
HAL Id: hal-04596694
https://hal.science/hal-04596694

Submitted on 31 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Unified Model for Integrated Modular
Architecture-TSN based Systems

Matthias Houssin, Oana Hotescu, Frédéric Boniol

To cite this version:
Matthias Houssin, Oana Hotescu, Frédéric Boniol. A Unified Model for Integrated Modu-
lar Architecture-TSN based Systems. 2023 IEEE 28th International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), Sep 2023, Sinaia, France. pp.1-8,
�10.1109/ETFA54631.2023.10275342�. �hal-04596694�

https://hal.science/hal-04596694
https://hal.archives-ouvertes.fr


A Unified Model for Integrated Modular
Architecture-TSN based Systems

Matthias Houssin
ONERA, ISAE-SUPAERO

Toulouse, France
matthias.houssin@isae-supaero.fr

Oana Hotescu
ISAE-SUPAERO
Toulouse, France

oana.hotescu@isae-supaero.fr

Frédéric Boniol
ONERA

Toulouse, France
frederic.boniol@onera.fr

Abstract—A recent trend in embedded industry is to mix
Integrated Modular Architectures (IMA) with Time Sensitive
Networking (TSN). IMA principles allow resource sharing be-
tween numerous software functions in a deterministic way. On
the other side TSN is considered a promising communication
solution for distributed architectures. However, TSN has not been
fully exploited with IMA, while it would meet the increasing
communication needs due to the explosion of the number of
on-board software functions. In order to better understand the
challenges of designing IMA-TSN systems, this paper proposes
a joint model which unifies task and message management and
allows evaluation of end-to-end latency properties. The model is
illustrated by simulation on an avionic case study.

Index Terms—Time-Sensitive Networking, Integrated Modular
Architecture, system-network

I. INTRODUCTION

Cyber-physical systems are composed of computing mod-
ules linked through one or several communication networks.
The computing part of many of these systems in the automo-
tive and avionic industry often follows the Integrated Modular
Architecture (IMA) paradigm allowing resource sharing and
time partitioning between software functions. Many frame-
works have been proposed to standardized IMA principles,
such as AUTomotive Open System ARchitecture (AUTOSAR)
[1] in the automotive domain and ARINC653 [2] in the avionic
domain. The deployment of these IMA standards has opened
the possibility to significantly increase the missions and the
complexity of on-board systems by allowing more software
functions to be executed on fewer computing modules.

On the communication side, several industrial communica-
tion protocols exist on the market, depending on the applica-
tion area, e.g., FlexRay [3], TTEthernet [4] for automotive,
EtherCAT [5], PROFINET [6] for industrial automation. For
avionics, the choice has been set for years on ARINC 664-P7
Avionic Full-DupleX switched Ethernet (AFDX) [7].

In the past few years, IEEE 802.1Q Time-Sensitive Net-
working (TSN) [8] standard providing high data rate and
low latency has emerged in industrial fields such as Indus-
try 4.0, automotive and aerospace. TSN enhances real-time
transmissions thanks to accurate time synchronization, stream
reservation and scheduling of time-sensitive data, providing
high reliability and security mechanisms.

The use of TSN in IMA introduces indeed new commu-
nication possibilities, however it requires re-thinking several

aspects related to the configuration of processing elements to
comply with the specificity of a particular application domain.
In avionics for instance, the IMA modules are not synchro-
nized with each other when using AFDX and synchronizing
them with TSN may introduce new challenges related to
the certification of the avionic systems [2]. High data rate
and the extended number of traffic classes in TSN introduce
the opportunity of new traffic types meeting the needs of
increasing system software complexity. So, safe-critical and
non-critical (e.g., video, audio, etc.) applications that need to
share the network bandwidth with different quality of service
requirements have to be considered when deciding allocation
and scheduling at both network and system level. Thus, adopt-
ing TSN in integrated architectures may imply optimisation
of the system and network configuration (i.e., service policies,
routing, and task allocation), but also re-evaluating the use
or not of some features such as synchronization, run-time
reallocation or reliability enhancements.

In this paper, we propose a generic model unifying IMA and
TSN network aspects. The main goals of this model are first, to
enable studying how TSN and IMA can be configured together
and secondly, to allow end-to-end timing analysis. Our main
contribution consists in formalizing different scheduling poli-
cies for both IMA and TSN which is the basis for transversal
configuration and analysis of IMA-TSN systems.

This paper is organized as follows. First, we present a back-
ground on IMA and TSN in Section II. Then, we introduce
our unified model in Section III. Our model is illustrated by
simulation in Section IV. Section V surveys related work.
Finally, Section VI concludes the paper and gives leads for
future work.

II. BACKGROUND

A. IMA principles

The concept of Integrated Modular Architecture has been
proposed in embedded domains involving more and more
safety-critical functions. To reduce the weight and the number
of the computing resources, the IMA principle relies on two
main ideas: (1) resource and (2) temporal partitioning.

Resource partitioning means that for each software function
is allocated a set of spatial resources (CPU core, memory
area, DMA channel, etc.) in a static manner, that is to say
that the resource integrator has the task of assigning the



maximum allowed resources to each function while respecting
space segregation between them. Low-level mechanisms (at
operating system level) provide protection for function data
against any modification from the other functions.

Temporal partitioning means that the scheduling of software
functions on each CPU core is defined off-line by a periodic
sequence of slots statically organized in a time-frame named
the MAjor time Frame (MAF). Each function is allocated a
time slot for execution. At the end of this time slot, if not
completed, the function is suspended and execution is given
to the next function (according to the time-table). Thus, each
function periodically executes at fixed times.

Fig. 1: Example of IMA computing module

To illustrate the IMA principle, let us consider the archi-
tecture depicted in Figure 1. It describes an IMA module
composed of two CPU cores, a single memory, four IO ports
and one DMA engine. The module hosts four functions: F1

and F2 on core 1 managed by MAF1, F3 and F4 on core 2
managed by MAF2. The memory is segregated into four parts.
Each function is allocated one IO port. And finally, the single
DMA engine is shared by the four functions according the
local DMA MAF (data transfert of F1 are done during the
time slot associated to F1, etc.).

The main advantage of IMA is to allow resource sharing
while minimizing interference between functions for which
reason such architectures are now widely used in automotive,
space and avionic domains.

B. TSN

TSN is a set of standards based on switched Ethernet [8]
which has been designed by the IEEE802.1Q task group to
propose deterministic and reliable communication services. A
TSN architecture is composed of a set of end systems and
switches interconnected by communication links.

1) End system: In TSN, end systems communicate with
each other through monitored Virtual Links (VLs). VL def-
inition enforces a maximum emission rate of messages to
be injected in the network. Generally, this rate matches the
generation rate of periodic flows (Time Triggered traffic) or
rate constrained flows (Event Triggered traffic). To enforce this
constraint, end systems implement shaping policies.

2) TSN Switch: Frames arriving at switch are received
through the ingress ports, then redirected by the switch fabric
to an egress port according to their destination. The egress
port classify the frames depending on their traffic class and
dispatches them on the corresponding queue. A selection
strategy is implemented to decide the order of transmission on

the channel. Frames simultaneously enqueued suffer a queuing
delay. Figure 2 illustrates the main functions of a TSN switch.

3) Service policies: TSN switches implements in egress
ports a scheduling strategy combining a Credit-Based Shaper
(CBS) [9] with a Time Aware Shaper (TAS) [10] and Strict
Priority Queuing (SPQ) to decide frame selection on 8 priority
levels. Our model handles TAS and SPQ while CBS will be
left for future work. The TAS uses a Gate Control Lists (GCL).
This policy considers 8 gates (one associated to each traffic
class) which can be either open or close. So, the transmission
of messages from a class may be allowed or not. The opening
and closing of each gate is determined by a pre-established
list such as illustrated on Figure 2. SPQ, a priority-based
selective algorithm resolves the potential competition between
the different traffic classes.

Fig. 2: TSN switch

III. IMA-TSN MODEL

Several models already handle unified task and messages,
such as the one in [11] based on Steiner’s model [12]. Our
model extends it to TSN and IMA specificities.

The model is organized in 4 layers. First, the hardware ele-
ments are introduced at the platform layer (subsection III-A).
The software elements (tasks and messages) are abstracted
as generic flows at the system layer (subsection III-B). We
introduce then at the configuration layer the scheduling strate-
gies associated with each hardware element (CPU core, DMA,
TNS port) (subsection III-D). Finally, the latency properties to
be evaluated are defined over the whole model in subsection
III-E. Notations used in the following are sum up in Table I.

A. Platform model

The first layer of the model describes the hardware view
of the platform. Following the approach developed in [11],
an IMA-TSN platform can be seen as a set of abstract
nodes modeling in a unified way the computing modules and
switches of the platform, connected through a set of abstract
links modeling the processing and the networking components
of the platform.

Definition III-A.1 (Platform). Let P be an IMA-TSN plat-
form, P is defined by P :=< Nodes,Links > where

— Nodes is the finite alphabet of nodes of P (the IMA
modules and the TSN switches),

— and Links is the finite alphabet of links in P (denoting
the CPUs, the DMAs, and then network links).



Example III-A.1. Let us consider the platform depicted in
Figure 3a. This platform is composed of four modules and
two switches. Figure 3b describes the abstract model of the
platform in which nodes n2, n3, n4, n5 represent the four
modules in the real platform and nodes n0 and n1 represent
the switches. Nodes are interconnected by network links such
as l0 and l1, while the CPU and DMA components of modules
become looping links on nodes such as l2 and l3 on node n2.

(a) Real platform (b) Modeled platform

Fig. 3: Platform example

Definition III-A.2 (Node). Let P be a platform. Let n ∈
P.Nodes denote either a switch or a module. A node n :=<
offset, drift, dproc > is characterized by three timing attributes:

— offset ∈ Q is the clock shift w.r.t. a reference clock;
— drift ∈ Q is the clock deviation w.r.t. a reference clock;
— dproc ∈ Q is the processing delay due to addressing,

packetizing or switching on module or switch n.

Definition III-A.3 (Relative offset). Let ni, nj ∈ P.Nodes.
We define the relative offset between ni and nj by:
∆offset(ni, nj) = nj .offset − ni.offset

Definition III-A.4 (Link). Let P be a platform. Let l ∈
P.Links, where l denotes a processing or a networking ele-
ment associated to a node or from a node to another one.
Processing elements are CPU or DMA. Links are defined by
l :=< src, dst, dp, q, type > where

— src ∈ Nodes is the source node of the link;
— dst ∈ Nodes is the destination node of the link;
— dp ∈ Q is the link propagation delay;
— q ∈ Q is the link data-rate;
— type ∈ {CPU, DMA, Net} indicates if the link repre-

sents a CPU, a DMA or a network link.

B. System Model

The second layer of the model involves the tasks and the
messages hosted by the platform.

Definition III-B.1 (Task model). Following work in [11], [13],
a task hosted by a IMA module is a software object defined
as τ :=< T,C,D, offset, prio > where:

— T ∈ Q is the task period, C ∈ Q is the worst-case
execution time (WCET), and D ∈ Q is the deadline;

— offset ∈ Q is the task’s offset w.r.t. the module’s starting
time;

— prio ∈ N is the task’s priority used by the task scheduler.

Definition III-B.2 (Message). A message m is an object sent
through the network by a task τ . m :=< len, prio > is

Node: offset, drift, processing delay n.offset, n.drift, n.dproc

Link: propagation delay, data rate, type l.dp, l.q, l.type
Task: period, WCET, deadline, offset, priority τ.T , τ.C, τ.D, τ.offset, τ.prio

Message: length, priority m.len, m.prio
Flow tree: links, set of directions, root link ft, L, next, root(ft)

Flow: task, message, flow tree f.τ , f.m, f.ft
Flow instance, set of instances of a flow f l

k , I(f)
Set of all instances of all flows I(Flows)

Flow workload, flow priority wl(f, l), prio(f, l)
System: platform, set of flows Sys.P , Sys.Flows

State of a system at time t state(Sys, t)

State predicates arr(f l
k, t), trans(f l

k, t), del(f l
k, t)

Scheduling strategy, policy SS, pol
Functional chain, Data FC,δ

TABLE I: Definition of symbols and notations

characterized by two attributes: len ∈ N is the message length
(in bytes) and prio ∈ N is the priority of the message.

Definition III-B.3 (Flow-Tree). Let be a platform P . A flow-
tree ft in P is a tree of links. ft := G(L, next) where L ⊂
P.Links, and next ⊂ L × L is a successor relation, such that
next defines a tree of links. To start and the end links in a
flow-tree must be processing elements (CPU or DMA). The
start link of ft is denoted root(ft).

Example III-B.1. Let us consider again the platform depicted
in Figure 3. Let us suppose that a task τ hosted by Module 1
sends a message m to Module 0 and Module 3. The flow-tree
is the following (where next is depicted by “→”):

↗ l1 → l3
l6 → l7 → l4 → l16 → l9 → l11

It starts from l6 (the CPU link of Module 1), it then involves
link l7 (DMA link of Module 1), and then link l4 (communi-
cation link from Module 1 to Sw 0). Then the flow-tree forks
to Module 0 (link l1) and to Module 3 (link l16).

Definition III-B.4 (Flow). A flow f is defined as f :=<
τ,m, ft >. It denotes the periodic action of a task τ sending a
message m through the path ft. For platform P , let us denote:

— Flows the set of flows hosted by P ;
— f l

k is the k-th instance of f considered on link l. It may
be either an instance of task or message;

— I(Flows) = {f l
k|f ∈ Flows, l ∈ f.ft.L, k ∈ N} ;

— I(f) the set of all instances of the flow f .

Let be P a platform, l ∈ P.Links and f ∈ Flows. A link l
in the flow tree f.ft is occupied by f during a certain amount
of time. This duration is the workload wl defined as:

Definition III-B.5 (Workload).

wl(f, l) =

{
f.τ.C if (l ∈ f.ft.L) ∧ (l.type = CPU)

f.m.len
l.q if (l ∈ f.ft.L) ∧ (l.type ∈ {DMA, Net}

If the link is a CPU link, the task corresponding to flow f is
executed, so the workload is given by its WCET. In case of
network and DMA links, the workload is the time required
by f to be sent on l. It depends on the f.m.len and l.q1.

1This supposes that the execution time through the DMA is linear with the
length of the flow to transmit.



A priority has been associated for a task, respectively for
a message. In order to unify these concepts, we extend the
definition of the priority for a flow f on a link l. Let be a
platform P , l ∈ P.Links and f ∈ Flows, the priority of f on l
is defined as follows:

Definition III-B.6 (Priority).

prio(f, l) =

{
f.τ.prio if l.type = CPU
f.m.prio if l.type ∈ {DMA,Net}

Definition III-B.7 (System). A system Sys :=< P,F lows >
is a platform P hosting a set of flows Flows.

C. State of a system

This section models the state of the system at time t
through the states of its flows instances fk on all the links
l at time t: state(Sys, t) =

∏
f

∏
l

∏
k

(state(f l
k, t)). During its

transfer through a link l, f l
k goes through multiple states. To

describe these states, we introduce three predicates: arrival,
transmission and delivery. The state of the k-th occurrence of
f on link l at a given time t is denoted by:

state(f l
k, t) =

(
arr(f l

k, t), trans(f l
k, t), del(f l

k, t)
)

Transmission predicate, trans(f l
k, t) ∈ {0, 1}, is true if the

flow instance embodies a message being sent or a task being
executed. The transmission selection follows a scheduling
strategy. The scheduling strategy will be discussed later in
Subsection III-D. The transmission predicate lasts the time
needed to process the task or the message (i.e the workload).
During transmission, only one flow instance can be sent at a
time as formulated in the following equation:

Constraint III-C.1 (Exclusive transmission).

∀t ∈ R+,∀f l
k ∈ I(Flows) : trans(f l

k, t) = 1

⇒ ∀f ′l
k′ ∈ I(Flows) \ {f l

k}, trans(f ′l
k′ , t) = 0

Delivery predicate, del(f l
k, t) ∈ {0, 1}, is true if the flow

instance embodies a message being written in an ingress port
or the result of an execution being written in memory. When
the transmission starts, the flow instance fk arrives on the next
link after a propagation delay, so begins the delivery step.

Definition III-C.1 (Delivery).

∀t ∈ R+,∀f l
k ∈ I(Flows) :

delivery(f l
k, t) = trans(f l

k, t− l.dp)

Both delivery and transmission end after the workload:

Let t, t1 ∈ R|∀t < t1, trans(f
l
k, t) = 0 ∧ trans(f l

k, t1) = 1

∀t′ ∈ R, trans(f l
k, t

′) = 1 ⇒ t′ ∈ [t1, t1 + wl(f, l)]

Arrival predicate, arr(f l
k, t) ∈ {0, 1}, is true if the flow

instance embodies a message in a buffer or a task in ready state
as represented in Figures 4a and 4b. When a flow instance
fk is arrived on link l, it was necessarily under delivery
on the previous link l′. The delivery must have lasted a
duration equal to the workload wl(f, l′) in addition to the

processing delay l′.dst.dproc before fk reaches link l. The
flow instance remains in arrival during the queuing delay dq as
represented in Figure 4c. The arrival predicate becomes equal
to 0 during transmission. The following equation defines the
arrival predicate in relation to the delivery one.

Definition III-C.2 (Arrival).

∀t ∈ R+,∀f l
k ∈ I(Flows), ∀l′ ∈ f.ft.L | (l′, l) ∈ f.ft.next :

arr(f l
k, t) = 1 ⇐⇒

∀t′ ∈ [t1 − wl(f, l′), t1] : delivery(f
l′

k , t
′) = 1

For t1 = t− l′.dst.dproc −∆offset(l
′.src, l′.dst)

D. Configured system

The constraints defined in Subsection III-C enables the
model to describe all the state transitions allowed except the
beginning time of the transmission of a flow instance.

The characteristics of the transmission are determined by
the state of the system and the scheduling strategy of the link
where the flow instance is stored at this time. In our model, we
consider the main scheduling policies proposed by TSN such
as the TAS-GCL, FIFO and Strict Priority Queuing (SPQ).

Definition III-D.1 (Scheduling policy). The scheduling policy
is defined by a rule and, possibly, parameters according to the
rule pol :=< rule, param, prio >. This rule is a function
defined for any f l

k at a time t: pol.rule(f l
k, t, pol.param) = 1

iff the rule elects the flow instance.

The rules are respected if some constraints are verified.
Generic constraints (denoted GC1 and GC2) and rules specific
behaviors are formalized as follows.
GC1: The selection of a flow instance by a policy is exclusive:
only one flow instance can be elected at a time.

∀t ∈ R+,∀f l
k ∈ I(Flows) : pol.rule(f l

k, t, pol.param) = 1 ⇒
∀f ′l

k′ ∈ I(Flows) \ {f l
k}, pol.rule(f ′l

k′ , t, pol.param) = 0

GC2: A policy can not elect a flow instance that is not
currently arrived on the link.

∀t ∈ R+,∀f l
k ∈ I(Flows) :

pol.rule(f l
k, t, pol.param) ≤ arr(f l

k, t)

Next, we formalize the behavior of usual TSN service policies.
Following specific constraints are true only under the assump-
tion that the generic constraints stated before are respected.
FIFO: Following equation expresses the behavior of a FIFO
policy. If f l

k is arrived before f ′l
k′ then there is a time t′ when

f l
k is arrived and f ′l

k′ is not.

pol.FIFO(f l
k, t) = 1 ⇐⇒ [∀f ′l

k′ ∈ I(Flows) \ {f l
k},

∃t′ ≤ t | arr(f ′l
k′ , t′) = 0 ∧ arr(f l

k, t
′) = 1]

GCL: For GCL, the selection depends on a predefined sched-
ule encoded in pol.param. The schedule is the aggregation of
sending windows. Windows are defined by their offsets, their
length and their period. The schedule is periodic with a period
equal to the hyperperiod of the windows periods. We define



(a) Network link (b) Processing element link (c) Chronograph

Fig. 4: Link transit for a flow instance.

this schedule as: 1pol.param(t). The only condition for a flow
instance to be elected by GCL is:

pol.GCL(f l
k, t, pol.1pol.param) = 1 ⇐⇒

[arr(f l
k, t) = 1 ∧ ∀t′ ∈ [t; t+ wl(f l

k)] : 1pol.param(t′) = 1]

SPQ: Finally, SPQ or Fixed Priority (FP) can be summarized
as ”the most important comes first”. This policy chooses
between multiple flow classes of different priorities. Following
equation implies that a flow instance fk elected by SPQ may
return to not elected if a higher priority flow instance arrives.

∀f l
k ∈ I(Flows), pol.SPQ(f l

k, t) = 1 ⇐⇒
[∀f ′l

k′ ∈ I(Flows) \ {f l
k},

arr(f ′l
k′ , t) = 1 ⇐⇒ (prio(f) > prio(f ′))]

Definition III-D.2 (Scheduling strategy). Let be a plat-
form P and l ∈ P.Links. The scheduling strategy of l
defines the transmission order of flow instances on l ac-
cording to policies. It is defined as a relation SS(l) :=
{(poli1 , polj1), (poli2 , polj2), . . .} denoting a graph tree of
policies. For a given link l, we denote predl(pol) =
{pol′|(pol′, pol) ∈ SS(l)} the precedence relation between
policies in SS(l).

An example scheduling strategy can be represented by:

pol1 → pol9 ↘
. . . pol19

pol8 → pol17 → pol18 ↗
Each network link, CPU link and DMA link is associated with
a scheduling strategy as illustrated on Figure 4.

GC2*: To run a scheduling strategy SS(l), GC2 is replaced
by the following generic constraint for policies which have
a predecessor in SS(l). This constraint means that to get
the clearance from a policy pol, a flow instance must get a
clearance from a policy among predl(pol).

∀t ∈ R+,∀f l
k ∈ I(Flows) : pol.rule(f l

k, t, pol.param)(f l
k, t)

≤
∑

pol′.rule(f l
k, t, pol.param)(f l

k, t)

pol′∈predl(pol)

Also in the rules behaviors presented before, the instances are
now compared with instances elected by precedent policies:

pol.FIFO(f l
k, t) = 1 ⇐⇒ [∀f ′l

k′ ∈ I(Flows) \ {f l
k},

∃pol′ ∈ pred(pol)∃t′ ≤ t | pol′.rule(f ′l
k′ , t′, pol′.param) = 0

∧ pol′.rule(f ′l
k′ , t′, pol′.param) = 1]

A policy with no predecessor is applied to a flow instance only
if the flow priority matches the policy’s priority:

Let predl(prio) = ∅ : pol.FIFO(f l
k, t) = 1 ⇐⇒

[∀f ′l
k′ ∈ I(Flows) \ {f l

k}|prio(f ′, l) = pol.prio,∃t′ ≤ t

| arr(f ′l
k′ , t′) = 0 ∧ arr(f l

k, t
′) = 1]

Example III-D.1. An example of a scheduling strategy com-
posed of policies involved in TSN switch egress ports is given
in Figure 2. This strategy can be represented by:

FIFO1 → FIFO9 → GCL18 ↘
FIFO2 → CBS10 → GCL19 ↘

. . . SPQ28

FIFO8 → FIFO17 → GCL27 ↗

E. Analysis

In this subsection, first we introduce concepts related to the
execution of functions that will then serve to formalize system
properties such as the functional delays on which analysis of
real-time systems is usually based.

According to IMA specification [2], avionic or aircraft
functions are capability provided by the hardware and software
of the aircraft. It includes flight control, autopilot, fuel man-
agement, braking etc. In this work, we focus on the software
part, which can be described as chains of applications.

Definition III-E.1 (Functional chain). A functional chain FC
is a directed acyclic graph (DAG) of flows. We note (f, f ′) ∈
FC where f, f ′ ∈ Flows to mean that f precedes f ′ in FC,
that is, the data transported by f is transmitted to f ′.

Fig. 5: Example of functional chain

Definition III-E.2 (Data). A data δ ∈ Data is related to
a source flow f = δ.srcF low. A new flow instance fk
corresponds to a new refresh of the value of δ, denoted δk.

Example III-E.1. An example of functional chain is given in
Figure 5. In this functional chain, f0 and f2 are the source
flows of the chain, i.e., f0 = δ0.srcF low, f2 = δ2.srcF low.



Definition III-E.3 (Instance carrying a data). To associate a
data instance with a flow instance, we introduce the following
function carryFC : I(Flows) × Data 7→ {0, 1}. For f , a
flow in FC, if fk carries δj then carryFC(f

l
k, δj) is equal to

1 else it equals 0.

Data transmission can be achieved under two modes: queu-
ing and sampling. For the sake of simplicity, we only present
the sampling mode. However, both modes are taken into
account in the model. A data instance δj is carried by a flow
instance f ′l′

k′ with l′ = root(f ′.ft) iff there exists a flow
instance f l

k verifying the conditions: (1) f precedes f ′, (2) f l
k

carries δj , (3) f l
k is the last flow instance of f to be delivered

on link l before the transmission of f ′l′
k′ .

Definition III-E.4 (Data transmission (sampling mode)). The
previous conditions are translated in the following equation:

Let t1, l′ = root(f ′) and l ∈ f.ft|l.dst = l′.src such as

∀t < t1, trans(f
′l′
k′ , t) = 0 ∧ trans(f ′l′

k′ , t1) = 1∧

(f, f ′) ∈ FC ∧
[
∃t < t1, (∀t′ ∈]t− wl(f, l); t], del(f l

k, t
′) = 1)

∧ [∀k′′ ∈ N,∀t2 < t1, (∃t′ ∈]t2 − wl(f, l); t2], del(f
l
k′′ , t′) = 0)

∨ (del(f l
k, t2) = 1 ⇒ t2 < t)]

]
∧ (carryFC(f

l
k′′ , δj) = 1)

⇐⇒ carryFC(f
′l′
k′ , δj) = 1

Real-time systems require a full control of the time between
the arrival of a data and the corresponding output. This time is
called “functional delay”. Consider a functional chain FC and
a data δ. Let f be a flow in FC and the source flow of δ, and f ′

a flow in FC depending on δ. A functional delay FDFC,δk,f ′l′

is the time between the arrival of the k-th instance of f and
the delivery of the matching instance to f ′. An instance k′ of
f ′ matches to instance k of f under the condition that f ′

k′

carries the same data as fk.

Definition III-E.5 (Matching instances). Let match ∈ {0, 1}
represent the matching condition f ′

k′ carries δk at time t:

match(FC, f ′l′
k′ , δk, t) = carryFC(f

′l′
k′ , δk)× del(f ′l′

k′ , t)

Definition III-E.6 (Functional delay).

FDFC,δk,f ′l′
k′

= max(t)
match(f ′l′

k′ ,δk)

− min(t)
arr(f

root(f.ft)
k ,t)=1

Among the functional delays, there are different specific
delays. For example, [14] defines the Age Delay and Reaction
Delay. According to [14], Age Delay is defined as ”the time
elapsed between the arrival of data at the input and the latest
availability of the corresponding data at the output”. In the
current model, the Age Delay can be defined as:

AgeDelay(FC, δ) = max
k,f ′l′

k′

(FDFC,δk,f ′l′
k′
) (1)

The Reaction Delay is defined in [14] as ”the earliest
availability of the data at the first instance of the output

corresponding to the data that just missed the read access at
the input”. In the current model, Reaction Delay is:

ReactionDelay(FC, δ) = f.τ.T + min
k,f ′l′

k′

(FDFC,δk,f ′l′
k′
)

(2)
IV. CASE STUDY

A. Experimental setup
1) Platform: To illustrate our model, we consider

the platform in Figure 3 supporting three functional
chains involving the flows defined in Table II: FC0 =
{(a, b), (a, c), (b, c), (c, d)}, FC1 = {(e, f)}, FC2 = {(g, h)}.

Flow Task Message flow tree
T C D prio len prio

a 8 2 8 3 200 7 l2l3l0l16l9l11
b 8 2 8 3 200 7 l10
c 4 2 4 4 200 7 l10l11l8l17l5l7
d 2 1 2 3 - - l6

e 8 2 8 2 200 6 l10l11l8l17l5l7
f 4 1 4 2 - - l6

g 1 0.5 8 0 1500 0 l14l15l12l17l1l3
h 1 0.5 8 0 - - l2

TABLE II: Flows parameters

The first chain is representative of an avionic chain. Con-
sider a is an ADIRS function (computing the Mach number of
the aircraft). a runs on module M0. It sends it to the automatic
pilot (b, on M2) and to the flight control function (c, on M2).
b computes and sends the flight objective to c. Finally, c
computes and sends the angles to apply to the flight surfaces
to d (the flight surface control laws, on M3). To master the
age delay of such a chain is safety-critical. The second and
third chain are composed of only two tasks (e on M2 and f
on M1 for FC1, and g on M3 and h on M0 for FC2).

2) Configuration of the scenarii: We study three configura-
tions. i)In the simplest one, the flow instances are en-queued
in different FIFO queues depending on their priority. The
output of these FIFO queues are submitted to the selection
of SPQ. ii)The second configuration considers a partitioned
schedule on CPU links and the SPQ schedulers on the network
links. For CPU links, flow instances are first sorted among
FIFO queues depending on their priorities. A set of priority
levels represents a partition. A SPQ policy is used to select
an instance among the ones in the output of the queues of the
partition. Finally, a GCL policy realizes the time-segregation
between the different partitions, to do so the windows of each
partition must not overlap. iii)The last configuration is using
the partitioned schedule for CPU links. Network links are
configured as follows: FIFO queues sort the flow instances by
priority, a GCL policy per priority enables or disables a flow
instance from a priority to be sent, and a SPQ policy selects the
instance with the highest priority among the enabled instances.

B. Simulation results
We used an in-house simulator2 to compute the behavior

of the system considering each configuration. The windows

2https://github.com/houssima/IMA-TSN-Simulation



(a) FC0 : a → d

GCL-
All

Pa
rti

tio
ne

d-A
ll

SP
Q-A

ll
GCL-

One
Pa

rti
tio

ne
d-O

ne
SP

Q-O
ne

0

5

10

15

20

25

De
lay

(m
s)

min Q1 (25 %) médiane (50 %) Q3 (75 %) max

(b) FC1 : e → f

GCL-
All

Pa
rti

tio
ne

d-A
ll

SP
Q-A

ll
GCL-

One
Pa

rti
tio

ne
d-O

ne
SP

Q-O
ne

0

5

10

15

20

25

De
lay

(m
s)

min Q1 (25 %) médiane (50 %) Q3 (75 %) max

(c) FC2 : g → h

GCL-
All

Pa
rti

tio
ne

d-A
ll

SP
Q-A

ll
GCL-

One
Pa

rti
tio

ne
d-O

ne
SP

Q-O
ne

0

5

10

15

20

25

De
lay

(m
s)

min Q1 (25 %) médiane (50 %) Q3 (75 %) max

Fig. 6: Functional delays for scenarios considering GCL, partitioned configuration and SPQ

for the GCL and partitioned scenario have been designed in a
naive way, hence, they are not optimal.

The simulation results show the distribution of the func-
tional delay for each configuration scenario in Figure 6. For
each configuration, two cases are considered: functional chains
alone (denoted −One) or sharing the architecture with other
functional chains (denoted −All). It can be noticed that when
there is interaction between chains, with SPQ FC0 is not
impacted as it has the highest priority, but FC1 and FC2

suffer an increase in their delays. A favorable impact is noticed
for FC0 when using windows to force the flows to wait for
each other, as the GCL and the partitioned configuration have
lower functional delays than the SPQ scenario. Based on these
results and the Equations 1 and 2, the age and reaction delay
of each chain in each scenario can be easily retrieved. For
example, the maximal delay of FC0 in GCL − All scenario
is 18ms, then its age delay is 18ms. The lowest delay is 8ms,
and the period of the entry flow is 8ms, hence the reaction
delay is 16ms. Notice that the sum of all execution times of
FC0 is 7ms, and the network traversal time is around 130µs.
Better reaction delay and lower age delay may be expected
with tighter windows.

V. RELATED WORK

The model presented in this paper considers IMA-TSN-
based systems and is oriented towards temporal and spatial
allocation of tasks and messages respectively on the IMA
modules and inside the TSN network.

Several models have been proposed in the literature, mod-
eling either IMA task allocation or network scheduling. In the
avionics domain, works in [13], [15], [16] focus on end-to-end
timing requirements of IMA functional chains and propose
task models allowing allocation of avionics applications on
modules and partitions. From the network point of view, these
models consider the impact of the avionics de-facto AFDX
network latency on the applications execution. Worst-case
bounds on the latency are usually computed with analytical
methods such as Network Calculus [17], Trajectory Approach
[18] or model-checking based approaches [19].

In the automotive domain, [14] proposed a system-network
model suited for generic real-time network protocol. The task

model used in [14] is based on the model introduced in [20] for
multi/many core platform, which considers a single module.

In the context of TTEthernet, Steiner [12] proposes a first
model allowing to formulate constraints to avoid interaction
between frames using the same communication links. Static
scheduling of time-triggered messages is obtained by solv-
ing the optimization constraint problem with a Satisfiability
Modulo Theories (SMT) solver. Other work in [21] extends
the original model designed for TTEthernet for avionics re-
quirements by integrating scheduling policies in the SMT
optimization program, but does not consider task execution.
Based on the Steiner’s model, Craciunas et al. [11] explore the
idea of combining task and TTEthernet network in the same
model. This study raised the problem of the high complexity
of scheduling a large network.

All these previous works assume TTEthernet network con-
straints in the proposed system-network model. To the best of
our knowledge, only few recent works consider IMA and TSN
together. The work in [22] uses the model in [11] to compute
system and network schedules for an automotive TSN use
case with simulated annealing and genetic algorithms. In the
context of avionics, recent work in [23] optimizes the end-to-
end delay at partition level by unifying avionic task execution
and TSN network message transmission constraints.

Our paper intends to unify task and message modeling as
well as the works in [11], [22], [23], and [14]. Such models
consider the system as a whole by introducing functional
latency, which is also done in other works [20], [24]. The
functional latency depends on precedencies in the functional
chains, and excepting [24], all these previous works consider
single-dependency between tasks. Our model extends the
concept of data proposed by [20] to have both unified task and
messages and multiple dependencies in the functional chain.
Also, these works focus on a single traffic type, while in our
model we consider mixed traffic types. Modular architecture
and mixed-criticality systems implies the definition of parti-
tions or at least time segregation. This aspect addressed in
[20], [24] is integrated in our model as well. Task preemption
is an important feature in mono-processors RTOS, while frame
preemption at switches comes with an important cost in terms



of implementation complexity and overhead [25]. To address
preemption, the approaches proposed in [11] and [23] are
based on substitutes which are very costly for upcoming
optimisation strategies while in [22] task preemption is applied
with EDF during optimisation. Given these implementation
costs, in our model we do not address preemption yet. IMA
architecture is usually based on mono-processor platforms, as
modeled in [11], [24] and [14]. However, the industrial world
is expecting the use of multi-processor in critical systems [22],
[23]. Our model is compatible with both mono-processor and
multi-processors platforms. In the works mentioned above,
the impact of scheduling policies, especially the combination
of policies, which is one of the main challenges of TSN,
is poorly discussed. Such analysis is only performed with
network calculus approaches such as [26], [27]. However,
network calculus is a pessimistic analysis, which gives an
upper bound of the worst case. Our work computes exact
worst latencies under simplifying hypothesis. Even without
hypothesis considered, our approach can approximate the re-
alised worst cases. Most of the last models in the related work
presented here are intended for optimisation of the allocation
and scheduling. Our model is intended for both optimisation
and simulation such as the one in [11].

VI. CONCLUSION AND DISCUSSION

One of the benefits of the approach presented above is to
take into account in the same model both TSN and IMA
configuration. A second benefit is the modularity of the model,
allowing integration of other scheduling policies (CBS, RR for
TSN elements and non-preemptive EDF for IMA elements).

However, several questions still arise. The first one is about
the validity of the model, that is, how to guarantee that the en-
coded behaviour is correct w.r.t. the IMA and TSN standards.
This issue is out of the scope of the paper. Two solutions
are possible. First, to test the model w.r.t. real execution on a
real platform through a set of covering scenarii. The second
solution is to test the model w.r.t. a second model which has
been previously qualified. To that purpose a perspective could
be to adapt the IMA-TSN model into a OMNeT++ simulator
which offers a detailed TSN framework (synchronization,
reliability and network management protocols).

A second perspective will investigate an optimization loop,
based on meta-heuristic (such as genetic algorithm) in order
to jointly optimize TSN and IMA configurations for a given
platform w.r.t. age and reaction delays of functional chains.

REFERENCES

[1] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller,
P. Heitkämper, G. Kinkelin, K. Nishikawa, and K. Lange, “AUTOSAR–
A Worldwide Standard is on the Road,” in 14th International VDI
Congress Electronic Systems for Vehicles, Baden-Baden. Citeseer, 2009.

[2] Aeronautical Radio Inc. ARINC Specification 653 P1-3, “Avionics
application software standard interface: Required services,” 2013.

[3] R. Makowitz and C. Temple, “Flexray-a communication network for
automotive control systems,” in 2006 IEEE International Workshop on
Factory Communication Systems. IEEE, 2006, pp. 207–212.

[4] SAE(Society of Automotive Engineers), “SAE AS6802: Time-Triggered
Ethernet,” 2016.

[5] D. Jansen and H. Buttner, “Real-time Ethernet: the EtherCAT solution,”
Computing and Control Engineering, vol. 15, no. 1, pp. 16–21, 2004.

[6] J. Feld, “Profinet-scalable factory communication for all applications,”
in IEEE International Workshop on Factory Communication Systems,
2004. Proceedings. IEEE, 2004, pp. 33–38.

[7] Aeronautical Radio Inc. ARINC specification 664 P7-1, “Aircraft Data
Network, Part 7: Avionics Full Duplex Switched Ethernet (AFDX)
Network,” 2009.

[8] IEEE, “802.1Q - IEEE Standard for Local and Metropolitan Area
Networks—Bridges and Bridged Networks,” 2018.

[9] ——, “IEEE Standard for Local and metropolitan area networks– Virtual
Bridged Local Area Networks Amendment 12: Forwarding and Queuing
Enhancements for Time-Sensitive Streams,” 2009.

[10] ——, “IEEE Standard for Local and metropolitan area networks –
Bridges and Bridged Networks - Amendment 25: Enhancements for
Scheduled Traffic,” 2015.

[11] S. S. Craciunas and R. S. Oliver, “Combined task- and network-level
scheduling for distributed time-triggered systems,” Real-Time Systems,
vol. 52, no. 2, pp. 161–200, Mar 2016.

[12] W. Steiner, “An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks,” in 2010 31st IEEE Real-Time Systems
Symposium. IEEE, 2010, pp. 375–384.

[13] N. Badache, K. Jaffres-Runser, J.-L. Scharbarg, and C. Fraboul, “Manag-
ing temporal allocation in integrated modular avionics,” in Proceedings
of the 2014 IEEE Emerging Technology and Factory Automation (ETFA).
IEEE, 2014, pp. 1–8.

[14] M. Ashjaei, N. Khalilzad, S. Mubeen, M. Behnam, I. Sander,
L. Almeida, and T. Nolte, “Designing end-to-end resource reservations in
predictable distributed embedded systems,” Real-Time Systems, vol. 53,
pp. 1–41, 11 2017.

[15] M. Lauer, J. Ermont, F. Boniol, and C. Pagetti, “Worst case temporal
consistency in integrated modular avionics systems,” in 2011 IEEE
13th International Symposium on High-Assurance Systems Engineering,
2011, pp. 212–219.

[16] A. Al Sheikh, “Resource allocation in hard real-time avionic systems:
scheduling and routing problems,” Ph.D. dissertation, Toulouse, INSA,
2011.

[17] F. Frances, C. Fraboul, and J. Grieu, “Using network calculus to optimize
the AFDX network,” 2006.

[18] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Improving the worst-
case delay analysis of an afdx network using an optimized trajectory
approach,” IEEE Transactions on Industrial informatics, vol. 6, no. 4,
pp. 521–533, 2010.

[19] M. Adnan, J.-L. Scharbarg, J. Ermont, and C. Fraboul, “Model for worst
case delay analysis of an afdx network using timed automata,” in 2010
IEEE 15th Conference on Emerging Technologies & Factory Automation
(ETFA 2010). IEEE, 2010, pp. 1–4.

[20] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-
to-end timing analysis of cause-effect chains in automotive embedded
systems,” Journal of Systems Architecture, vol. 80, pp. 104–113, 2017.

[21] S. Beji, S. Hamadou, J. Mullins, and A. Gherbi, “Iterative integration of
ttethernet network flows,” International Journal of Critical Computer-
Based Systems, vol. 9, 01 2018.

[22] S. D. McLean, E. A. Juul Hansen, P. Pop, and S. S. Craciunas,
“Configuring ADAS platforms for automotive applications using meta-
heuristics,” Frontiers in Robotics and AI, p. 353, 2022.

[23] X. Zhou, F. He, L. Zhao, and E. Li, “Hybrid Scheduling of Tasks
and Messages for TSN-Based Avionics Systems,” IEEE Transactions
on Industrial Informatics, 2023.

[24] M. Lauer, J. Mullins, and M. Yeddes, “Cost optimization strategy for
iterative integration of multi-critical functions in ima and ttethernet
architecture,” in 2013 IEEE 37th Annual Computer Software and Appli-
cations Conference Workshops. IEEE, 2013, pp. 139–144.

[25] A. Pruski, M. A. Ojewale, V. Gavrilut, P. M. Yomsi, M. S. Berger, and
L. Almeida, “Implementation cost comparison of TSN traffic control
mechanisms,” in 2021 26th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE, 2021, pp. 01–08.

[26] P.-J. Chaine, M. Boyer, C. Pagetti, and F. Wartel, “Egress-TT Config-
urations for TSN Networks,” in Proceedings of the 30th International
Conference on Real-Time Networks and Systems, 2022, pp. 58–69.

[27] L. Maile, K.-S. Hielscher, and R. German, “Network calculus results for
TSN: An introduction,” in 2020 Information Communication Technolo-
gies Conference (ICTC). IEEE, 2020, pp. 131–140.


