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Abstract 

With electromobility, vehicles are becoming quieter due to the 

presence of electric motors that replace internal combustion engines. 

The interior cabin noise of electric vehicles is characterized by high-

frequency components that can be annoying and unpleasant. 

Therefore, it is essential to analyse the NVH behaviour of e-

powertrains early in the design-phase. However, this induces inherent 

uncertainties during the design process related to the operating 

conditions, geometrical parameters, measurement techniques, etc. 

that need to be quantified with fast and comprehensive stochastic 

models. 

In this work, we first present a deterministic framework to provide 

first-order estimations of the e-powertrain’s interior whining noises, 

combining both the airborne & structure-borne contribution with 

data-driven NVH transfers meta-models. Subsequently, stochasticity 

is induced in the deterministic models considering random sampling 

of operating conditions and the chosen geometrical parameters for the 

e-machine under assessment. At each stage, metamodels (or 

surrogates), developed in the Bayesian framework, take into account 

the uncertainties which are propagated from operating conditions to 

whining noise contribution inside the cabin. The work is 

demonstrated on an interior permanent magnet synchronous motor 

which is widely used in electric vehicles traction drives. 

 

Introduction 

Due to an upshift of concerns regarding climate change and 

sustainable future, European union have decided to go net zero-

emission by 2035 implying a possible ban on ICE vehicles. This 

would make electric vehicles (EVs) fleets expand at a rapid pace 

which is already doubling with each passing year [1]. Consequently, 

automakers are shifting their focus towards conceptualizing and 

improving various EV characteristics as per customer’s comfort and 

needs.  

Noise, vibration and harshness (NVH) is one of the key criteria that 

significantly affects customer’s perception of quality and an overall 

image of the vehicle. Due to the absence of ICE, EVs are much 

quieter but have a different acoustic signature. The interior noise 

contribution has high-frequency tonal components (also known as 

whining noise) that are usually perceived as rather annoying and 

unpleasant [2]. The major sources of interior noise in EVs can still be 

broadly classified under three categories namely, aerodynamic noise, 

tire-pavement interaction noise, and e-powertrain noise. The first two 

contributions make up the background (or masking) noise and the 

main source of whining (tonal) comes from the electrified 

powertrains. Noises originating from e-powertrains are mostly of 

mechanical (for e.g., gear meshing, shaft misalignment, etc.), 

aerodynamic (flow of ventilating air through and over the motor), and 

electromagnetic origins (due to electromagnetic interaction) [3]. 

Permanent Magnet Synchronous Motors (PMSM) have been widely 

used in EVs for traction application due to their high torque to inertia 

and volume ratio, high efficiency, better dynamic performance as 

compared to motors with electromagnetic excitation, and its 

simplicity in design, construction and maintenance [4]. 

A lot of research work has already been published to predict the 

whining noise contribution in PMSMs due to electromagnetic field 

effects. Review articles [4,5] provide detailed information on 

different methods for prediction and mitigation of noise in electrical 

machines. During the vehicle development phase, the interior 

acoustic levels can be predicted with desired accuracy using complex 

structural-acoustics computational models based on 3D finite 

elements, which is usually time-consuming. Also, in order to capture 

the random behavior due to various operating conditions, and 

unknown design parameter space, an NVH designer must deal with 

challenging levels of uncertainties during early-stage design as no 

precise (or unique) information is available regarding the design 

parameters. Therefore, a robust framework is needed that would 

combine the available prior knowledge in the form of 

measured/simulated data or domain-expert knowledge with numerical 

(or analytical) models. For quick evaluation of design alternatives 

and assess uncertainties, stochastic surrogate models or meta-models 

are generally preferred, where the output response is depicted by the 

probability distribution. 

Metamodels are not so new in engineering design community. They 

have been extensively used as “cheap”, yet robust approximations of 

the functional relationship between the input parameters and the 

output responses [6]. In automotive NVH domain, different 

metamodels have been employed to achieve minimal engine noise 

inside the cabin, optimal vehicle mass, learning an aerodynamic 

wind-noise model, etc. Readers are encouraged to go through [7] to 

review different metamodeling techniques. In the context of e-

machine acoustics, Wang et al. [8] proposed a neural network-based 

noise prediction of e-motor where the surrogate model was built to 

predict the natural frequencies of the stator. Similarly, in [9], 

Mohammadi et al. used three neural networks to predict the average 

torque, the torque ripple and sound pressure level (SPL) for multi-

objective optimization. In another study [10], multiple surrogate 

models were compared to predict the acoustic noise of PMSMs. 

Despite such deterministic developments, not much has been studied 

in the scientific community to consider the uncertainties in PMSMs 

acoustic responses. As the electromagnetic excitations in e-machines 

can be sensitive to even slight variations of the geometric and control 

parameters of the active magnetic parts, it is important to consider 

such variations in the output predictions. Notably, Jeannerot et al. 

[11] performed an FEM based probabilistic robust optimization on a 

PMSM to minimize the SPL, which proved to be time-consuming 

when the variability of random parameters was considered. In [12], 

Pulido et al. built a Gaussian process surrogate model of PMSM 

based on nonlinear FEM to account for uncertainty in torque, flux 
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linkage and core loss. As can be noted, in all previous works, SPL 

assessment was made only for the PMSM without considering the 

different transfer paths leading to the interior cabin noise. Therefore, 

the “global” perspective of such metamodels with uncertain 

parameters in EVs was missing, which is addressed in this paper. 

With respect to the noise assessment, a typical global scheme, as 

shown in Figure 1, can be considered where the SPL perceived inside 

the cabin is dependent on several parameters such as the operating 

conditions, for instance, the speed of the vehicle, and comes from 

electromagnetic whine along with the broadband masking noise. 

Different key performance indicators can then be estimated as final 

outputs, for instance, prominence ratio resulting in prominent tones in 

the SPL spectra. In a recent article [13], Prakash et al. developed 

Bayesian surrogates to consider such background noises (dashed blue 

box in Figure 1) using measurement databases. Therefore, the focus 

of this article is on building the probabilistic surrogate for 

electromagnetic whine i.e., the dashed red box in Figure 1 which will 

be detailed in the next subsection. 

 

Figure 1. Global scheme to predict interior cabin noise due to three major 

sources (aerodynamic wind, tire-road interaction, and electromagnetic whine) 

Due to the complexity of interior cabin SPL assessment involving 

interaction between different physical mechanisms and design 

parameters, a certain level of assumptions/simplifications are 

necessary to set the scope of this article. In this study, interior-PMSM 

(IPMSM) is used in which the permanent magnets are embedded in 

the rotor core. The mechanical (for e.g., gear whine) and 

aerodynamic noises are not considered for the sake of simplicity, but 

the same methodological framework applies. In addition, since the 

structure-borne contribution is more challenging than airborne, it will 

be the focus of this study. Besides, global surrogates are modeled 

within Bayesian framework to account for the uncertainty in whining 

noise prediction for EVs during early-stage NVH design. Bayesian 

approach has been specifically chosen as it allows to stochastically 

quantify the uncertainties considering prior knowledge on the 

uncertain parameters. 

Deterministic assessment of whining noise 

contribution  

Focusing only on the dashed red box from Figure 1, the whining 

noise assessment due to electromagnetic interaction within IPMSMs 

involves an interplay between different weakly-coupled physical 

mechanisms as shown in Figure 2.  

 

Figure 2. Overview of the multi-physical mechanism involved in the 

generation of whining noise in EVs (EM stands for electromagnetic) 

Each block of the flowchart is described as follows: 

▪ Operating conditions (OC) are typically the client usage profiles 

or driving conditions that are collected in real driving 

conditions. They are represented by pairs of (Ω, 𝜏) with Ω being 

the motor speed in [RPM] and 𝜏 being the wheel torque in [Nm]. 

Their distribution is known a priori. 

▪ IPMSMs are generally fed with 3-phase sinusoidal currents. 

Therefore, the control parameters consist of input current pairs 

(𝐼0
rms , 𝜙) where, 𝐼0

rms is the root-mean-square amplitude of the 

current and 𝜙 is its phase angle in electrical degrees. They can 

also be fed with currents with high order harmonics but are not 

considered in this study. Along with control parameters, each 

IPMSM is characterized by its geometrical design parameters 

(see Figure 3) for instance, length, outer radius, and inner radius 

of stator. 

 

Figure 3. Typical full 2D-model of an IPMSM showing different parts 

▪ The electromagnetic (EM) domain is then solved to get the 

magnetic flux densities in the airgap. This can be obtained using 

numerical, semi-analytical, and analytical methods. 

Analytically, the magnetic flux densities in the airgap can be 

estimated using magnetomotive force function and a permeance 

function [3]. Numerical and semi-analytical methods make use 

of the vector potential approach within FE framework to solve 
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the magnetic problem. In this work, 2D-FE model of an IPMSM 

is realized using open-source FEMM coupled with Pyleecan 

[14]. The magnetostatic problem is solved for each rotor 

position exploiting the symmetry along the edges and reducing it 

to 1/8th sector of the full model, as can be seen in Figure 4.  

The Maxwell pressure (also referred to as airgap surface force 

(AGSF)) in [N/m2] applying on the stator core along the airgap 

(𝛿) is given by [3]: 

𝑃rad (𝑅δ, θ, 𝑡) = −
1

2μ0
( 𝐵rad 

2 (𝑅δ, θ, 𝑡) − 𝐵tan
2 (𝑅δ, θ, 𝑡)), 

 

(1) 

𝑃tan(𝑅δ, θ, 𝑡) = −
1

2μ0
(𝐵rad (𝑅δ, θ, 𝑡)𝐵tan(𝑅δ, θ, 𝑡)), 

 

(2) 

where, “rad” and “tan” denote the radial and tangential 

components, respectively. 𝑅𝛿 is the radius at which the pressure 

components are computed. It is usually computed in the middle 

of the airgap. 𝐵 is the magnetic flux density in [T], 𝜇0 is the 

magnetic permeability of vacuum, 𝜃 ∈ [0,2𝜋[ is the angular 

position, and 𝑡 is time. Taking the Fourier transform in both 

time and space, we can represent the Maxwell pressure as: 

𝑃rad (𝑅δ, θ, 𝑡)  =  ∑ 𝑃̂𝑟,𝑠
rad exp (𝑟𝜃 ± 𝑠ω𝑒𝑡 + 𝜙𝑟,𝑠

rad

+∞

𝑟=0,𝑠=−∞

), 
 

(3) 

𝑃tan(𝑅δ, θ, 𝑡)  =  ∑  𝑃̂𝑟,𝑠
tan exp (𝑟𝜃 ± 𝑠ω𝑒𝑡 + 𝜙𝑟,𝑠

tan

+∞

𝑟=0,𝑠=−∞

), 
 

(4) 

 

where, 𝑟 is the spatial order of the force with respect to 𝜃 which 

determines the periodic shape of the force distribution, 𝑠 is the 

temporal order with respect to the mechanical frequency ω𝑒, 

and 𝜙𝑟,𝑠 is the phase information associated with each 

harmonic. The angular velocity of rotor in electrical degree is 

given by ω𝑒 = 2𝜋𝑓𝑒 , where 𝑓𝑒  is the fundamental stator 

winding electrical frequency. With 𝑁𝑝𝑝 being the number of 

pole-pairs and Ω the rotational speed in RPM, the electrical 

frequency is given by 𝑓𝑒 =
Ω 

60
𝑁𝑝𝑝. In this article, a progressive 

wave of spatial order 𝑟 and frequency 𝑓𝑒  is denoted by a pair 

(𝑟, 𝑠𝑓𝑒).  

 

 

Figure 4. 1/8-th sector of IPMSM showing the boundary at which AGSF is 

computed (𝑅𝑜𝑟: rotor outer radius, 𝑅𝑖𝑠: stator inner radius, 𝑅𝛿: airgap radius) 

▪ In structural domain, the dynamic response of the stator is 

calculated by modal frequency response. The excitations coming 

from the EM-domain are first transformed from time-domain to 

frequency domain and are then mapped on to the structural mesh 

using a mapping tool [11]. This can easily be achieved using 

commercially available FE solvers as is done in many previous 

studies [2,15]. Despite being more accurate than analytical or 

semi-analytical methods, numerical methods are time-

consuming and prediction on wide-speed range becomes a 

challenge [4]. Therefore, a common technique is to go semi-

analytical by calculating the EM force through FEM and then 

vibration and acoustic prediction can be obtained using 

analytical approaches [16]. Calculation of natural frequencies 

and mode shapes of a simplified full stator system is covered in 

the next sub-section. 

▪ The vibrational energy takes two different transfer paths for 

noise propagation: 1) airborne contribution where the noise is 

directly radiated by the e-motor frame, and 2) structure-borne 

contribution due to the vibrations transmitted from the stator 

system to the car-body through its mountings. These sources are 

then combined with their respective measured transfer functions 

to get the interior noise contribution. As a reminder, in this 

work, only the structure-borne contribution is studied but the 

methodology developed can be used for airborne contribution as 

well.  

▪ The airborne contribution and structure-borne contribution is 

combined to give the interior whining noise contribution and can 

be written as: 

𝑳(𝜔)

= 10 log10

〈|[𝚮NTF(𝜔)𝑸(𝜔)] ⊕ [𝚮VTF(𝜔)𝑭(𝜔)]|
2

〉

𝑝ref
2 , 

 

(5) 

where, ⊕ denotes the complex addition of airborne and 

structure-borne contributions, 𝑳 is the sound pressure level 

[dB(A)] inside the cabin as complex function of frequency 

𝜔 [Hz], 𝚮NTF corresponds to the measured noise transfer 

function in [Pa/(m3/s2)], 𝑸 is the volume acceleration at the 

source location in [m3/s2], 𝚮VTF is the vibration transfer 

function in [Pa/N], 𝑭 in [N] is the excitation force applied on 

the car-body side, and 𝑝ref is the reference sound pressure. 

Estimation of natural frequencies and dynamic displacement of 

simplified stator system 

The analytical approach is preferred to compute the natural 

frequencies of the stator system where the stator core, teeth, winding, 

and frame are modelled separately, as given in [3]. The simplified 

model assumes that the stator system behaves like a circular 

cylindrical shell, as shown in Figure 5, with clamped-clamped 

boundary conditions at its ends. 

 

Figure 5. A thin circular cylindrical shell representing a simplified stator 
system [17] 

Let 𝑚 ∈ {0,1, . . , 𝑁𝑚}, 𝑛 ∈ {1, . . , 𝑁𝑛} denote the circumferential and 

axial nodes of the simplified cylindrical shell, respectively. Then, the 

natural frequencies of the stator system can be approximated as: 
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𝑓𝑚𝑛
stat ≈

1

2𝜋
√𝐾𝑚

core + 𝐾𝑚𝑛
frame +  𝐾𝑚

winding

𝑀core + 𝑀frame + 𝑀winding
, 

 

(6) 

where, 𝐾, 𝑀 represent the calculated stiffness [N/m] and mass [kg] 

of each subsystem, respectively. 

The amplitude of force acting on the stator of length 𝐿𝑠 and internal 

radius 𝑅𝑖𝑠 at the spatial order 𝑟 can be written as: 

ℱ𝑟(ω) = 2π𝑅𝑖𝑠𝐿𝑠(|𝑃̂𝑟
rad(𝜔)| + |𝑃̂𝑟

tan(𝜔)|). (7) 

To compute the dynamic displacement of the simplified stator 

system, modal expansion can be used to estimate the displacement of 

the stator system with a finite number of spatial modes represented 

by 𝑁𝑘 in each direction as: 

𝒰𝑢
stat(𝑥, ω, θ) = ∑ α𝑘

stat(ω)𝜙̃𝑘
𝑢   (𝑥, θ)

∞

𝑘=1
   

≃ ∑ α𝑘
stat(ω)𝜙̃𝑘

𝑢(𝑥, θ)𝑁𝑘
𝑘=1 ,  

 

(8) 

𝒰𝑣
stat(𝑥, ω, θ) ≃ ∑ α𝑘

stat(ω)𝜙̃𝑘
𝑣(𝑥, θ)𝑁𝑘

𝑘=1 ,  

 

(9) 

𝒰𝑤
stat(𝑥, ω, θ) ≃ ∑ α𝑘

stat(ω)𝜙̃𝑘
𝑤(𝑥, θ)𝑁𝑘

𝑘=1   

 

(10) 

where, 𝑥 is the distance along the axial length, 𝒰𝑢
stat, 𝒰𝑣

stat, 𝒰𝑤
stat 

represent the displacement in axial, circumferential and radial 

direction, respectively and 𝛼𝑘 is the modal participation factor for the 

vibration mode 𝜙̃𝑘. 

The vibration modes are periodic along 𝜃 and therefore can be 

expanded using spatial-Fourier series [17,18]: 

𝜙̃𝑘
𝑢(𝑥, 𝜃) = ∑ 𝐴𝑚𝑛𝜙𝑛

′ (𝑥/𝐿)𝑒𝑗𝑚𝜃

𝑁𝑛

𝑛=1

, 

 

(11) 

𝜙̃𝑘
𝑣(𝑥, θ) = ∑ 𝐵𝑚𝑛𝜙𝑛(𝑥/𝐿)𝑒𝑗𝑚θ

𝑁𝑛

𝑛=1

, 

 

(12) 

𝜙̃𝑘
𝑤(𝑥, θ) = ∑ 𝐶𝑚𝑛𝜙𝑛(𝑥/𝐿)𝑒𝑗𝑚θ

𝑁𝑛

𝑛=1

, 

 

(13) 

where, 𝐴, 𝐵, 𝐶 are the constants as per [17], 𝑁𝑛 represent the number 

of axial nodes considered, 𝜙𝑛 is the axial modal function and 𝜙𝑛
′  

represents its derivative with respect to the spanwise coordinate for a 

finite length cylindrical shell clamped at both ends. The axial modal 

function is given by: 

𝜙𝑛 = cosh(𝜆𝑛𝑥/𝐿) – cos(𝜆𝑛𝑥/𝐿)

−𝜎𝑛(sinh(𝜆𝑛𝑥/𝐿) − sin(𝜆𝑛𝑥/𝐿)),
 

(14) 

 

where, 𝜆𝑛 and σ𝑛 are the dimensionless beam-frequency parameters. 

For airborne noise contribution, the equation for radiated power is 

readily available, refer [3]. Therefore, in this study, the focus is on 

propagation of uncertainties through structure-borne path. The 

structure-borne noise sources from e-powertrain vibration follow the 

transfer path from surface vibration of the frame of e-motor to the 

powertrain mounts and then from powertrain suspension to the 

vehicle body. In this work, this structure-borne noise contribution is 

realized using analytical and lumped parameters models. The input 

force acting on the car body is identified using a Stellantis internally 

developed MATLAB tool that acts as a transfer function when 

provided with unit displacement at the outer surface of the motor. 

This can be represented by considering a linear time-invariant system 

whose dynamic behavior can be determined by the complex 

amplitude transfer function matrix 𝑯 relating to the vibration input 

(displacement/velocity/acceleration) 𝑿, and the output forces 𝑭. As a 

function of excitation frequency (𝜔), 

𝑯𝑀𝐵(𝜔) =
𝑭𝐵(𝜔)

𝑿𝑀(𝜔)
 

 

 

(15) 

where, 𝑯𝑀𝐵 is the transfer function matrix from mount to the car-

body, 𝑭𝐵 is the force acting on the car-body due to the input vibration 

displacement (𝑿𝑀) from e-motor to mount. 

Stochastic assessment of whining noise 

contribution  

Steps to building stochastic metamodel to assess 𝑳(𝝎) 

▪ Sampling of operating conditions 

▪ Determination of inputs and outputs for building the metamodel 

▪ Sampling of relevant IPMSM design parameters based on prior 

domain-expert knowledge and literature review 

▪ Develop a hierarchical Bayesian network indicating the 

dependencies along with hyper-parameters 

▪ Posterior predictive distribution of the uncertain parameters and 

output responses 

▪ Using the posterior samples to propagate the uncertainties from 

one model to another 

Bayesian approach to metamodeling for uncertain inputs 

In the literature, probabilistic metamodels based on Bayesian 

framework is particularly appealing due to the flexibility they provide 

in choosing the plausible design alternatives from the prior 

knowledge that has been acquired from previous experiences, 

measured data, and literature review, which provides an inherent 

regularization. In Bayesian context, the prior knowledge on the 

unknown random parameters 𝜽 are encoded in the form of a 

probability density function (pdf) given by 𝑝(𝜽). Let 𝑝(𝜽|𝒚) denote 

the “full posterior” pdf of 𝜽  conditional on the observed data 

𝒚 (either measured or simulated), then, using Bayes’ theorem [19], 

𝑝(𝜽|𝒚) =
𝑓(𝒚|𝜽)𝑝(𝜽)

𝑝(𝒚)
, 

 

(16) 

where, 𝑓(𝒚|𝜽) represents the “likelihood” of observing the data given 

the parameters, and the denominator 𝑝(𝒚) = ∫ 𝑓(𝒚|𝜽)𝑝(𝜽)
𝜽

 is the 

“evidence” of the observed data.  

Typically, the denominator which acts as the normalization constant 

is difficult to compute due to intractability reasons and is ignored 

resulting in, 𝑝(𝜽|𝒚) ∝  𝑓(𝒚|𝜽)𝑝(𝜽), which is solved generally using 

Markov chain Monte Carlo (MCMC) methods [20]. In this study, 

another sampler named No-U-Turn-Sampler (NUTS) based on 

Hamiltonian Monte Carlo is preferred due to its fast convergence and 

ability to autotune sampler parameters [21]. 

E-powertrain example case 

The architectural details and important design parameters considered 

for the studied IPMSM are described in Table 1 and Table 2, 



Page 5 of 11 

10/19/2016 

respectively. The macro-parameters chosen are same as the one 

studied in [22]. 

Table 1. IPMSM architecture details 

Parameter Nominal value 

Number of pairs of poles (𝑁𝑝𝑝) 4 

Number of slots (𝑁𝑠) 48 

Stator phase number 3 

Input current 
Amplitude (𝐼0

𝑅𝑀𝑆) 250 A 

Phase angle (𝜙) 140° 

 

Table 2. IPMSM geometrical design parameters 

 Parameter Nominal value [mm] 

Stator 

Outer radius (𝑅𝑜𝑠) 134.62  

Inner radius (𝑅𝑖𝑠) 80.95 

Stack length (𝐿𝑠) 83.82 

Frame  

Outer radius (𝑅𝑜𝑓) 144 

Inner radius (𝑅𝑖𝑓) 136 

Length (𝐿𝑓) 150 

Magnet 

Height (𝐻𝑚) 6.5 

Length (𝐿𝑚) 18.9 

Distance (𝐷𝑚) 14 

 

As an example, Figure 6 shows the radial and tangential components 

of AGSF at spatial orders, 𝑟 = 2𝜈𝑁𝑝𝑝, where 𝜈 ∈ {0,1,2, … }, when 

the 2D magnetic problem is solved using Pyleecan at one specific 

operating condition (1000 RPM, 82 Nm). Applying the 2D Fourier 

transform, the spectrum of magnetic flux density and AGSF can be 

plotted. It can be clearly observed that radial AGSF is higher than the 

tangential AGSF at each harmonic. In this study, nevertheless, both 

radial and tangential components of AGSF are considered in an 

additive manner. 

The natural frequencies of the nominal stator system is shown in 

Figure 7.  The results show a good correlation from [3] for the same 

set of parameters adopted. It can be observed that the mode shapes 

with axial nodes 𝑛 > 1 occur at higher frequencies. In this study, it is 

assumed that only the circumferential nodes (𝑚 ∈ {0,1, … , 𝑁𝑚}, 𝑛 =
1) take part in generating noise. 

 

It is to be noted that a high level of vibration and noise amplification 

is observed at two conditions: 1) coincidence of temporal frequency 

with the structural natural frequency i.e., 𝑠𝑓𝑒 = 𝑓𝑚𝑛
stat, and 2) when the 

spatial order matches with circumferential structural node i.e., 𝑟 = 𝑚. 

 

Figure 6. Radial (top figure) and Tangential (bottom figure) components of 

AGSF at 1000 RPM and across frequency given by: 2𝜈𝑓𝑒 (or equivalently 

2𝜈𝑁𝑝𝑝𝑓𝑚, with 𝑓𝑚 =
Ω

60
 and 𝜈 = 0,1,2, …) 

 

 

Figure 7. Natural frequencies of the stator system for different circumferential 

and axial node pairs (m, n) 

Sampling of operating conditions (OC) as pairs of speed and torque 

(Ω, 𝜏) is performed using the marginal probability law on real client 

usage profiles. Since the problem is not high-dimensional, a common 

inverse-transform sampling technique can be used to draw pairs of 

OC. The kernel estimated joint-distribution plot of the sampled pairs 

of OCs can be seen in Figure 8. 
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Figure 8. Joint distribution of the sampled OCs (Ω, 𝜏). The two shaded curves 

at the edges represent the marginal distribution of the respective variable 

The important IPMSM design parameters chosen for the stochastic 

study are listed in Table 2. The output AGSF (combination of radial 

and tangential components) can be computed for several e-machine 

configurations, however, looking at AGSF from Figure 9, it can be 

noticed that the input current phase angle affects the AGSF output 

significantly and therefore, it is important to consider 𝜙 in the input 

space. 

 

Figure 9. AGSF at one specific sampled speed (155 RPM), different phase 

angles and for one e-machine design (top figure), for multiple e-machine 
designs (bottom figure) 

Metamodel to capture uncertainty in AGSF 

To set up the domain of input variables, let 𝑿 ∈ ℝ𝑁𝑠×𝑛𝑝 be the matrix 

of predictor variables i.e., a collection of design parameters and the 

phase angle, where 𝑁𝑠 , 𝑛𝑝 denote the total number of observed 

samples and total number of predictor variables, respectively. Then, 

the input matrix can be written as,  

𝑿 = (𝑳𝑚, 𝑯𝑚, 𝑫𝑚, 𝑳𝑠 , 𝑹𝑜𝑠, 𝑹𝑖𝑠 , 𝑳𝑓 , 𝑹𝑜𝑓, 𝑹𝑖𝑓, 𝝓). Except 𝜙 ∈ (0, 𝜋], 

each of these input design parameters (𝒙𝑖 ∈ ℝ 
𝑁𝑠: 𝒙𝑖 > 0) are 

considered random and are assumed to follow Inverse-gamma 

distributions whose support is (0, ∞): 

𝒙𝑖 ∼ InvGamma(𝑎𝑖 , 𝑏𝑖), 
 

(17) 

where, 𝑎, 𝑏 are the hyper-parameters controlling the shape of the 

distribution. 

 

With each of these parameters randomly chosen from the prior-

distribution, it gives a notion of generating different e-machine 

designs parameterized with such macro-parameters. In this work, 20 

different e-machine designs are generated. Looking at the Pearson’s 

correlation coefficient plot in Figure 10, we notice that none of the 

parameters is highly correlated with one another and that the chosen 

input design domain is, indeed, pertinent indicating that the problem 

is well-posed. 

 
Figure 10. Pearson correlation matrix of IPMSM input parameters 

Let 𝒀 ∈ ℝ 
𝑁𝑠×𝑁𝑟 be the matrix of output responses such that each row 

vector 𝒚𝑖 ∈ 𝒀 corresponds to the AGSF at a specific spatial order 𝑟. 

These observed output responses are collected after simulating for 

each machine design at one specific OC, since only the frequencies at 

which AGSF acts, i.e., 𝑓𝑒  depends on the OC and not on the 

amplitude of AGSF. Therefore, one metamodel to capture the 

distribution of unknown random parameters and responses is 

sufficient to infer the results at different harmonics. Moreover, before 

building a metamodel, the input-output data are divided into training 

and test dataset.  The next step is to build a hierarchical Bayesian 

model on the training dataset in order to infer the distribution of 

unknown random parameters and responses. Once the parameters are 

inferred, they can be used to predict the posterior distribution on the 

unseen test dataset.  

We can represent, generally, each observed (training) data 

𝒚𝑖(𝜔) ∈ ℝ 
1×𝑁𝑟 as: 

𝒚𝑖
 (𝜔) = 𝑓𝑖(𝑿, 𝜶) + 𝜼 

 

(18) 

𝑓𝑖(𝑿, 𝜶) = 𝜶0 + ∑ 𝜶𝑗𝑿𝑖
𝑗

𝑛𝑗

𝑗=1

 

 

(19) 

 

where, 𝑿𝑖 ∈ ℝ𝑛𝑝×1 is the predictor vector, 𝑿𝑗 represents each 

element in 𝑿 raised to power 𝑗, 𝜶0 ∈ ℝ 
1×𝑁𝑟 , 𝜶𝑗 ∈ ℝ 

𝑁𝑟×𝑛𝑝 are the 

vectors of unknown coefficients, 𝜼 ∈ ℝ1×𝑁𝑟 is the vector of fitting 

errors consisting of modelling errors, 𝑛𝑗  is the degree of the 
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polynomial, and 𝑓𝑖(𝑿, 𝜶) represents the surrogate function. For 𝑁𝑠 

training samples, the multivariate polynomial regression model can 

be represented as: 

𝒀 = 𝑿̃𝜽 + 𝜼 

 

(20) 

where, 𝑿̃ = [𝟏 𝑿 𝑿2 … 𝑿𝑛𝑗  ] ∈ ℝ𝑁𝑠×(𝑛𝑗𝑛𝑝+1) is the augmented 

predictor matrix and 𝜽 = [𝜶0 𝜶1 𝜶2 … 𝜶𝑛𝑗
] ∈ ℝ(𝑛𝑗𝑛𝑝+1)×𝑁𝑟 is the 

matrix containing the unknown coefficients.  

In Bayesian modelling context, in this work, it is assumed that the 

observed (or computed,) data is distributed according to the Normal 

distribution with mean given by the surrogate function and variance 

𝝈𝑦
2 . Also, all the unknown random parameters follow respective 

prior-probability distributions, which are characterized by their own 

hyperparameters  (which depends on the analyst’s prior knowledge). 

Using the assumption of conditional independence, the full-joint 

probability can be represented using the directed acylic graphs. This 

can be seen in Figure 11, where the observed random variables are 

represented using shaded regions and unknown random variables are 

represented using unshaded circles. Plate notation has been exploited 

to indicate the replication of random variables and that they are 

independently and identically distributed (i.i.d). 

  

Figure 11. Hierarchical Bayesian model for AGSF (𝑌obs is the likelihood) 

The Bayesian model for AGSF simulated data with heteroscedastic1 

noise can be formulated as follows: 

 

𝒀obs| 𝑿, 𝜶, 𝜼 ∼  𝒩(𝑓(𝑿, 𝜶), 𝝈𝑦
2 ), 

𝜶0 
∼  𝒩(𝜇0, 𝜎0 

2), 

𝜶𝑗 ∼  𝒩(𝜇𝑗 , 𝜎𝑗
2), ∀𝑗 = 1, . . , 𝑛𝑗, 

𝝈𝑦
2 ∼ InvGamma(𝒂𝑦, 𝒃𝑦) 

 

 

(21) 

The posterior predictive distribution, which is the distribution of the 

prediction on the unseen dataset according to 𝑝(𝜶|𝒚obs, 𝑿, 𝜼) is given 

by: 

𝑝(𝒚pred|𝒚obs, 𝑿, 𝜼)

= ∫ 𝑓(𝒚pred|𝜶, 𝑿, 𝜼)𝑝(𝜶|𝒚obs, 𝑿, 𝜼)  d𝜶 

 

(22) 

 

1 Heteroscedasticity refers to the property of a dataset where the 

dispersion of the dependent variable (output response) around its 

mean is not constant along the space of independent variables. 

The presented model is built in Python framework using open-source 

PyMC3 library. A total of 4 different MCMC chains were simulated 

resulting in 8,000 samples. The burn-in sample size (samples that are 

typically discarded during MCMC sampling, refer [19]) was set to 

1,000 for each chain. The marginalized posterior distribution of each 

unobserved random parameter can be seen in Figure 12. 

It can be observed that the 4 chains show a good mixing behaviour 

due to their unimodal distribution and the ranking of the chains being 

very close to unity. It indicates that each chain is sampling from the 

same distribution. This can also be confirmed using Gelman-Rubin 

statistic denoted by 𝑅̂ which should ideally be ≈ 1.0 as this measures 

the ratio of between-chains and within-chain variances [19]. For the 

current Bayesian model shown in Figure 11,  𝑅̂ = 1.0 for all random 

parameters. Moreover, the heteroscedastic modelling of noise, which 

assumes that the variance of noise varies across the input space, 

allows the model to be realistic which can be seen in the posterior 

predictive distribution of the output responses in Figure 13.  

 

 

Figure 12. MCMC convergence results for the Bayesian model. Left column 

is the smoothed kernel density estimate (KDE) plot corresponding to each 
random variable and the right column consists of the rank plots 

The posterior predictive distribution of AGSF when the test input 

data is used can be seen in Figure 13. At each frequency point, the 

distribution of the AGSF from all posterior samples can be observed. 

Typical Box-and-whisker plot (shown in black) describes the spread 

and median of the data with quartiles. The outliers fall above and 

below the whiskers. As the posterior sample space was abundant with 

8,000 samples, the median and mean coincides indicating that the 

distribution at each frequency point is symmetric. In order to 

visualize this distribution, kernel density estimate is used to compute 

the empirical distribution of the sample (at each frequency point) 

with the help of violin plots (shown in blue). It can be seen that the 

inter-quartile range (IQR) at (0,0𝑓𝑒) corresponding to 0 Hz and 
(24,6𝑓𝑒) corresponding to 62.2 Hz is higher than at other frequency 

points and that for higher order harmonics the spread in AGSF levels 

is fairly low, considering the prior-expert knowledge used during the 

Bayesian modelling process. 
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Figure 13. Posterior predictive distribution of the output response (AGSF) 
with respect to the unseen test dataset. Mean and median at each frequency 

point is shown with a horizontal line (blue-solid for mean and orange-dashed 

for median). 

The output AGSF from different e-machine designs will now be 

propagated through structure-borne path. With the help of detailed FE 

modelling using commercial tools, this transmission of vibrational 

energy from electric motor’s frame to the mounts and to the vehicle 

body can be achieved (refer [15]). However, during stochastic 

modelling several random samples need to be evaluated and 

therefore, analytical models seem to be the best choice trading the 

accuracy with time-efficiency. In the next section, a typical e-

powertrain system is considered and analytical displacements coming 

from motor frames are imposed on it. 

Metamodel to capture uncertainty in structure-

borne contribution 

For structure-borne noise contribution, the vibration displacement at 

the surface of the motor needs to be estimated. These vibrations are 

transmitted through e-powertrain mounts to the car-body. Figure 14 

shows a schematic to estimate the displacement and the input forces 

acting on the car-body. Such a model consists of lumped parameters 

and multiple rigid (components mounted on, for instance, one 

crossbeam) and flexible bodies (rubber mounts) representing the 

powertrain mounting system. 

 

Figure 14. A schematic showing the transfer of vibrations from e-motor’s 

surface to powertrain mounts (𝑀1: left mount, 𝑀2: right mount, and 𝑀𝑐: 

connection to the cradle point) and then to the car-body 

In this work, an internal Stellantis tool developed in MATLAB is 

used to estimate the forces, where it is assumed that the vibrational 

energy from the motor surface is transmitted linearly to the mounts 

on the e-powertrain side.  Therefore, here it is assumed sufficient to 

approximate the displacement using (8)-(10) at each mount and in 

every direction. 

However, observing some measured data from one of the classical 

systems (see Figure 15), it is clear that there is no distinct pattern in 

the level of displacements acting on each powertrain mount and that 

there is no dominant direction of displacement. On the other hand, 

observing the displacements on the same data with respect to 

different orders which indicates that dominant harmonics can indeed 

be identified and should be the basis of further investigation. In this 

view, the root-mean-squared (RMS) values of displacement 

considering a simplified cylindrical shell model can be estimated 

from equations (8)-(10) as shown below: 

𝒰RMS
stat = √

1

Ωs
∑[(𝒰𝑢𝑠

stat)2 + (𝒰𝑣𝑠
stat)2 + (𝒰𝑤𝑠

stat)2]

Ω𝑠

𝑠=1

 

 

(23) 

where, Ωs is the total number of speed profiles sampled in RPM. 

  

Figure 15. Vibration displacement measured data on all 3 mounts and in all 

directions plotted together. Dominant harmonics can be identified, for 

instance, at Ω=5000 RPM, spatial order 6 is the most dominant source of 

displacement. 

Figure 16 shows the RMS displacement at each spatial order. As 

expected, the displacement at (𝑟 = 0) is maximum for small RPMs 

and remains constant throughout (time invariant deformation) and 

therefore, the vibration velocity induced will be negligible. In spite of 

some distinct peaks that can indeed be observed around 1.4 kHz, the 

vibration velocity exhibits a rather monotonic behavior at low 

frequencies below 1.4 kHz as a result of simplified formulation. Also, 

the maximum displacement occurs when the current phase angle 𝜙 =
140° which corresponds to MTPA condition (maximum torque per 

ampere). Note that the pattern of displacement is different from the 

measured data (Figure 15) due to the fact that the measured data is on 

a different e-machine architecture and is used as a prior knowledge 

for the simplification of analytical models. 
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Figure 16. Vibration RMS displacement on the motor surface for one specific 
e-machine design, multiple OCs and multiple current phase angles. 

Body input force identification 

Due to the scarcity of measured data, the vibration displacement at 

the surface of the motor is estimated using analytical approach as 

shown in the previous section. Next, the forces acting on the car-body 

(𝑭𝐵(𝜔 )) due to the e-powertrain vibration needs to be estimated so 

that they can be coupled with the measured vehicle vibration transfer 

function (𝑯VTF(𝜔)) to get the interior cabin SPL. This is shown in 

the form of a simple flowchart in Figure 17.   

 

Figure 17. Flowchart depicting the points where the structure-borne quantities 
are coupled with the respective transfer functions 

First, the transfer function 𝑯MB(𝜔) is identified by providing a unit 

excitation to each mount and in each direction, using the internally 

developed tool. As an example, for a particular spatial order 𝑟 = 8, 

the identified transfer functions for the left mount due to unit 

excitation is shown in Figure 18. It is to be noted that the transfer 

functions are obtained for each direction and for all three mounting 

positions, the schematic for which is depicted in Figure 14. 

 

Figure 18. Transfer functions from the developed MATLAB routine with unit 

excitation to the left mount in all three directions for one specific spatial order 

The force responses due to true RMS displacements (𝒰RMS
stat ) for each 

e-machine design can then be recomposed using the identified 

𝑯MB(𝜔). The recomposed forces (𝑭𝐵(𝜔)) acting on the car-body 

through left mount bracket side is shown, as an example, in Figure 

19. It can be observed that there exists a significant level of 

variability in the forces acting in all three directions when all the e-

machine configurations were considered along with different input 

current phase angles. 

 

Figure 19. Forces acting on the car-body through left mount bracket in 

different directions for order 8 considering all e-machine designs and current 

phase angles 

Vehicle transfer functions to the interior cabin 

The measured set of transfer function database consists of vibration 

transfer function (VTF) and noise transfer function (NTF). Structural-

acoustic measurements procedures make use of the reciprocity 

principle, where the excitation is produced by an acoustic source 

placed at driver’s ear location inside the internal acoustic cavity and 

acceleration responses are measured on selected degrees of freedom. 

In this study, VTF measured from 9 input points (3 mount locations 

and 3 directions) in the frequency range [20, 2048] Hz were 

considered. For instance, Figure 20 shows VTF measured from 3 

input points of left mount bracket to the interior cabin’s left front 

seat. 

 

Figure 20. Measured vehicle transfer functions from left mount bracket to left 

front seat mean. 

Interior SPL structure-borne contribution 

To get the interior SPL contribution due to structure-borne 

phenomenon, the obtained set of forces acting on the car body 

through each mount and in each direction (Figure 19) is multiplied 

with the respective vehicle transfer function (Figure 20). 

In Figure 21, we can see the dispersion in interior sound pressure 

level due to variation in machine design and current phasing over the 

operating speed samples. It should be noted here that this plot is 

strictly for the noise transmitted by the left mount bracket in 𝑥-
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direction. Similarly, the contribution coming from different mounts 

and in different directions can be obtained and combined together to 

produce the whining noise contribution due to SBN path. 

 

Figure 21. Interior SPL from left front bracket considering all machines and 

all current phase angles 

To quantify the uncertainties associated with the output SPL, a 

similar approach as shown for AGSF can be performed which would 

give the posterior samples of SPL conditional on the observed data. 

For each frequency point, a kernel density estimate can be plotted 

indicating the 95% credible interval as shown in Figure 22. It shows 

the contribution to interior SPL from left mount bracket in all three 

directions as well as the combined contribution in the fourth plot. 

Here, the variability in the output responses is due to design matrix 

that we considered which had random geometrical macro-parameters 

as well as the different current phase angles. This is useful as it 

implies that the uncertainty in the output responses does not consider 

the uncertainty in the measured transfer functions. Indeed, 

stochasticity in transfer functions can be induced using the data 

measured on different vehicles which will be a part of future works.  

 

Figure 22. Kernel density estimate plot of interior SPL at each frequency point 

for spatial order 8 considering the left mount bracket 

Conclusions & Perspectives 

In this study, a typical workflow from deterministic to stochastic 

analysis of e-powertrain whining noise contribution is developed. 

During the early design stage, deterministic methods would not be 

helpful as detailed designs are not available. Hence, the probabilistic 

methods, developed in this work, help to compensate this lack of 

knowledge. A stochastic metamodeling approach within Bayesian 

framework is presented in order to quantify the uncertainties in 

geometrical macro-parameters and operating conditions. The 

developed Bayesian model is based on multivariate polynomial basis 

expansion with heteroscedastic noise. It has been employed more 

specifically here to obtain the posterior predictive distributions of 

electromagnetic forces within the airgap. Semi-analytical models 

have been realized to determine the sound pressure level inside the 

cabin using the measured transfer functions. It is noticed that kernel 

density estimates provide an efficient way to understand the spread of 

the output responses due to uncertain inputs. Specific uncertainties in 

the measured transfer functions database will be investigated in the 

future works through various dimensionality reduction approaches. 

In a nutshell, using the probabilistic approach described here on a 

specific system and given the macro-parameters at the early-design 

stage of an electric vehicle, the interior SPL dispersion can be 

estimated by an NVH designer and help prioritize the suitable noise 

mitigation techniques that can be employed. 
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Definitions/Abbreviations 

NVH Noise, vibration and harshness 

EV Electric vehicle 

IPMSM  Interior permanent magnet synchronous motor 

OC  Operating condition 

SPL Sound pressure level 

EM  Electromagnetic 

AGSF  Airgap surface force 

pdf  Probability density function 

KDE  Kernel density estimate 

MCMC Markov Chain Monte Carlo 

VTF Vibration transfer function 

NTF Noise transfer function 

 

 

 

 

 

 

 


