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ABSTRACT
Recently, we showed that an autologous DC-based vaccine induces an increase in immunosuppressive 
PD-L1+ tumor-associated macrophages (TAM) both in the tumor and the tumor draining lymph nodes, 
thereby blunting the efficacy of therapeutic immunization. Only the combination of the DC vaccine with 
anti-PD-L1 immune checkpoint inhibition, but not the use of antibodies targeting PD-1 alone, was able to 
set off CD8+ cytotoxic T lymphocyte (CTL)-mediated tumor suppression in mice. In sum, we delineated 
a PD-L1 checkpoint blockade-based strategy to avoid TAM-induced T cell exhaustion during DC vaccine 
therapy.
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Main text

Poorly immunogenic cancers, characterized by the absence of 
cytotoxic T lymphocytes (CTLs), fail to respond to current immu-
notherapies in particular to those encompassing immune check-
point inhibitor (ICI)-based regimens.1 Dendritic cell (DC)-based 
vaccines, which typically consist of patient-derived DCs that are 
antigen pulsed and matured ex vivo before autologous reinfusion, 
have been developed to prime CD4+ and CD8+ T cell responses, 
hence theoretically reinstating anticancer immunity in immuno-
logically cold tumors.2,3 Nevertheless, the therapeutic benefit of 
DC-based vaccines remains limited as their pro-immunogenic 
potential often is hampered by immunosuppressive mechanisms 
of the tumor and its microenvironment.4–6

In a recent manuscript published in Cell Reports Medicine, we 
employed bulk RNA-seq to correlate the transcriptome of auto-
logous monocyte-derived DC (moDC)-based vaccines with ther-
apeutic responses in prostate cancer patients.7 Additional pseudo- 
time trajectory analysis and REACTOME pathway enrichment 
suggested that vaccination efficacy and optimal antigen-directed 
immunity are associated with increased type I interferon (IFN) 
responses. To test the capacity of DC-based vaccine optimization, 
we designed the preclinical DC-based vaccine DCvax-IT that 
employs bone marrow-derived moDCs pulsed with immunologi-
cally cold murine non-small cell lung cancer TC1 cells undergoing 
TNF-driven apoptosis/necroptosis and were stimulated for 
maturation with IFNβ. DCvax-IT was effective in prophylactic 
settings and protected mice from tumor challenge while generat-
ing immune memory that sufficed to reject TC1 cancers in 
a second rechallenge. Moreover, in vivo immunogenicity of pro-
phylactic DCvax-IT relied on the ability of DCs to sense IFNβ as it 
was absent in a DC vaccine based on Ifnar1−/− DC. Similarly, 
DCvax-IT successfully reduced tumor growth in a curative setup 
in T cell-infiltrated tumors. However, despite proficient DC 

lymph node homing, DCvax-IT failed to inhibit the growth of 
TC1 tumors in T cell-depleted mice. Further combination with 
cisplatin-based chemotherapy did not improve the therapeutic 
efficacy of DCvax-IT against TC1 tumors.7

Differential gene expression (DGE) analysis as well as publicly 
available data indicated that the dominant immune resistance 
mechanism operating in TC1 tumors is characterized by anti- 
inflammatory signaling relevant to tumor-associated macro-
phages (TAMs) and other myeloid cells. Moreover, TC1 tumors 
exhibited a high abundance of TAMs with an increased M2-to- 
M1 ratio, and immunophenotyping revealed that TC1 tumors 
were dominated by immunoregulatory (MHC-IILOW) TAMs 
expressing significant levels of PD-L1 (PD-L1+) (Figure 1a). It is 
important to note that, in this setting, PD-1 blockade failed to 
increase T cell recovery, indicating that this phenotype was PD-L1 
specific. Mechanistically, the inhibition of TNF-related apoptosis- 
inducing ligand (TRAIL), but not that of TNF, facilitated T cell 
recovery in the presence of PD-L1+ TAMs, altogether indicating 
that the TRAIL signaling route is employed by TAMs to blunt 
T cell responses. Blockage of PD-L1 by monoclonal antibodies 
markedly reduced the abundance of PD-L1+ macrophages via the 
inhibition of NF-ϰB-dependent survival signaling. Accordingly, 
the combination of DCvax-IT with anti-PD-L1 monoclonal anti-
bodies was highly efficient in controlling the growth of TC1 and 
LLC tumors. Simultaneous PD-L1 inhibition together with 
DCvax-IT thus reduced the abundance of concomitantly induced 
PD-L1+ TAMs and lymph node associated macrophages (LAMs) 
and allowed the vaccine to effectively trigger T cell responses. 
Moreover, the co-enrichment of PD-L1 (CD274) and TAM gene 
signatures was identified as a negative prognosticator associated 
with an increased hazard ratio and poor clinical responses to anti- 
PD-L1 immune checkpoint blockade across a variety of human 
cancers. Consequently, we analyzed tumor tissue from 
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glioblastoma (GBM) patients that were enrolled in the GlioVax 
trial (GBM patients receiving tumor lysate-loaded DCs in combi-
nation with radio- and chemotherapy) and confirmed that lym-
phocyte-suppressive PD-L1+ TAMs are enriched in this setting.7

Despite optimization by IFNβ stimulation, the therapeutic 
efficacy of DCvax-IT was suboptimal, as it increased the abun-
dance of immunosuppressive PD-L1+ M2 LAMs via type I IFN 
responses and further facilitated the surge of preexisting PD-L1+ 

TAMs, thus creating a PD-L1+ macrophage niche fostering 

DCvax-IT immune resistance (Figure 1a). The combination of 
DCvax-IT plus PD-L1 blockade was able to neutralize this 
immunosuppressive niche to facilitate T cell-driven anticancer 
immunity (Figure 1b). Accumulating preclinical evidence indi-
cates that the efficacy of autologous cell therapies such as DC 
vaccines but also CAR-T cell therapies could be further 
improved by concomitant PD-L1-targeted immune checkpoint 
inhibition to counteract the establishment of an immunosup-
pressive macrophage niche.8

Figure 1. (a) DC vaccine induces an immunosuppressive macrophage niche in the lymph nodes and tumor. The preclinical dendritic cell (DC) vaccine “DCvax-IT” consists 
of bone-marrow-derived moDCs pulsed with murine non-small cell lung cancer TC1 cells undergoing TNF-driven apoptosis/necroptosis. Despite IFNβ stimulation for DC 
maturation, DCvax-IT lacked therapeutic efficacy in tumor bearing mice due to an increase in immunosuppressive PD-L1+M2 lymph node associated macrophages 
(LAMs) and preexisting PD-L1+ TAMs that altogether led to the inhibition of T cell mediated anticancer immune responses. The DC vaccine thus created a PD-L1+ 

macrophage niche fostering immune resistance. (b) Combination therapy consisting of DC-based vaccination plus anti-PD-L1 monoclonal antibody-mediated immune 
checkpoint inhibition (ICI) could deplete immunosuppressive macrophages, thus overcoming immune resistance and facilitating anticancer immunity.
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Adaptive immunity and T cell activation are associated with 
favorable disease outcomes and responses to DC-mediated 
vaccination in patients with prostate and lung cancer.9 

Nonetheless, in a recent clinical trial enrolling women with 
epithelial ovarian carcinoma (EOC), an autologous DC vaccine 
was more efficient in patients with low tumor mutational 
burden and limited tumor infiltration by CD8+ T-cells than 
in patients with highly infiltrated EOCs, indicating that, in this 
setting, DC-based vaccination was able to jumpstart clinically 
relevant anticancer immune responses.10

It is tempting to speculate, yet needs to be formally proven, 
that the use of DC-based vaccines encoding multiple patient- 
specific tumor neoantigens alone or in combination with ICI will 
further improve clinical efficacy and elevate this therapeutic 
approach to standard of care. Future prospective clinical trials 
in cancer patients need to explore optimal combination regi-
mens and therapeutic schedules that avoid the establishment of 
an immunosuppressive macrophage niche and hence facilitate 
the optimal (re)activation of CTLs.
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