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 11 

The efficacy of chemotherapy with cytotoxicants or that of targeted therapies with 12 

more sophisticated agents is limited due to the plasticity of malignant cells that leads to 13 

the inevitable development of resistance. Immune checkpoint inhibitors (ICI) that target 14 

inhibitory cytotoxic T lymphocyte associated protein 4 (CTLA4) or T cell exhaustion 15 

signals such as the programmed cell death-1 (PDCD1, better known as PD-1), and pro-16 

grammed cell death-1 ligand 1 (CD-274, better known as PD-L1) are occupying a central 17 

stage in the first-line adjuvant and neoadjuvant treatment of advanced neoplasms (1, 2). 18 

ICIs are now broadly used through the oncological spectrum. 19 

Nevertheless, certain cytotoxic agents have the ability to induce durable disease 20 

control exceeding the clinical treatment phase in many cancer patients. Retrospectively, it 21 

appears that those agents that were empirically selected by clinicians over decades due to 22 

their effectiveness, are particularly capable of triggering specific stress and death path-23 

ways in cancer cells rendering them recognizable to the immune system (3, 4). In pre-24 

clinical mouse models, treatment of tumors with drugs inducing immunogenic cell death 25 

(ICD) is only efficient if functional dendritic cells (DCs) and T lymphocytes are available 26 

(5-7). In patients, the induction of ICD correlates with the recruitment of antigen pre-27 

senting cells (APCs) as well as cytotoxic T lymphocytes (CTLs) into the tumor bed, and 28 

tumor infiltration by DCs and CTLs is indeed a biomarker of favorable prognosis (8-10). 29 

ICD inducers include conventional chemotherapeutic agents such as anthracyclines, 30 

oxaliplatin, taxanes, as well as more disease-specific targeted agents from the group of 31 

tyrosine kinase inhibitors (TKIs) (11, 12). Moreover, ionizing irradiation (13, 14), photo-32 

dynamic therapy (PDT) (15, 16), as well as oncolytic viruses (17, 18), have been shown to 33 

induce ICD. In preclinical experimentation and in clinical routine, it appears that com-34 

binations of ICD inducers with immune checkpoint inhibitors (ICIs) are particularly 35 

efficient in mediating their therapeutic potential (19, 20).  36 

ICD facilitates the onset of anticancer immune responses via an increase in both the 37 

antigenicity as well as the adjuvanticity of the malignant cells. Mechanistically, this in-38 

volves the onset of coordinated premortem stress responses that can affect the antigenic 39 

makeup of cancer cells via genetic or epigenetic alterations of the transcriptome. More-40 

over, ICD-related cellular stress facilitates the emission of normally confined ‘danger 41 

associated molecular patterns’ (DAMPs) that act on pattern recognition receptors (PRRs) 42 

expressed on professional antigen DCs (21-24). Thus, immature DCs, which express the 43 

ATP receptor P2Y2 are chemotactically attracted into the tumor bed by ATP secreted 44 

from cancer cells undergoing ICD (15, 25). The final approximation of DCs towards dy-45 

ing cancer cells is facilitated by tumor-emitted annexin A1 (ANXA1) that acts on formyl 46 

peptide receptor-1 (FPR1) present on DCs (24). Antigen transfer from tumor cells to DCs 47 

Citation: To be added by editorial 

staff during production. 

Academic Editor: Firstname 

Lastname 

Received: date 

Revised: date 

Accepted: date 

Published: date 

 

Copyright: © 2023 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Cells 2023, 12, x FOR PEER REVIEW 2 of 4 
 

 

is mediated by an ‘eat-me’ signal, namely surface-exposed calreticulin that appears on 48 

the plasma membrane of malignant cells and then acts as on its receptor CD91 present on 49 

DCs (13). The maturation of DCs is ignited via the ligation of Toll like receptor 4 (TLR4) 50 

by high mobility group box 1 (HMGB1), emanating from the nuclear compartment of 51 

dying cancer cells. DC maturation further drives the production of type-1 interferons, 52 

which in turn amplifies the synthesis of the C-X-C motif chemokine ligand 10 (CXCL10), 53 

thus stimulating T cell priming. In sum, induction of ICD in malignant cells leads to a 54 

coordinated alteration of the cell surface and the local secretome, thereby facilitating the 55 

attraction, differentiation and maturation of DCs so that they present tumor-associated 56 

antigens to T cells and hence initiate adaptive anticancer immunity (22-24). Of note, ma-57 

lignant cells and pathogenic viruses can subvert ICD-associated DAMP emission, thus 58 

blunting the immune response. Moreover, inherited or acquired defects in the perception 59 

of ICD by the host immune system can undermine immunosurveillance and provoke 60 

failure of cancer treatments. 61 

The concept of ICD has transcended the realm of preclinical experimentation and is 62 

now used for drug discovery (to identify novel ICD inducers) as well as for the design of 63 

clinical trials (to identify suitable drug combinations, in particular with ICIs). The present 64 

special issue "Immunogenic Cell Stress and Death", discusses different strategies for in-65 

ducing anticancer immunity by facilitating the molecular crosstalk between cancer cells, 66 

DCs and T lymphocytes. The role of ICD is reviewed in the context of colorectal, gastric, 67 

pancreatic, and hepatocellular cancer as well as multiple myeloma. Moreover, it is re-68 

vealed that combination treatment with cetuximab plus cisplatin for the treatment of 69 

head and neck cancer induced traits of ICD. Interestingly, high dose of the 70 

non-immunogenic cell death inducer cisplatin blunted antitumor immunity in this con-71 

text. Additional aspects of immunogenic cell stress and death cover the role of 72 

ICD-associated chemokines and chemokine receptors in the activation of CD8 T-cells and 73 

clinical applications thereof. Furthermore, light is shed on the role of tumor-associated 74 

macrophages (TAMs) in the response to dying cancer cells. Finally, three-dimensional 75 

organ-on-chip technology is introduced for modeling the tumor microenvironment 76 

(TME). At the mechanistic level, evidence is presented that targeting the unfolded pro-77 

tein response (UPR) can increase the efficacy of anticancer therapy. 78 

Altogether, in this special issue, ICD induction is discussed in different dis-79 

ease-relevant therapeutic approaches, novel immune signals are described, and the role 80 

of specific immune cell subtypes is elucidated. Advanced in vitro systems are helping to 81 

understand the apical targets of ICD, the organellar genesis of ICD signals, as well as the 82 

complex cellular interplay in the tumor microenvironment. Altogether, an ever more 83 

sophisticated pipeline of preclinical ICD-relevant exploration will prepare the bases for 84 

the clinical implementation of ICD-based anticancer therapies.  85 
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