and the adiabatic wall (right).
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6. Conclusion
In this study, we have delved into the dynamics of high-speed boundary layer flows over insulated
and cooled walls, exploring the link between stability analysis and the properties of coherent
structures of vorticity found in the boundary layer. This study is an initial exploration on how
coherent structure tracking methods and the FT component decomposition of the flow field can
uncover the mechanisms underlying the second Mack mode instability.

A local linear stability analysis lead to the expected distinct behavior in the branching of
discrete modes for adiabatic and cooled wall conditions, with an absence of synchronization
in the cooled wall case. Coherent structure tracking based on fluctuating vorticity provided a
qualitative examination of the spatial and temporal evolution of structures within the boundary
layer. The spatial evolution of coherent structures aligns with changes in the linear stability of
the discrete modes, underscoring the interplay between coherent structures and the underlying
instability mechanisms in high-speed boundary layers. A noteworthy result stems from the
evolution of the vertical dimension and location of the structures, revealing the coexistence
of vorticity structures at different heights along the wall that feature alternating sign doublets
during mode F predominance. These structures organize around the critical layer, and above the
relative sonic line. Structure mergers at a critical point aligned with the maximum instability
of the S mode has also been revealed, the dynamical implications of which need to be further
investigated.

A classification of the coherent structure dynamics into branches within graphs was
attempted. It revealed that for this time-periodic flow, a longer time sequence is necessary
in order for the objects that appear during the simulation to have the time to be washed out of
the domain.

The MPT-based FT decomposition introduced by Doak has been implemented as a post-
processing tool to our boundary layer data, which is the preliminary step towards time-tracking
of coherent structures based on this quantity. Individual snapshots confirm the insights into
the different energetic modes within the boundary layer that have been observed previously.
Here, we have linked the quantitative trends in the acoustic and thermal components of the FT
decomposition with the amplification region of the second Mack mode instability. The acoustic
component, particularly pronounced in the cold wall case, emphasizes the destabilizing influence
of wall cooling. Future work will involve carrying out the time-tracking used in this study for
vortical structures but applied to FT-based objects instead, and on the basis of a data set
spanning a longer time series.
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Appendix A. Linear Stability Theory
The Linear Stability Theory (LST) equations are derived from the governing Navier-Stokes
equations. Initially, LST assumes that the instantaneous flow variables q = (p, u, v, w, T )T can
be decomposed into mean and fluctuating components, represented as q̄ and q′, respectively,
where q = q̄+q′. In cases of natural transition, the disturbances are assumed to be very small,
which allows the linearization of the Navier-Stokes equations, considering that quadratic and
higher-order terms are negligible. The parallel or quasi-parallel flow assumption is applied, i.e.
the mean flow is considered as predominantly dependent on the wall-normal direction y. Under
these conditions, normal mode solutions are sought in the form:
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q′(x, y, t) = q̂(y) exp [i(αx+ βz − ωt)] + c.c. (A.1)

Here, α and β represent the x and z components of the wavenumber vector k, while ω is
the frequency, and q̂(y) represents eigenfunctions that describe the mode structure within the
boundary layer. By introducing the normal modes into the linearized Navier-Stokes equations,
a one-dimensional differential eigenvalue problem for the modal functions is obtained:(

A
d

dy2
+B

d

dy
+C

)
q̂ = 0, (A.2)

Here, A, B, and C are complex square matrices of size 5. In the context of a boundary layer
flow, the perturbation field can be described by the following boundary conditions:

At y = 0, û = v̂ = ŵ = 0, (A.3)

T̂ = 0 for an isothermal wall, (A.4)

dT̂
dy = 0 for an adiabatic wall, (A.5)

At y → ∞, û = v̂ = ŵ = T̂ → 0 (A.6)

For spatial stability analysis, the frequency ω is real, whereas α is a complex eigenvalue, with
α = αr + iαi. When αi < 0, the flow is unstable, exhibiting a spatial growth rate αi and a
streamwise wavenumber αr. The local phase velocity is defined as cr = ω/αr. Additionally, in
the context of the Mack second mode, which primarily exhibits two-dimensional dynamics, β
is assumed to be 0 in this study. The relationship for the eigenvalues, often referred to as the
dispersion relation, can be expressed as:

α = Ω(ω). (A.7)

The evaluation of the dispersion relation for a boundary layer profile is a fundamental aspect
of stability theory. The eigenvalues, along with their corresponding eigenfunctions, provide a
complete description of the normal modes for a given boundary layer profile. In this study, these
computations are carried out using the in-house LST solver, Mamout [36], which numerically
solves the dispersion relation for the HBL profiles extracted from the precursor solution (with
the Cedre finite-volume solver). This is achieved through a high-ordre discretization scheme,
as detailed in [51]. It should be mentioned that a convergence analysis with respect to the base
flow resolution was conducted to assess the accuracy of our stability results.
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