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Understanding, Computing and Identifying the 
Nonlinear Dynamics of Elastic and Piezoelectric 

Structures Thanks to Nonlinear Modes 

Olivier Thomas 

Abstract This chapter addresses the computation and the experimental identifica-
tion of the nonlinear dynamics of mechanical structures through the use of nonlinear 
modes. They enable to reduce the dynamics, for efficient computation as well as for 
qualitative understanding. An overview of the complex vibratory behaviours often 
observed when non-linearities are at hand is proposed through selected didactic 
examples, as well as a classification of the sources of non-linearities encountered 
in mechanical engineering. Then, a focus on geometrically nonlinear structures is 
proposed, since they show most of the classical nonlinear dynamical phenomena and 
are still a computation challenge. An overview of the main models of beams, plates 
and shells is proposed, as well as some finite-element discretisations. The case of 
a piezoelectric coupling with an electronic circuit is also considered. The several 
definitions of nonlinear modes are considered and compared, with a focus on the 
normal form method to compute a reduced order model. All the particular features 
of nonlinear modes are addressed, in the case of a simple dynamics involving a single 
mode, but also when several modes are strongly interacting through internal reso-
nances. Numerical and experimental continuation methods are also addressed, as a 
mean of efficiently compute and identify the dynamics of the system. Finally, a few 
representative examples are proposed, with focuses on internal resonances, quality 
of reduced order models and piezoelectric structures computations. 

4.1 Introduction 

The central purpose of this article is to address the computation of the nonlinear 
dynamics of mechanical structures. Non-linearities bring a lot of complex dynam-
ical phenomena that do not exist in the dynamics of linear systems. To cite a few 
of them, the characteristic frequencies (free oscillation frequencies or resonance 
frequencies) of a nonlinear system can change as a function of the amplitude of 
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the motion; several solution branches can coexist for a given forcing, giving rise to 
possible sudden jumps of amplitude; strong energy transfers between separate fre-
quency bands can occur, thanks to harmonic (sub- or super-) resonances or internal 
resonances between modes; oscillations with complex frequency content, such as 
quasi-periodic or chaotic solutions, can occur; all those complex phenomena being 
linked to bifurcations and instabilities. 

In this context, computing the dynamical behaviour of a nonlinear system brings 
several features. First, most of the algorithms dedicated to linear system computations 
fail in the case of non-linearities and must be adapted, to the price of more complexity, 
possible instabilities, and, more importantly, a huge increase of computation time. 
Even if time integration schemes are implemented and well mastered in modern 
commercial finite-element codes, because of the increased computation time and of 
the nonlinear phenomena enumerated above, blind computations in the case of a 
nonlinear system can lead the structural engineer to miss important features of the 
dynamics. 

Then, efficiently computing the nonlinear dynamics of a structural system needs, 
currently, three ingredients. The first one is to qualitatively understand the possible 
nonlinear phenomena, enumerated above, that can be observed. Secondly, consid-
ering reduction methods seems mandatory. Several strategies exist to reduce the 
dynamics, but we focus here on those which attack directly the nonlinear character-
istic of the system, based on the concept of nonlinear mode. Thanks to the invariant 
manifold approach, they have the advantages of giving reduction strategies that lead 
to either efficiently and quantitatively compute the dynamics, but also give a mean 
of qualitatively understanding the encountered nonlinear phenomena. Thirdly, ded-
icated computation methods are mandatory, such as continuation methods, to either 
assist or replace standard time integration methods available in most current finite-
element software packages. 

In this context, the purpose of this article is to give an overview of the use of 
nonlinear modes to qualitatively understand and quantitatively compute the dynamics 
of nonlinear structural systems. We will particularly consider structures subjected to 
geometrical non-linearities, since they are naturally subjected to most of dynamical 
phenomena and therefore constitute an easy illustration of them. We will also include 
linear piezoelectric coupling in the discussion since their mix with the geometrical 
non-linearities brings particular features and also interesting phenomena such as 
parametric resonances. Systems subjected to self-sustained oscillations won’t be 
considered here, nor friction damped systems. 

The text is also a mixture between (i) mathematical proofs, (ii) relevant examples 
to understand the mechanisms and (iii) general synthetic comments, that we hope as 
balanced and didactic as possible. 

In Sect. 4.2, very general issues about non-linearities (their definition and smooth-
ness, the associated physics encountered in solid mechanics, an overview of the 
phenomena they often create and finally an overview of the computation strategies) 
are addressed as a preliminary. In Sect. 4.3, the most common models of elastic 
and piezoelectric structures subjected to geometrical non-linearities are described. 
Then, the concept of nonlinear modes is addressed in details in Sect. 4.4, with a
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particular focus on the normal form method, as a way of reducing and understand-
ing the nonlinear dynamics of the geometrically nonlinear structures of Sect. 4.3. In
Sect. 4.5, an overview of frequency domain continuation methods is proposed, both 
for efficient numerical computation and experimental identification. Finally, Sect. 4.6 
gathers some test cases examples, with focus on the effect of the loss of transverse 
symmetry (curvature, lamination etc.) of a structure on the reduced-order modelling, 
on the topology of some frequency response in the case of internal resonances and 
on the reduced-order modelling of a piezoelectric structure. 

4.2 Generalities 

This section gathers a few general considerations about non-linearities, in general 
but also specifically in the field of solid mechanics. 

4.2.1 Definition of Non-linearities 

Non-linearities are a feature related to a given model of a system or a phenomenon. 
They can take many forms and are usually defined by contradiction: one first defines 
properly a linear system and then defines a nonlinear system as any system that is 
not linear. 

By definition, as illustrated in Fig. 4.1, a given system is said linear if it satisfies 
the superposition principle. It means that if two inputs .x1 and .x2 produce the two 
outputs .y1 and . y2, then .αx1 + βx2 produces the output .αy1 + βy2, .∀α,β ∈ R. The
system is non-linear in any other cases. 

When the considered system has a given dynamics, meaning that the input . x(t)
and output .y(t) are functions of time . t , if the system is linear, its behaviour can 
be described by linear equations (often a Partial Differential Equation (PDE), or a 
set of Ordinary Differential Equations (ODE), or if constraints are included, a set 
of Differential Algebraic Equations (DAE)). Then, considering a sinusoidal input 
.x(t) = x0 cosGt (with angular frequency .G and amplitude . x0), the linearity of the 
systems results in an output which is also a sinusoidal function, oscillating at the 
same frequency .G (.y(t) = y0 cos(Gt + ϕ), with .y0(G) its amplitude and .ϕ(G) its 

Fig. 4.1 A linear system
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phase, often functions of . G). This means that the output of a nonlinear system to a 
sinusoidal input is often not sinusoidal. It can be periodic at the same frequency . G, 
showing harmonic distortion, can be quasi-periodic or even much more complex in 
the case of chaos. Illustrations will be given in the following. 

4.2.2 An Overview of Non-linearities in Solid Mechanics 

The present section gives an overview of several causes, sources and physical mecha-
nisms that give birth to non-linearities. A classification is proposed, viewed from the 
side of solid mechanics. The sources of non-linearities are gathered in four families 
as summarised in Table 4.1. The first three ones (material, geometric and contact) 
are usual and are often used to organize the computation procedures in standard 
finite-element commercial simulation software packages (see e.g. Abaqus (2024)). 

Table 4.1 Overview of non-linearities in solid mechanics. S/NS means smooth/non-smooth and 
C/NC means conservative/non-conservative 

Type of non-linearity Examples Smoothness Conservativity 

Material 

Nonlinear constitutive law 
Elasto-plastic (metals…) 
Hyperelastic (elastomers…) 
Shape memory alloys 

NS 
S 
NS 

NC 
C/NC 
NC 

Geometric 

Large deflection 
Multibody systems 
Thin structures 

S 
S 

C 
C 

Contact Hertz law 
Dry friction 
Shocks 

S 
NS 
NS 

C 
NC 
C/NC 

Coupling 

(fluids, electricity…) 
Aeroelastic oscillations 
Aeroelastic damping 
Electrostatic 
Piezoelectric 
Electromagnetic 

S 
NS 
S 
NS 
S 

NC 
NC 
C 
C/NC 
C/NC
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The last one, about the coupling of solid mechanics to other physical domains such 
as fluid mechanics or electrical engineering, is less standard, but mandatory since 
typical non-linearities arise because of these couplings. 

Material nonlinerities: in this case, it is the constitutive law (in mechanics, it is 
the stress-strain law) of the material which is non-linear. Typical examples are: 

• elasto-plastic materials: the transition from elastic to plastic deformations cor-
responds to a non-smooth stress-strain law; plastic deformations are irreversible 
and manifest themselves through an hysteretic behaviour since they depend on the 
history of the transformation. Those three characteristics are non-linear. Locally, 
the plastic part of the stress-strain law is very similar to the .(Fc, x) graph of the 
Coulomb law for dry friction considered in Sect. 4.2.3. Most metals exhibit this 
behavior when stresses exceed their yield point. 

• nonlinear elastic materials: in this case, the path of deformation is perfectly 
reversible (elasticity) and smooth, but it is the stress-strain relationship that is 
non-linear. It is often modeled with a hyperelastic constitutive law, for which the 
elastic forces derives from a potential energy (Ogden 1997). These materials are 
also generally highly dissipative because of visco-elasticity (which can be consid-
ered as linear, Morin et al. (2018)). Elastomers and rubber materials fall into this 
family. 

• shape memory alloys: these materials are subjected to metallurgical phase changes 
according to the stresses and strains applied to them as well as the changes in 
temperature (thermal coupling). Their main nonlinear characteristic is that the 
stress/strain relationship exhibits hysteresis and is also non-smooth (see e.g. Lacar-
bonara et al. (2004)). 

Geometric non-linearities: they are observed when the system encounters a large 
change of configuration (due for instance to large displacement/deformations), for 
which the geometry change of the system under loading cannot be neglected because 
it influences the force distribution into the system. The most known manifestation of 
geometrical non-linearities is buckling, for which a loading in one direction creates 
a response of the structure in an orthogonal direction. More generally, geometric 
non-linearities are encountered in two families of systems. 

• Multibody systems: this family includes all systems modeled as rigid solids con-
nected together by joints. Non-linearities arise from large rotations of the system 
components relative to one another, which create nonlinear relationships between 
the forces in the joints and the generalised coordinates of the system. The simplest 
example is a pendulum in a gravity field: in this case, the restoring force is non-
linear as a function of the pendulum’s angle . θ with the gravitational acceleration 
vector: .F = mg sin θ (with .m the pendulum’s mass and . g the gravitational accel-
eration), coming from the projection of the gravity force onto the tangent to the 
pendulum’s trajectory. For small angle, .sin θ - θ and .F is linear in . θ. For  large
. θ, this approximation is no longer valid since .F increases less than .mgθ when 
. θ is large, because of the projection effect (.sin θ < θ for .θ ∈ [0,π]). It leads to a
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well known softening nonlinear effect, illustrated in Fig. 4.4. Another example is a 
double pendulum which is well known for its chaotic behaviour in free vibrations. 
It is illustrated in Fig. 4.2, obtained by numerical time integration of the equations 
of motion. Two time evolutions of the system are shown, for two slightly different 
initial conditions, showing the classical sensitivity of chaotic systems to a change 
in the initial conditions: on the initial time interval .t ∈ [0, 26], the two time evo-
lutions are approximately identical, whereas after, they diverges from each other, 
showing two completely different trajectories. 

• Thin structures: the cause of non-linearity is analogous to the one for multibody 
systems: the large rotations of the deformable fibers create nonlinear relationships 
between displacements and strains in the structure, due to the redistribution of 
forces linked to the change of geometry. Those non-linearities are most commonly 
associated to thin structures (beams, plates, shells…), due to their low transverse 
stiffness, which allows large displacements obtained for moderate external forces. 
On the contrary, massive structures are too rigid in all directions, which in practice 
prevents the occurrence of large displacements and therefore the manifestation 
of geometric non-linearities. Geometric non-linearities in thin structure will be 
specifically addressed in Sect. 4.3. 
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Fig. 4.2 Free oscillations of a double pendulum for two slightly different initial conditions; ‘—’: 
.θ1(0) = 0.84π, θ2(0) = π/2; ‘- -’:.θ1(0) = 0.84π, θ2(0) = 1.01π/2, with.(θ1, θ2) the angles of the 
two members of the system. Both members have the same length. a, b Time evolution of .θ1 and 
. θ2; c Trajectory of the tip .B of the second member in the physical plane of motion of the system. 
Three configurations of the system are also shown, at .t ∈ {0, 0.79, 1.59}
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In many engineering applications, geometric non-linearities are linked to material 
non-linearities. In the case of metal forming and crash tests, thanks to plasticity, the 
large change of geometry leads undoubtedly to geometric non-linearities. Rubber 
bushings, used as vibration isolator, are also linked to large strains associated to their 
nonlinear elastic behaviour. 

Contact non-linearities: they appear at the interface between several solid compo-
nents of a system. One can gather them into three families. 

• Localised contact: when the contact surface between two elements is reduced in 
size (we often talk of non-conformal contact), the size of the contact area depends 
on the relative displacement of the two elements, resulting in a nonlinear relation-
ship between this displacement and the associated force. This is well predicted by 
Hertz’s theory (for example, the contact force .P between two elements in point 
contact is of the form .P = K δ3/2 with . δ the relative displacement of the elements 
and .K a constant (see e.g. Johnson (1985)). This appears in practice in the case of 
joints with rolling elements or gears. 

• Dry friction: when two elements of a system are in non-lubricated contact, we 
observe alternations between sticking and slipping situations, which creates a 
non-smooth relationship between friction force and sliding speed, as illustrated in 
Sect. 4.2.3. 

• Intermittent contact: if two elements are linked with unilateral joints, dynamic 
forces can create alternations between times of loss of contact and elastic penetra-
tions, creating shocks. Those non-linearities are also non-smooth by nature. 

Coupling non-linearities: they are encountered when the behaviour of a given 
mechanical system is coupled to another physical field, such as a fluid or an electronic 
circuit, through an electromechanic transducer. Those non-linearities can be issued 
from the other physical domain, or because of the coupling. Five families of problems 
are reported here. 

• Aeroelastic oscillations: when a flexible structure is subjected to a fluid flow, a 
strong coupling can occur such that the oscillations of the structure produce a 
change in the fluid flow that in return modifies the pressure on the structure in such 
a way that the oscillations are amplified. This leads to self-sustained oscillations of 
the structure, often of large amplitude, named generally flow induced vibrations. 
Examples are aeroelastic flutter, vortex induced vibrations… (see e.g. Païdoussis 
et al. (2011), Amandolèse et al. (2024)). 

• Aeroelastic damping: it is caused by the aeroelastic drag resulting from the motion 
of a body into a fluid. It creates a force basically proportional to the square of the 
relative velocity of the body and the fluid, and always opposed to the motion. In the 
case of a one dimensional motion of amplitude .x(t), this effect adds the quadratic 
non-smooth term .|ẋ |ẋ in the equations. Qualitatively, the non-linearity manifests 
itself by the amplitude of the damping force, which increases with the square of 
the oscillations of the body (see e.g. Colin et al. (2020), Debeurre et al. (2024a)).
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• Electrostatic coupling: this is the most common effect used to couple the deforma-
tions of an elastic body to an electronic circuit in Nano/Micro Electro Mechanical 
Systems (N/MEMS). Indeed, it is easy to implement and becomes powerful at 
small scales because of size effects. Basically, a movable electrode electric capac-
itive effect is created between two electrodes, one on the moving body and one on 
the ground. The non-linearities are then intrinsic to the coupling since the mechan-
ical forces are inversely proportional to the gap between the two electrodes, and 
thus to the distance between the body and the ground (see e.g. Younis (2011), 
Corigliano et al. (2018) and Chap. 3 this book). 

• Piezoelectric coupling: this coupling appear in certain materials that have the 
property to create electric charges when deformed. This transformation being 
thermodynamically reversible, the inverse effect is possible: when subjected to 
an electric field, the piezoelectric material deforms. Piezoelectric materials are 
widely used as sensors or/and actuators for vibration measurement, monitoring 
and control (Preumont 2011), clock reference oscillators (Bottom 1982) or more
recently in N/MEMS (refer to the third chapter of this book). The coupling appears 
in the constitutive law, that links the mechanical fields (stress and strain) to the 
electrical fields (electric field and displacement), as addressed in Sect. 4.3.4. In a lot
of applications, this constitutive law is considered linear. However, nonlinearities 
can be easily observed in experiments (see Givois et al. (2020a), Frangi et al. 
(2020)) and modelled in the form of non-smooth terms that include absolute values 
of the unknowns (see Leadenham and Erturk (2015)). 

4.2.3 Smooth and Non-smooth Non-linearities 

An important feature of the non-linearities introduced in the previous section is their 
smoothness, that has important consequences both in term of phenomenology and 
for computational issues. 

To be precise, the smoothness is a characteristic of the model of a non-linearity. 
It is said smooth if the mathematical functions included in its governing equations 
are continuous, with a number of their derivatives which are also continuous. As 
illustrated in Table 4.1, a number of non-linearities can be naturally modelled by 
non-smooth laws, like in the case of contact non-linearities in mechanical systems or 
for modelling diodes, switches or saturated electronic components in electrical engi-
neering (refer to Acary and Brogliato (2008) for examples in electrical engineering 
and Shami et al. (2023a) for an application in vibration damping using a diode).
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Fig. 4.3 a Dry friction force as a function of the velocity in the case of a classical Coulomb law 
with friction coefficient.μ = 1 (Eq. (4.1)). Effect of the regularisation parameter. η on the regularised 
law (4.2).b Free oscillations of a mass spring system with a Coulomb damper, of ordinary differential 
equation .ẍ + x − Fc(ẋ) = 0, with .μ = 1. Position . x , velocity . ẋ , acceleration . ẍ and friction force 
.−Fc as a function of time 

A typical example of a non-smooth law is the Coulomb law for dry friction, for 
which the friction force .Fc can be written as: 

.

⎧

⎨

⎩

Fc = −μ if ẋ > 0,
Fc ∈ [−μ,μ] if ẋ = 0,
Fc = μ if ẋ < 0,

(4.1) 

where . μ is a friction coefficient. The non-smooth characteristics of this law appears 
with the multivalued part at zero velocity (.ẋ = 0), for which the friction force can 
take any value in .[−μ,μ], depending on the equilibrium of the system. This law is 
shown in Fig. 4.3a. 

From a physical point of view, non-smooth non-linearities can be responsible for 
discontinuities, leading to jumps in the time evolution of the generalised coordinates 
(and their time derivatives) of the system. Figure 4.3b shows the free oscillations 
of a mass-spring system with a Coulomb damper, in which the acceleration has 
discontinuities at each change of sign of the velocity. This also leads to a complete 
change of the topology of the bifurcations, for which the smoothness of the response 
curves in the frequency domain is lost (see Leine and Nijmeijer (2004)). 

From a computational point of view, most of the standard solvers, in particular 
the time integrators, are naturally designed for smooth laws and don’t work for non-
smooth models if written directly as in Eq. (4.1). It is however possible to regularize 
the non-smooth models by replacing it with smooth functions. An example is shown 
in Fig. 4.3a where the law .(Fc, ẋ) is replaced by the function: 

.Fc = μ tanh(−ẋ/η), (4.2)
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with .η ∈ R
+ a regularisation parameter. As illustrated in Fig. 4.3a, if .η → 0, the

function (4.2) tends to the Coulomb law (4.1). Then, chosing. η small leads to approx-
imate the Coulomb law by a smooth function that can be directly applied to standard 
numerical solvers. In particular, we experimented using a Runge-Kutta algorithm (i.e. 
ode45 in Matlab (2017)) with .η < 10−2 that no noticeable difference was observed 
in .x(t), .ẋ(t), .ẍ(t) and . Fc(t)

1 with respect to the exact analytical piecewise solution. 
One could also notice that this regularised law is also sometimes closer to the real 
behaviour of a system subjected to a solid/solid contact, that always has a certain 
compliance. However, despite its apparent advantage, this regularised law depends 
on the parameter . η that must be chosen in practice. It is also highly numerically stiff, 
leading to possible numerical issues in the case of more complex models, in term of 
dynamics and number of degrees-of-freedom than the one of Fig. 4.3. It is then often 
interesting to keep the non-smooth law (4.1) and to adapt the numerical tools, at the 
price of an increased complexity of the mathematical tools (functions are set-valued, 
differential equations become differential inclusions…). 

In Table 4.1, the smoothness of each source of non-linearity is indicated. The 
present article will consider only smooth non-linearities and the interested reader 
can refer to the textbooks Leine and Nijmeijer (2004), Acary and Brogliato (2008) 
and to Chaps. 5 and 6 of the present book. 

4.2.4 Overview of Nonlinear Dynamical Phenomena 

In this section, a rapid overview of the nonlinear dynamical phenomena that can be 
encountered in practice is given. Two families of nonlinear systems can be consid-
ered. 

• Systems subjected to self-sustained oscillations: in this case, the input of the system 
is independent of time whereas the output is oscillatory. It is at least periodic and 
can be more complex, with a spectrum composed of several non-commensurable 
frequencies, or even chaotic in some cases. The oscillations appear after a Hopf 
bifurcation. This kind of phenomena appears classically in the case of flow induced 
vibrations and of dry friction with alternating stick and slip phases. 

• Systems subjected to an input that depends on time, called externally excited. The
input can be an impact, leading to free oscillations of the system, simply a sine 
(or periodic) signal in the case of rotating machinery or with a more complex time 
evolution such as the effect of a turbulent fluid (water or wind) on a structure. 

The case of self-sustained oscillations will be left apart in the present article, in favor 
of externally excited systems.

1 A slight drift in.Fc(t), that should remain constant in theory, was however noticed in the last stick 
phase for.t > 2.5 for not small enough regularisation parameter.η < 5 · 10−3, a direct consequence 
of the regularisation. 
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In order to illustrate and introduce various nonlinear dynamical phenomena, two 
systems are considered in this section: firstly a simple one degree-of-freedom pen-
dulum, with results stemming from basic time integration of the equation of motion, 
and then a shell of revolution harmonically forced, with experimental results. 

A one degree-of-freedom system As an elementary numerical experiment, we 
consider a pendulum in a gravity field whose angle with respect to the gravitational 
acceleration vector is denoted by .θ(t), of non-dimensional equation of motion: 

.θ̈ + 2ξθ̇ + sin θ = F cosωt, (4.3) 

with . ξ the damping ratio and .(F,ω) the forcing level and frequency. We first look at 
its free undamped oscillations under non-zero initial angle.θ0 and initial zero velocity, 
i.e. with .(ξ, F) = (0, 0). The evolution of . θ as a function of time . t , computed here 
with a Runge-Kutta algorithm (ode45 in Matlab (2017)), is always periodic, with 
a fundamental frequency denoted by . ω. If the system were linear, .θ(t) would be 
a purely sine function of frequency .ω = ω0 (the natural frequency of the system, 
equal to .ω0 =

√
g/ l = 1 in this case, . g being the gravitational acceleration and . l the 

length of the pendulum). On the contrary, because of the geometrical nonlinearities 
(see Sect. 4.2.2), (i) . ω is a decreasing function of the initial condition .θ0 (a so called 
softening behaviour) and (ii) the frequency content of .θ(t) becomes richer when . θ0
is increased. This is illustrated in Fig. 4.5a–c, which show the curve .(θm,ω) (the 
so called backbone curve), with .θm the maximum value of .θ(t) over one period, as 
well as .θ(t) for two initial conditions, where the change of frequency and harmonic 
content is obvious (notice the increase of the period of oscillations and the “rounding” 
of .θ(t) (because of harmonic distortion) in Fig. 4.5c). 

We now move to damped and forced oscillations of the pendulum, by applying a 
harmonic torque at the hinge with a viscous damping force, i.e. with . (ξ, F) /= (0, 0)
in Eq. (4.3). We simulate by time integration a stepped sine experiment: it consists 
in choosing a frequency of excitation .ω and a forcing level . F , computing .θ(t), 
picking up its maximum amplitude .θm in the steady state and doing this operation 
for a list of successive frequencies . ω, in an increasing (upward stepped sine) or 
decreasing (downward stepped sine) order, around the resonance. By choosing the 
initial conditions at a given frequency step equal to the final state of the pendulum at 
the previous step, and also choosing an integer number of periods for each step, one 
obtains the curves .θm = f (ω) shown in Fig. 4.4a. The first observation is that the 
obtained resonance curves are bent to the left and follows the shape of the backbone 
curve, being coincident with it close to the resonance points. Moreover, at high 
levels, it exist a frequency band in which two solutions coexist for a given driving 
frequency . ω: one of high amplitude, obtained by a downward stepped sine, and one 
of low amplitude, obtained by an upward stepped sine. 

In fact, as will be discussed in Sect. 4.5 and observed in Figs. 4.15, 4.18 and 4.19, a  
third solution exists in theory, but since it is unstable, it cannot be computed by simple 
time integration as done here. This existence of multiple solutions is responsible for 
an hysteretic behaviour and jump phenomena under frequency sweeps. In addition,
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Fig. 4.4 Oscillations of a simple pendulum in a gravity field, of Eq. (4.3), obtained by stepped 
sine time integration. a Maximum amplitude of the oscillations in the steady state as a function of 
the frequency . ω. The undamped free oscillations (backbone curve) are shown by the black curve 
and the forced oscillations in colored curved, each curve corresponding to a given forcing level . F
(damping ratio.ξ = 0.01 and forcing level.F ∈ {0.02, 0.05, 0.1, 0.15, 0.5}). ‘o’: downward stepped 
sine; ‘+’: upward stepped sine. b, c Time evolution of the angle.θ(t) for two points on the backbone 
curve; d .θ(t) at the superharmonic resonance for .F = 0.5 in the steady state 

plotting .θ(t) in this forced experiment would lead to similar graphs than those of 
Fig. 4.4b, c, showing that the nonlinearities create a harmonic distortion: an input 
sine signal leads to a periodic output with non-zero harmonic components. Moreover, 
at the largest simulated amplitude (.F = 0.5) in Fig.  4.5, chaotic oscillations are 
observed. They emerge from a cascade of period-doubling bifurcations, see Bryant 
and Miles (1990). Finally, at the same forcing level, a small secondary resonance 
appears around .ω - 0.3. It is called a super-harmonic resonance since in this case, 
the third harmonic of .sin θ(t) (.3 × 0.3 - 1) in the equation of motion can be viewed 
as a forcing signal that drives the oscillator close to its resonance, creating a strong 
.3ω component in .θ(t), visible in Fig. 4.4d (see also Volvert and Kerschen (2022)). 

Another way of producing oscillations is to shake harmonically the pendulum 
in a direction parallel to the gravitational acceleration, with a signal .δ cosωt . This
produces a so-called parametric excitation of the pendulum since it is equivalent to 
modulating the gravity acceleration with this signal. The scaled equation of motion 
reads: 

.θ̈ + 2ξθ̇ + (1 + δ cosωt) sin θ = 0. (4.4) 

In this case, it is clear that the trivial solution .θ(t) ≡ 0 ∀t is admissible. However, 
above a certain threshold of the driving amplitude . δ, the trivial solution becomes 
unstable after a period doubling bifurcation, giving birth to a sub-harmonic oscillatory 
solution for .θ(t), of fundamental frequency .ω/2, as shown in Fig. 4.5b. Performing 
a stepped sine numerical computation results in the resonance curves of Fig. 4.5a, 
usually called parametric resonances, which are bended to the left and follow the
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at center and the acceleration measurement; b, c resonance curve of the first and second axisym-
metric modes and their deformed shape, from a finite-element computation. Each color correspond 
to a given (constant) level of the forcing. ‘o’: upward stepped sine; ‘+’: downward stepped sine 
(from Chaigne et al. (2005)) 

backbone curve and cross it close to the resonance points. An example of parametric 
resonance of a piezoelectric structure will be addressed in Sect. 4.6.5. 

A continuous system We now consider a more complex example: the forced 
response of a thin shell. This example is taken from Chaigne et al. (2005), in which 
the vibrations of an orchestral gong (a musical instrument also known as chinese tam-
tam), known for its strong nonlinear vibratory and acoustic behaviour, is addressed. 
It has the form of a thin shell of revolution with a profile sketched in Fig. 4.6a. In the 
experiment, it is subjected to a sine forcing in the middle (created by a coil/magnet 
exciter) and the vibrations are measured by an accelerometer. Because of the sym-
metry of revolution, the mode shapes can be gathered into two families. The first 
one includes all the modes with an axisymmetric shape, that have only nodal circles, 
whereas the second groups all the others, that have an asymmetric shape with nodal 
diameters. Some mode shapes are shown in Fig. 4.7. 

We first consider a stepped sine experiment, as explained above in the case of the 
pendulum, to measure the resonance curves of the two first axisymmetric modes.
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As shown in Fig. 4.6b, c, the same hysteretic behaviour as in the case of the pen-
dulum is observed. However, the resonance curve of the first mode bends to the 
high-frequencies (Fig. 4.6b), whereas the one of the second mode bends to the low 
frequencies, leading respectively to so-called hardening and softening behaviours. 

We now consider another experiment, with the same setup (Fig. 4.6a), in which we 
drive the shell by a sine signal of fixed frequency . fdr, chosen at the resonance of the 
third axisymmetric mode (. fdr = 556 Hz), and with a slowly increasing amplitude. 
Figure 4.7 shows the time/frequency plot (spectrogram) of the measured accelera-
tion signal, showing three successive vibratory behaviour. At low forcing amplitude 
(remember that the forcing increases with time), the response of the structure is peri-
odic at fundamental frequency . ω, with an harmonic distortion that increases with 
the forcing level. Then, for a certain forcing amplitude, a sudden transition (a bifur-
cation, at .t - 17s) leads to the appearance in the spectrum of subharmonics, two at 
the beginning and then up to nine for a higher forcing level. Looking at the values 
of the frequencies, one can observe that they fulfill the following internal resonance 
relationship: 

. fdr = 2 fi = f j + fk, (4.5) 

with . fi , f j , fk three subharmonic frequencies. Since those frequencies (except . fi ) 
are non-commensurable with. fdr, the obtained vibration signal is by definition quasi-
periodic. Moreover, it can be shown that the values of . fi , f j , fk are all very close to 
the natural frequencies of some modes of the shell, whose mode shapes are shown in 
Fig. 4.7. Finally, a second bifurcation appears for a higher forcing level (at time . t -
53 s), giving rise to a more complex vibratory response with a continuous frequency 
spectrum. It is a strongly chaotic response, known as wave turbulence, by analogy 
to what appends in a fluid (Cadot et al. 2016). 

To conclude this section, the chosen examples highlight the main nonlinear phe-
nomena that are commonly encountered in dynamics. As a summary, non-linearities 
are often responsible for:
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• the possible appearance of three kind of responses, of increasing complexity: 
periodic, quasi-periodic or chaotic; 

• the bending of the resonance curves, leading to hysteresis, jumps during sine 
sweeps, characterised by a hardening or softening behaviour; 

• the appearance of instabilities and bifurcations; 
• the appearance of secondary resonances; 
• the creation of new frequencies in the output spectrum of the system: 

– at least harmonic distortion for a one mode response, but also 
– sub- and super-harmonics (periodic response) and non-commensurable frequen-
cies (quasi-periodic response) linked to energy transfers between the modes of 
the structure, in particular because of internal resonances or 

– a full continuous spectrum (chaotic response), also facilitated if internal reso-
nances are present (see Touzé et al. (2011)). 

As discussed in the introduction, these nonlinear phenomena are very rich and often 
complicate the process and the analysis of numerical computation. The above cata-
logue can be viewed as a map, in particular to guide the analyst in designing a suitable 
reduced-order model. The remaining of the article will address those phenomena, 
both qualitatively and quantitatively. 

4.2.5 Computation Strategies 

Various strategies are available to compute the nonlinear response of a system, sum-
marised in Fig.  4.8. We focus here on the vibrations of a deformable body. The basic 
way of computing the dynamics of a system is to rely on time integration, either with 
powerful algorithms dedicated to small size first order dynamical equations (EDOs), 
path 6 of Fig. 4.8 (such as the Runge-Kutta family of algorithms, see e.g. Hairer 
et al. (2008)) or to algorithms dedicated to second order EDOs and implemented 
in finite-element codes, path 1 of Fig. 4.8 (see the Newmark and HHT families of 
algorithms, Géradin and Rixen (2015)). However, targeting the nonlinear behaviours 
enumerated in Sect. 4.2.4 with time integration can be very time consuming (even 
impossible for large size finite-element models) and does not provides insights on 
instabilities, bifurcations, multiple possible solutions and frequency domain steady 
states in a robust way, as continuation methods do. As discussed in Sect. 4.5, these 
methods, dedicated to nonlinear dynamics computations, are available as open source 
codes well suited for small size systems (path 7 of Fig. 4.8). For large size finite-
element models (path 2 of Fig. 4.8), no commercial solutions exist at the moment; 
some private codes exist (see Blahoš et al. (2020)) but the computation time remain 
huge. For small size reduced-order models (1, 2 or 3 degrees-of-freedom, it is also 
possible to use analytical perturbation methods (see e.g. Nayfeh and Mook (1979), 
Sanders et al. (2007)). 

In front of these huge computation times necessary for direct simulations of 
finite-element models, several reduction methods have been developed. Tradition-
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Fig. 4.8 Flowchart of several possible strategies to compute the nonlinear dynamics of a structure. 
The sections in which the topics are treated are indicated (Sects. 4.3–4.5) 

ally, the analytical models of structures (relegated to simple geometries such as 
straight beams, circular or rectangular plates, cylindrical and spherical shells…, see 
Sect. 4.3) are discretised by expansions on truncated eigenmode bases (path 5.1 of 
Fig. 4.8, see Sect. 4.4.2). Owing to the high physical content of eigenmode and 
their orthogonality properties that uncouple a linear dynamics, it is also possible to 
expand a finite-element model onto a reduced eigenmode basis (path 4.2 of Fig. 4.8, 
see Sect. 4.4.2). However, as shown in Chaps. 2 and 3 of this book and in Sects. 4.4 
and 4.6, using invariant manifold reduction methods (paths 3, 4.1 and 5.1 of Fig. 4.8) 
is a powerful, robust and theoretically consistent method to obtain the most accurate 
reduced order models. 

4.3 Structures with Geometrical Non-linearities 

This section gathers a few models of geometrically nonlinear structures. The main 
aims are (i) to give an overview of the different form of governing equations encoun-
tered with some well known models, (ii) to analyse the effect of symmetries in the 
geometry of the structures or of their dynamics and (iii) to address the physical 
mechanisms that create the geometrical nonlinearities.
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4.3.1 Three-Dimensional Elastic Structures 

We consider a continuous elastic medium subjected to large rotations and small 
strains. From a physical point of view, this means that the deformation of the con-
tinuous medium can be described as follows: each of its fibers undergoes a transfor-
mation that can be split in (i) a rigid body motion of any amplitude (the angle . θ in 
Fig. 4.9 can be arbitrary large) (ii) onto which is superimposed a small deformation, 
associated to small (local) strains. 

In this context, a correct strain measure is the Green-Lagrange strain tensor, 
defined by: 

.ε = 1

2

(

FTF − 1
)

= 1

2

(

∇u + ∇
Tu + ∇

Tu∇u
)

, (4.6) 

where . u is the displacement field, .F = 1 + ∇u is the deformation gradient, . 1 the 
identity tensor and.∇,∇T are the tensor gradient and its transpose. The strain tensor. ε
is energetically conjugated to the second Piola-Kirchhoff stress tensor. σ and, because 
the medium is elastic,. σ derives from a potential energy density.W (with unit [J/m. 

3]). 
Moreover, since the local strains are small, it allows to chose a linear constitutive 
law (sometimes known as a Saint Venant-Kirchhoff model (Holzapfel 2000)). This 
reads: 

.σ = ∂W

∂ε

⇒ ε = 1 + ν

Y
σ − ν

Y
trσ1, (4.7) 

where .(Y, ν) are Young’s modulus and Poisson’s ratio of the material and . tr the trace 
operator. 

The principle of virtual work states that for all time . t and virtual displacement 
.δu: 

. −
{

G

σ : δε dG +
{

G

f e · δu dG +
{

∂G

Fe · δu dS =
{

G

ρü · δu dG, (4.8) 
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.G, ∂G being the domain and its boundary, occupied by the initial configuration of 
the medium. Moreover, “. :” denotes the doubly contracted product of two tensors and 
. ρ is the density of the material. Considering the linear elastic constitutive law (4.7), 
.σ is a linear function of . ε and thus a quadratic function of the displacement field 
. u. In addition, taking the first variation of Eq. (4.6) shows that .δε is linear in . u. As
a consequence, the first term of (4.8) is a polynomial function of . u, with quadratic 
and cubic nonlinearities at most. 

Finally, applying any three-dimensional finite-element discretisation method 
to (4.8) with (4.7) leads to: 

.Mẍ + Kx + f nl(x) = f e, (4.9) 

where .x ∈ R
N gathers all the displacement components of the nodes of the finite-

element mesh, with.N the associated number of degrees-of-freedom, and with . M, K

the mass and stiffness matrices, of size .N × N , . f e the external force vector and . f nl
the internal nonlinear force vector, of size . N , that can be formally written . fnli =
G i jkx j xk + Hi jklx j xkxl (with Einstein’s notation), that includes quadratic and cubic 
only polynomial terms. This formulation is the one implemented in most nonlinear 
finite element codes (see e.g. Abaqus (2024), Aster (1989–2024)). However, . f nl is 
never written with quadratic and cubic components.(G i jk , Hi jkl)but simply computed 
upon request for a given . u. 

The above model does not include dissipation, a subject addressed in Sect. 4.4.1. 
Moreover, for more details about continuum mechanics, refer to Holzapfel (2000), 
Salençon (2001), Wriggers (2008). 

4.3.2 Beam Models 

A beam is a continuous medium obtained by moving a plane surface .S(x) (called 
cross section) on a curve. C (called middle line,.x ∈ R being an arclength parametrisa-
tion) and keeping .S(x) orthogonal to . C. This medium is slender if the characteristic 
size .φ(x) of the cross section remains small with respect to the length . L and the local 
curvature radius .R(x) of the middle line: 

. ∀x, φ(x) << L , φ(x) << R(x)

In practice, .φ(x) < L/20 (and .R(x) < L/20) are correct upper limits for the beam 
model described hereafter to be valid at less than 1%. 

In a beam structural model, two main assumptions are stated. The first (and fun-
damental) one is about the motion of the cross sections during deformation. The 
simplest models prescribe that the cross sections remain rigid during deformation, 
stuck to the middle line which deforms (Assumption 1). Then, the so-called Euler-
Bernoulli (or sometimes Kirchhoff) assumptions state that the cross sections remain 
orthogonal to the deformed middle line during deformation, whereas Timoshenko
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assumptions, more general, allow a shear angle (the angle . γ̃ in Fig. 4.10) between 
the deformed cross section and the plane orthogonal to the middle line. 

The second assumption is about the stresses in the cross section. Because of 
its slender geometry, a beam balances external forces mainly by creating trac-
tion/compression stresses in its longitudinal fibers. The stress.σxx is then much larger 
than the transverse stresses .σyy and .σzz . Then, .σyy and .σzz are neglected in the beam 
model (Assumption 2). 

Geometrically exact model The geometrically exact beam model is based on 
the two assumptions introduced above (beam kinematics and transverse stresses 
neglected). It introduces no truncation on the rigid body rotations of the cross sec-
tions, such that it has no limit in term of deformation validity. This model was pro-
posed and used in different scientific communities (physics of solids, computational 
mechanics, nonlinear dynamics…) receiving different names (Kirchhoff theory, elas-
tica theory, Cosserat theory, geometrically exact theory, Simo-Reissner theory…). 
The interested reader can refer to Antman (1974), Reissner (1972), Simo and Vu-
Quoc (1988), Lacarbonara and Yabuno (2006), Thomas et al. (2016), Géradin and 
Cardona (2001), Bauchau (2011), Meier et al. (2019) for historical details. 

For the sake of simplicity, the derivations reported here are restricted to a straight 
beam (. C is straight) with deformations restricted to the plane .(ex , ez) (2D or plane 
deformations). All derivations are taken from Thomas et al. (2016). The interested 
reader can refer to Géradin and Cardona (2001) for the 3D case and to Linn et al. 
(2013), Meier et al. (2019) for the case of a curved middle line. 

We consider that the geometric center .G(x) of any cross section .S(x) is a point 
of the center line . C. Its position with respect to the center .O of a reference frame is 
.OG = xex , such that the position of any point .M of the beam contained in the cross 
section .S(x) is .OM = xex + yee + zez with .(x, y, z) ∈ R

3 its coordinates. 
Assumption 1 is satisfied by writing the displacement field .u(x, y, z) of any point 

.M of coordinates of the beam domain as (using the addition of vectors): 

.u = uG + [R(θ) − 1]GM, (4.10) 

Fig. 4.10 Beam kinematics. The time dependence of quantities is omitted for simplicity
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where .uG(x, t) is the displacement vector of the geometric center .G ∈ C of the cross 
section .S(x), .R(θ) is a rotation operator, .θ(x, t) is the rotation of the cross section 
around vector .ey and .GM = yee + zee is the position vector of point .M in the cross 
section .S(x). Indeed, as shown in Fig. 4.10, the motion of any cross section is the 
combination of a translation .uG and a rotation . R. With deformations in the plane 
.(ex , ez), the rotation operator is given by: 

.R(θ) =
(

cos θ − sin θ

sin θ cos θ

)

, (4.11) 

expressed in the frame .(ex , ez). 
The displacement of any point of the middle line being written .uG = uex + wez , 

with .(u(x, t), w(x, t)) the axial and transverse displacement fields, the displacement 
field .u = u(x, y, t) of the continuum (it does not depend on . y because of the motion 
restriction in .(ex , ez)) can be written as: 

.u = [u − z sin θ]ex + [w + z(cos θ − 1)]ez . (4.12) 

Computing the Green-Lagrange strain tensor with Eq. (4.12) leads to a cumber-
some expression because of the nonlinear term in Eq. (4.6). It is possible to simplify 
it by considering that the local strains are small (see Fig. 4.9). However, to simplify 
the local strain part in . εwithout affecting the rigid body motion of the cross sections, 
one cannot attack directly the term .∇

Tu∇u. An elegant way to realize this operation 
is to use the following pseudo-polar decomposition of the deformation gradient: 

.F = R(θ)U ⇒ U = R(−θ)F, (4.13) 

where .U is a stretch tensor, that represents the local strain free of the rigid body 
motion of the cross section. Computing .F with Eq. (4.12) and using Eq. (4.13), one 
can show that .U = 1 + L with 

.L =
(

e − zκ 0
γ 0

)

,

⎧

⎨

⎩

e = (1 + u,) cos θ + w, sin θ − 1,
κ = θ,,
γ = −(1 + u,) sin θ + w, cos θ,

(4.14) 

with .◦, = ∂ ◦ /∂x . In the above equations, . e is the axial strain, . γ is the shear strain 
and . κ the curvature, directly related to the local strains of the beam (refer to Thomas 
et al. (2016) for more physical insight). Introducing Eq. (4.13) into (4.6) together 
with the properties of the rotation operator, one shows that: 

.ε = 1

2

(

L + LT +✟✟✟LTL
)

=
(

e − zκ γ/2
γ/2 0

)

. (4.15) 

If the local strains are small, .(e, γ,κ) are small, .L is small and the last term in the 
above equation can be cancelled since it is small with respect to the two others.
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This operation is sometimes called in the literature a “consistent linearisation of the 
strains”, which leads to the final expression of the strain tensor . ε written above. 

Using the constitutive law (4.7) with.σyy = σzz = 0 (Assumption 2) leads to (using 
Eq. (4.14): 

.σxx = Y εxx = Y (e − zκ), σxz = 2Gεxz = Gγ, (4.16) 

with.G = Y/[2(1 + ν)] the shear modulus of the material. Then, the stress resultants 
(axial force, shear force and bending moment) are obtained as: 

. N =
{

S

σxx dS = Y Se, M =
{

S

zσxx dS = Y Iκ, T =
{

S

σxz dS = kGSγ,

(4.17) 
where there is a decoupling of the axial and bending motions because .G was chosen 
as the geometric center of .S(x), where .(S, I ) are its area and second moment of area 
and . k is a shear correction factor. 

Finally, taking the first variation of Eq. (4.14) to obtain .(δe, δγ, δκ) and using the 
principle of virtual work (4.8) with Eq. (4.16) and the definition (4.17) of . (N , T, M)

leads to the strong form of the governing equations of the geometrically exact beam, 
for all .(x, t) ∈ ([0, L], R

+), with . L the length of the beam: 

⎧ 

⎨ 

⎩ 

ρS ü = (N cos θ − T sin θ), + n, (4.18a) 

.ρSẅ = (N sin θ + T cos θ), + p, (4.18b) 

.ρI θ̈ = T (1 + e) − Nγ + M ,, (4.18c) 

where.(p(x, t), n(x, t)) are transverse and axial external forces per unit length, along 
with the natural boundary conditions, at .x = 0, L: 

. N cos θ − T sin θ = Ne, N sin θ + T cos θ = Te, M = Me, (4.19a, b, c)

in which .(Ne, Te, Me) are the forces and moments applied at the ends of the beam. 
The beam constitutive laws read, for all .(x, t) ∈ ([0, L], R

+): 

⎧

⎪
⎨ 

⎪
⎩ 

N = Y S
[

(1 + u,) cos θ + w, sin θ − 1
]

, (4.20a) 

.T = kGS
[

−(1 + u,) sin θ + w, cos θ
]

, (4.20b) 

.M = E Iθ,, (4.20c) 

obtained by combining Eqs. (4.17) and (4.14). 
A first comment on this model is that the geometrical exactness of the model, 

which enables, as discussed, to keep the rotation of the cross section exact, introduce 
trigonometric nonlinear terms of the form .(sin θ, cos θ), both in the equations of 
motion (4.18) and in the beam constitutive law. This model has very few exact 
analytical solutions (we can think if the static buckling of an elastica, Bažant and 
Cedolin (2010), Audoly and Pomeau (2010)) and may thus be solved numerically. 
To this purpose, a finite-element discretisation will be addressed at the end of the 
present Sect. 4.3.2. Other possibilities are to rely on truncated Taylor expansions
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of the .(sin θ, cos θ) nonlinearities to obtain simplified models, at the cost of getting 
back a validity limit. To this end, two widely used analytical models (the von Kármán 
model and the inextensible model) are reported hereafter. 

Von Kármán model (straight beam) This model was initially proposed in 
Woinowsky-Krieger (1950), Mettler (1951), Eringen (1952) as a first correction to 
a linear beam model to take into account the nonlinear stretching effect observed 
in beams with axial ends restrained, a major effect of the geometrical nonlinearities 
that will be explained later in this section. It is analogous to what was proposed for 
plate by von Kármán in 1910 (von Kármán 1910), which justifies the name of this 
model used in this text. 

Historically, this model was introduced by correcting an Euler-Bernoulli linear 
beam model by the fundamental assumption of keeping in the axial strain the first 
nonlinear term in. w only. Consequently, it is based on four assumptions: (i) an Euler-
Bernoulli kinematics (each cross section, during deformation, remains orthogonal to 
the deformed middle line), leading to neglect the shear strain (.2εxy = γ = 0), (ii) a 
linear relationship between the cross section rotation and the transverse displacement 
.θ = w,, (iii) a neglected rotatory inertia and (iv) a nonlinear term in .w added in the 
axial strain .εxx . This leads to: 

.e = u, + 1

2
w,2, εxx = e − zθ, = e − zw,,. (4.21) 

By considering for simplicity an homogeneous and isotropic material and a uniform 
cross section, using the same linear elastic constitutive law and stress resultant than 
in the geometrically exact theory (4.17), the strain expression (4.21) leads with the 
principle of virtual work (4.8) to the following governing equations for all . (x, t) ∈
([0, L], R

+): 

⎧

⎪
⎨

⎪
⎩

ρS ü − N , = n, (4.22a) 

.ρSẅ + Y Iw,,,, − (Nw,),
, ,, ,

axial/bending coupling

= p, (4.22b) 

associated to the natural boundary conditions, at .x = 0, L: 

. N = Ne, Nw, − M , = Te, M = Me. (4.23a, b, c)

The beam constitutive laws reads: 

.N = Y S

(

u, + 1

2
w,2

, ,, ,

axial/bending coupling

)

, M = Y Iw,,. (4.24a, b)
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Since with the Euler-Bernoulli assumptions the shear force .T is associated to a 
zero virtual work, it does not appear naturally and it is identified in the boundary 
conditions (4.23b) as .T = −M , (see Géradin and Rixen (2015)). 

This model can be obtained and justified from the geometrically exact model 
thanks to a Taylor expansion and truncation to the second order in . θ. Indeed, we first 
assume: 

. cos θ - 1 − θ2/2, sin θ - tan θ - θ, (4.25) 

and also that . u is of the order of .w2, as they appear in those respective orders in the 
expression of . e in (4.21). This is also justified by practical cases, as shown below. 
Then, Eq. (4.14) leads to: 

.γ = 0 ⇒ w,/(1 + u,) = tan θ - θ ⇒ θ - w,, (4.26) 

.e = (1 + u,)(1 − θ2/2) + w,θ − 1 ⇒ e - u, + w,2/2, (4.27) 

whereas Eq. (4.18) are rewritten: 

.ρI❆❆̈θ = T (1 + e) − N ❆γ + M , ⇒ T - −M , = −Y Iθ,, - −Y Iw,,,, (4.28) 

.ρSẅ =
[

Nθ − Y Iθ,,(1 − θ2/2)
], + p - (Nw,), − Y Iw,,,,, (4.29) 

.ρSü =
[

N (1 − θ2/2) + Y Iθ,,,θ
], + n - N , + n, (4.30) 

proving Eqs. (4.22–4.24). 
This model can also be rigorously justified from 3D elasticity by asymptotic 

expansion as a function of a small parameter linked to the intensity of the external 
force (see e.g. Ciarlet (1980), Millet et al. (2001)). 

In practice, the present von Kármán model is used for computing the transverse 
displacement field .w(x, t), leading often to consider the beam free of distributed 
axial force (.n = 0). The axial inertia, linked to the axial vibration motion which 
appear at high-frequencies, is also neglected. Equation (4.22a) then means that . N , =
0 ⇒ N (x, t) = N (t) is uniform over the beam length. Then, integrating Eq. (4.24a) 
over the beam length leads to: 

.

{ L

0
N dx = LN ⇒ N = Y S

L

(
[

u]L0 + 1

2

{ L

0
w,2 dx

)

. (4.31) 

where .[◦] is the variation of . ◦.
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If the beam’s ends are immovable,.u = 0 at.x = 0, L ,.[u]L0  = 0 such that Eq. (4.31) 
leads to: 

.N = Y S

2L

{ L

0
w,2 dx

, ,, ,

axial/bending coupling

. (4.32) 

This equation, along with the transverse equation of motion (4.22b), shows that the 
von Kármán model captures one major geometrically nonlinear effect encountered in 
thin structures: the axial/bending coupling. Indeed, a transverse deflection . w creates 
an increase of the beam length, that manifests itself by an axial tension .N > 0 in the 
beam because the beam ends are immovable. Eq. (4.32) shows that this is a second 
order nonlinear effect since .N is proportional to the square of . w, which is logical 
since in a linear straight beam model, axial and bending are uncoupled. Then, the 
axial tension .N ≥ 0 acts as an increase of bending stiffness because of the term 
.(Nw), = Nw,, of Eq. (4.22b). This explains that the geometrical non-linearities for 
a straight beam with immovable ends always create a hardening effect, well captured 
by the von Kárman equation. 

Eliminating .N between Eqs. (4.32) and (4.22b) leads to the following equation 
of motion in .w(x, t), for all .(x, t) ∈ ([0, L], R

+): 

.ρSẅ + Y Iw,,,, − Y S

2L
w,,

{ L

0
w,2 dx = p. (4.33) 

Consequently, for a straight beam, the geometrical non-linearities create cubic terms 
only. 

The validity range of the von Kármán model, in term of transverse deflection, 
depends on the value of . θ since it relies on Eq. (4.25), valid for .θ(x) < 20 deg. 
In term of transverse deflection, the validity limit depends on the pattern .w(x) : in
vibrations, if we consider the motion on a single mode shape, the higher the mode is, 
the higher.θ(x)will be for a given maximum value of.w(x). However, the validity limit 
is often given in the literature as .w(x) < 3φ, where . φ is the characteristic dimension 
of the cross section in the transverse direction (thickness, diameter…). This result is 
confirmed for the backbone curves of the first mode of a clamped-clamped beam in 
Debeurre et al. (2023a). However, in static buckling onto the first mode, it is shown in 
Neukirch et al. (2021) that the validity limit should be given with respect to the length 
of the beam and is found to be .w(x) < 0.2L , which is much higher. This question 
deserve clarifications, but keeping a rough value of .w(x) < 3φ seems interesting 
in practice since non-linearities often appear at an order of magnitude lower, of the 
order, of .w(x) - φ2/L , a value often used to obtain scaled equations when using 
perturbation methods (see Touzé et al. (2002), Thomas et al. (2005)). 

Finally, it should be noted that if the beam is free in the axial direction at one 
of its ends, meaning that .Ne = 0 at .x = L for instance, Eqs. (4.23a) and (4.22a) 
prove that .N = 0 for all .x ∈ [0, L]. As a consequence, the transverse equation of 
motion (4.22b) becomes .ρSẅ + Y Iw,,,, = p, which is linear, meaning that in the 
case of unrestrained axial ends, the von Kármán model is linear and does not include
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geometrical nonlinearities. These non-linearities appear at a higher order in . θ, that 
is captured by the inextensible model addressed hereafter. If the ends of the beam are 
not perfectly immovable, such in the case of a finite axial stiffness in the boundary 
conditions, the validity of the von Kármán model decreases with the stiffness of the 
boundary condition, requiring higher order models (or even a geometrically exact 
model), see Lacarbonara and Yabuno (2006). This is also the case for rotating beams 
under the effect of centrifugal force (Thomas et al. 2016). 

Von Kármán model (beam with initial curvature) If the beam is not straight (it is 
sometimes called an arch), the above derivations must be modified according to the 
local curvature and twist of the beam when computing the displacement field (4.12), 
the deformation gradient and the strains (4.14) (see Linn et al.  (2013)). However, 
those effects can be accounted for using Eqs. (4.32) and (4.22b) for a beam initially 
curved in the plane.(ex , ez). Indeed, we replace in those equations.w(x, t) by. w0(x) +
w(x, t) where .w0(x) is the initial profile of the beam and the “new” .w(x, t) is 
the transverse displacement with respect to the initially curved configuration. One 
obtains: 

. ρSẅ + Y S(❩❩w,,,,
0 + w,,,,) − N (w,,

0 + w,,) = p, N = Y S

2L

{ L

0
(❅❅w

,2
0 + 2w,

0w
, + w,2) dx,

(4.34a, b)

Then, we enforce that the initial configuration is stress free, meaning that the above 
equation is verified if .w ≡ 0, leading to cancel some terms (see above equation), to 
finally obtain: 

. ρSẅ + Y Iw,,,, − Y S

2L

[

2w,,
0

{ L

0
w,

0w
, dx

, ,, ,

linear

+
(

2w,,
{ L

0
w,

0w
, dx + w,,

0

{ L

0
w,2 dx

)

, ,, ,

quadratic

+w,,
{ L

0
w,2 dx

, ,, ,

cubic

]

= p. (4.35) 

This model is valid for moderate value of .w0(x) (see the discussion about the 
validity of the von Kármán model in the previous section) but has the advantage 
of highlighting the effect of curvature on the vibrations. In Eq. (4.35), the first line 
corresponds to the linear part of the model, with the second term that brings correc-
tions due to the non straight initial configuration (compare to Eq. (4.33)). Then, the 
second line shows the effect of the geometrical nonlinearities. The cubic (last) term 
is unchanged with respect to an initially straight configuration, but one observes the 
important result that the initial curvature of the structure brings quadratic nonlinear-
ities. 

Physically, the appearance of quadratic and cubic non-linearities in the equations 
can be linked to the transverse symmetry of the structure, as summarised in Fig. 4.11. 
For a flat structure, the transverse behaviour is symmetric: if a given . F creates .w(x),
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Fig. 4.11 Transverse symmetry, hardening and softening behaviour 

.−F gives .−w(x), i.e. the same pattern with opposite sign. From a structural point 
of view, an external force .F always creates a positive axial force .N (consider the 
term .w,2 in Eq. (4.32)) since the length of the beam always increases, whatever be 
the sign of . w. As a result, the bending stiffness always increases, the behaviour is 
always hardening and only cubic terms .w3 are present in the equations since they 
preserve the symmetry (if .F is changed in .−F , .w3 is changed in .−w3). 

The presence of an initial curvature breaks this transverse symmetry. For a pos-
itive curvature, .F > 0 brings tension (.N > 0) whereas .F < 0 brings compression 
(.−N < 0, see the term.w,

0w
, in Eq. (4.34b)) because it increases/decreases the length 

of the beam. As a result, the bending stiffness is modulated during an oscillation, giv-
ing rise to hardening or softening behaviour, depending on the vibration pattern and 
the amplitude of the oscillations. This qualitatively explains the hardening/softening 
behaviour of the shell in Fig. 4.6 and also the one of the arch considered in Mar-
coni et al. (2021), Vizzaccaro et al. (2022). Naturally, this brings symmetry breaking 
quadratic nonlinearities, since changing the sign of .w changes the absolute value of 
.αw + βw2, .α,β ∈ R. 

Inextensible model Another interesting and widely used analytical model is the so-
called inextensible model, initially proposed in Crespo da Silva and Glynn (1978a, b). 
It is able to capture rotations larger than achieved by the von Kármán model, extends 
it to the case of loose axial boundary conditions, including the cantilever beam case. 
It consists in (i) assuming an Euler-Bernoulli kinematics and neglecting the rotatory 
inertia, (ii) using an inextensibility constraint (we assume that the curvilinear length 
of the beam does not change during deformation) to condense the axial motion 
.u(x, t) into the transverse equation of motion, (iii) expanding and truncating the
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geometrically exact model to third order in . θ and (iv) assuming cantilever boundary 
conditions. 

Assumptions (i) and (ii) lead to .(γ, e) = (0, 0) and 

. (1 + u,)2 + w,2 = 1, cos θ = 1 + u,, sin θ = w,. (4.36a, b, c)

These relations can be obtained geometrically (see Thomas et al. (2016)) or here 
by solving Eq. (4.14) for  .cos θ and . θ with and .(γ, e) = (0, 0) and using . cos2 θ +
sin2 θ = 1. Then, Eq. (4.18c) gives .T = −M , = −Y Iθ,, and, eliminating .N in 
Eq. (4.18b) using (4.18a) and assumption (iv) (.N (L , t) = T (N , t) = 0 ∀t), the fol-
lowing partial integro-differential equation is obtained: 

.ρSẅ +
(
Y Iθ,,

cos θ

),
−

[

tan θ

{ x

L

(ρSü − n) dx

],
= p. (4.37) 

Finally, setting .n = 0 (no distributed axial load), eliminating . u using (4.36a) and 
performing a careful Taylor expansion up to order three in .w leads to the following 
governing equation for .w(x, t), for all .(x, t) ∈ ([0, L], R

+): 

. ρSẅ + Y Iw,,,, + Y I
(

w,w,,2 + w,,,w,2),

, ,, ,

curvature NL

+ ρS

2

[

w,
{ x

L

∂2

∂t2

({ x

0
w,2dx

)

dx

],

, ,, ,

inertia NL

= p.

(4.38) 
More details are provided in Thomas et al. (2016), Debeurre et al. (2023b). 

In this model, the geometrical nonlinearities create two groups of terms: (i) iner-
tia non-linearities, which come from the condensation of the axial inertia .ρSü into 
the transverse equation of motion and (ii) some curvature non-linearities, stemming 
from the fact that the curvature . κ, responsible for the bending stiffness (.M = Y Iκ, 
Eq. (4.17c)) is a nonlinear function of . w. It is interesting to notice that it is possible 
to write this model as a function of .θ(x, t) (see Farokhi et al. (2022)). In this case, 
there are only inertia non-linearities because the curvature .κ = θ, (Eq. (4.14b)) is a 
linear function of . θ. 

Finite-element discretisation In practice, it is interesting to have at our disposal 
solutions to the geometrically exact model, necessarily fully numerical, that are not 
limited in amplitude range like the two analytical models addressed above. Several 
numerical solving strategies exist in the literature, most of them being related to time 
integration (see e.g. Gerstmayr et al. (2008), Lang et al. (2011), Sonneville et al. 
(2014)). Since we are interested here in vibrations, especially around resonances, 
frequency domain techniques are interesting since they directly tackle the periodic 
steady state, including nonlinear mode computations (see Sects. 4.4, 4.5). 

The first step in this case is to discretize the geometrically exact model in space. 
In the planar deformation case considered above (Eqs. (4.18–4.20)), among other 
solution, simple Timoshenko beam elements can be used, leading to obtained the 
following set of equations, for all .t ≥ 0:
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.Mẍ + f (x) = f e, (4.39) 

with .M the mass matrix, of size .N × N with .N the number of degrees-of-freedom 
of the model, . f (x) the internal force vector, . f e the external force vector, both of size 
. N , and .x(t), that collects the displacement and rotation .(ui , wi , θi ), . i ∈ {1, . . . Nn}
of all the nodes of the finite-element mesh (of .Nn nodes, such that .N = 3Nn). In 
this case, . f (x) includes trigonometric non-linearities (see Thomas et al. (2016), 
Debeurre et al. (2023a) for details). 

It is possible to transform the nonlinearities in . f (x) into polynomials in an exact 
way by parametrizing the rotation operator .R with quaternions (in the planar case, 
this leads to replace . θ by .(q0 = cos(θ/2), q2 = sin(θ/2))), with the counterpart of 
adding an additional unity constraint. This transforms (4.39) into a DAEs (differ-
ential algebraic equations) and adds Lagrange multipliers in the unknown .x(t) (see 
Debeurre et al. (2024b), Grolet et al. (2024)). This approach is also possible for the 
full three-dimensional (3D) deformation case (see Lazarus et al. (2013), Cottanceau 
et al. (2017), Debeurre et al. (2024b)). It must be noticed that in this 3D case, the 
parametrisation of the rotation operator .R is less straightforward, necessarily brings 
constraints to avoid singularities and that other solutions than quaternions are avail-
able (see Géradin and Cardona (2001), Bauchau (2011), Bagheri et al. (2024)). 

4.3.3 Plate and Shell Models 

Plates (flat) and shells (with curvature) are the extensions to a two-dimensional (2D) 
medium of the beam model addressed in Sect. 4.3.2. A shell is a continuous medium 
obtained by moving a line segment on a 2D surface . E. It is thin if the length . h(x)

of the segment remains small with respect to the characteristic dimensions of .E (. x
is the position vector of any point of . E). 

The classical plate and shell models are based on the fundamental kinematical 
assumption analogous to that of the beam models: each segment is subjected to a rigid 
body motion during deformation, stuck to the middle surface that deforms. Then, the 
Kirchhoff-Love enforces the segments to remain orthogonal to the deformed middle 
surface and Reissner-Mindlin assumptions allow transverse shear, in an analogous 
manner than the Euler-Bernoulli and Timoshenko assumptions for beams. The trans-
verse stress.σzz (if.(ex , ey) is the plane tangent to the middle surface) is also neglected 
in the theory (see Chapelle and Bathe (2011)). 

The issues related to geometrical non-linearities in those models bare the same 
general principles to what appears for beam models. Geometrically exact models exist 
for shells (see Simo and Fox (1989), Simo et al. (1990), Bauchau and Sonneville 
(2021)), as well as von Kármán models (the fundamental von Kármán assump-
tion (4.21) for simplifying the Green-Lagrange strains was first proposed for plates 
in  von Kármán (1910)). However, there is one main fundamental difference, related 
to the intrinsic 2D structure of plates and shells.
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For beams, von Kármán models, that account for the nonlinear axial/coupling 
phenomenon, as seen in Sect. 4.3.2, are valid only if the axial motion of the beam 
is restrained by the boundary conditions. On the contrary, in the case of plates (and 
shells), the coupling between the bending motion and the stresses in the middle 
surface (called membrane stresses or forces) can appear even for completely free 
boundary conditions, because it is linked to a change of the metrics of the middle 
surface. This purely 2D effect appear if the deformed shape of the structure does not 
create a developable deformation (see Audoly and Pomeau (2010)). 

An example is the nonlinear vibration of free edge circular plates or spherical shells 
(see Thomas et al. (2003, 2007)) or the gong example in Sect. 4.2.4 (Fig. 4.6). If we 
consider for instance the first axisymmetric mode, a small elementary square element 
of the middle plane will be deformed into a trapezoid, creating in-plane stresses, 
whereas it will remain a square in the case of the first mode of a cantilever plate, free 
of in-plane stresses (see Fig. 4.12 for the two mode shapes). Due to this property, a 
large amount of practical applications of geometrically nonlinear plates and shells 
can be accurately modeled by von Kármán models (see Amabili (2008)). In the case 
of shells, depending on the type of curved geometry, the analytical models based 
on von Kármán strain-displacement relationship such as (4.21) take several names, 
depending on the seminal works that initiated them: Donnell, Mushtari, Vlasov, 
Koiter, Novozhilov…and large rotation (geometrically exact) are less necessary. 

In this text, only analytical von Kármán models are quickly reported, essentially 
to understand that they are very similar to the beam models of Sect. 4.3.2. From
Thomas and Bilbao (2008), we consider a plate of middle plane surface .E and 
constant thickness. h, and we denote by.w(x, t) the displacement of any point. x of. E. 
Neglecting in-plane inertia and external forces, it is possible to exactly characterize 
the in-plane stresses (which are the three independent components of a tensor) by a 

Extreme 
cross section rotation 

Membrane (axial) / bending coupling 

Large rotations (cantilever structure) 

Inertia & curvature non−linearities 

Immovable ends / 2D membrane effects 

(von Karman models) (high order / geom. exact models) 

(a) membrane (axial) forces 

(b) 

Fig. 4.12 The two main mechanisms of geometrical nonlinearities in slender structures
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scalar Airy stress function.F(x, t). The equation of motion can be written. ∀(x, t) ∈ (E, R+): 

⎧

⎨ 

⎩ 

D/\/\w + ρh ẅ = L(w, F) + p, (4.40a) 

./\/\F = −Yh

2
L(w,w), (4.40b) 

where ./\ is the 2D Laplacian, .D = Yh3/[12(1 − ν2)] is the bending stiffness of the 
plate and the.L(◦,o) is the Monge-Ampère operator (see Thomas and Bilbao (2008), 
Audoly and Pomeau (2010)), defined by: 

.L(◦,o) = /\ ◦ /\ o −∇∇◦ : ∇∇o, (4.41) 

its main property being that it is bilinear. 
In the same spirit as for curved beams, it is possible to obtain a shallow shell 

equation with (4.40) by replacing .w(x, t) by .w0(x) + w(x, t), with .w0 defining an 
initial non-plane geometry and the “new” .w being the displacement with respect to 
the initially curved configuration, and also by enforcing a stress-free initial condition. 
From Camier et al. (2009), one obtains: 

⎧

⎨ 

⎩ 

D/\/\w + ρh ẅ = L(w0, F) + L(w, F) + p, (4.42a) 

./\/\F = −Yh

2
[2L(w0, w) + L(w,w)]. (4.42b) 

All conclusions and comments raised for the beam models in Sect. 4.3.2 can also 
be analogously formulated for the present plate and shell models. The geometrically 
membrane/bending coupling appears here in the equations with (i) the terms. L(w,w)

in Eqs. (4.40b) and (4.42b), creating membrane forces .F proportional to the square 
of the transverse displacement . w, and (ii) with the term .L(w, F) in Eqs. (4.40a) and 
(4.42a) which brings cubic non-linearities in . w. Then, the initial curvatures brings 
a linear and quadratic terms in the equations thanks to .L(w0, w) and .L(w0, F) in 
Eq. (4.42b, a). The main difference in comparison to beams is that the 2D structures 
of the plates & shells leads to non uniform membrane forces (.F depends on . x
whereas .N was uniform for straight beams, see Eq. (4.32) and related comments). 
As a consequence, .F(x, t) cannot be eliminated to obtain a single cubic partial 
differential equation (PDE) in .w(x, t). 

4.3.4 Piezoelectric Structures 

In this section, we shortly address the inclusion of piezoelectric material coupling 
into the elastic geometrically nonlinear models addressed in the previous sections, 
with reference to Givois et al. (2021). Piezoelectric materials are able to transform 
a part of their strain energy into electrostatic energy and inversely (it is a reversible
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thermodynamic process) and are widely used in marine sonars, M/NEMS, electronic 
clocks, vibration control and health monitoring… 

The electromechanical coupling appears in the constitutive law of the material. 
In this text, we consider only a linear coupling, even if material non-linearities are 
often observed (see Chap. 3 of this book for MEMS applications as well as examples 
in Leadenham and Erturk (2015), Givois et al. (2020a) for macro-structure cases). 
Considering only a conservative coupling, the constitutive law (4.7) still derives from 
a potential energy (called here a Gibbs electrical free energy), but now depends on 
two new energetically conjugated electrical state variables: the electric field vector 
.E and the electric displacement vector . D, linked to the electrical polarisation of the 
medium (see Johnk (1988), Maugin (1988), Ikeda (1990)). This constitutive law, that 
replaces Eq. (4.7), can be written as follows, with Einstein’s notation: 

.

{

σi j = cEi jklεkl − eki j Ek,

Di = eiklεkl + eε
ikEk,

(4.43) 

where .cE is the rank 4 stiffness tensor (at constant electric field), . e is the rank 3 
piezoelectric coupling tensor and.E

ε is the rank 2 dielectric tensor (at constant strain). 
In the particular case of a purely elastic and isotropic media, .e = 0 and one recovers 
Eq. (4.7) with .cE solely function of .(Y, ν). 

When writing the equations of motion of a piezoelectric media, it is convenient 
to define the electric potential . ψ as: 

.∇ψ = −E, (4.44) 

and to use it as an unknown field that replaces . E, such that the principle of virtual 
work (4.8) becomes, for all time and virtual displacement and potential .(δu, δψ): 

. 

{

G

ρü · δu dG +
{

G

(σ : δε + D · δE) dG =
{

G

f e · δu dG +
{

∂G

(Fe · δu + qeδψ) dS,

(4.45) 
with .qe an external electric surface charge density. 

In practice, piezoelectric materials are often introduced in a system as thin lay-
ers, onto which two other layers of conducting material are added, all being called a 
piezoelectric patch. The latter create electrodes, whose purpose is, when connected to 
an electric circuit, to collect the electric charges created by the piezoelectric material 
and to couple the mechanical deformation to the electrical circuit. These electrodes 
create equipotential surfaces (surfaces onto which . ψ is uniform). As a consequence, 
the coupling with the electrical circuit is conveniently written using global variables, 
i.e. discrete variables associated to a given domain, that replace the usual local (fields) 
ones .(ψ, D). These global variables are the electric potential difference .V (t) (the 
voltage) between the electrodes and the global electric charge .Q(t) (the integral 
of .qe onto the surface of the electrodes). In a numerical model, the equipotential-
ity can be enforced with Lagrange multipliers. However, since no external electric 
charge are applied inside the piezoelectric domain, it is possible to perform an exact
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condensation of the internal electric degrees-of-freedom such that .(V, Q) becomes 
the only electrical unknowns of the problem (see Givois et al. (2021) for details). 

After applying any three-dimensional finite-element discretisation method to 
(4.45) with (4.43), one obtains, for all .t ≥ 0:

{

M ẍ + Kx  + f nl(x) +
(

f c + Pcx
)

V = f e, (4.46a) 

.CV −
(

f c + 1
2 Pcx

)T
x = Q, (4.46b) 

In the above equations, a single piezoelectric patch is considered, of electrical 
unknowns .(V (t), Q(t)), which is coupled to the displacement of the nodes of the 
finite-element mesh collected in vector .x(t), of size  . N . The first equation is asso-
ciated to the mechanical behaviour of the system, which may be used for actuator 
applications (one prescribes .V (t) to create mechanical deformations), whereas the 
second one refers to the electrical behaviour and may be used for sensor application, 
for which the electric state .(Q, V ) is created by the mechanical deformations in . x. 
For certain vibration control applications, both equations are coupled to an electrical 
circuit and need to be considered at the same time (see Ducarne et al. (2012)). 

As in the case of a purely elastic structure (see Eq. (4.9)), mechanical mass.M and 
stiffness .K matrices appear, and, more interestingly, the geometrical non-linearities 
have an identical effect, separated from the piezoelectric coupling, in the vector 
. f nl(x), of size  . N , which includes the same quadratic and cubic terms. The piezo-
electric coupling appear first with a constant vector . f c, of size . N , which, multiplied 
with the voltage.V (t) ∈ R, creates a forcing vector analogous to the mechanical forc-
ing . f e(t). This term is the classical one that appears in the case of the modeling of 
a linear piezoelectric structure (see Thomas et al. (2009)). In the second (electrical) 
Eq. (4.46b), . C is the electric capacitance of the piezoelectric patch. 

Finally, the joint effect of geometrical non-linearities and piezoelectric coupling 
create a particular term with the constant symmetric matrix.Pc, of size.N × N , which 
as the sense of a parametric driving term since .PcV (t) multiplies .x(t), analogous 
to what appears in the parametric driven pendulum Eq. (4.4). This effect will be 
physically addressed in Sect. 4.6.5. 

Whereas the same linear piezoelectric coupling . f c appear in both Eq. (4.46) 
because of the reversibility of the piezoelectric process, the nonlinear (parametric) 
coupling appear with a factor .1/2 in the electric equation. 

4.3.5 Scaling of the Equations 

An important point, left aside in the present text when writing the models for the 
sake of conciseness, is the scaling of the equations, which has two major benefits. 
First, it provides the list of the independent parameters of a given model. Second, it 
enables to scale the equations such that the relative order of magnitude of the term 
can be evaluated, for perturbation developments for instance (see e.g. Nayfeh and 
Mook (1979)).
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In the case of the geometrically exact model (Eqs. (4.18–4.20)), one can keep in 
mind that if .w is scaled by the length .L of the beam and with an Euler-Bernoulli 
kinematics, the model depends on only one free (dimensionless) parameter: the 
slenderness parameter .η = I/(SL2) = r2/L2, where .r =

√
I/S [m] is the radius 

of gyration, a measure of the characteristic diameter of the beam’s cross section 2

(see Neukirch et al. (2021)). As a consequence, plotting results in term of .w/L gives 
master results (see Neukirch et al. (2021) for examples). In the case of a Timoshenko 
kinematics, a second (shear) dimensionless parameter.μ = Yη/(kG) comes into play 
(see Debeurre et al. (2023a)). 

On the contrary, scaling .w by the radius of gyration . r leads to a von Kármán 
model (4.33) independent of any parameter, irrespective of the cross section geom-
etry, thus giving results with the largest scope (see Givois et al. (2019)). The same 
result apply for the plate model (4.40) if .w is scaled by .h/

/

12(1 − ν2) (see Givois 
et al. (2019)), and for the inextensible model (4.37) if . w is scaled by . L (see Thomas 
et al. (2016)). 

4.3.6 Synthesis 

As a short summary about the beam/plate/shell models, two fundamental issues have 
to be kept in mind. The first one is that there are two fundamental mechanisms 
of geometrical non-linearities in those thin structures, sketched in Fig. 4.12: the
membrane (axial)/bending coupling and the effect of large rotations, which brings 
inertia non-linearities. These two mechanisms guide the analyst in the choice of the 
right model (in particular, a von Kármán model should be avoided in the case of large 
rotations since it is linear and, inversely, if the axial motion is restrained in a way, a 
von Kármán model is sufficient). 

The second question is about the transverse symmetry of the structure, summarised 
in Fig. 4.11: a transversely symmetric structures (a homogeneous beam/plate or a 
composite beam/plate with a symmetric lamination) structures is only subjected to 
hardening behaviour and the symmetry is preserved in the equations of motion (cubic 
nonlinearities in the transverse displacement .w only). If the symmetry is broken 
because of curvature or/and a non-symmetric lamination, then a softening behaviour 
can occur and the equations of motion include quadratic non-linearities in . w. 

Finally, all those effects are taken into account in the 3D models of Sect. 4.3.1 
that are the most general ones since no assumptions about the kinematics of the 
cross sections and the transverse stresses are formulated. However, considering the 
thin structures beam/plate/shell models, in addition to give very accurate solutions, it 
enables to get an interesting insight in the mechanisms of deformation into play and 
probably guide the analyst in understanding some “blind” complex 3D finite-element 
simulations.

2 .r = h/
√
12 for a rectangular cross section of thickness. h and.r = φ/4 for a circular cross section 

of diameter . φ. 
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About piezoelectric coupling, it is interesting to note that all effects appear as 
separated terms in the equations (see Eq. (4.46a, b)): the elastic geometric non-
linearities on one side, the linear piezoelectric coupling on the other side and the joint 
effect of piezoelectric coupling and geometrical non-linearities. It is also interesting 
to note that this latter effect is responsible for a parametric driving term. 

4.4 Nonlinear Modes and Model Reduction 

As introduced in Sect. 4.2.5, several strategies exist to compute the response of a 
nonlinear system. When the geometry of the system is not simple, one may rely 
on a finite-element discretisation of the problem, which leads to EDOs (or DAEs 
in the case of geometrically exact model discretisation), as shown in Sect. 4.3 (see 
Eqs. (4.9), (4.39) and (4.46)). The size .N of those sets can be huge (several thousand 
or million degrees-of-freedom) in realistic practical applications, at first to reach a 
suitable convergence of the finite-element mesh, but also because of the complex 
geometries often encountered in engineering applications (see examples in Chaps. 
3 and 5 of the present book and also in Fig. 4.26). In this situation, direct (brute) 
simulations are time consuming, sometime out of reach, especially if several iterative 
computations are needed, in a design process for instance. This justifies the idea of 
model reduction, i.e. replacing the initial model by another one of a much smaller 
size, that is able to capture the awaited behaviour with a minimal and controlled 
error. 

As we address in this text the computation of a dynamical system in vibrations, 
the main class of phenomena to capture are linked to the resonance of this system. In 
the case of a linear system, the standard reduction method is to expand the dynamics 
on an eigenmode basis, which transforms the initial EDOs into an uncoupled set of 
linear oscillators, which enables and justifies a truncation, by keeping only a few 
modes, basically those which have their natural frequency in the spectrum of the 
excitation. This reduced order model can be refined by adding static modes (Balmès 
1996). 

If such an expansion is applied to a nonlinear system, the eigenmodes being in 
this case those of the associated linearised model, the obtained oscillators become 
coupled by nonlinear terms, which are the mathematical source of the nonlinear 
phenomena described in Sect. 4.2.4. In this situation, the question of the truncation 
of the expansion basis is not straightforward, justifying more powerful reduction 
techniques. 

Even if several reduction methods exist, we will focus here on the concept of non-
linear modes and invariant manifolds, since they give a clear mathematical frame-
work to efficiently reduce and compute quantitatively the dynamics in the case of 
resonant systems. Moreover, it will be seen that they also provide a powerful mean of 
giving qualitative insights into the understanding of the dynamics and in particular 
the phenomena enumerated in Sect. 4.2.4.
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4.4.1 The Question of Damping 

In all the models in Sect. 4.3, no damping was introduced. In contrast to inertia, 
elasticity or gravity forces, damping forces are delicate because the associated mod-
elling process is much less straightforward. The reason is that the physical sources 
of damping in mechanical systems are multiple: internal thermoelastic or viscoelas-
tic dissipation inside the material (Chaigne and Lambourg 2001), aeroelastic drag 
due to an interaction with the surrounding fluid during vibration (Colin et al. 2020; 
Debeurre et al. 2024a; Gallerand et al. 2024), anchor losses in M/NEMS (Chouvion 
et al. 2012), dry friction in the joints between several solid members (see Chap. 5 in 
this book), acoustical radiation (Gottlieb 1975)… 

In practice, the simplest damping model is a linear viscous one. In a finite-element 
context, one adds a term .C Ẋ in the equations of the model (in Eqs. (4.9), (4.39) 
or (4.46a)), with .C a constant damping matrix of size .N × N . In most commercial 
finite-element codes, a Rayleigh damping model is the standard choice, for which the 
damping matrix is mass and stiffness proportional: .C = αM + βK , with . (α,β) ∈
R

2 two coefficients. This model has no clear physical foundation and can be viewed 
as the easiest mathematical and numerical way of including damping in simulations. 
Moreover, considering that the damping ratio of the .k-th mode reads . ξk = (α/ωk +
βωk)/2 (with .ωk the natural frequency, see e.g. Géradin and Rixen (2015)), the 
stiffness proportional part (of coefficient . β) can be very unrealistic since it leads 
to necessarily overdamped modes (.ξk - βωk/2 > 1 for a high value of .ωk) in the
higher part of the spectrum. 

In the case of viscoelastic elastomeric or rubber materials, used as vibration isola-
tor or for vibration damping, the accurate simulation of their vibratory behaviour is 
usually done in the frequency domain since it enables taking into account experimen-
tally identified material laws linked to a complex and frequency dependent Young’s 
modulus (.C E Y ∗ = Y ,(ω) + iY ,,(ω), where .(Y ,, Y ,,) ∈ R

2 are the so-called storage 
and loss moduli, see Rouleau et al. (2017)). This linear damping model, coupled to 
geometrical nonlinearities, can have a nonlinear damping effect (see Debeurre et al. 
(2024a) and reference therein). 

Another common way of including damping is to rely on a modal viscous damp-
ing model, for which modal damping coefficients are adjusted separately for each 
eigenmode. This is a way of obtaining very accurate simulations since the damping 
model can be easily adjusted, either with a general frequency dependent law or by 
experimental identification (see Ducceschi and Touzé (2015)). 

All those models being linear, some intrinsically nonlinear damping sources can 
also arise, such as dry friction damping (see e.g. Vakilinejad et al. (2020)), aeroe-
lastic drag (see Colin et al. (2020), Debeurre et al. (2024a)), piezoelectric damping 
(Leadenham and Erturk 2015)…
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4.4.2 Linear Mode Expansion 

As a preliminary, this section addresses eigenmode expansions, for three reasons. 
Firstly, this is the standard method for discretizing the nonlinear analytical models, 
like those reported in Sect. 4.3. Secondly, modal expansions enable to character-
ize, interpret and help understand mathematically the effect of the non-linearities, 
by observing the non-linear terms that appear in the modal oscillators. Finally, they 
can constitute a powerful way of computing the dynamics when a good accuracy 
on the values of the natural frequencies and on the damping model is required (see 
Ducceschi and Touzé 2015). 

Basics of linear modes The eigenmodes (or natural or normal modes) of a linear 
system are fundamental solutions under free vibrations. For the reasons explained 
in Sect. 4.4.1, the question of having an accurate damping model is not simple and 
the standard practice in structural mechanics simulations is to use the eigenmodes 
of the undamped system. The eigenmodes of the undamped and linear system will 
be denoted here by Conservative Linear Modes (CLM). 

It is also possible to define the modes of the damped system, in the case of a linear 
viscous damping model (.C Ẋ ), by switching to the state space (see Géradin and Rixen 
(2015)). Those modes, called here Damped Linear Modes (DLM), are theoretically 
interesting since they uncouple the damped linear system, include damping factors in 
the eigenvalues and have complex (in. C) mode shapes associated to non synchronous 
motions. In practice, they are used as the basic model for experimental modal anal-
ysis. However, there are seldom used in computational dynamics since one has to 
specify the damping matrix . C , unknown in most practical cases. Moreover, if the 
damping is light, it can be seen (see Géradin and Rixen (2015)) that, at first order, 
the CLMs diagonalize the damped system, such that DLMs are useless. 

Conservative Linear Modes We start by linearizing the analytical and numerical 
models of Sect. 4.3, that can be put under the following general form in free vibrations, 
either PDEs (continuous in space) or ODEs (discretised in space): 

. 

{

M(ẅ) + K(w) = 0
Bi (w) = 0, i = 1, . . . K

, Mẍ + Kx = 0, (4.47a, b)

where .(M,K,Bi ) are differential operators and .K is the order of the stiffness opera-
tor . K (see Meirovitch (1967) for more details about this formalism). Their definition 
is straightforward: in the case of the beam model of Eq. (4.33), one has. M(o) = ρSo
and.K(o) = Y Io,,,,; in the case of the plate model of Eq. (4.40), one has. M(o) = ρho
and .K(o) = D/\/\o. In both cases,.K = 4 boundary conditions .Bi = 0 are required. 

Then, looking for solutions uncoupled in time and space such as . w(x, t) =
D(x)q(t) and .x(t) = Gq(t), assuming that .K and .K are positive (i.e. the equi-
librium point .(w, x) ≡ (0, 0) is stable, or at least indifferent), the problems (4.4.2) 
leads to the following solution:
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. q̈ + ω2q = 0,

{

K(D) − ω2M(D) = 0
Bi (D) = 0, i = 1, . . . K

, (K − ω2M)G = 0.

(4.48a, b, c)
The first equation above shows that .q(t) oscillates at frequency . ω. Then, the two 
last equations are the eigenvalue problems that defines the CLMs .(ωk,Dk(x)) and 
.(ωk,Gk) of the problems, .k ∈ N

∗. For the analytical models, . k may be theoretically 
infinite, whereas for the discretised model, .k ∈ 1, . . . N . 

The families of mode shapes (or eigenvectors) .{Dk(x)}k∈N∗ or .{Gk}k=1,...N con-
stitute bases of the space of solutions which are orthogonal to the mass and stiffness 
operators, such that: 

.

{{

G
DiM(D j ) dG = miδi j{

G
DiK(D j ) dG = ω2

i miδi j
,

{

GiMG j = miδi j
Gi KG j = miωiδi j

, (4.49) 

where .δi j is the Kronecker delta, .mi the modal mass of the . i th CLM and .G is the 
domain of the middle line/surface of the structure under concern. 

We look for a solution of the models of Sect. 4.3 in the form of the modal expan-
sions: 

. w(x, t) =
M

E

k=1

Dk(x)qk(t), x(t) =
M

E

k=1

Gkqk(t), (4.50a, b)

where the .{qk}k=1,...M are the modal coordinates and .M is the number of eigen-
vectors kept in the expansion basis. Injecting the above solution in the equation of 
motion, multiplying by a mode shape .D j (x) or .GT

j and using the orthogonality prop-
erties (4.49) leads to modal equations that will by analysed in the following. 

Analytical models for uncurved structures For didactic reasons, some details 
on the modal expansion process are first given on the straight von Kármán beam 
model (4.33). The CLMs .(ωk,Dk(x)) are solutions of (4.4.2b), that reads in the 
present beam case: 

.Y ID,,,, − ρSω2D = 0. (4.51) 

It possesses analytical solutions for simple boundary conditions (Géradin and Rixen 
2015). 

Injecting Eqs. (4.50) into (4.32) leads to: 

. N (t) = Y S

2L

M
E

i=1

M
E

j=1

Ei jqi (t)q j (t), Ei j =
{ L

0
D,

iD
,
j dx . (4.52a, b)

Then, injecting (4.50) and the above equation in the equation of motion (4.22b), 
multiplying both members by .D j (x), integrating the result from .x = 0 to .x = L and 
using (4.49) leads to, .∀k = 1, . . . M :
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.q̈k + 2ξkωk q̇k + ω2
kqk +

M
E

i=1

M
E

j=1

M
E

l=1

γk
i jlqiq jql = Fk, (4.53) 

with 

. γk
i jl = − Y

2ρL

{ L

0 D,
iD

,
j dx

{ L

0 D,,
l Dk dx

{ L

0 D2
i dx

, Fk(t) =
{ L

0 Dk(x)p(x, t) dx

ρS
{ L

0 D2
i dx

.

(4.54a, b)
The above coefficients are computed in practice by numerical integrations, depending 
on the analytical expressions for the mode shapes .Dk(x) and the external forcing 
.p(x, t). Note also that modal viscous damping terms, of modal ratio . ξk , have been 
heuristically added. 

Coefficients .γk
i jl in Eq. (4.54a) take a simplified form in the case of sim-

ple boundary conditions, since the second integral in the numerator can be writ-
ten .

{ L

0 D,,
l Dk dx = −

{ L

0 D,
lD

,
k dx + [D,

lDk]L0 . With any combination of clamped, 
hinged or guided boundary conditions, the second term .[D,

lDk]L0 is zero and one 
simply obtains: 

.γk
i jl = Y

2ρL

Ei j Ekl
{ L

0 D2
i dx

, (4.55) 

with .Ei j = E j i , defined by Eq. (4.52b) and directly related to the deformed shapes 
of the natural modes. 

For the plate model (Eq. (4.40)), with a similar algebra, the same modal 
model (4.54) is obtained, with the value of the cubic coefficient that also depend 
on membrane mode shapes (see Thomas and Bilbao (2008)). 

Finally, since those structures are flat, only cubic nonlinear terms are obtained 
(see Fig. 4.11). They can be positive or negative depending on the four mode shapes 
.(Di ,D j ,Dl ,Dk) involved in .γk

i jl and their scaling. However, coefficient .γk
kkk is 

always positive (it is proportional to .E2
kk , see  Eq. (4.55)), such that the associated 

nonlinear behaviour is always hardening (see Sect. 4.4.5). 

Analytical models for curved structures In the case of the models for curved 
structures, it is often convenient to choose the modes of the associated uncurved 
structure as an expansion basis, since those of the curved structure are often not 
known analytically. Proceeding to the same computation than for the straight beam 
with Eq. (4.35), one obtains, .∀k = 1, . . . M : 

.q̈k + 2ξkωk q̇k + ω2
kqk +

M
E

i=1

αk
i qi +

M
E

i, j=1

βk
i jqiq j +

M
E

i, j=1

γk
i jlqiq jql = Fk, (4.56) 

where the quadratic terms arise from the initial curvature of the structure. The linear 
coupling appear because the expansion basis (the one of the uncurved structure) is
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not the one of the eigenmodes of the curved structure, which would diagonalised the 
linear part of the dynamics (.αk

i would vanish in this case). 
If the initial profile .w0 of the structure is expanded onto the same modal basis: 

..w0(x) =
M0E

k=1

akDk(x), with ak = 1

mk

{ L

0
M(w0(x))Dk(x) dx, (4.57) 

(the second expressions comes from the mode orthogonality), nice expressions are 
obtained for .αk

i and .βk
i j , that depend only on coefficients .γ

k
i jl : 

.αk
i =

M0E

j,l=1

γk
i jla jal , βk

i j =
M0E

l=1

(

γk
i jl + 2γk

l j i

)

al . (4.58) 

This method is interesting in particular to study the effect of imperfections on the 
nonlinear response of a structure. It was used for plates ans shells in Camier et al. 
(2009), Amabili (2008) and was extended more recently for arbitrary structures 
discretised in a finite-element context (Marconi et al. 2021). 

Inextensible model Applying the same procedure to Eq. (4.38) leads to the follow-
ing modal model, .∀k = 1, . . . M : 

.q̈k + 2ξkωk q̇k + ω2
kqk +

M
E

i, j,l=1

[

γk
i jlqiq jql + πk

i jl(q̈ jql + q̇ j q̇l)qi

]

= Fk, (4.59) 

where the coefficients .γk
i jl and .π

k
i jl are also functions of the mode shapes .Dk , see

Thomas et al. (2016), Colin et al. (2020) for details, and can be computed by 
numerical integration. 

Finite-element discretisations We first consider the 3D finite-element discreti-
sations of a purely elastic medium. Introducing the modal expansion (4.50b) into 
(4.9), multiplying by .GT

j and using the orthogonality properties (4.49) leads to, 
.∀k = 1, . . . M : 

.q̈k + 2ξkωk q̇k + ω2
kqk +

M
E

i, j=1

βk
i jqiq j +

M
E

i, j=1

γk
i jlqiq jql = Fk, (4.60) 

with.Fk(t) = G
T
k f e(t). Since the basis used for the expansion is the eigenmode basis 

of the associated linear problem, the linear part is diagonal and quadratic and cubic 
nonlinearities are obtained. 

In contrast to the analytical models addressed above, the computation of the 
nonlinear coefficients .βk

i j and .γ
k
i jl is less straightforward. Indeed, standard finite-

element codes have built-in procedures to compute the eigenmode basis .{(ωk,Gk)},
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but expanding the internal force vector . f nl(x) onto them is not standard. However, 
it is possible to perform this operation non-intrusively (i.e. with numerical proce-
dures already implemented in finite-element codes), following the so-called STiffness 
Evaluation Procedure (STEP), a very clever method first introduced in Muravyov and 
Rizzi (2003). 

The STEP consists in computing . f nl(x) for prescribed . x chosen as combination 
of mode shapes. As an example, if .x = ±aGk , the orthogonality of the modes shows 
that necessarily .qk = ±a and .q j = 0,∀ j /= k. Introducing those equations into the 
nonlinear part of (4.60) leads to: 

.a2βk
kk + a3γk

kkk = G
T
k f nl(aGk), (4.61a) 

.a2βk
kk − a3γk

kkk = G
T
k f nl(−aGk), (4.61b) 

where the second member is obtained considering the nonlinear part of Eq. (4.9) 
(.Fk = G

T
k f e = G

T
k f nl(x)). As a consequence, the nonlinear coefficients are the 

solutions of linear systems where the second member can be easily computed with 
any finite-element code that include geometrical non-linearities computations. In 
practice, the value of . a must be adjusted by hand such that .aGk correspond to a 
displacement in the validity domain of the model (see Givois et al. (2019)), with no 
difficulty in practice. The other coefficients can be obtained by more complex modal 
combinations such as .±aGi + ±bG j etc. 

Following the same procedure, the 3D finite element discretisations of a piezo-
electric structure of Eq. (4.46) leads to (see Givois et al. (2021)): 

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

q̈k + 2ξkωk q̇k + ω2 
k Xk +

M
E

i, j=1 

βk 
i jqiq j +

M
E

i, j,l=1 

γk 
i jlqiq jql 

+
M

E

i=1 

θik  Vqi = Fk − χk V, (4.62a) 

.CV −
M

E

k=1

χkqk −
M

E

i, j=1

1

2
θi jqiq j = Q, (4.62b) 

in which the modes must be normalised such that .mk = 1 for all . k, with no loss of 
generality (otherwise the piezoelectric coefficients .χk and .θi j are different by . mk

in the two equations). As already analysed in Sect. 4.3.4, the piezoelectric effect 
creates a linear coupling, which appear here with the so-called linear piezoelectric 
coefficient .χk = G

T
k f c, and with a nonlinear coupling of coefficient . θi j = G

T
i PcG j

that creates a parametric driving in Eq. (4.62a). The piezoelectric coefficients .χk and 
.θi j can be also computed non-intrusively in a finite-element code with piezoelectric 
capabilities with an extension of the STEP (see Givois et al. (2021)).
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Geometrically exact model Finally, applying the same procedure to the discretised 
geometrically exact model (4.39) is not as simple. Indeed, the internal force vector 
. f (x) includes non-polynomial .sin and .cos nonlinearities that stops separating space 
and time, such that closed form modal models are not possible. This technique 
has however been successfully applied in Farokhi et al. (2022) to the analytical 
geometrically exact inextensible model of Eq. (4.37) by rewriting the equation 
in term of the single unknown .θ(x, t) in place of .w(x, t). It is used for a modal 
expansion onto the first six bending modes, which is sufficient to compute the first 
resonance of the system up to extreme amplitudes of vibrations. 

Synthesis As a synthesis, the modal models of this section (Eqs. (4.53), (4.56), 
(4.59), (4.60)) show that the nonlinearities couple the modal coordinates .qk(t). One
can imagine to truncate those modal models to a few modes, i.e. with .M small, in 
the same manner than for a fully linear model. This question will be considered in 
Sect. 4.6, and the next sections introduce the nonlinear mode concept, giving rigorous 
answers to this question. 

4.4.3 Definition of Nonlinear Modes 

The question of nonlinear modes is thoroughly addressed in Chap. 2 of this book, to 
which the interested reader may refer for rigorous definitions and reference list. This 
section may be read as a complement, as it considers only a few emerging issues, 
selected from the viewpoint of the practical use of the nonlinear modes as (i) an 
analysis tool to qualitatively understand the nonlinear dynamics and (ii) a model 
reduction tool to quantitatively and efficiently computing it. 

Due to the increase of complexity brought by non-linearities and the associated 
variety of particular phenomena (see Sect. 4.2.4) as compared to linear systems, 
and also because it is impossible to strictly extend the orthogonality property of 
the linear modes to the nonlinear range, several definitions of nonlinear modes 
exist and this section provides an overview of them. In this text, we simply use the 
terminology “nonlinear mode” in place of “nonlinear normal modes” (NNM), 3 for 
the sake of conciseness. 

Two families of definitions The basic idea beyond nonlinear modes is to extend the 
eigenmode concept, well defined for linear systems, to the nonlinear range. It is first 
convenient to consider the basic framework of linear modes: they are the fundamental 
solutions of a system in free vibrations, the easiest case being the conservative one. 
Consequently, we first consider the solution of: 

.Mẍ + f (x) = 0. (4.63)

3 The terminology “normal” means “fundamental” in the seminal work of Rosenberg (1962) and
must not be understood as “orthogonal”, which would not be appropriate for a nonlinear mode. 
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Fig. 4.13 Picture of a CNM in the phase space. a illustration of the non invariance of the linear 
eigenplanes b periodic orbits and associated invariant manifold (computed by continuation on the 
two degrees-of-freedom system of Lamarque et al. (2012)) 

If one first expands the linearised dynamics of the above system (i.e. with 
. f (x) = Kx) onto a family of eigenmodes (the CLMs in this case), thanks to their 
orthogonality properties, a collection of independent oscillators are obtained, of the 
form .q̈k + ω2

kqk = 0, ∀k, whose natural solution is sinusoidal for each modal coor-
dinate .qk(t). In looking for nonlinear modes, although the orthogonality property of 
the CLMs cannot be extended to the nonlinear range, two other interesting features 
can, leading to two families of definitions. 

• Because of non-linearities, the natural solutions of a nonlinear systems are often 
periodic and not purely sinusoidal. It leads to the first idea of defining a nonlinear 
mode as a family of periodic solutions of the undamped and unforced system (4.63) 
(Fig. 4.13b). This definition, initially proposed in Rosenberg (1962) and taken up 
by many authors since (see, among others Vakakis et al. (1996), Kerschen et al. 
(2009)), is naturally adapted to continuation methods (see Sect. 4.5) that enable 
to numerically compute the CNMs without limitation in amplitude. One has can 
also compute the stability of the CNM and possible bifurcations. 

• Secondly, because of the orthogonality of the modes, the modes are invariant. It
means that if initial conditions are chosen on one particular mode, then the motion 
remains concentrated on this mode: 

. x(0) = aGk, ẋ(0) = bGk ⇒ x(t) = Gkqk(t) ∀t > 0,

meaning .q j (t) = 0, ∀t > 0 ∀ j /= k (.a, b ∈ R are two constants). In the phase 
space, all trajectories obtained for different values of the initial amplitude . (a, b)

maps to a plane (called an eigenplane), which is said invariant since each trajectory 
initiated in this plane remains in this plane. With non-linearities, the eigenplanes 
are no more invariant (Fig. 4.13a), but it is possible to find other surfaces that are 
(Fig. 4.13b). Consequently, the second idea is to define a nonlinear mode as an
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invariant manifold of the phase space, as initially proposed in Shaw and Pierre 
(1991). This is a powerful concept since the invariance is the key property for 
model order reduction. A (weak) limitation is that most available computation 
techniques are asymptotic and are limited in range of amplitude from the equi-
librium solution, even if the range can be large thanks to the arbitrary order of 
the recent numerical solvers (see examples in Chaps. 2 and 3 of this book, and in 
Grolet et al. (2024)). 

The reader may refer to the second chapter of this book for a thorough history and 
list of references on those concepts, not proposed here for the sake of brevity. 

Conservative nonlinear modes (CNM) In the case of a conservative system, the 
two definitions are equivalent since any motion initiated on a periodic orbit remains 
in this periodic orbit and thus lies in an invariant manifold of the phase space. A 
Conservative Nonlinear Mode (CNM) is thus equivalently an invariant manifold of 
the phase space or a family of periodic orbits solutions of Eq. (4.63). 

More theoretically, the existence of the CNMs is proven by a theorem due to 
Lyapunov (Lyapunov 1907), which states that, with no internal resonance, there 
exist .N two-dimensional CNMs in the phase space that emerge from the equilibrium 
point and are tangent to the .N eigenplanes at this point. They are sometimes called 
Lyapunov Subcenter Manifolds (LSM) since their union is the center manifold 
(Kelley 1967; de la Llave and Kogelbauer 2019). An illustration of a CNM is given 
in Fig. 4.13, that shows the non-invariance of a CLM and the geometry of a CNM 
in the phase space, along with periodic solutions. 

Dissipative nonlinear modes (DNM) The case of a dissipative system is less 
straightforward since several non-equivalent definitions of a nonlinear mode (called 
here dissipative nonlinear modes (DNM)) coexist. The invariant manifold definition 
is still valid, brings no large difficulties with respect to the conservative case, is 
mathematically the most rigorous and leads efficiently to model order reduction (see 
Chap. 2 of this book). On the contrary, extending the periodic solutions concept to 
the dissipative case, mainly to keep the numerical ease of computation brought by 
continuation methods, is less simple. To follow this later idea, two other definitions 
deserves to be mentioned. A first idea, proposed in Laxalde and Thouverez (2009), 
is to define a DNM as a family of pseudo-periodic motions, obtained with a 
Fourier-Galerkin expansion of the dynamics. Another idea, proposed in Krack 
(2015), is to keep the family of periodic solutions concept by adding a fictitious 
negative linear damping term in the equation of motion, leading to use standard 
continuation numerical codes. This last concept has also the advantage to be adapted 
to computing non-smooth dissipative non-linearities such as dry friction. 

Phase resonance nonlinear mode (PRNM) In parallel to the above CNM and 
DNM definitions, a recent idea is to define a nonlinear mode as a Phase Resonance 
Nonlinear Mode (PRNM), which is a family of periodic solution of the harmonically 
forced system when a particular phase shift between the response and the forcing is
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enforced, as proposed in Volvert and Kerschen (2021). This concept is interesting 
since phase resonance is the foundation of particular experimental continuation 
techniques (see Denis et al. (2018)) and enables to naturally compute fundamental 
solutions of a nonlinear system in the vicinity of a primary resonance (Debeurre 
et al. 2024a), but also for secondary resonances (Volvert and Kerschen 2022; Porter 
and Brake 2024). However, this definition can appear incomplete since the obtained 
PRNM is not unique as it depends on the chosen forcing (its space dependence and 
its frequency content) and also because it can be shown that with a suitable choice 
of the periodic forcing (enabling force appropriation), a PRNM coincide with a 
CNM, irrespective of the damping of the system. Further discussions on this subject 
are postponed to Sect. 4.5. 

Model reduction of a forced system As a non autonomous system can be 
transformed into an autonomous one, it is possible to compute invariant manifolds 
in the case of a forced system, that enable to reduce the dynamics around a given 
resonance, being primary, secondary or parametric (see Chap. 2 of the present book). 

Synthesis Table 4.2 gives a summary of the discussions about nonlinear modes 
proposed here and in the second chapter of the present book. 

Analyzing the several definitions of nonlinear modes given above, the CNMs 
appear very interesting in many aspects. First, the equivalence between periodic 
orbits and invariant manifold enables a larger scope of application and computation 
methods. Secondly, in most practical applications for which a structure resonates, the 
damping is light, such that the CNMs give fundamental solutions of excellent quality 
to characterize the damped system, as for linear systems. Finally, experimental testing 

Table 4.2 Overview of definitions for linear and nonlinear modes. For nonlinear systems, the 
two columns refer to the two families of definitions: invariant manifolds, suitable for model order 
reduction (MOR), or families of periodic orbits, leading to continuation methods 

Linear system Nonlinear system 

Family 1 “MOR” Family 2 “computation” 

Free oscil. conservative CLM CNM 

.
(

K − ω2M
)

G = 0 . Mẍ + f (x) = 0

2nd order ODE 
eigensolutions 

Invariant manifold .⇔ Family of periodic solutions 

Free oscil. dissipative DLM DNM 

.(A − λB)Y = 0 . Mẍ + f d(ẋ) + f (x) = 0

1st order ODE 
eigensolutions 

Invariant manifold .⇔/ Several definitions 

Forced oscil. 
dissipative 

.
(

K − ω2M +
iωC

)

x̂(ω) = F̂

. Mẍ + f d(ẋ) + f (x) = F cosωt

FRF Invariant manifold Continuation of periodic solutions
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techniques such as phase locked loop continuation enable to directly target the CNM 
of a given system, whatever be its damping (see Sect. 4.5). 

However, DNMs have the advantage to naturally include the effect of the damping 
and thus to study the possible non-linear effects of the damping due to its coupling 
with the conservative non-linearities. It was reported in some examples that a strong 
linear modal (or Rayleigh) damping can have a nonlinear effect on the amplitude of 
a resonance (Touzé and Amabili 2006; Vizzaccaro et al. 2021b) or even change its 
trend of non-linearity (hardening or softening, see Touzé and Amabili (2006)), both 
effects well captured by a DNM. 

4.4.4 Normal Form for CNM Computation and Model 

Reduction 

While Sect. 4.4.3 is devoted to defining nonlinear modes, we address here a 
particular way, the so-called oscillatory normal form (ONF), of computing CNMs 
and using them for model reduction. The underlying idea is still to provide tools to 
qualitatively analyze and quantitatively compute, if possible, the nonlinear dynamics. 

Resonant terms As a preliminary, this section covers basics of resonant terms and 
internal resonances. As a didactic example, let us consider the following set of two 
free undamped quadratic oscillators:

{

q̈1 + ω2 
1q1 = β1q

2 
1 + β2q

2 
2 + β3q1q2, (4.64a) 

.q̈2 + ω2
2q2 = β4q

2
1 + β5q

2
2 + β6q1q2, (4.64b) 

with .{βk} ∈ R, .k = 1, . . . 6 coefficients and .(q1(t), q2(t)) two time functions. This 
can be obtained after reduction of the discretised modal model of a curved structure 
(such as (4.56) after diagonalisation of the linear part or (4.60)). The oscillations of 
this system, at first order (i.e. if .(q1, q2) are small), are such that: 

.q1(t) ∝ cosω1t, q2(t) ∝ cosω2t. (4.65) 

Consequently, the nonlinear terms verify: 

.

q2
1 ∝ 1

2

(

1 + cos 2ω1
,,,,

- ω2

t
)

, q2
2 ∝ 1

2

(

1 + cos 2ω2t
)

,

q1q2 ∝ 1

2

(

cos[ω1 + ω2]t + cos[ω1 − ω2
, ,, ,

- ω1

]t
)

.
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Table 4.3 Quadratic and cubic internal resonances: frequency relations and associated 
terminology 

Order 2 (quadratic) Order 3 (cubic) 

1:2 .( .ω2 - 2ω1 1:1 .( . ω2 - ω1

1:1+1 .( .ω3 - ω1 + ω2 1:3 .( . ω2 - 3ω1

1:1+2 .( . ω3 - ω1 + 2ω2

1:1+1+1 .( . ω4 - ω1 + ω2 + ω3

Then, if a second order internal resonance condition such as .ω2 - 2ω1 is fulfilled, 
the terms .q2

1 and .q1q2 contain an harmonic that oscillates with frequencies . ω1

and .ω2, respectively, such that they can be viewed as terms that drive the two 
oscillators at their respective resonances. Consequently, the two underlined terms 
in Eq. (4.64) are called resonant, whereas the others are non-resonant, since they 
provide excitation far from the resonances. The qualification of a given nonlinear 
term to be resonant or non-resonant is thus linked to a particular internal resonance 
relationship. We will also see that the resonant terms constitute the skeleton of the 
dynamics as they are responsible for strong energy transfers between modes (see 
Sects. 4.6.3 and 4.6.4). 

Internal resonances Internal resonance relationships are commensurable relations 
between a set of .N frequencies linked to a particular order . o of the associated res-
onant monomials. Order 2 and 3 internal resonances are reported in Table 4.3 with 
the associated terminology that specifies the integer multiples of the frequencies 
involved. For an arbitrary order . o, they can be put under the following form: 

.ω j -
N

E

k=1

(mk + mk+N )ωk, mk ∈ Z,

2N
E

k=1

|mk | = o, (4.66) 

This is a direct consequence of the product of sine and cosine functions, seen as a 
product of exponentials .exp(±iωk) (see also an analogous formula that involves the 
.2N eigenvalues .{±iωk}k=1,...N of the 1st order dynamical system associated to the 
linear part of (4.63) in Chap. 2 of this book). 

Some particular monomials are called trivially resonant since they are always 
resonant, even if no internal resonance relationship are at hand. An example is the 
nonlinear term .LX3 in the following Duffing oscillator: 

.Ẍ + ω2
0X + LX3 = 0. (4.67) 

This term, at first order, oscillates with two harmonics, at .ω0 and .3ω0, the first one 
leading to a resonant excitation of the oscillator. The trivially resonant terms are 
always of odd polynomial order, thus of order 3 at least.
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Normal form In this section, we apply the normal form method to the modal models 
of Sect. 4.4.2, and especially Eq. (4.60). The underlining idea is to find a change of 
variables (a priori nonlinear) that transforms this system into to a “simpler” one 

(with less nonlinear terms, even linear). The change of variables is chosen under a 
polynomial form, such that it is constructed order by order, at the same time as the 
new “simpler” dynamical system, called the normal form, which is also polynomial 
and that includes as few as nonlinear monomials as possible. In particular, it will be 
seen that all invariant breaking monomials are eliminated, such that at the end, the 
normal form is naturally composed of a collection of invariant oscillators, with a 
direct connection to nonlinear modes. 

The first step is to rewrite (4.60) into a first order dynamical system, by adding 
velocity unknowns . vk , .∀k = 1, . . . M : 

.q̇k = vk, v̇k = −ω2
kqk −

M
E

i, j=1

βk
i jqiq j −

M
E

i, j=1

γk
i jlqiq jql . (4.68) 

Then, the change of variables (called normal transform) is written formally, . ∀k, i ∈
{1, . . . M}: 

.

{

qk = rk + P
(o)
k (ri , si )

vk = sk + Q
(o)
k (ri , si )

, (4.69) 

where .(P
(o)
k ,Q

(o)
k ) are polynomials of order .o ≥ 2 in the new so called normal coor-

dinates.(ri (t), si (t)). Formally introducing the normal transform (4.69) into the initial 
dynamical system (4.68) leads to a new dynamical system in the .(ri , si ) variables 
that can be written as follows, .∀k, i ∈ {1, . . . M}: 

.

{
ṙk = sk

ṡk = −ω2
krk − R

(p)

k (ri , si )
⇒ r̈k + ω2

krk + R(p)(ri , si ) = 0, (4.70) 

where .R
(p)

k is a polynomial of order .p ≥ 2. Then, as shown in Touzé et al. (2004a), 
and also thanks to Poincaré and Poincaré-Dulac’s theorems (Poincaré 1982; Dulac 
1912), the core of the method is to choose the coefficients of the monomials in 
.(P

(o)
k ,Q

(o)
k ) such that they cancel as much monomials as possible in .R(p)

k . This is
achieved sequentially, order by order, as detailed in Touzé (2003). All monomials 
can be cancelled except those which are resonant since they are related to small 
denominators in the normal transform that would make it singular. 

The case of no internal resonance If no internal resonance is present, the . kth 
oscillator of the normal form (4.70), in the case of an order .p = 3, reads, .∀k: 

. r̈2k + ω2
krk +

(

Ak
kkk + γk

kkk

)

r3k + Bk
kkkrk ṙ

2
k + rkP̃

(2)
k (r j , ṙ j ) + ṙkQ̃

(2)
k (r j , ṙ j ) = 0,

(4.71)
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with . j /= k and where .(P̃
(2)
k , Q̃

(2)
k ) are polynomials of order 2 and . (Ak

kkk, B
k
kkk) ∈ R

depend on the quadratic coefficients.βk
i j and the natural frequencies.ωk (refer to Touzé 

et al. (2004a) for their analytical expressions). 
The first result is that the normal transform (4.69) is able to cancel all non-

resonant terms that where present in the initial system, such that the nonlinear part 
of the normal form (4.70) contains, in the present case where no internal resonance 
is considered, only trivially resonant nonlinear terms. Since no quadratic trivially 
resonant term exist, all quadratic term of coefficient .βk

i j have been cancelled and 
only cubic terms remain in the normal form. 

The second result is that all invariance breaking terms have been cancelled. This 
appears because the only coupling terms that remain in the . kth oscillator are pro-
portional to .(rk, ṙk) and to a polynomial in .(r j , ṙ j ) with . j /= k: if non-zero initial 
conditions are prescribed on the . kth oscillator, such that .(r j , ṙ j ) = (0, 0)∀ j /= k, all
coupling terms disappear, such that the dynamics is equivalent to only one oscillator, 
. ∀t : 

.r̈2k + ω2
krk +

(

Ak
kkk + γk

kkk

)

r3k + Bk
kkkrk ṙ

2
k = 0, r j = 0, ∀ j /= k (4.72) 

Thanks to this invariance property, the above truncated normal form is then equivalent 
to a dynamics that takes place on an invariant manifold of the phase space, which 
is identified to the . kth nonlinear mode (a CNM in the present case, see Sect. 4.4.3). 
Solving this dynamics gives .rk(t) and the normal transform enables to compute all 
modal coordinates, with relations of the form: 

.

{

qk = rk + P
(o)
k (rk, sk)

vk = sk + Q
(o)
k (rk, sk)

,

{

q j = P
(o)
j (rk, sk)

v j = Q
(o)
j (rk, sk)

, ∀ j /= k. (4.73) 

The above relations, independent of time . t , shows that the normal transform gives 
the geometry of the . kth invariant manifold of the . kth nonlinear mode in the phase 

space since they defined a two-dimensional manifold mapped by the coordinates 
.(rk, sk = ṙk). 

The third result is that the elimination of monomials of the initial system (4.68) 
of a given order . n affects or create monomials of order .n + 1 in the normal form. 
In the case illustrated above, the quadratic terms of coefficients .βk

i j add the cubic 
terms .Ak

kkkr
3
k and .Bk

kkkrk ṙ
2
k since .(Ak

kkk, B
k
kkk) are function of the .βk

i j and the natural 
frequencies .ωk (refer to Touzé et al. (2004a) for their analytical expressions). It must 
also be noted that the normal form adds velocity-dependent terms in the dynamics, 
that are important and sometimes overlooked in other reduction methods (Vizzaccaro 
et al. 2021a; Shen et al. 2021; Touzé et al. 2021). 

In Touzé et al. (2004a), the coefficients of .(P (3),Q(3),R(3)), up to order 3, are 
computed by symbolic computations and given as a function of the coefficient of 
the initial (modal) system .(βk

i j , γ
k
i jl). A numerical extension of this method, directly 

applicable to a finite-element discretised system under the form (4.63), with a non-
diagonal linear part, is proposed in Vizzaccaro et al. (2021b).

48



The case of internal resonance If an internal resonance relation between the nat-
ural frequencies .ωk is fulfilled, then the corresponding resonant terms create small 
denominators in the normal transform such that they cannot be eliminated and have 
to be kept in the normal form, as added terms in Eq. (4.71). 

As an illustration, we consider the specific case of a 1:2 internal resonance, 
addressed in Shami et al. (2022c) and Sect. 4.6.4. In this situation, two natural fre-
quencies are such that.ω2 - 2ω1. This creates resonant terms that couple the dynamics 
of the two corresponding normal oscillators, which are however still invariant with 
respect to all the other normal coordinates. As a consequence, the dynamics can be 
reduced to the two oscillators: 

. r̈1 + ω2
1r1 + β1

12r1r2 + (γ1
111 + A1

111)r
3
1 + (γ1

122 + A1
122)r1r

2
2

+ B1
111r1ṙ

2
1 + B1

122r1ṙ
2
2 + B1

212ṙ1r2ṙ2 = 0, (4.74a) 

. r̈2 + ω2
2r2 + β2

11r
2
1 + (γ2

222 + A2
222)r

3
2 + (γ2

112 + A2
112 − D2

112)r2r
2
1

+ B2
222r2ṙ

2
2 + B2

211r2ṙ
2
1 + (B2

112 − E2
112)ṙ2r1ṙ1 = 0. (4.74b) 

In the above equation, as announced, one can remark the appearance of additional 
quadratic resonant nonlinear terms associated to the .1 : 2 internal resonance (with 
underlines, see also Eq. (4.64a, b)). Other .cubic resonant terms also appear, stem-

ming from the polynomials .(P̃ (2)
k , Q̃

(2)
k ), k = 1, 2 in Eq. (4.71). The .(Ak

i jl , B
k
i jl) are 

coefficients that come from the elimination of the non-resonant quadratic terms, 
whereas the .(Dk

i jl, E
k
i jl) are related to the .1 : 2 internal resonance and depend on 

coefficient .(β1
12,β

2
11) of the two quadratic resonant terms. 

The corollary of the above two degrees-of-freedom reduced-order model is that 
internal resonances are responsible for a strong coupling between the modes of the 
system, created in the present case by the two underlined quadratic resonant terms. 
This situation arises because of the particular commensurable frequency relations 
of Eq. (4.66) and Table 4.3. This strong coupling is responsible for a change of the 
topology of the resonant response of the system, as illustrated in Sects. 4.6.3 and 
4.6.4. 

The internal resonances were analysed through a normal form, which is based 
on asymptotic expansions valid close to the equilibrium point .x = 0. The relation-
ships (4.66) thus naturally appear between the eigenfrequencies of the linearised 
dynamical system. However, since the free oscillation frequencies on the nonlinear 
modes depend of the amplitude of the oscillations, analogous strong coupling can 
also appear away from the equilibrium point, if analogous frequency relations are 
fulfilled between the free oscillations frequencies of the nonlinear modes. This case 
will be addressed in Sect. 4.6.3.
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Validity and order of expansion The normal form reduced-order models reported 
here, thanks to the invariance property, are exact in free vibration, up to the orders. o, p
of the normal form expansions. Their validity is thus reduced and can be extended by 
increasing the orders .o, p. More generally, the normal form developments addressed 
above are called “oscillatory normal form” (ONF) in Chap. 2 of this book and is a par-
ticular case of the general parametrisation method of invariant manifolds. Increasing 
the order of this ONF above order three appear cumbersome and the current practice 
is to rely on normal form expansion based on complex numbers (the so-called “Com-
plex Normal Form” (CNF)) that can be fully numerically automatised, in particular 
in a finite-element context, because they preserve some symmetries in the equations. 
On the contrary, the ONF have the advantage of keeping the equations in an oscilla-
tory form, which is easier for vibration analyses, and, despite its current limitation 
to third order, is able to explain a lot of results (see examples in e.g. Sect. 4.6). Its 
validity limit, up to given orders .o, p, seems larger as compared to the ONF, as seen 
in Fig. 4.14b and addressed in Sect. 4.6.1. Moreover, analysing the validity limit of a 
given normal form expansion is still an open question (see some ideas in Lamarque 
et al. (2012), Grolet et al. (2024)) and can be checked, if possible, by comparing the 
geometry of the invariant manifold with respect to a reference solution or, if it is not 
available, to observe the convergence of the normal form for increasing orders (see 
Fig. 4.14). 

4.4.5 Features of a Nonlinear Mode 

First order effect: hardening/softening behaviour If a single CNM model reduc-
tion is considered, its oscillations are solutions of the normal oscillator (4.72). At 
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Fig. 4.14 Examples of range of validity of a normal form expansion. a 3D view of the invariant 
manifold of a particular CNM, computed with a continuation method of periodic solutions and 
with third order ONF, showing the validity range of the latter (from Lamarque et al. (2012)); b 

convergence of backbone curves of the first CNM of a clamped-clamped beam computed with 
increasing order CNFs (blue) and a modal expansion (54) on 1 or 2 CLMs (red) and 20 CLMs 
(dashed black) (from Grolet et al. (2024)). The validity limit is also from this work
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first order, 4 one obtains: 

.rk(t) = ea1 cos(ωnlt + ϕ), r j = 0, ∀ j /= k, (4.75) 

where .e << 1 is a small bookkeeping parameter, . ϕ is an arbitrary phase and where 
the nonlinear oscillation frequency is: 

.ωnl = ωk

(

1 + 3L0(ea1)
2

8ω2
k

)

, (4.76) 

with 

.L0 = γk
kkk + Ak

kkk + Bk
kkkω

2
k

3
. (4.77) 

Then, the oscillations of the system are obtained with the normal transform (4.69), 
that reads: 

.qk = rk + O(e2), q j = O(e2), ∀ j /= k, (4.78) 

such that, with the modal combination (4.50b) and neglecting terms of second order: 

.x(t) - eGka1 cos(ωnlt + ϕ). (4.79) 

Equation (4.79) shows that the first order (major) effect of the nonlinearities is 
to change the free oscillations frequency .ωnl as a function of the amplitude . a of the 
motion, according to Eq. (4.76). It can increase (hardening behaviour) or decrease 
(softening behaviour), depending on the sign of .L0, as shown in Fig. 4.15 by the 
backbone curve .ωnl = f (a). In addition, Eq. (4.79) shows that at this first order, 
meaning moderate amplitude, the motion on a given CNM is synchronous 5 and has 
the spacial shape of the linear (CLM) mode shape .Gk . 

The hardening/softening behaviour of a given mode is thus governed by coefficient 
.L0. Its value and sign depend on the joint effect of the cubic coefficient .γk

kkk of the 
.k-th linear oscillator and of coefficients .(Ak

kkk, B
k
kkk), which are functions of all 

the quadratic coefficients .βk
i j , .i, j, k = 1, . . . M , of the initial modal model (4.60). 

These quadratic coefficients are related to the . kth mode but also to all the others, 
for .i, j /= k. In the case of a thin structure as those considered in Sect. 4.3, the . γk

kkk

are always positive (see Eq. (4.55)) and related to a hardening only effect due to the 
membrane/bending coupling (see Fig. 4.11). 

A softening effect can appear because of a given curvature of the structure, or more 
generally of a loss of transverse symmetry in the oscillations (see Fig. 4.11), that 
brings the quadratic nonlinear terms into play (see Sect. 4.4.2). However, a correct 
estimate of this trend needs the effect of all the .βk

i j coefficients, is thus affected by all

4 One can apply any perturbation method, such as multiple scale, averaging or harmonic balance 
reduced to a single harmonics. 
5 Synchronous means that all points of the system during the motion cross the zero position and 
their maximum at the same time, a characteristic of the motion onto a linear mode shape. 
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Fig. 4.15 Frequency response (amplitude of the first harmonics) of a Duffing oscillator (4.81) for
different values of the cubic nonlinearity coefficient. L. ‘- -’: backbone curve and ‘—’: harmonically 
forced oscillation. HBM simulations with .H = 20 harmonics and .ωk = 1, .ξ = 0.005, . F = 0.01
and . L ∈ {−0.2,−0.1, 0, 0.1, 0.2}

linear modes in addition to the . kth one and is naturally captured by the normal form 
through coefficients.Ak

kkk and.Bk
kkk . In particular, truncating the modal model (4.60) to

the . kth oscillator can lead to erroneous result for predicting the hardening/softening 
trend of the . kth CNM. In this case, the analytical expressions in Touzé et al. (2004a) 
give: 

.Ak
kkk = −2(βk

kk)
2

3ω2
k

, Bk
kkk = −4(βk

kk)
2

3ω4
k

, ⇒ L0 = γk
kkk − 10(βk

kk)
2

9ω2
k

, (4.80) 

such that this value of.L0 can be very different from the one of Eq. (4.77) that includes 
the quadratic effect of all slave modes. 

Including a large number of slave modes to accurately compute.L0 with Eq. (4.77) 
was successful to predict the hardening/softening behaviour of several systems, 
including beams and shells, in Touzé et al. (2004a, b, 2008), Camier et al. (2009), 
Touzé and Thomas (2006). Since the value of .L0 changes from one CNM to another 
one, the hardening/softening trend is mode dependent, which explains the results 
about the Chinese gong of Fig. 4.6. 

Finally, Eqs. (4.75)–(4.77) apply as well to the simple Duffing oscillator (4.67) 
provided .L0 = L, such that the backbone curves of the normal oscillator (4.72) and 
the one of a Duffing oscillator are identical at low to moderate amplitudes: their 
behaviour is equivalent. Indeed, the effect of the cubic velocity-dependent term . rk ṙ

2
k

can be embedded in a single cubic.r3k by replacing the the value of its coefficient by. L0

defined by Eq. (4.77). This result was numerically confirmed in Denis et al. (2018) 
along with the range of validity, in amplitude, of this approximation. This result 
will be used for experimental identification (see Sect. 4.5.2) and also for defining 
ex-nihilo reduced-order models (see Sect. 4.4.7).

52



Finally, it is possible at this first order to “artificially” add forcing and damping 
in Eq. (4.72), that becomes: 

.r̈k + 2ξkωk ṙk + ω2
krk + L0r

3
k = F cosGt. (4.81) 

This enables to simulate the forced oscillations that take place around the backbone 
curve (see Fig. 4.15). A more rigorous way of including damping and forcing is to 
consider appropriate time dependant invariant manifolds, as explained in Chap. 2 of 
the present book and in Opreni et al. (2023), Vizzaccaro et al. (2024). 

Second order effects: nonlinear mode shapes and backbone curves corrections 

To consider higher order effects, that emerge for higher motion amplitude, we correct 
the result of Eq. (4.75) by adding more harmonics. Since the nonlinearity in Eq. (4.81) 
is odd, the constant and second harmonics have a zero amplitude, so that a higher 
order periodic perturbative development gives: 

.rk = ea1 cosφ + e3a3 cos 3φ, r j = 0, ∀ j /= k, (4.82) 

where .φ = ωnlt + ϕ. Then, thanks to the normal transform (4.69), the modal coor-
dinate reads: 

. qk = rk + P
(o)
k (rk, ṙk)

= e2bk0 + e(a1 + e2bk1) cosφ + e2bk2 cos 2φ + e3bk3 cos 3φ + O(e4),

q j = P
(o)
j (rk, ṙk)

= e2b j0 + e3b j1 cosφ + e2b j2 cos 2φ + e3b j3 cos 3φ + O(e4), ∀ j /= k

where the .{bih}, .i = 1, . . . M , .h = 1, . . . H depend on .(a1, a3) thanks to the polyno-
mial.P (o)

i of order.o ≥ 2. Combining the.q j (t) thanks to the modal expansion (4.50b) 
finally gives the oscillations of the structure on the single . kth CNM as: 

. x(t) = Gnl(t) = eGka1 cosφ
, ,, ,

first order, synchronous

+ e2
M

E

i=1

Gi [bi0 + bi1 cosφ + bi2 cos 2φ + ebi3 cos 3φ] + O(e4)

, ,, ,

higher orders, possibly non synchronous

. (4.83) 

The above equation shows that the deformed shape of the . kth CNM is periodic 
and that it is the combination of a leading sine oscillation proportional to the . kth 
linear mode shape .Gk , with small corrections depending on all the other mode 
shapes at all harmonics. Those corrections are brought by the higher harmonics 
of .rk(t), but also by the normal transform (4.69), or equivalently because of the 
curvature of the invariant manifold. A CNM has thus a nonlinear mode shape,
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(a) (b) (c) 

(d) (e) 

Fig. 4.16 Examples of nonlinear deformed shapes.Gnl(t). a–cfirst three modes of a cantilever beam, 
from Debeurre et al. (2024a). Comparison between HBM computations from the geometrically exact 
model (Eqs. (4.18–4.20), grey) and from experiments (color); d, e two first modes of a ring, shown 
undeformed in black. HBM computations from the geometrically exact model (Debeurre et al. 
2023a) 

which can be non synchronous since it depends on time, even if this effect is 
of the second order. Some examples on nonlinear beams are given in Touzé 
et al. (2004b). Figure 4.16 also shows examples on a highly flexible structure at 
extreme amplitude. In this case, . e is no more small and the deformed shape can 
be very amplitude and time dependant. It even happens that the nonlinear motion 
does not include the equilibrium position as one of it snapshots (see the ring example). 

Effect of damping As explained in Touzé and Amabili (2006), Vizzaccaro et al. 
(2021b), the same normal form formalism as in Sect. 4.4.4 conducts to compute a 
damped nonlinear mode (DNM) that includes the effect of an initial linear diagonal 
damping (in the form of a modal model (4.60) or a Rayleigh model (see Sect. 4.4.1)). 
In this case, the dynamics onto a single DNM reads: 

.r̈2k + 2ξkωk ṙk + Ck
kkkr

2
k ṙk

, ,, ,

dissipative

+ω2
krk +

(

Ak
kkk + γk

kkk

)

r3k + Bk
kkkrk ṙ

2
k

, ,, ,

conservative

= 0, (4.84) 

It shows that the curvature of the invariant manifold creates, in addition to the linear 
modal damping term of damping ratio. ξk , a  dissipative cubic term.r2k ṙk . Its coefficient 
.Ck

kkk is proportional to the quadratic coefficients .β
k
i j and to the damping ratio .ξi of 

all the linear modes of the system (Table 4.4).
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Table 4.4 Comparisons of CLM and CNM, i.e. normal modes of conservative linear and nonlinear 
systems 

Linear system Nonlinear system 

Mode CLM CNM 

eigensolution invariant manifold 

(natural/normal mode) . ||
family of periodic sol. 

Frequency .ωk . ωnl = f (ampl.)

natural/eigen frequency backbone curve 

Shape .Gk . Gnl = f (ampl., t)

mode/eigen shape nonlinear mode shape 

indep. of amplitude depends on amplitude 

synchronous non-synchronous 

Coupling Independent (orthogonality) Invariant possible internal 
resonance (strongly coupled) 

Invariant manifold Flat Curved 

Free oscillations Sinusoidal Periodic 

Stability Always stable Stable or unstable 

As a consequence, even with an initial linear damping model, the damping of 
the motion onto a DNM is nonlinear and increases with the amplitude of the motion 
because of the non-resonant effect of all the modes. An equivalent damping ratio 
.ξnl, that depends on the amplitude, may be defined, as in Colin et al. (2020), or may 
be measured by experimental continuation (see Sect. 4.5.2). 

Synthesis In conclusion, the linear features of a CLM can be naturally extended to 
the nonlinear range, since: 

• the natural frequency .ωk of a CLM becomes the free oscillations frequency . ωnl

of the CNM, which depends at first order of the amplitude of the oscillations, 
illustrated by the backbone curve; 

• the mode shape .Gk of a CLM becomes the nonlinear mode shape .Gnl(t) of the 
CNM, that is time dependent, thus non synchronous, but remains close to a syn-
chronous motion onto .Gk since the nonlinear corrections are at the second order; 

• a modal damping .ξnl that is also amplitude-dependent. 
• the motion onto a nonlinear mode is equivalent, at low amplitude, to a single 
Duffing oscillator, with the hardening/softening behaviour related to the value of 
the single cubic coefficient .L0. 

Far from the equilibrium point, other nonlinear modes can exist, such that the 
number of nonlinear modes of a .M-degrees-of-freedom system can by larger than 
.M (see examples in Vakakis (1997), Cusumano and Moon (1995)).
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4.4.6 Reduced-Order Modelling Synthesis 

Based on the above results, the reduced-order modelling strategy proposed here 
is based on the invariance of the nonlinear modes, naturally extending the CLM 
expansion philosophy in the case of a linear system. Two situations then arise: 

• out of internal resonance areas, each nonlinear mode is invariant and a truncation 
to only one master nonlinear mode, in the form of one normal oscillator (4.72), is 
valid. 

• if an internal resonance is observed, then all the normal oscillators of the non-
linear modes involved in the internal resonance must be kept in the dynamics, as 
exemplified by (4.74) for a 1:2 internal resonance. 

This free conservative vibration reduced-order model may appear restrictive at 
first glance, but it constitutes in fact an excellent characterisation of the nonlinear 
dynamics since it constitutes its skeleton. In particular, the forced response of the 
system occurs around the backbone curves (see examples in Figs. 4.18 and 4.19), 
a result still valid in the cases of parametric excitation (see Fig. 4.26) or internal 
resonances (see Figs. 4.22a and 4.25), for which the topology may be more complex. 

If the computation of forced and damped vibrations is under interest, a first order 
correction to the CNMs is to add directly in the conservative normal oscillator (4.72) 
the damping and forcing terms of the corresponding linear oscillator as in Eq. (4.81). 
A better reduced-order model may be considered with (i) the damped nonlinear 
mode (DNM), meaning that the invariant manifold computation includes the initial 
damping or (ii) the computation of a forced invariant manifold. These questions are 
fully discussed in Chap. 2 of this book. 

4.4.7 Ex-nihilo Reduced-Models 

As already said, the normal form (4.70) and its resonant terms constitute the skeleton 
of the dynamics and thus includes all its nonlinear dynamics features (stability, 
bifurcations, number of solutions etc.). As a consequence, it can be viewed as an 
excellent qualitative exploration of the dynamics of a given system, its quantitative 
aspect being recovered by the normal transform (4.69), that enables recovering the 
amplitude of the initial coordinates of the system (physical or modal) but does not 
change qualitatively the nonlinear dynamics since its effect is at a second order in 
amplitude, as shown in Eq. (4.83). At first order, all modal coordinates are thus equal 
to the corresponding normal coordinates, such that: 

.∀k, qk = rk + O(e2), ⇒ x =
M

E

k=1

Gkqk(t) =
M

E

k=1

Gkrk(t) + O(e2). (4.85)
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As a consequence, the normal form method can be used as a base for building 
ex-nihilo reduced-order models. It can be built just considering a particular internal 
resonance, that directly leads to the number of involved nonlinear mode and the 
resonant terms that have to be kept in the oscillators, as detailed below. 

If the dynamics appear governed by a single nonlinear mode (the . kth), then, as 
explained in Sect. 4.4.5, .r j = 0 ∀ j /= k and a single Duffing oscillator is necessary. 
This reads in free conservative vibration: 

.x - Gkrk(t), r̈k + ω2
krk + L0r

3
k = 0. (4.86) 

If several modes are coupled by an internal resonance, then all the corresponding 
normal oscillators must be kept in the model, filled with suitable resonant terms. For 
a 1:2 internal resonance up to a cubic order, a reduced-order model can be: 

.x - G1r1(t) + G2r2(t),

{

r̈1 + ω2
1r1 + β1r1r2 + L1r

3
1 + C1r1r

2
2 = 0

r̈2 + ω2
2r2 + β2r

2
1 + L2r

3
2 + C2r2r

2
1 = 0

(4.87) 

The two quadratic terms are the resonant terms associated to the internal resonance 
.ω2 - 2ω1 and the cubic terms are trivially resonant. 

As compared to Eq. (4.74), with the same reasoning as for the Duffing oscillator, 
all velocity-dependent terms have been “embedded” into the associated displacement 
terms, since they play the same role in the low amplitude dynamics (this can be shown 
by a two order multiple scale development, as shown in Shami et al. (2022c)). 

This kind of strategy was successful for model identification of internal resonance: 
a 1:1 in circular plates (see Thomas et al. (2003), Givois et al. (2020b)), 1:2, 1:1:2 
and 1:2:4 in a spherical shell, a steel pan and a chinese gong (Jossic et al. 2018; 
Thomas et al. 2007; Monteil et al. 2015). 

4.5 Frequency Domain Computation and Identification 

In parallel to the reduction methods discussed in Sect. 4.4, it is important to have at 
our disposal dedicated tools to accurately compute the nonlinear dynamics, as well as 
to experimentally identify it. For linear vibration analyses, the common practice is to 
switch to the  frequency domain, by considering the harmonic vibrations of the system 
in the steady state, thanks in particular to Frequency Response Functions (FRFs, the 
ratio of the Fourier Transforms of the output and the input of a given linear system), 
that are amplitude independent characterizations of the system (see Table 4.5). FRF 
can be estimated by measuring the vibratory response of a system subjected to any 
wide-band signal (chirp, random, shock…). A sine forcing can also be equivalently 
used to address the behaviour of the system at a particular frequency, irrespective 
of its value. However, if non-linearities are at hand, the behaviour of the system is 
amplitude dependent and does not fulfils the superposition principle. Consequently, 
the choice of the excitation signal has a major influence on the measured behaviour
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Table 4.5 Summary of basic processes for analysis of linear and nonlinear vibratory systems. . x̂ is 
the Fourier transform of . x(t)

Linear system Nonlinear system 

Free response Natural modes Nonlinear modes 

. f e = 0

Forced response . f e(t) arbitrary . f e(t) = a f 0 cosωt

.x̂i = Hi j f̂e j response .x(t) to a sine forcing 

FRF .Hi j (ω) independent of . f e .x̂/a depends on . a

.x(t) periodic, quasi-periodic, 
chaotic 

Analysis tools Linear systems inversion Numerical continuation 

of the system. A natural method, which is also the simplest one, is to analyse the 
behaviour of a nonlinear system in the steady state, under harmonic forcing. 

Then, dedicated methods have to address the computation of the several classical 
vibratory regimes of nonlinear systems (see Sect. 4.2.4): periodic, quasi-periodic or 
chaotic, as well as the associated transitions, linked to instabilities and bifurcations. 
From both the numerical and experimental sides, a powerful tool is continuation, to
which the following give a short overview. 

4.5.1 Numerical Continuation Methods 

Continuation methods, or path-following methods, consist in computing the solution 
of a system in a particular steady-state, and following its evolution when a parameter 
(the so called control parameter) is varied. This state being computed, its stability 
can be evaluated in a second step, as well as bifurcations. The first particular states 
that have received most attention is equilibrium (or stationary) solutions, in the 
context of structural buckling analysis (see the “Riks” like methods in commercial 
finite-element codes, Crisfield (1981)). Then, for nonlinear dynamics applications, 
continuation of stationary solutions is extended to periodic solutions, which is the 
basic tool addressed hereafter, currently available in many software packages AUTO 
(Doedel et al. 2002), MATCONT (Dhooge et al. 2003), COCO (Dankowicz and 
Schilder 2013), MANLAB (Guillot et al. 2018), NLVIB (Krack and Gross 2019). 
Continuation methods can be a fantastic tool to solve many practical problems, from 
the computation of manifolds in the phase space (Krauskopf et al. 2007) to more
engineering based applications such as tracking of bifurcation points and isolated 
branches (isolas) Grenat et al. (2019) or quasi-periodic solutions continuation 
(Guillot et al. 2017). 

Continuation of periodic solutions The starting point is to consider a .K -
dimensional first order dynamical system (.K ∈ N):
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. ẏ = g( y, t,λ), (4.88) 

with .λ ∈ R a control parameter, .t ∈ R the time, . y(t) ∈ R
K and .g : R

K+2 → R
K a 

smooth vector field. Finding a periodic solution of the above problem, for a given 
value of. λ, consists in finding a couple (initial solution, period). ( y0, T ) ∈ R

K × R
∗+

such that it exists . y(t) solution of (4.88) with . y(0) = y(T ) = y0. 
Time domain strategies may be considered, such as shooting methods (see Nayfeh 

and Balachandran (1995), Peeters et al. (2009), Seydel (2010)) or methods which 
reformulate the above problem into a boundary value problem, such as the one used 
in the AUTO software (see Doedel et al. (2002), Arquier et al. (2006), Karkar et al. 
(2014)). In this text, we focus on the frequency domain Harmonic Balance Method 

(HBM). 
It consists in expanding the unknown solution into a Fourier series: 

. y(t) = ŷ
(0) +

H
E

h=1

(

ŷ
(hc) cos hωt + ŷ

(hs) sin hωt
)

, (4.89) 

with .ω = 2π/T the angular frequency of the periodic solution, . ŷ(0), . ŷ(hc), . ŷ(hs), 
.h = 1, . . . H the Fourier coefficients (constant vectors) and .H ∈ N the number of 
harmonics. Introducing (4.89) into (4.88) and balancing the harmonics (or equiva-
lently using a Galerkin procedure, see Krack and Gross (2019)) leads to replace (4.88) 
by a .P-dimensional algebraic problem of the form (.P ∈ N): 

.R(Y ,ω,λ) = 0, (4.90) 

where .Y ∈ R
P and .R : R

P+2 → R
P is a smooth vector field. .Y contains all the 

Fourier coefficients.{ ŷ(0)
, ŷ

(hc)
, ŷ

(hs)}, h = 1, . . . H , such that the size of the problem 
is .P = (2H + 1)K . This HBM method is often the one preferred for large scale 
(finite-element discretised) systems (see Krack (2015), Blahoš et al. (2020), Woiwode 
et al. (2020)), as compared to time domain methods. 

Thanks to the implicit function theorem, 6 continuation consists in finding 
branches of solutions of (4.90) in the space .(Y ,λ), on a given range of . λ. Since 
.R is a nonlinear function of . Y , several solutions exist for a given . λ, they can have 
a complex shape, can fold on themselves and cross at bifurcation points… To this 
end, an arclength parameter . a is used to re-parametrise the problem and compute 
.(Y ,λ) as a function of . a (see Crisfield (1981), Seydel (2010), Cochelin and Vergez 
(2009)). Then, (4.90) can be solved by standard predictor corrector/ methods or 
less standard high order predictor methods, such as the Asymptotic Numerical 
Method (ANM), considered for the numerical computations in this text, thanks 
to the software MANLAB (Cochelin and Vergez (2009), Guillot et al. (2018, 2019)).

6 The implicit function theorem states that as soon as.∂R/∂Y exists and is non singular, there exists 
a continuously differentiable function . h such that .Y = h(λ), constituting a branch of solution. 
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Stability and bifurcations Continuation methods, as described above, are able to 
compute solutions, whatever be their stability, that can be addressed in a second step. 
For time domain methods, the stability is usually computed with the eigenvalues 
of the so-called monodromy matrix (Nayfeh and Balachandran 1995; Peletan et al. 
2013), obtained as a by product of shooting methods or by time integration over one 
period of a linear matrix differential equations of size. P . In an HBM context, such an 
approach do not take advantage of the frequency nature of the HBM, which led the 
development of frequency domain methods, based on computing the eigenvalues of 
the Hill matrix, strongly related to the Jacobian of (4.88). Since the Hill matrix is of 
size .P = (2H + 1)K and that only .K eigenvalues (the Floquet exponents) are to be 
determined, some sorting method have been developed (Zhou et al. 2003; Lazarus 
and Thomas 2010; Guillot et al. 2020), recently reconsidered with the Koopman 
formalism (Bayer and Leine 2024; Bayer et al. 2024). 

For the bifurcation analysis, one can first monitor the change of stability of a given 
branch and deduce the type of bifurcation from the way the real part of the character-
istic eigenvalues (either those of the Jacobian of . g for time domain methods, or the 
Floquet exponents for frequency domain methods) cross the imaginary axis (Seydel 
2010; Lazarus and Thomas 2010; Guillot et al. 2020). This can be made more robust 
by the help of bifurcation test functions (Seydel 2010). Finally, the crossing of 
several branches, linked to pitchfork or transcritical bifurcations, can be identified 
in the Taylor series using a specific method in the ANM (Cochelin and Medale 2013). 

Synthesis Continuation methods, and especially the one based on HBM, enables a 
very precise computation of the dynamics since one has access to each harmonics 
separately, the stability and the bifurcations of all branches, but can also rely on 
approximate fast computations by reducing the number of harmonics. It is also easy 
to address the four types of practical continuation cases (self-sustained oscillations, 
free-conservative systems to compute conservative nonlinear modes, harmonically 
forced systems continued in frequency (.λ = ω) or continued at fixed frequency, with 
. λ being the amplitude of the forcing or another parameter, see Guillot et al. (2020)). 
Examples of computation are given in Figs. 4.15, 4.16, 4.17, 4.19, 4.20, 4.22, 4.23, 
4.24, 4.25 (Fig. 4.21). 

4.5.2 Experimental Continuation Methods 

Experimental tests in the case of vibration analysis are often performed for a valida-
tion of a given model and/or the identification of its parameters. In the case of a linear 
system, the standard test is an experimental modal analysis, which consists first in 
measuring the FRFs of the system (using any kind of wide band input signal since the 
linearity of the system enforces the independence of the FRF on this input) and then 
using dedicated algorithms to identify the modal parameters (natural frequencies .ωk , 
mode shapes .Gk , modal damping factors .ξk and modal masses .mk , see Sect. 4.4.2 for
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Fig. 4.17 Response of a Duffing oscillator with a quadratic term of the form . ẍ + 0.05ẋ + x +
x2 + 0.3x3 = F cosωt computed with the HBM in Manlab. ‘—’: stable branches and ‘- -’: unstable 
branches. a Frequency response curves for various values of .F as well as the backbone curve. b, c 
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Fig. 4.18 Experimental frequency response of a circular plate driven and measured with piezo-
electric patches, obtained with PLL continuation, from Givois et al. (2020a). The backbone curve 
(amplitude sweep at .ϕ = −π/2) is plotted in black whereas several frequency response (phase 
sweep at constant input voltage . V ) are plotted in color for different value of . V . a output voltage as 
a function of the frequency . G; b phase lag . ϕ between output and input as a function of . G

the notations and Géradin and Rixen (2015), Ewins (2000), McConnell and Varoto 
(2008)). 

When non-linearities are at hand, as done for numerical computations in 
Sect. 4.5.1, it is possible to extend those linear practice to the nonlinear range, by 
designing dedicated methods (called experimental continuation) able to address the 
measurement of nonlinear frequency responses, including their unstable branches 
(see an example in Fig. 4.18). Then, it is also possible to proceed to the identification 
of the nonlinear modes and their particular features (see Sect. 4.4.5), the fundamental 
one being that its characteristic frequency .ωnl, damping .ξnl and shape .Gnl(t) are 
amplitude dependent, all of them well defined by the backbone curve, that can be 
also directly measured by experimental continuation in a robust way.
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Fig. 4.19 Frequency response of a cantilever beam at extreme amplitude, obtained both experimen-
tally with PLL continuation and compared to HBM computations of the geometrically exact model 
(Eqs. (4.18–4.20)), from Debeurre et al. (2024a). The backbone curves are plotted in black (exper-
iments) and blue (finite element computation), whereas several experimental frequency responses 
are plotted in green. From left to right: mode 1, mode 2 and mode 3. The nonlinear deformed shapes 
are shown in Fig. 4.16 
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Fig. 4.20 a Comparison between the experimental frequency response of the first mode of the 
cantilever beam of Fig. 4.19, from Debeurre et al. (2024a) (black: backbone curve; color: forced 
response) and a geometrically exact model with mass proportional damping adjusted at resonance 
(.C = 2ω1ξM with .ξ ∈ {1.49, 2.74, 3.81}% for the three curves, from low to high amplitude); b
amplitude of forcing as a function of beam displacement on the backbone curve, along with several 
polynomial fits 

Bending mode Membrane (axial) mode Thickness mode 

#1 #34 #394 

Fig. 4.21 Examples of axial and thickness mode shapes that are strongly coupled to the first bending 
mode, due to the quadratic non-resonant terms, and their order of appearance in the CLM modal 
basis
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Fig. 4.22 a Backbone curve (black) and resonance curve (colors) of the second bending mode of 
a clamped-clamped beam under harmonic point forcing .F cosωt at .0.275L (a node of the fourth 
natural mode shape) with amplitude .F = F̄ E I/(ρL4) and .F̄ ∈ {0.5, 2, 7, 18}. SN means Saddle-
Node bifurcation. b Plots of the invariant manifold in the space .(q2, q̇2, q̇4) at several locations 
(A,B,C,D) on the backbone curve 
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Fig. 4.23 Topology of a 1:3 internal resonance. Periodic solutions of Eq. (4.102) in free undamped 
vibrations. First line: simulation with coefficients.(Li ,Ci ) of the internal resonance between CNM 
2 and 4 of a clamped-clamped beam. Second line: same coefficient values, with vanishing res-
onant terms, .C2 = L3 = 0. a, b, d, e 3D view in the spaces .(a1 = a1H 1, a2 = a2H3 ,ω/ω2) and 
.(ω/ω2, |a1H1 |, |a2H3 |). (blue): backbone curve of CNM2; (dashed grey): backbone curve of CNM4 
plotted as a function of .ω/3. e, f 2D view in the plane (amplitude, frequency) 

Phase locked loop The basic technique to measure nonlinear vibrations is the 
stepped sine: one chooses a frequency of excitation . ω and a forcing level . F , waits 
for the steady state, measures the vibrations of the structure .x(t) in one point and 
repeats this operation for a list of successive frequencies . ω, in an increasing (upward 
stepped sine) or decreasing (downward stepped sine) order, around a resonance. An 
example of result is given in Fig. 4.6, that include jumps between the low and the
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Fig. 4.24 Topology of internal resonances in a transversly (cubic only) system. BP means “branch 
point”, i.e. the crossing of to branches of solution; “SB” denotes a symmetry breaking bifurcation 
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Fig. 4.25 1:2 internal resonance between two tuned CNMs in a piezoelectric structure connected 
to a nonlinear electronic circuit, from Shami et al. (2022c). a–c amplitude of the first harmonics H1 
of the mechanical mode as a function of driving frequency . ω; c–e amplitude of the sub-harmonic 
H1/2 of the electrical mode, as a function of driving frequency . ω

high amplitudes branches. An estimation of the backbone curve can then be obtained 
by plotting the couple (amplitude, frequency) at the resonance obtained after several 
stepped sine tests, for increasing values of . F . 

A powerful alternative is to rely on a phase locked loop (PLL) strategy. Whereas 
the stepped sine method consists in prescribing the driving frequency . ω, the idea 
is to use an external real-time control loop able to automatically adapt the driving 
frequency . ω such that the phase lag between the response .x(t) and the forcing signal 
follows a prescribed value. 

As discussed in Sect. 4.4.5, the dynamics of a given conservative nonlinear mode 
(CNM) without internal resonance at low amplitude is equivalent to a Duffing oscil-
lator, of Eq. (4.81). Its response can be written: 

.rk(t) = a cos(Gt + ϕ) + hh, (4.91)
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with hh meaning “higher harmonics”. As shown in Fig. 4.18, whereas the relation 
.G |→ a is multivalued because of different branches of solution, .ϕ |→ G and . ϕ |→ a

are single valued functions. 7 With this in mind, measuring a frequency response 
with a PLL experimental continuation strategy simply consists in realising a phase 
sweep around.−π/2. Then, it can be shown (see Denis et al. (2018)) that the system’s 
periodic steady state responses are identical with the PLL in closed loop or in open 
loop, at the difference that the closed loop stabilizes the unstable branches of the open 
loop. Consequently, the PLL enables the measurement of full frequency responses, 
including its unstable parts. 

Moreover, a zoom around the resonance of a Duffing oscillator, e.g. in Fig. 4.15, 
would show (see the picture in Denis et al. (2018)) that three curves coexist: (i) the 
amplitude resonance, locus of the maximum of the frequency response when the 
amplitude of the forcing is varied, (ii) the saddle node bifurcation point, where the 
stability changes, and, in between, (iii) the backbone curve of the CNM, defined 
as the free oscillation frequency as a function of the amplitude. In experiments, 
for light damping, it is virtually impossible to tell them apart. Interestingly, it is 
shown in Peeters et al. (2011), Debeurre et al. (2024a) that the backbone curve of 
the CNM coincides with a phase resonance curve, associated to a particular . π/2
phase shift between the system’s periodic response and the forcing. Consequently, 
the same PLL apparatus is able to directly measure the backbone curve of a CNM, 
by enforcing .ϕ = π/2 and increasing the forcing amplitude. For technical details 
about the control loop and practical aspects about the experimental apparatus, the 
interested reader can refer to Denis et al. (2018), Debeurre et al. (2024a), Abeloos 
et al. (2022) and reference therein. 

Phase resonance To understand the phase resonance condition, the following 
dynamical system is considered: 

.M(x)ẍ + f d(x, ẋ) + f c(x, ẋ) = f e, (4.92) 

where .x(t) ∈ R
N is the displacement vector at time . t , .M(x) is the .N × N mass 

matrix which may depend on . x because of inertial nonlinearities, . f d(ẋ, x) is the 
.N -dimensional dissipative force vector, a smooth function the velocity . ẋ and the 
displacement . x, . f c(x, ẋ) is the .N -dimensional internal conservative force vector, 
also a smooth function of . x, and of . ẋ in the case of inertial nonlinearities, and . f e(t)

is the .N -dimensional external force vector that depends on time. Equation (4.92) 
is very general and well-suited for modeling several types of systems. It includes 
in particular all the finite-element discretised models seen in Sect. 4.3, the modal 
models of Sect. 4.4.2 and also the damped normal form (4.84). 

An important property, proven in Debeurre et al. (2024a), is that the conservative 
force vector . f c(x, ẋ) is an even function of . ẋ whereas the dissipative force vector 
. f d(x, ẋ) is an odd function of . ẋ. Consequently:

7 For any value of .ϕ ∈ [−π, 0], there is a unique associated pair .(a, G). 
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.

{

f c(x, ẋ) = f c(x,−ẋ),

f d(x, ẋ) = − f d(x,−ẋ).
(4.93) 

If we now consider a given conservative nonlinear mode (CNM) of (4.92), its 
motion .xcnm(t) verifies the free conservative part of (4.92), reading: 

.M(xcnm)ẍcnm + f c(xcnm, ẋcnm) = 0. (4.94) 

Then, since . f c(x, ẋ) is an even function of . ẋ , it is shown in Debeurre et al. (2024a) 
that the natural solution of (4.94) is a  monophase motion, such that: 

.xcnm(t) = x̂0 +
H

E

h=1

x̂h cos(hωt) + hh, (4.95) 

with hh meaning “higher harmonics” and .{x̂0, x̂h} being Fourier components. 
Moreover, since . f d(x, ẋ) is an even function of . ẋ , it can also be shown that it is 

also monophase, each of its harmonics being phase shifted of .−π/2, reading: 

. f d(xcnm, ẋcnm) =
H

E

h=1

− f̂ dh sin(hωt), (4.96) 

with .{ f̂ dh} being the Fourier components of . f d. 
Finally, if one assumes that the motion of the forced and damped system (4.92) is

onto a CNM, .x = xcnm verifies the conservative part (4.94). Introducing Eq. (4.94) 
into (4.92) shows that the equation of motion is split into a free/conservative part and 
a forced/dissipative part, that reads: 

. f d(xcnm, ẋcnm) = f e =
H

E

h=1

− f̂ eh sin(hωt), (4.97) 

with . f̂ eh = f̂ dh . Comparing Eqs. (4.95) and (4.97), it is observed that the external 
force vector associated to the motion onto a monophase CNM exactly cancels the 

dissipations and is also monophase, characterised by a phase lag of .π/2 of each 

harmonic with respect to the displacement response, regardless of the form of the 

dissipative forces. 

Force appropriation Therefore, applying a force appropriation procedure, i.e. con-
trolling the frequency . ω of the external force . f e(t) as well as the shapes . f̂ eh for 
.h = 1, 2, . . . , H of its harmonics such that their phases have a phase lag of .π/2 with 
respect to the corresponding harmonic of the displacement .x(t) enables the conser-
vative nonlinear mode .xcnm to be measured, regardless of the dissipative forces.
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In practice, realizing the exact force appropriation, i.e. finding the vectors. f̂ eh that 
exactly cancel the harmonics of . f d(xcnm, ẋcnm) according to Eq. (4.97), needs two 
aspects: finding the correct space shape of the vectors . f̂ eh that mirror the damping 
space distribution and including enough harmonics .H in the forcing. 

These two aspects are a priori  unknown and impossible to fulfill exactly in prac-
tical experiments, particularly the former. However, if the motion were perfectly on 
a CNM  (Eq.  (4.97)), it would lie very close to the associated invariant manifold in 
the phase space (see Sect. 4.4), such that the space distribution of the force is not 
important at first order since the resonant CNM dominates. This is the extension 
of the linear resonance concept to the nonlinear regime: if the modes of a structure 
are spaced enough in frequency and lightly damped, the motion at a given reso-
nance is governed by only one mode, almost irrespective of the space distribution of 
the forcing. 8 In practice, then, the space distribution of the forcing may be chosen 
according to the apparatus available: point forcing as in Peeters et al. (2011), Denis 
et al. (2018), Jossic et al. (2018), Givois et al. (2020b), Peter and Leine (2017), 
Scheel et al. (2018), Peter et al. (2019), Scheel et al. (2018), piezoelectric forcing 
(see Givois et al. (2020a)) or base acceleration forcing (see Debeurre et al. (2024a), 
Abeloos et al. (2022), Kohlmann et al. (2020), Müller et al. (2022)). 

Regarding the second aspect, i.e. the number of harmonics, it is theoretically 
possible to synthesize several controlled harmonic components in the force, but 
most practical situations show that a single harmonic forcing is sufficient. 

Examples of experimental resonant responses obtained by the present method are 
shown in Figs. 4.18 and 4.19, that includes in each case both the backbone curve and 
a few forced frequency responses with their unstable branches. 

It must also be noticed that the PLL is part of a larger family of experimental 
continuation methods (see Sieber and Krauskopf (2008), Barton and Burrow (2011), 
Bureau et al. (2014), Renson et al. (2016), Abeloos et al. (2022)) and that force 
appropriation is a common practice in ground vibration testing of aircrafts (see 
Giclais et al. (2016)). 

Nonlinear mode identification The above described PLL experimental continu-
ation procedure enables the measurement of both the backbone curve and the fre-
quency responses that lie around it. As a consequence, those results can be easily 
compared to a model, for validation or parameter estimation. The best strategy is to 
consider the backbone curve which, as addressed in the previous section, gives the 
conservative response of the system, out of any damping effects, that is, as addressed 
in Sect. 4.4.1, not easy to be modelled accurately. 

If no structural model of the structure is available, the normal form theory (see 
Sect. 4.4.7) assures that at low amplitude, a simple Duffing oscillator (4.86) captures 
the dynamics on one mode, such that its single coefficient.L = L0 can be identified as 
the curvature of the backbone curve, following Eq. (4.77). This has been successfully 
done for several modes of a circular plates (all hardening) and some modes of chinese

8 One must in particular exclude the case of a point forcing precisely on a node of the mode shape 
of the considered mode, which nullifies the corresponding modal forcing and the resonance. 
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gong, being hardening or softening in Denis et al. (2018), Jossic et al. (2018), Givois 
et al. (2020b). 

If a structural model is at hand, then all this can be applied for validation. As an 
example, Figure 4.19 shows a perfect match between the experimental and numerical 
backbone curve of a cantilever beam (Debeurre et al. 2024a). At several points of 
the backbone curve, one can also identify the nonlinear deformed shape of the mode 
(see Fig. 4.16). 

Finally, the measurement of the backbone curve also enables to identify the 
damping law as a function of the amplitude, by plotting the amplitude of the forcing 
as a function of the structural response. An example is reported in Fig. 4.20 showing 
that the modal damping is an increasing function of the amplitude, as a law quadratic 
at low amplitude and cubic at higher amplitude (refer to Debeurre et al. (2024a) for
other details). 

Synthesis The PLL continuation tool appears to be very attractive for nonlinear 
structural testing since it enables the identification (i) the forced frequency response 
including its unstable branches, (ii) the conservative backbone curve and (iii) an asso-
ciated modal damping law. In the case of a single nonlinear mode motion, it clearly 
matches with the single invariant manifold reduction proposed in Sect. 4.4.5, enabling 
clear identification of a nonlinear mode and in particular its hardening/softening 
behaviour. 

In more complex cases such as those including internal resonance, it is also pos-
sible to obtain similar results, as shown in Denis et al. (2018), Givois et al. (2020a, b) 
for a 1:1 internal resonance. The extension to more complex internal resonance is 
an attractive perspective, that has to be linked to the ex-nihilo modelling linked to 
normal form and resonant term addressed in Sect. 4.4.7. 

Finally, it must be noticed that the conservative/dissipative split at the origin of the 
coincidence between a phase resonance and a conservative nonlinear mode is a priori 
not fulfilled in the case of dry friction nonlinearities, leading to the measurement of 
a damped nonlinear mode (see discussions in Debeurre et al. (2024a) and references 
therein, as well as Chap. 5 of this book). 

4.6 Illustrations, Applications and Test Cases 

This section gathers a few applications of Sect. 4.4 in order to reduce, understand 
and compute the dynamics of some elastic and piezoelectric structures. 

4.6.1 Cubic Models for Flat Structures 

Structures with membrane/bending coupling We consider the special case 
of structures subjected to geometrical non-linearities stemming from a mem-
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brane/bending coupling (see Fig. 4.12, left). To understand this particular mecha-
nism, we consider the modal expansion of any finite-element discretization of the 
structure, with 3D, plate or shell elements, in the form of Eq. (4.60), in which each 
(linear) modal coordinate .qk(t) is coupled to the others by quadratic and cubic terms. 

If we first consider a flat (or transversely symmetric structure), an analytical 
von Kármán model shows that the axial motion is quadratically coupled to the 
bending motion (see Eqs. (4.32), (4.40b)). Moreover, because the structure is flat, 
the membrane and bending motions are uncoupled at the linear level (see Eq. (4.22) 
without the .Nw, term, or Eq. (4.40) without the .L(o,o) terms). Then, the CLMs 
can be exactly split into a family of .Mw ∈ N bending only modes (of coordinates 
.{qk(t)}k=1...NB

) and a second family of the remaining .Mu = M − MB non bending 
modes (membrane or thickness modes, of coordinates .{ηp(t)}p=1...Mu

), see Fig. 4.21. 
As a consequence, it is possible to rewrite Eq. (4.60) under the following form (see 
Givois et al. (2019), Vizzaccaro et al. (2020)), .∀k = 1, . . . Mw, .∀p = 1, . . . Mu : 

.q̈k + ω2
kqk +

MuE

p=1

MwE

i=1

Ck
piηpqi +

MwE

i=1

MwE

j=1

MwE

l=1

Dk
i jlqiq jql = Fk (4.98a) 

.❅❅̈ηp + b2
pηp −

MwE

i=1

MwE

j=1

G
p

i jqiq j = 0 (4.98b) 

where we changed notations for clarity: .bp corresponds to .ωo for the non-bending 
modes, .Dk

i jl correspond to a cubic coefficient .γ
o
ooo that couples four bending modes, 

.(C pi k ,G
p

i j ) are two quadratic coefficients .β
o
oo that couple one membrane mode and 

two bending modes, and all the other coefficients are zero. One can also notice that 
the membrane forcing is set to zero since only transverse loads are considered. 

If one considers that the non-bending modes are of much higher frequency than 
the bending modes, then their inertia can be neglected (this assumption is also used 
for the von Kármán analytical models, see Sect. 4.3) and it is possible to exactly 
condense the non-bending motion into the bending motion, leading to a purely cubic 
model in the .{qk(t)}k=1...MB

of the form (4.53). Indeed, one replaces .ηp as a function 
of .{qi } from Eq. (4.98b) into Eq. (4.98a). 

In practice, the fact that this model (4.53) is purely cubic is interesting for model 
reduction. Indeed, following the normal form approach of Sect. 4.4.4, no quadratic 
terms are present in the normal transform (4.69), implying.Ak

kkk = Bk
kkk = 0, such that 

the normal form at cubic order, reduced to the . kth CNM, in the form of Eq. (4.72), 
coincides exactly with the cubic oscillators (4.53) reduced to the . kth CLM (. q j =
0,∀ j /= k), with only one cubic term of coefficient 

.γk
kkk = Dk

kkk −
MBE

p=1

G
p

kkC
k
pk

γ2
p

, (4.99)
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stemming from the static condensation described in the previous paragraph. The 
effect of the other CLMs (.q j (t) with . j /= k), coupled through invariance breaking 
cubic terms in Eq. (4.53), are embedded in the cubic part of the normal transform. If 
one would expand the normal form at a higher order, one would replace Eq. (4.72) 
with an oscillator with additional quintic terms, of the form (see Touzé et al. (2004b)): 

.r̈2k + ω2
krk + γk

kkkr
3
k + Okr

5
k + ϒkr

3
k ṙ

2
k = 0, r j = 0, ∀ j /= k (4.100) 

As a consequence, at cubic order, the normal form reduction is quasi-equivalent 
to a modal model reduced to a single CLM oscillator, which usually gives a very 
good reduced-order model, that can be completed by a few other CLM oscillators to 
increase accuracy. This has been successfully tested for straight beams and plates of 
various edge in Lazarus et al. (2012), Givois et al. (2019), Vizzaccaro et al. (2020) and 
for piezoelectric symmetric structures in Givois et al. (2021) (see also Sect. 4.6.5). 

Figure 4.14b provides an illustration of the quality of a cubic modal model, with 
the backbone curve of the first bending CNM of a clamped-clamped beam. The result 
of Eq. (4.53) truncated to a single bending CLM model .q1(t) /= 0 and also to a two 
bending CLMs model (.(q1(t), q3(t)) /= (0, 0)) is compared to a high order complex 
normal form (CNF) and to a reference model with .M = 20 bending CLMs. It first 
shows that the single (cubic.⇔ third order) CLM model is valid up to a large amplitude 
of .- 0.4h, contrary to the cubic CNF that diverges at .- 0.2h and which needs an 
order 11 to compete. Then, the two CLMs model is able to capture the internal 
resonance tongue with an excellent accuracy, improving also the convergence of 
the main part of the backbone curve. The difference between CNF and ONF here is 
mainly due to the complexification of the normal form in the CNF, that approximates 
a single Duffing oscillator, whereas the ONF keeps it exact (see Grolet et al. (2024), 
de Figueiredo Stabile et al. (2024)). 

Another example is the second resonance of a clamped-clamped beam, computed 
with Eq. (4.53) truncated to the first 10 CLMs and shown in Fig. 4.22a. As observed 
in Givois et al. (2019), there is virtually no difference in the backbone curve with 
this 10 mode computation and another one with Eq. (4.53) truncated to CLMs 2 
and 4, the two modes involved in the internal resonance. In this case, the influence 
of the non-resonant cubic terms is thus negligible. The same results were obtained 
in Vizzaccaro et al. (2021b) for the convergence of the cubic order ONF for 3D 
finite-element discretised structures. 

Computation of coefficients In practice, one has to compute the coefficients of the 
reduced-order model (4.53). In a finite-element context, the (brute) method consists 
in choosing a few master bending modes, to compute with the STEP (see Sect. 4.4.2) 
all quadratic and cubic coefficients .(Dk

i jl,C
k
pi ,G

p

i j ) associated to the master bending 
modes and a family of non-bending ones, as large as possible, and to compute the 
cubic coefficient .γk

i jl of the master (bending only) model with relations analogous 
to Eq. (4.99) (in particular if .i /= j /= k /= l, see Givois et al. (2019)). It works in 
theory, but in practice, the truncation of the non-bending mode basis, in order to 
achieve convergence in (4.99), is always delicate and one often needs a lot since
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the convergence is slow, especially for plate structures with a complex boundary 
(see Givois et al. (2019)). Moreover, in the case of 3D finite-elements, as addressed 
in Vizzaccaro et al. (2020), a surprising strong coupling appears with very high-
frequency thickness modes (one of them is shown in Fig. 4.21), which makes this 
method unusable in practice. 

To overcome this limitation, it is possible to directly compute the .γk
i jl coefficients 

of (4.53) with any finite-element discretization in a non intrusive manner, using a 
modified version of the STEP (called M-STEP). In this case, one proceeds to the non-
linear static computations of the STEP without prescribing the in-plane displacement 
field, thus relaxing the in-plane constraints, which is equivalent to statically condense 
the quadratic coupling with the non-bending modes (see Vizzaccaro et al. (2020) for
all details). 

Finally, the most rigorous method is to apply a normal form method directly to 
the finite-element discretised model (4.9), since the effect of all the quadratically 
coupled non-resonant modes is automatically embedded in one master normal 
coordinate. One can rely on the ONF (see Vizzaccaro et al. (2021b)), with a 
numerical method up to an order three normal form, or with a CNF (see Vizzaccaro 
et al. (2022)), with the advantage of dealing with an arbitrary order. 

Structures with inertia and curvature non-linearities In the case of struc-
tures subjected to large rotations, because of loose in-plane motion restriction (see 
Fig. 4.12, right), a reduced-order model in bending must include the coupling with 
slave modes, which is in this case quadratic and inertial. This can be observed in 
the beam inextensible geometrically exact model (see the . ü term in Eqs. (4.37) and 
(4.36a) which states that .u, - −w,2/2). This prevents a priori the use of a static con-
densation, even if some methods can include inertia (see Nicolaidou et al. (2021)). 

Nevertheless, the normal form method is able to naturally capture the inertial effect 
of the slave modes, as shown in Vizzaccaro et al. (2022), Martin et al. (2023), Grolet 
et al. (2024) for cantilever beams, in Vizzaccaro et al. (2021b) for a turbomachinary 
blade and in Opreni et al. (2021) for an electromechanical micro-mirror. 

4.6.2 The Case of Curved/Non Symmetric Structures 

In practice, the transverse symmetry of the bending vibrations is often broken (see 
Fig. 4.11, right), either because of an initially curved structure, because of stiffeners 
(see e.g. Legay and Combescure (2002)) or because of a non symmetric lamination, 
in the case of a composite material or a piezoelectric structure (see the softening 
behaviour of a mode of a NEMS laminated plate in Thomas et al. (2013)), to cite a 
few. In this case, the modal model naturally includes quadratic terms and the split 
between bending and non-bending motion of the previous section is not allowed 
anymore. This prevents applying the M-STEP method. 

In the case of a not too strong asymmetry, it is still possible to use the brute 
method with a modal model (4.60) and try to artificially split the modal basis into
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mainly bending and mainly axial modes, in order to reduce the dynamics on a few 
master “bending modes” and a number of slave “axial modes”, for the axial/bending 
coupling, but the convergence of the model is often slow (see an example on an 
asymmetric piezoelectric structure in Lazarus et al. (2012)). 

Some authors promote the use of an implicit condensation method (ICE), that 
leads to neglect the inertia of all slave modes, except the one of a given (or a few) 
master modes. It was shown in Shen et al. (2021) that a slow/fast assumption must 
hold between slave and master coordinates for this assumption to be valid. Indeed, 
one must fulfill .ωs > 6ωm , with .(ωs,ωm) the natural frequencies of slave and master 
modes, respectively. For flat structures, this assumption is always fulfilled between 
the first bending modes and all the axial modes, thus justifying the success of the 
M-STEP method. On the contrary, with a transverse asymmetry, if one applies the 
ICE method to compute a single (bending) mode reduced-order model, the slow/fast 
assumption is not always fulfilled, especially with the other bending (slave) modes. 
Other methods, like modal derivatives and dual modes can also be used, see Touzé 
et al. (2021) for comparisons. 

On the contrary, applying a normal form reduction leads to rigorously take into 
account all the non-resonant couplings with all slave modes in one operation. If the 
model is reduced to an ONF at order three, the dynamics is equivalent to a single 
Duffing oscillator (4.81), where the eventual softening effect of the slave modes, due 
to the transverse asymmetry, is naturally included in the value of the coefficient . L0

(see Sects. 4.4.5 and 4.5.2). However, if the behaviour is softening at low amplitude 
(.L0 < 0), it usually becomes hardening at high amplitude, in the form of Fig. 4.15. 
In this case, one needs a normal form of at least a fifth order, such that the quintic 
terms bring the hardening behaviour. The high order CNF naturally includes those 
effects (see an example in Vizzaccaro et al. (2022)). 

4.6.3 Mechanism of Internal Resonances 

This section addresses with more details the coupling mechanism that arise between 
two nonlinear modes involved in an internal resonance, and its associated reduced-
order model. As an example, we consider here the particular case of a 1:3 internal 
resonance. It is observed when the free oscillation frequencies of two nonlinear 
modes are such that: 

.ωnl2 - 3ωnl1. (4.101) 

This can appear at very low amplitude if the above relationship is verified by the 
eigenfrequencies of the system, i.e. .ω2 - 3ω1. If not, the internal resonance can still 
appear at larger amplitude since the free oscillation frequencies of the nonlinear 
modes depend on the amplitude of the motion, because of the cubic nonlinear terms 
(see Eq. (4.77)). 

This kind of internal resonance often appears in the vibration response of 
straight beam with axial/coupling nonlinearities. Examples are 1:3 internal res-
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onances between the first and third bending modes of a hinged-hinged beam, 
shown in Fig. 4.14b, and between the second and fourth bending modes of a 
clamped-clamped beam, see Fig. 4.22a. Focusing on those two cases, the idea of 
this section is to thoroughly address how the coupling between the modes occurs, in 
term of the topology of the response curves, in relation with the reduced-order model. 

Reduced-order model We consider the von Kármán model expanded on the CLM 
mode basis, Eq. (54), restricted to the two linear oscillators involved in the internal 
resonance, named .(qk(t), ql(t)), that read: 

.q̈k + 2ξkωk q̇k + ω2
kqk + L1q

3
k + C1qkq

2
l + C2q

2
k ql + L2q

3
l = F1, (4.102a) 

.q̈l + 2ξlωk q̇l + ω2
l ql + L3q

3
k + C3qkq

2
l + C4q

2
k ql + L4q

3
l = 0. (4.102b) 

According to Sect. 4.4.4, the above equation includes resonant terms due to the 
.1 : 3 internal resonance, .tr ivially resonant terms, the two others being non-

resonant terms. The coefficients .Li and .Ci are related to coefficients .γr
mnp. 

As analysed in Sect. 4.4.4, a correct normal form able to capture the inter-
nal resonance must include the two involved master modes. Then, as seen in 
Sect. 4.6.1, since no quadratic terms are present in the initial model (54), the 
normal form is exactly Eq. (4.102) without the two non-resonant terms, whose 
effect is very weak, except at large amplitude. In fact, in this particular case, it 
was observed that neglecting.L2 and.C3 leads to no difference in the response curves. 

Values of the coefficients Coefficients .(Li ,Ci ) of Eq. (4.102) have the following 
values: 

.L1 = γk
kkk, L2 = γk

lll, L3 = γl
kkk, L4 = γl

lll , (4.103a) 

.C1 = 3L3, C2 = γk
kkl + γk

klk + γk
kll = C3, C4 = 3L2, (4.103b) 

where the relationships between the coefficients come from the existence of a poten-
tial energy (see Givois et al. (2019)). Coefficients .γr

mnp are defined by Eq. (4.55). 
Considering first the clamped-clamped boundary conditions and the 1:3 internal 

resonance of Fig. 4.22, between CNM2 and 4, numerical integrations show that the 
three necessary coefficients .E22, .E24 and .E44 in Eq. (4.55) are non-zero. On the 
contrary, since the mode shapes of a hinged-hinged beam are simply sine functions, 
.E24 = 0 (whereas .E22 /= 0 and .E44 /= 0). This leads to .C2 = L3 = 0, such that 
the two resonant terms that drive the 1:3 internal resonance vanish in the case of 
hinged-hinged boundary conditions.
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Degeneracy and resonant terms The backbone curve of the conservative nonlinear 
modes (CNM) in this 1:3 internal resonance are computed as families of periodic 
orbits, by numerical continuation, as explained in Sect. 4.5.1. To this end, the two 
modal coordinates read: 

.qk(t) = a1H1 cosωt + a1H3 cos 3ωt + hh, (4.104a) 

.ql(t) = a2H1 cosωt + a2H3 cos 3ωt + hh, (4.104b) 

since the motion onto a CNM is monophase (see Sect. 4.5.2). The continuation 
algorithm enables computing the graphs .(ai H j

,ω). 
We first consider the backbone curve of the clamped-clamped beam case of 

Fig. 4.22, detailed in Fig. 4.23a–c. The internally resonant modes are CNM2 and 4 
(.k = 2, l = 4). In Fig. 4.23a, one observes that the backbone curve of CNM2 natu-
rally starts at the natural frequency.ω = ω2 = ωl and that it is bent to the right because 
of a hardening behaviour. Then, the 1:3 internal resonance with CNM4 appears as a 
tongue of the branch, or offshoot, around .ω - 1.1ω2 (point A). In this area, the first 
(leading) harmonic .a1H1 of .q2(t) decreases, in favor of a transfer of energy toward 
the third harmonic .a2H3 of .q4(t) that increases, in the form of a super-harmonic res-
onance. This is qualitatively explained by remarking that the non-linearities create 
harmonics, and that the third one excites the second oscillator close to its resonance, 
this responding with a high amplitude on its third harmonic. 

A particular feature is the connection of this branch, at point B where.a1H1 = 0, to
the backbone of CNM4 (shown in dashed line), plotted as a function of .ω/3. A more
correct view may be to look at this branch in 3D, as plotted in Fig. 4.23b, c. One can 
see that most of the backbone is contained in (or close to) the plane .a2H3 = 0, except 
in the area of the tongue, in which the branch emerges out of this plane to connect it 
with the plane .a1H1 = 0 that contains the backbone curve of CNM4. 

Now, considering the backbone curve of the hinged-hinged beam case of 
Fig. 4.14b, one observes that the two branches of the tongues are merged and that 
they emerge from the main part of the backbone through a bifurcation in A, without 
smooth turns. Indeed, Fig. 4.23d shows that the full diagram is now composed of three 
branches, connected at points A and B. This fact, already addressed in Lewandowski 
(1994, 1996), is revisited here in the light of resonant terms. Indeed, as seen above, 
the particularly simple mode shapes of the hinged-hinged beam lead to the vanishing 
(.C2 = L3 = 0) of the two resonant terms responsible for the 1:3 internal resonance. 
This explains the collapse of the two turns of the main branch into a single bifur-
cation point, from Fig. 4.23a–d. To illustrate the effect, Fig. 4.23d–f are similar to 
Fig. 4.23a–c, except that .C2 and .L3 are set to zero. More specifically, without these 
two resonant terms, the internal resonance still exist but becomes degenerate. 

A cross-section of the invariant manifold associated to the CNM in internal 
resonance, in the space .(q2(t), q̇2(t), q4(t)), is shown in Fig. 4.22b at various points 
of the backbone in Fig. 4.22a. Its tri-lobed shape is characteristic of the leading 
harmonics of the periodic orbit: H1 for .q2(t) and H3 for .q4(t) and its folding linked
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to the internal resonance. 

Topology In practice, according to the experience of the author, if the system has 
only cubic nonlinearities such as a transversely symmetric structure, multiple internal 
resonances of the type 1:. n, with .n > 1 an integer, can appear on the backbone curves 
of a given CNM. They can be classified in three types, as illustrated in Fig. 4.24. Type 1 
is an odd internal resonances (1:. n with . n odd) in the form of the above described 
clamped-clamped beam 1:3 internal resonance. It shows a change of stability through 
two saddle node bifurcations, with vertical tangents in a frequency-energy plot (see 
examples in Givois et al. (2019)). Type 2 is also an odd internal resonance, but 
degenerate, because the associated resonant terms are absent of the normal form, 
as in the first backbone curve of the hinged-hinged beam considered above. Then, 
type 3 is an even internal resonance (1:. n with . n odd), for which the tongue emerge 
from the main branch through symmetry breaking bifurcations. It can also appear 
that the two emerging branches are not connected to each other. Various examples 
can be found in Guillot et al. (2020) and reference therein. Two type 1 resonances 
are also visible in Fig. 4.26. 

In the case of .n > 3, such as a 1:5, 1:7 internal resonance, the corresponding 
resonant terms would appear in an order . n normal form. In this case, the coefficients 
of the order . n resonant monomials are created by the canceling of the non-resonant 

V0 cos Ωt 

elastic structure 

piezoelectric patches 

Parametric response 

Direct response 

Fig. 4.26 Frequency response of an elastic plate driven in vibration by two piezoelectric patches. 
(top) Sketches of the simulated structure and the finite-element mesh. (bottom) comparison between 
a stepped-sine computation with brute time integrations in Abaqus (‘. ◦’: increasing; ‘*’: decreasing) 
and the result of a 5 CLMs reduced-order model (the corresponding five bending mode shapes 
are shown) computed by numerical continuation. The direct and parametric resonances of the first 
bending mode are shown, along with the associated backbone curve (from Givois et al. (2021))
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terms of order .n − 1, and thus of coefficients cubic coefficients .γr
mnp. This explains 

how cubic terms can create order .n > 3 resonant terms. 

4.6.4 Non-resonant Terms and a 1:2 Internal Resonance 

In this section, we consider the case of a 1:2 internal resonance, intentionally caused 
by tuning two natural frequencies of the system such that .ω2 - 2ω1. This is realised 
in practice by coupling the deformation of an elastic structure, with a targeted natural 
frequency .ω2, to a resonant and nonlinear electronic circuit of natural frequency .ω1, 
thanks to a piezoelectric transducer. The main goal is to use the internal resonance 
to transfer the energy from the mechanical mode to the electronic circuit in order 
to damp the mechanical vibrations. All details are provided in the series of articles: 
Shami et al. (2022a, c) for theory and Shami et al. (2022b, 2023b) for the experimental 
proof of concept. 

To achieve this goal, a quadratic nonlinearity is created in the electronic circuit. 
The particular (and well known, see i.e. Nayfeh and Mook (1979)) topology of the 
vibratory response is shown in Fig. 4.25a, d: in the vicinity of the driving frequency 
.ω - ω2 - 2ω1, a nonlinear antiresonance is created, associated to a saturation of the 
amplitude of the mechanical mode, through a sub-harmonic energy transfer to the 
electrical mode. 

However, the nonlinearity in the electronic circuits, in addition to the two resonant 
quadratic terms underlined in Eq. (4.64), is also responsible for all the other non-
resonant terms of Eq. (4.64). If their effect is often negligible, as seen in Sect. 4.4 
or Sect. 4.6.3, in the present case, the value of their coefficients is large, leading 
to a noticeable detuning of the antiresonance. This effect is well explained by the 
normal form (4.74). Indeed, the quadratic non-resonant terms create cubic terms 
in the normal form (of coefficients .Ak

i jl , .B
k
i jl…) responsible for a softening effect, 

visible in Fig. 4.25b, e. 
Finally, adding cubic nonlinearities in the electronic circuit naturally adds coeffi-

cients .γk
i jl in create coefficients the normal form (4.74), that can be tuned to cancel 

the effect of the quadratic resonant terms, thus recovering the symmetry of the reso-
nance curves, as shown in Fig. 4.25c, f. This operation is made possible thanks to an 
analytical relationship between quadratic and cubic nonlinearities of the electronic 
circuit, obtained through the normal form. 

4.6.5 Piezoelectric Structures Nonlinear Dynamics 

The final example of this chapter is a reduced-order model of a transversely symmetric 
structures, in the form of a flat plate that includes collocated piezoelectric elements 
on both sides. The reduced-order model is obtained by exactly condensing the in-
plane modes thanks to the M-STEP method briefly addressed in Sect. 4.6.1, that was
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extended in to compute also the coupling coefficients .χk and .θi j in Eq. (4.62). All 
details are provided in Givois et al. (2021). 

The reduced-order model has the form of Eq. (4.62), reduced to the first 5 bend-
ing modes. For the reasons addressed in Sect. 4.6.1, and in particular the absence 
of quadratic terms because of the transverse symmetry, the quality of the modal 
reduced-order model is excellent, in comparison to a reference simulation in Abaqus. 
Anecdotally, the computation time gain is huge: several days are necessary for the 
Abaqus computation, whereas a few minutes are necessary for the computation of 
the whole branch with the Manlab continuation software (Guillot et al. 2018). 

Interestingly, a parametric resonance, analogous to the one of a simple pendulum 
of Fig. 4.5, is obtained. In fact, driving the piezoelectric patches with a harmonic 
voltage signal results in a periodic creation of in-plane stresses since the patches 
alternatively stretch and contract. The resulting modulation of the in-plane stresses 
modulate the bending stiffness and thus the natural frequencies of the system, cre-
ating a parametric driving. This effect was also studied in Lazarus et al. (2012) and 
sometimes used to artificially change the quality factor of a resonator (Thomas et al. 
2013). 

4.7 Conclusion 

Despite the condensed material presented in the present chapter, the leading idea 
was to show how the normal form can help reducing the size of a model, but also 
how it enables to understand the particular features of a particular nonlinear dynam-
ics. All important features of modern practices in structural nonlinear dynamics were 
addressed: models, nonlinear phenomena, numerical computations and experimental 
identifications. The particular case of mechanical structures subjected to geometrical 
non-linearities was considered as it naturally creates interesting and varied nonlinear 
dynamics. The question of internal resonances was particularly considered. The influ-
ence of possible symmetries of the system was also particularly addressed. Finally, 
the two sides (numerical and experimental) of continuation method as a fundamental 
tool to accurately compute and experimentally identify a nonlinear system were also 
presented. 

Normal form appears as a fantastic and currently well mastered tool for nonlinear 
dynamics analysis and model-reduction. However, a lot of questions remain open 
or incompletely understood: non-smooth non-linearities, material non-linearities in 
electromechanically coupled systems (piezoelectric, electrostatic, electromagnet-
ic…), damped nonlinear modes… 
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