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Abstract

This paper is devoted to the proof of the existence of the principal eigenvalue and related
eigenfunctions for fully nonlinear uniformly elliptic equations posed in a punctured ball,
in presence of a singular potential. More precisely, we analyze existence, uniqueness and
regularity of solutions (λ̄γ , uγ) of the equation

F (D2uγ) + λ̄γ
uγ
rγ

= 0 in B(0, 1) \ {0}, uγ = 0 on ∂B(0, 1)

where uγ > 0 in B(0, 1) \ {0} and γ > 0. We prove existence of radial solutions which are

continuous on B(0, 1) in the case γ < 2, existence of unbounded solutions in the case γ = 2
and a non existence result for γ > 2. We also give, in the case of Pucci’s operators, the
explicit value of λ̄2, which generalizes the Hardy–Sobolev constant for the Laplacian.

Résumé

Dans cet article nous nous intéressons à l’existence de valeur propre principale et de fonctions
propres associées pour des opérateurs complètement non linéaires dans un domaine épointé,
en présence d’un potentiel singulier.
Plus pécisément, nous analysons l’existence, l’unicité et la régularité de solutions de l’équation

F (D2uγ) + λ̄γ
uγ
rγ

= 0 dans B(0, 1) \ {0}, uγ = 0 sur ∂B(0, 1)

où uγ > 0 est définie sur B(0, 1) \ {0} et γ > 0. On montre l’existence de solutions radiales

qui sont continuées sur B(0, 1) dans le cas γ < 2, l’ existence de solutions non bornées dans
le cas γ = 2 et un résultat de non existence dans le cas γ > 2. Nous donnons aussi dans
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le cas des opérateurs de Pucci la valeur explicite de λ̄2, ce qui généralise la constante de
Hardy–Sobolev dans le cas du Laplacien.

Keywords: Fully nonlinear elliptic equations, singular potential, principal eigenvalues,
regularity of eigenfunctions
2020 MSC: 35J60, 35J75, 35P15, 35P30.

1. Introduction

In this paper we will study radial eigenvalues and related positive radial eigenfunctions for
the Dirichlet problem associated with the equation

F (D2u) + µr−γu = 0 in B(0, 1) \ {0}

when γ > 0 and F is a second order fully nonlinear uniformly elliptic operator. By radial
eigenvalue and radial eigenfunction we mean a real value λγ and a radial nontrivial function
uγ respectively, satisfying the equation{

F (D2uγ) + λγr
−γuγ = 0 in B(0, 1) \ {0}

uγ = 0 on ∂B(0, 1).
(1.1)

In principle, eigenfunctions are required to satisfy the above eigenvalue problem in the vis-
cosity sense, but, due to the radial symmetry, this is equivalent to consider classical solutions.
We will focus on constant sign eigenfunctions, in particular positive eigenfunctions, thus refer-
ring to the so called principal eigenvalues. If necessary, in order to emphasize the dependence
of the eigenvalue on the operator F , the potential f(r) appearing in the zero order term and
the domain Ω in which the equation is considered, we will use the notation λ = λ(F, f(r),Ω).
Interestingly, we will see that for problem (1.1), as in the case when F is the Laplace operator,
γ = 2 is a critical value, in the sense that for γ < 2 there exists smooth eigenfunctions, for
γ > 2 there are no eigenfunctions and, for γ = 2, the eigenfunctions are unbounded.

Let us recall some known results when F is the Laplacian. In the case γ = 2, the equation is
naturally linked to Hardy’s inequality. Indeed, if N > 2 and u ∈ H1

0 (B(0, 1)) (respectively,

u ∈ H1(RN )), then u(x)
|x| belongs to L2(B(0, 1)) (respectively u(x)

|x| ∈ L
2(RN )), and there exists

a positive constant c such that ∫ (
|u(x)|
|x|

)2

≤ c
∫
|∇u|2.
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Furthermore, the best constant c = 4
(N−2)2

is not achieved, in the sense that

inf
u∈H1

0 (B(0,1)),
∫
B(0,1)

(
|u(x)|
|x| |

)2
=1

∫
B(0,1)

|∇u|2 =
(N − 2)2

4
(1.2)

but there is no u ∈ H1
0 which realizes the infimum. By obvious arguments, B(0, 1) can be

replaced by any bounded regular open set of RN containing 0, and the optimal constant
does not depend on the size of Ω. Note that the right hand side of (1.2) coincides with the
variational characterization of the first (or principal) eigenvalue for the equation

−∆u = λ
u

|x|2
.

For further knowledge on the Hardy–Sobolev inequality and for the case of the p-Laplacian,
we refer to [1, 2, 3].
On the other hand, if the exponent γ of the potential is strictly less than 2, since H1

0 (B(0, 1))
is compactly embedded into the weighted space L2(B(0, 1), 1

rγ ), then existence of minima
in H1

0 (B(0, 1)) can be obtained by standard arguments of the direct method in calculus of
variations. In that case, denoting

λ̄γ = inf
u∈H1

0 (B(0,1)),
∫
B(0,1)

|u(x)|2
|x|γ =1

∫
B(0,1)

|∇u|2 (1.3)

one sees that λ̄γ is also the first eigenvalue for the equation

∆u+ λ̄γ
u

rγ
= 0 ,

meaning that λ̄γ is such that there exists u > 0 in H1
0 (B(0, 1)) satisfying the equation.

Note that, by its definition, λ̄γ depends on the domain, since

λ̄γ(B(0, t)) =
1

t2−γ
λ̄γ(B(0, 1)).

If γ > 2 there is no embedding from H1
0 (B(0, 1)) into L2(B(0, 1), 1

rγ ). Indeed, as an example,
the function

u(r) = r−
N−2

2
+ε(− log r)

with 0 < ε < γ−2
2 , belongs to H1

0 (B(0, 1)) and satisfies∫
B(0,1)

u(|x|)2

|x|γ
= +∞
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For results in the variational linear case we refer to the works of many authors, but in
particular we wish to mention the works of Cirstea and collaborators [4, 5, 6, 7] .
Let us now focus on the case of concern of this paper i.e. when F is a fully nonlinear uniformly
elliptic operator, that is F is a continuous function defined on the set SN of symmetric N×N
matrices, and it satisfies, for positive constants Λ ≥ λ > 0,

λ tr(M ′) ≤ F (M +M ′)− F (M) ≤ Λ tr(M ′) , (1.4)

for all M,M ′ ∈ SN , with M ′ positive semidefinite.
We suppose also that F is rotationally invariant, that is

F (OtMO) = F (M) (1.5)

for every orthogonal matrix O and for all M ∈ SN , and that F is positively homogeneous of
degree 1, i.e.

F (tM) = tF (M) (1.6)

for any M ∈ SN and for all t > 0. In this case we will see that, as in the regular case i.e.
γ = 0, the first eigenvalue for problem (1.1) can be defined on the model of [8], i.e. by the
optimization formula

λ̄γ = λ̄γ(F, r−γ , B(0, 1) \ {0})

= sup{µ : ∃u ∈ C(B(0, 1) \ {0}) , u > 0 in B(0, 1) \ {0}, F (D2u) + µ u
rγ ≤ 0} ,

(1.7)

where the differential inequality is understood in the viscosity sense.
A first easy observation is that, by considering constant super-solutions, one always has
λ̄γ ≥ 0. One of the goals of the present paper is to show, in particular, that λ̄γ > 0 for γ ≤ 2.
In case of smooth coefficients and regular domains, the principal eigenvalues and related
eigenfunctions for fully nonlinear operators F have been largely investigated. We refer to e.g.
[9, 10, 11, 12, 13, 14].
In the class of fully nonlinear operators satisfying (1.4), (1.5) and (1.6), the Pucci’s extremal
operators play a crucial role and we will treat them in depth. Let us recall that, by decom-
posing each matrix M ∈ SN as M = M+−M−, where M+ and M− are positive semidefinite
matrices satisfying M+M− = O, then Pucci’s sup operator can be defined as

M+
λ,Λ(M) = Λtr(M+)− λtr(M−) ,

as well as Pucci’s inf operator is given by

M−λ,Λ(M) = λtr(M+)− Λtr(M−) = −M+
λ,Λ(−M).

As it is well known, see [15], under assumption (1.4) each operator F satisfies

M−λ,Λ(M1 −M2) ≤ F (M1)− F (M2) ≤M+
λ,Λ(M1 −M2) (1.8)
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for all M1 , M2 ∈ SN , and, if (1.6) is also satisfied, then

M−λ,Λ(M) ≤ F (M) ≤M+
λ,Λ(M) , ∀M ∈ SN . (1.9)

This shows in particular that Pucci’s operators act as explicit extremal operators in the whole
class of uniformly elliptic operators having the same ellipticity constants. In the sequel, we
will omit in the notation the dependence on the ellipticity constants, which are fixed once for
all.
We further recall that for a C2 radial function u(x) = u(|x|), one has

D2u(x) = u′′(r)
x⊗ x
r2

+
u′(r)

r

(
I − x⊗ x

r2

)
,

and, as a consequence,

M+(D2u) = Λ(N − 1)

(
u′(r)

r

)+

− λ(N − 1)

(
u′(r)

r

)−
+ Λ(u′′(r))+ − λ(u′′(r))− ,

M−(D2u) = λ(N − 1)

(
u′(r)

r

)+

− Λ(N − 1)

(
u′(r)

r

)−
+ λ(u′′(r))+ − Λ(u′′(r))− .

Thus, the ODEs satisfied by radial solutions of Pucci’s extremal equations have coefficients
depending on the dimension like parameters, associated with M+ and M− respectively,
defined as

Ñ+ =
λ

Λ
(N − 1) + 1 , Ñ− =

Λ

λ
(N − 1) + 1 .

Note that one has always
Ñ− ≥ N ≥ Ñ+ ,

with equalities holding true if and only if Λ = λ. We will assume always that Ñ+ > 2.
We can now state the main results of the paper. We will always assume that F satisfies
assumptions (1.4), (1.5) and (1.6). Let us start with the case γ < 2.

Theorem 1.1. Suppose that γ < 2. Then:

(i) λ̄γ defined in (1.7 ) is positive and there exists a function u, continuous in B(0, 1),
radial, strictly positive in B(0, 1), such that{

F (D2u) + λ̄γ
u
rγ = 0 in B(0, 1) \ {0}

u = 0 on ∂B(0, 1)
.

Furthermore u is C2(B(0, 1) \ {0}) and it can be extended on B(0, 1) as a Lipschitz
continuous function if γ ≤ 1, as a function of class C1(B(0, 1)) when γ < 1, and as an
Hölder continuous function with exponent 2− γ if γ > 1.
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(ii) λ̄γ is stable under various regular approximations :

λ̄γ = lim
ε→0

λ̄(F,
1

(r2 + ε2)
γ
2

, B(0, 1)) ,

λ̄γ = lim
δ→0

λ̄(F,
1

rγ
, B(0, 1) \B(0, δ)) .

Statement (i) of the above theorem shows in particular that λ̄γ is actually achieved on smooth
radial eigenfunctions. Thus, if we define

λ̄′γ := sup{µ : ∃u ∈ C2(B(0, 1) \ {0}) , u > 0 in B(0, 1) \ {0}, u radial,

F (D2u) + µ u
rγ ≤ 0} ,

(1.10)

it then follows that
λ̄γ = λ̄′γ .

Actually, we will work initially with the smooth eigenvalue λ̄′γ , and we will finally prove that

it coincides with λ̄γ . Note that, due to the lack of regularity of the coefficient function 1
rγ we

cannot employ directly the results of [16] which ensure that solutions of

F (D2u) + f(r)u = 0

in a radial domain are radial when f is non increasing. Nonetheless, we will prove that the
two eigenvalues coincide for any γ ≤ 2. However, due to the singularity at zero, we cannot
prove that any eigenfunction is radial. For symmetry results for solutions of equations having
isolated singularities, we refer to [17], where the case of C1 operators is considered.
Theorem 1.1 will be proved after several steps and intermediate results. In particular, we
will prove a comparison theorem for smooth, bounded, radial sub- and super-solutions in the
punctured ball, without assuming any order condition at the origin. Furthermore, we will
show that for µ < λ̄γ the problem{

F (D2u) + µur−γ = f(r)r−γ in B(0, 1) \ {0}
u = 0 on ∂B(0, 1)

admits a unique radial solution u ∈ C2(B(0, 1)\{0})∩C(B(0, 1)) for any radial and continuous
datum f ∈ B(0, 1) satisfying f ≤ 0.
Next, for the case γ = 2 we have the following result, which gives explicit expressions for the
eigenvalues and the eigenfunctions in case of Pucci’s operators.

Theorem 1.2. Assume that γ = 2. Then:
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(i) For the operator M+ one has

λ̄2(M+) = Λ
(Ñ+ − 2)2

4

and the function u(x) = r−
Ñ+−2

2 (− ln r) is an explicit solution of{
M+(D2u) + λ̄2

u
r2

= 0 in B(0, 1) \ {0}
u = 0 on ∂B(0, 1)

Analogously, for the operator M− one has

λ̄2(M−) = λ
(Ñ− − 2)2

4

and the function u(x) = r−
Ñ−−2

2 (− ln r) is an explicit solution of{
M−(D2u) + λ̄2

u
r2

= 0 in B(0, 1) \ {0}
u = 0 on ∂B(0, 1)

(ii) The eigenvalues λ̄2(M±) are stable under various regularization

λ̄2(M±) = lim
γ→2

λ̄γ(M±)

λ̄2(M±) = lim
δ→0

λ̄(M±, B(0, 1) \B(0, δ))

λ̄2(M±) = lim
ε→0

λ̄(M±, 1

(r2 + ε2)
)

(iii) For any operator F satisfying (1.4) and (1.6) one has

Λ
(Ñ+ − 2)2

4
≤ λ̄2(F ) ≤ λ(Ñ− − 2)2

4
.

We observe that we cannot prove the existence of eigenfunctions for a general operator F , but
we can merely provide the estimate on the eigenvalue given by statement (iii) above. Theorem
1.2 will be obtained by using a variational approach adapted to the fully nonlinear radial
framework. Indeed, we will define variational eigenvalues associated with the operators M±
in an analogous way as in (1.3), taking advantage of the radial symmetry of solutions. Then,
the full statements of Theorem 1.2 will follow as consequences of the properties established
for λ̄γ in the case γ < 2 and the stability of the variational formulation as γ → 2.
Finally, for the case γ > 2, the singularity of the coefficient is too strong and it prevents the
existence of positive smooth super-solutions, as stated by the following non existence result.
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Theorem 1.3. If γ > 2, then the eigenvalue λ̄′γ defined by (1.10) satisfies λ̄′γ = 0.

Let us observe that, symmetrically, one could define the eigenvalue associated with negative
eigenfunctions, by setting

λ̄−γ = sup{µ : ∃u ∈ C(B(0, 1) \ {0}) , u < 0 in B(0, 1), F (D2u) + µ
u

rγ
≥ 0} = 0.

In this case, the results above can be extended to λ̄−γ with obvious modifications.

Let us conclude this introduction by observing that, in case of semilinear or quasilinear
equations, many existence, non existence and classification results have been obtained in
presence of zero order terms having Hardy’s potential perturbed with additional sub- or
superlinear terms. In particular, we refer to [18, 19, 4? ] for results related to Laplace
operator, and to [1] for the p-Laplace operator.
The case where, in all directions above, ∆ or ∆p is replaced by a non variational fully nonlinear
operator will be the object of future works.

2. The case γ < 2: proof of Theorem 1.1

Theorem 1.1 will be proved as a consequence of several classical steps: a comparison principle,
existence and regularity results and a maximum principle ”below” the first eigenvalue.

2.1. Maximum principles, existence and regularity results

The first result of the present section is a crucial technical lemma.

Lemma 2.1. Let f ∈ C (B(0, 1) \ {0}) be a radial, bounded and positive function and assume
that u ∈ C2 (B(0, 1) \ {0}) is a radial, bounded function satisfying

M+(D2u) ≥ fr−γ in B(0, 1) \ {0} . (2.1)

Then

(i) u′ ≥ 0 in a right neighborhood of 0;

(ii) lim
r→0

u′(r)rÑ−−1 = 0 and in a right neighborhood of 0 one has

u′(r) ≥ inf f

Λ(Ñ− − γ)
r1−γ ;
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(iii) if, furthermore, M+(D2u) = fr−γ, then, in a right neighborhood of zero, one has also

u′(r) ≤ sup f

λ(N − γ)
r1−γ .

In particular, there exists a constant c > 0 such that, for r sufficiently small,

|u′(r)| ≤ cr1−γ

and then u is locally Lipschitz continuous in B(0, 1) if γ ≤ 1, it belongs to C1(B(0, 1))
if γ < 1, and it is locally Hölder continuous in B(0, 1) with exponent 2− γ if γ > 1.

Proof. Let us prove, by contradiction, that u′ does not change sign in a right neighborhood
of 0. If not, there exists a decreasing sequence {rn} converging to 0, such that u′(rn) = 0 for
all n, and u′ ≤ 0 in ]r2n+1, r2n[, u′ ≥ 0 in ]r2n+2, r2n+1[. Since u′(r2n) = u′(r2n+1) = 0, there
exists some s2n ∈]r2n+1, r2n[ such that u′′(s2n) = 0. This yields the contradiction

0 ≥ λ(N − 1)
u′(s2n)

s2n
=M+(D2u(s2n)) ≥ f(s2n)s−γ2n > 0 .

Next, arguing again by contradiction, if u′(r) ≤ 0 for r sufficiently small, then, by (2.1), one
has u′′(r) > 0 and, in a right neighborhood of 0,

M+(D2u) = Λu′′(r) + λ(N − 1)
u′(r)

r
≥ f(r)r−γ .

Hence,

(u′(r)rÑ+−1)′ ≥ frÑ+−1−γ

Λ
> 0

and, in particular, u′rÑ+−1 is increasing in a right neighborhood of 0. Thus, the limit
limr→0 u

′(r)rÑ+−1 exists and it is lesser than or equal to 0. If it was lesser than zero, then
we would have, for some constant l > 0,

u′(r) ≤ −lr1−Ñ+

in a right neighborhood of 0, yielding a contradiction to the boundedness of u This shows
that limr→0 u

′(r)rÑ+−1 = 0 and, by monotonicity, u′(r) > 0 in a right neighborhood of 0.
The reached contradiction proves statement (i).
In order to prove (ii), let us observe that, for r sufficiently small, by (2.1) we have either

u′′(r) + (N − 1)
u′(r)

r
≥ f(r)r−γ

Λ

9



if u′′(r) ≥ 0, or

u′′(r) + (Ñ− − 1)
u′(r)

r
≥ f(r)r−γ

λ

if u′′(r) ≤ 0. Since u′(r) ≥ 0 and Ñ− ≥ N , in both cases one has

u′′(r) + (Ñ− − 1)
u′(r)

r
≥ f(r)r−γ

Λ
,

that is

(u′rÑ−−1)′ ≥ f(r)rÑ−−1−γ

Λ
≥ inf f

Λ
rÑ−−1−γ .

Arguing as above, we deduce that u′rÑ−−1 is increasing in a right neighborhood of 0, hence it
has a nonnegative limit as r → 0, and such a limit must be 0, since u is bounded. Moreover,
by integrating the above inequality, we obtain

u′(r) ≥ inf f

Λ(Ñ− − γ)
r1−γ .

Let us finally prove (iii). Assuming that M+(D2u) = f(r)r−γ and using statement (i), it
follows that, for every r > 0 sufficiently small, one has either

u′′(r) + (N − 1)
u′(r)

r
=
f(r)r−γ

Λ

or

u′′(r) + (Ñ− − 1)
u′(r)

r
=
f(r)r−γ

λ
.

In both cases, we deduce

u′′(r) + (N − 1)
u′(r)

r
≤ f(r)r−γ

λ
,

which yields

(u′(r)rN−1)′ ≤ f(r)

λ
rN−1−γ ≤ sup f

λ
rN−1−γ .

Hence, u′(r)rN−1 − sup f
λ(N−γ)r

N−γ is non increasing in a right neighborhood of 0 and it has a

limit as r → 0. This implies that u′(r)rN−1 has a limit as r → 0 as well, and such a limit is
zero by the boundedness of u. By integrating the last inequality, we finally deduce

u′(r) ≤ sup f

λ(N − γ)
r1−γ .

The regularity of u at zero is then a consequence of the estimate |u′(r)| ≤ cr1−γ . Elsewhere,
it follows from the assumption u ∈ C2(B(0, 1) \ {0}).
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Remark 2.2. By using the change of variable v = −u, one gets that if f belongs to
C (B(0, 1) \ {0}), it is radial, bounded and positive and u ∈ C2 (B(0, 1) \ {0}) is a bounded
radial function satisfying

M−(D2u) ≤ −fr−γ in B(0, 1) \ {0} ,

then, for r sufficiently small, u′(r) ≤ 0, limr→0 u
′(r)rÑ−−1 = 0 and

u′(r) ≤ − inf f

Λ(Ñ− − γ)
r1−γ .

Moreover, if M−(D2u) = −fr−γ in B(0, 1) \ {0}, then |u′(r)| ≤ cr1−γ for a positive con-
stant c. Hence u is locally Lipschitz continuous in B(0, 1) for γ ≤ 1, it belongs to C1(B(0, 1))
if γ < 1, and it is locally Hölder continuous in B(0, 1) with exponent 2− γ for γ > 1.
Obviously, since M− ≤M+, one gets an analogous conclusion when

M+(D2u) ≤ −fr−γ .

We can now prove a comparison principle for general radial fully nonlinear singular equations
of the form

F (D2u)− βur−γ = f(r)r−γ in B(0, 1) \ {0}

when no boundary condition at the origin is assumed.

Theorem 2.3. Let f, g ∈ C (B(0, 1)) be radial functions and assume that u, v ∈ C
(
B(0, 1)

)
∩

C2(B(0, 1) \ {0}) are radial functions satisfying in B(0, 1) \ {0}

F (D2u)− βu(r)r−γ ≥ f(r)r−γ

F (D2v)− βv(r)r−γ ≤ g(r)r−γ

with β ≥ 0 and f ≥ g in B(0, 1). Then, u ≤ v on ∂B(0, 1) implies u ≤ v in B(0, 1).

Proof. Let us first consider the case in which either β > 0 or f > g in B(0, 1). We suppose
by contradiction that

max
B(0,1)

(u− v) > 0 .

If the maximum is achieved at 0, then (u − v)(0) > 0 and, by the assumptions on f , g and
β, there exist δ > 0 and a neighborhood on the right of 0 on which

(β(u(r)− v(r)) + f(r)− g(r))r−γ ≥ δr−γ > 0

By (1.8), we then obtain, for r sufficiently small,

M+(D2(u− v)) ≥ δr−γ

11



Using Lemma 2.1 for u − v, one gets that for some positive constant c, (u − v)′ ≥ cδr1−γ ,
which contradicts the fact that u−v attains its maximum at 0. Hence, there exists 0 < r̄ < 1
such that u(r̄) − v(r̄) = max(u − v). Then, (D2u − D2v)(r̄) ≤ 0 and, by ellipticity, we get
the contradiction

(f(r̄) + βu(r̄))r−γ ≤ F (D2u(r̄)) ≤ F (D2v(r̄)) ≤ (g(r̄) + βv(r̄))r−γ .

For the case β = 0 and f ≥ g, let us introduce the radial function

w(r) = 1− rτ

with 0 < τ ≤ 2− γ. A direct computation shows that

M+(D2w) ≤ τΛ(|τ − 1| − (Ñ+ − 1))rτ−2 .

We observe that |τ − 1| < 1 < Ñ+ − 1, so that

M+(D2w) ≤ −Cr−γ in B(0, 1) \ {0}

with C = τΛ(Ñ+ − 1− |τ − 1|) > 0. Thus, for any ε > 0, we have

F (D2(u− εw)) ≥ F (D2u)− εM+(D2w) ≥ (f + εC)r−γ .

Since f + εC > g and u− εw = u ≤ v on ∂B(0, 1), the previous argument proves that

u− εw ≤ v in B(0, 1)

and the conclusion follows by letting ε→ 0.

Remark 2.4. The auxiliary function introduced in the proof of Theorem 2.3 shows that
there exist a radial function w ∈ C2(B(0, 1)\{0}), strictly positive in B(0, 1)\{0}, such that

F (D2w) ≤ −cwr−γ in B(0, 1) \ {0}

for a constant c > 0. This proves that λ̄γ(F ) ≥ λ̄′γ(F ) ≥ c > 0.

Next, we have the following existence, uniqueness and regularity result.

Theorem 2.5. Let f ∈ C(B(0, 1)) be a radial, bounded function. For β ≥ 0 and b ∈ R there
exists a unique bounded radial function u ∈ C(B(0, 1) \ {0}) ∩ C2(B(0, 1) \ {0}) satisfying{

F (D2u)− βur−γ = r−γf(r) in B(0, 1) \ {0}
u = b on ∂B(0, 1)

(2.2)

Moreover, u can be extended up to B(0, 1), and one has: u ∈ C1(B(0, 1)) if γ < 1, u is
Lipschitz continuous in B(0, 1) if γ ≤ 1, u is Hölder continuous in B(0, 1) with exponent
2− γ if γ > 1.

12



Proof. For every n ∈ N let us introduce the regularized Dirichlet boundary value problem{
F (D2un)− βun(r2 + 1/n)−γ/2 = (r2 + 1/n)−γ/2f(r) in B(0, 1)

un = b on ∂B(0, 1)
(2.3)

which, by standard viscosity solutions theory, see [20], has a unique solution un ∈ C(B(0, 1)).
By the symmetry results of [16], it follows that un is radial, hence, as a solution of the
associated ODE, un belongs to C2(B(0, 1)).
For 0 < τ ≤ 2− γ, let us consider the radial function

w(r) = L(1− rτ ) + b ,

where L > 0 is a constant to be suitably chosen. The same computation used in the proof of
Theorem 2.3 yields

M+(D2w) ≤ −LCr−γ ≤ −LC(r2 + 1/n)−γ/2 ,

and then, by uniform ellipticity, it follows that

F (D2w)− βwr−γ ≤ (−LC − βb)(r2 + 1/n)−γ/2 ≤ f(r)(r2 + 1/n)−γ/2

as soon as C is chosen large enough. Analogously, for some convenient positive constant L,
the function −L(1− rτ ) + b is a radial sub-solution of problem (2.3).
The standard comparison principle then implies that the sequence {un} is uniformly bounded
in C(B(0, 1)). Hence, it is locally uniformly bounded in C2(B(0, 1) \ {0}) and, up to a
subsequence, it is converging locally uniformly in B(0, 1) \ {0} to a radial solution u of
problem (2.2), which is a globally bounded function belonging to C2(B(0, 1) \ {0}).
Let us now show that the constructed bounded radial solution u is actually continuous in
the whole ball B(0, 1). Indeed, the same approximation argument used in order to prove the
existence of u can be applied, in particular, in order to show the existence of a radial bounded
solution w̄ of the Dirichlet problem{

M+(D2w̄) = −(‖f‖∞ +B + 1)r−γ in B(0, 1) \ {0}
w̄ = u on ∂B(0, 1)

where B > 0 is a constant such that β|u| ≤ B in B(0, 1). Lemma 2.1 and Remark 2.2 applied
to w̄ yield that

|w̄′| ≤ cr1−γ

for some c > 0. As a consequence, we have

M+(D2(u− w̄)) ≥ F (D2(u− w̄)) ≥ F (D2u)−M+(D2w̄) ≥ r−γ in B(0, 1) \ {0}

13



and then, by Lemma 2.1 (i), in a right neighborhood of zero one has (u− w̄)′(r) ≥ 0 . Hence,

u′(r) ≥ −cr1−γ

for r small enough. Analogously, we have

M−(D2(u+ w̄)) ≤ F (D2(u+ w̄)) ≤ F (D2u) +M+(D2w̄) ≤ −r−γ in B(0, 1) \ {0}

which implies, by Remark 2.2,
u′(r) ≤ −w̄′ ≤ cr1−γ

for r small enough. Arguing as in the proof of Lemma 2.1, from the estimate |u′(r)| ≤ cr1−γ

for r sufficiently small, we deduce that u is Lipschitz continuous in B(0, 1) if γ ≤ 1, it belongs
to C1(B(0, 1)) if γ < 1, and it is Hölder continuous in B(0, 1) with exponent 2− γ if γ > 1.
Let us observe that the argument above shows that any bounded radial solution of problem
(2.2) is continuous in B(0, 1). This, jointly with Theorem 2.3, implies that problem (2.2) has
a unique radial bounded solution.

The argument used in the above proof yields also the following compactness result, which we
state separately for the sake of clarity.

Theorem 2.6. Let {un}n be a uniformly bounded sequence of radial functions belonging to
C2(B(0, 1) \ {0}) and satisfying

F (D2un) = fnr
−γ in B(0, 1) \ {0} ,

where {fn}n are radial, bounded and continuous on B(0, 1)\{0}. If {fn} is uniformly bounded,
then {un}n are equicontinuous, thus uniformly converging in B(0, 1) up to a subsequence. If
{fn} is uniformly converging to f ∈ C(B(0, 1)), then, up to a subsequence, {un}n is uniformly
converging to a radial solution u ∈ C2(B(0, 1) \ {0}) ∩ C(B(0, 1)) of

F (D2u) = r−γf in B(0, 1) \ {0} .

In the next results, we prove several properties of the “smooth” eigenvalue

λ̄′γ := sup{µ : ∃u ∈ C2(B(0, 1)\{0}) , u > 0 in B(0, 1)\{0}, u radial, F (D2u)+µ
u

rγ
≤ 0} .

In Subsection 2.3 we will prove in fact that λ̄′γ = λ̄γ .
Let us start by proving the validity of the maximum principle below the value λ̄′γ .

Theorem 2.7. Let µ < λ̄′γ and suppose that u ∈ C(B(0, 1)) ∩ C2(B(0, 1) \ {0}) is a radial
function satisfying

F (D2u) + µur−γ ≥ 0 in B(0, 1) \ {0} .

If u(1) ≤ 0, then u ≤ 0 in B(0, 1).
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Proof. If µ < 0, we just apply Theorem 2.3 with v ≡ g ≡ f ≡ 0. So, we can assume without
loss of generality that µ ≥ 0.
For µ′ ∈]µ, λ̄′γ [, let v ∈ C2(B(0, 1) \ {0}) be a radial function satisfying

F (D2v) + µ′vr−γ ≤ 0 , v > 0 in B(0, 1) \ {0} .

We can assume without loss of generality that v > 0 on ∂B(0, 1), e.g. by performing a dilation
in r (this may change a little µ′ but we can still suppose by continuity that µ′ ∈]µ, λ̄′γ [).
Arguing as in the proof of Lemma 2.1, since M−(D2v) + µ′vr−γ ≤ 0, we easily obtain that
v′(r) has constant sign near zero. Assuming by contradiction that v′(r) ≥ 0 in a neighborhood
of zero, then v is bounded in B(0, 1) \ {0}. Hence, Remark 2.2 applies and yields v′(r) ≤ 0
for r small enough: a contradiction. This shows that v′(r) ≤ 0 in a neighborhood of 0.
Then, there are two possible cases: either limr→0 v(r) = +∞ or v can be extended as a con-
tinuous function on B(0, 1). In the first case, by applying the standard comparison principle,
it is easy to prove that for all ε > 0 one has u ≤ εv in B(0, 1) \ {0}. In this case, letting
ε→ 0, we get the conclusion. On the other hand, if v is bounded and continuous on B(0, 1),
we can argue by contradiction. Let us assume that u is positive somewhere in B(0, 1), so
that u

v has a positive maximum on B(0, 1), achieved at some point inside B(0, 1). Up to a
multiplicative constant for v, we can suppose that

max
B(0,1)

u

v
= 1 ,

so that u(r) ≤ v(r). If the maximum is achieved at 0, then one has u(0) = v(0) > 0 . By
continuity, for r small enough one has

M+(D2(u− v)) ≥ F (D2u)− F (D2v) ≥ 1

2
(µ′v(0)− µu(0))r−γ .

Since µ′v(0)−µu(0) = (µ′−µ)v(0) > 0, we can use Lemma 2.1 (ii) and we get that (u−v)′(r) >
0 in a right neighborhood of 0. This is a contradiction to u−v has a maximum point at zero.
Hence, we have that 1 = max u

v >
u(0)
v(0) . Let us select η < 1 such that η > max{ µµ′ ,

u(0)
v(0)}.

Then, the function u− ηv has a positive maximum achieved at some point 0 < r̄ < 1.
Since D2u(r̄) ≤ ηD2v(r̄), by ellipticity and using (1.6), we get

−µv(r̄)r̄−γ ≤ −µu(r̄)r̄−γ ≤ F (D2u(r̄)) ≤ F (ηD2v(r̄)) ≤ −µ′η v(r̄)r̄−γ ,

which gives the contradiction µ ≥ µ′η.

The next result provides the existence, uniqueness and regularity of solutions below the
eigenvalue λ̄′γ .
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Theorem 2.8. Let f be a radial and continuous function in B(0, 1) satisfying f ≤ 0, with f
not identically zero. Then, for every µ < λ̄′γ there exists a unique, bounded, radial function
u ∈ C2(B(0, 1) \ {0}) satisfying{

F (D2u) + µur−γ = f(r)r−γ in B(0, 1) \ {0}
u = 0 on ∂B(0, 1)

Moreover, u can be extended as a strictly positive continuous function in B(0, 1), Lipschitz
continuous in B(0, 1) if γ ≤ 1, (2− γ)−Hölder continuous in B(0, 1) if γ > 1.

Proof. As in the proof of Theorem 2.7, we can assume without loss of generality that µ > 0,
otherwise the conclusion just follows from Theorem 2.5.
Let us first show the existence of a bounded, radial, smooth solution u. We recursively define
a sequence {un}n≥0 as follows: we set

u0 ≡ 0 ,

and then, by using Theorem 2.5, we define un+1 ∈ C2(B(0, 1)\{0})∩C(B(0, 1)) as the unique
bounded radial solution of{

F (D2un+1) = (f − µun)r−γ in B(0, 1) \ {0}
un+1 = 0 on ∂B(0, 1)

By Theorem 2.3, we have that un+1 ≥ 0, hence it is strictly positive in B(0, 1) \ {0} by the
standard strong maximum principle, since f is not identically zero. In particular, un is not
identically zero for all n ≥ 1. By applying the comparison principle in Theorem 2.3 again,
we deduce also that un+1 ≥ un. Let us prove that {un}n is uniformly bounded. If not, by
setting vn = ‖un‖∞−1un and kn = ‖un+1‖−1

∞ ‖un‖∞ ≤ 1, one gets that vn+1 satisfies{
F (D2vn+1) =

(
f(r)

‖un+1‖∞ − µknvn(r)
)
r−γ in B(0, 1) \ {0}

vn+1 = 0 on ∂B(0, 1)

Since {vn}n is uniformly bounded, by applying Theorem 2.6, we can extract a subsequence
still denoted by {vn}n uniformly converging to a function v ≥ 0 satisfying{

F (D2v) + µkvr−γ = 0 in B(0, 1) \ {0}
v = 0 on ∂B(0, 1)

where k ≤ 1 is the limit of some converging subsequence of {kn}n. Since v is a radial solution,
one has that v ∈ C2(B(0, 1) \ {0}) and, since µk ≤ µ < λ̄′γ , Theorem 2.7 yields v ≤ 0. Hence,
we get v ≡ 0, a contradiction with ‖v‖∞ = 1.
We have obtained that {un}n is bounded, and using once more Theorem 2.6, we deduce that
{un} uniformly converges to some u, which satisfies the desired equation. By the strong
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maximum principle, we get that u > 0 in B(0, 1) \ {0}. Moreover, by Remark 2.2, we have
that u′(r) ≤ 0 for r > 0 small enough, which implies u(0) > 0. Finally, the global regularity
of u follows from Theorem 2.5.
As far as uniqueness is concerned, let u and v be two positive, bounded, radial solutions of

F (D2u) + µur−γ = fr−γ ,

and let us define
η = sup

u

v
.

We assume, by contradiction, that η > 1. Then ηf ≤ f , ηf 6= f and ηv−u ≥ 0, inf(ηv−u) =
0. If ηv − u achieves its minimum at r̄ 6= 0, then, by the equation, one has

M−(D2(vη − u)) + µ(ηv − u))r−γ = (η − 1)fr−γ ≤ 0 .

By the strong maximum principle, one gets that vη − u = 0 for every r 6= 0, which yields
a contradiction with the equation since ηf 6= f . Hence, we deduce that ηv − u > 0 for any
r 6= 0, and ηv(0)− u(0) = 0. We then have

M−(D2(ηv − u)) < gr−γ ,

with g := u−ηv+f < 0 for any r 6= 0. By Lemma 2.1, we obtain (ηv−u)′ ≤ 0, a contradiction
with the fact that (ηv−u) achieves its minimum at zero. Thus, we have obtained that u ≤ v
and, by exchanging the roles of u and v, we conclude that u ≡ v.

We can now prove that the smooth eigenvalue λ̄′γ is actually achieved on smooth eigenfunc-
tions.

Theorem 2.9. There exists u ∈ C(B(0, 1)) ∩ C2(B(0, 1) \ {0}), radial, strictly positive in
B(0, 1) and satisfying {

F (D2u) + λ̄′γur
−γ = 0 in B(0, 1) \ {0}

u = 0 on ∂B(0, 1)

Furthermore, in B(0, 1), u is Lipschitz continuous when γ ≤ 1 and Hölder continuous with
exponent 2− γ if γ > 1.

Proof. We consider a sequence {λn}, with λn → λ̄′γ and λn < λ̄′γ and, for all n, the solution

un ∈ C(B(0, 1)) ∩ C2(B(0, 1) \ {0}) provided by Theorem 2.8 of

F (D2un) + λnunr
−γ = −r−γ , un(1) = 0 .
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We claim that the positive sequence {‖un‖∞}n is unbounded. Indeed, arguing by contradic-
tion, if {un}n is uniformly bounded, then, by using Theorem 2.6 and considering a subse-
quence if necessary, we obtain that there exists a solution u ∈ C(B(0, 1))∩C2(B(0, 1) \ {0}),
u ≥ 0, of

F (D2u) + λ̄′γur
−γ = −r−γ , u(1) = 0 .

Then, arguing as in the proof of Theorem 2.8, we deduce that u is strictly positive in B(0, 1),
and by taking 0 < ε < 1

‖u‖∞ , we see that u satisfies

F (D2u) + (λ̄′γ + ε)ur−γ ≤ 0,

a contradiction to the definition of λ̄′γ . It then follows that the sequence {un}n is not uniformly
bounded. Normalizing and considering a subsequence, letting n→∞ yields the existence of
u ∈ C(B(0, 1)) ∩ C2(B(0, 1) \ {0}) satisfying ‖u‖∞ = 1 and

F (D2u) + λ̄′γur
−γ = 0 in B(0, 1) \ {0} , u(1) = 0 .

Finally, the strict positivity of u in B(0, 1) and its global regularity in B(0, 1) follow by
arguing as in the proof of Theorem 2.8.

The uniqueness, up to positive multiplicative constants, of the solution given by Theorem 2.9
is provided by the last result of the present section.

Proposition 2.10. The eigenvalue λ̄′γ is simple.

Proof. From Theorem 2.9, there exists a bounded eigenfunction v. Let u be another eigen-
function.
We define η := sup{t > 0, tv < u}, or, equivalently, 1

η = supB(0,1)\{0}
v
u , which is well defined

by Hopf Lemma applied to u and v on ∂B(0, 1). Then, the function u− ηv is nonnegative in
B(0, 1) \ {0} and it satisfies

M−(D2(u− ηv)) ≤ 0 in B(0, 1) \ {0} .

If, by contradiction, u− ηv > 0 at some point in B(0, 1) \ {0}, then, by the strong maximum
principle, u− ηv > 0 in the whole of B(0, 1) \ {0}.
We now distinguish the cases u(0) finite or infinite.
- In the case u(0) = +∞, one necessarily has

1

η
= lim

r→1

v

u
=
v′(1)

u′(1)

but this contradicts Hopf’s Lemma.

18



- If u(0) < ∞, we have either 1
η = limr→1

v
u = v′(1)

u′(1) or 1
η = v(0)

u(0) . Here, the contradiction

follows either from Hopf’s Lemma or from Remark 2.2, which gives (u−ηv)′(r) ≤ 0 for r > 0
sufficiently small, so that u− ηv cannot have a strict minimum point at zero.
Thus, we have obtained that all the eigenfunctions are bounded and multiple of each others.

2.2. The eigenvalue inherited from some equation on R+

We suppose in this section that F is one of Pucci’s operators. We consider only the case
F =M+, the changes to bring for F =M− being obvious.
We present below an alternative proof of the existence of radial eigenfunctions related to the
eigenvalue λ̄γ . Here, the idea is to show the existence of global solutions defined in (0,+∞)
of the ODE associated with radial solutions of the equation

M+(D2u) = − u

rγ
in RN \ {0} .

We recall that u ∈ C2(RN \ {0}) is a radial solution of the above equation if and only if
u = u(r) is a C2((0,+∞)) solution of the second order ODE

u′′ = M+

(
−(N − 1)

r
K+(u′)− u

rγ

)
in (0,+∞) , (2.4)

where

K+(s) =

{
Λ s if s ≥ 0
λ s if s < 0

, M+(s) =

{
1
Λ s if s ≥ 0

1
λ s if s < 0

.

Theorem 2.11. There exists a global solution u ∈ C2((0,+∞)) of equation (2.4), which
extends as a continuous function on [0,+∞) satisfying u(0) = 1. Moreover, there exists
r̄ > 0 such that u(r̄) = 0 and u(r) > 0 for 0 ≤ r < r̄.

Proof. We begin by proving the local existence of u near zero. We distinguish the cases γ < 1
and γ ≥ 1.

1st case : γ < 1
For fixed r0 > 0 to be conveniently chosen, let us define the function set

Vr0 = {u ∈ C([0, r0]) : |u(r)− 1| ≤ 1

2
, u(0) = 1}.

For u ∈ Vr0 , let us define

T (u)(r) := 1−
∫ r

0

1

λsN−1

∫ s

0
u(t)tN−1−γdtds.
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We fix r0 such that r2−γ
0 ≤ λ(N−γ)(2−γ)

3 . Then, it is easy to verify that T maps Vr0 into itself
and it is a contraction mapping on it. Let us denote by u ∈ Vr0 its fixed point.
It then follows that u satisfies

u′(r) = − 1

λrN−1

∫ r

0
u(t)tN−1−γdt

as well as

u′′ = − u

λrγ
− (N − 1)

u′

r
.

Thus, we clearly have u′ ≤ 0 and, if we prove that u′′ ≤ 0 as well, then u is a solution of (2.4)
in (0, r0). We observe that u′ ≤ 0 implies u ≤ 1 and, consequently,

u′(r) ≥ − 1

λrN−1

∫ r

0
tN−1−γdt = − r1−γ

λ(N − γ)
.

Hence

u(r) ≥ 1− r2−γ

λ(2− γ)(N − γ)
, (2.5)

which in turn implies

u′(r) ≤ − 1

λrN−1

∫ r

0
(1− t2−γ

λ(2− γ)(N − γ)
)tN−1−γdt

= − r1−γ

λ(N − γ)
+

r3−2γ

λ2(2− γ)(N − γ)(N + 2− 2γ)

≤ − r1−γ

2λ(N − γ)

by the choice of r0. Thus, we have proved that

− r1−γ

λ(N − γ)
≤ u′(r) ≤ − r1−γ

2λ(N − γ)
(2.6)

From estimates (2.5) and (2.6), we further deduce

u′′ = − u

λrγ
− (N − 1)

u′

r

≤ −
(

1− r2−γ

λ(2− γ)(N − γ)

)
r−γ

λ
+ (N − 1)

r−γ

λ(N − γ)

= −(1− γ)r−γ

λ(N − γ)
+

r2−2γ

λ2(2− γ)(N − γ)

≤ −(1− γ)r−γ

2λ(N − γ)
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if we fix r0 by setting r2−γ
0 = λ(1−γ)(2−γ)

3 . By this choice for r0, we obtain that u satisfies
equation (2.4) in (0, r0] and, moreover, that u ∈ C1([0, r0]).

2nd case : γ ≥ 1
In this case, the solution u is expected to be locally convex near zero. Thus, for v ∈ Vr0 , we
define the map

T (v)(r) = 1−
∫ r

0

1

ΛsÑ+−1

∫ s

0
u(t)tÑ+−1−γdt ds

As in the previous case, it is easy to check that if r2−γ
0 ≤ Λ(Ñ+−γ)(2−γ)

3 , then T is a contraction
mapping on Vr0 . Let u ∈ Vr0 be its fixed point. We then have

u′(r) = − 1

ΛrÑ+−1

∫ r

0
u(t)tÑ+−1−γdt

and

u′′ = −(Ñ+ − 1)

r
u′ − u

Λrγ
.

Thus, in order to prove that u satisfies (2.4) in (0, r0], it is enough to show that u′′ ≥ 0.
By using a bootstrap argument analogous to the one used in the first case, we deduce

− r1−γ

Λ(Ñ+ − γ)
≤ u′ ≤ − r1−γ

Λ(Ñ+ − γ)
+

r3−2γ

Λ2(Ñ+ − γ)(2− γ)(Ñ+ + 2− 2γ)

as well as

1− r2−γ

Λ(Ñ+ − γ)(2− γ)
≤ u ≤ 1− r2−γ

Λ(Ñ+ − γ)(2− γ)
+

r4−2γ

2Λ2(Ñ+ − γ)(2− γ)2(Ñ+ + 2− 2γ)
.

We then have

u′′(r) = − u

Λrγ
− (Ñ+ − 1)

r
u′

≥ γ − 1

Λ(Ñ+ − γ)
r−γ +

3− 2γ

Λ2(Ñ+ − γ)(2− γ)(Ñ+ + 2− 2γ)
r2−2γ

− r4−3γ

2Λ3(Ñ+ − γ)(2− γ)2(Ñ+ + 2− 2γ)

By choosing r0 such that
r2−γ

0 ≤ Λ(3− 2γ)(2− γ)

we obtain in any case that u′′ ≥ 0 in (0, r0].

Thus, there exists a local solution u of equation (2.4) in (0, r0], which is positive and satisfies
the initial condition u(0) = 1. By observing the Lipschitz continuity of the functions K+ and
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M+ and using Cauchy–Lipschitz Theorem, we can extend the solution u as a global solution
in (0,+∞).
It remains to prove that there exists a first point r̄ such that u(r̄) = 0 and u(r) > 0 for
0 ≤ r < r̄.
We argue by contradiction, and we assume that u(r) > 0 for all r ≥ 0. Since u′ is initially
negative, if there exists a first point r1 > 0 such that u′(r1) = 0, then u′′(r1) ≥ 0. On the
other hand, from equation (2.4), we deduce u′′(r1) < 0 since u(r1) > 0. Hence, one has
u′(r) < 0 for all r > 0. From (2.4), it then follows that, independently of the sign of u′′, one
has

u′′ +
N − 1

r
u′ ≤ −ur

−γ

Λ
.

Inspired by [21] and [22], let us introduce the function

y(r) =
u′(r)

u(r)
rN−1 ,

which is, then, negative and it satisfies

y′ ≤ −r
N−1−γ

Λ
− y2

rN−1
.

By integrating between some r1 > 0 and r , we obtain

y(r) + k(r) ≤ −c1r
N−γ ,

for some c1 > 0 and k(r) =
∫ r
r1

y2(t)
tN−1 dt. This yields in particular y(r) ≤ −c1r

N−γ and
therefore, for r sufficiently large,

k(r) ≥ c2r
N+2(1−γ) . (2.7)

On the other hand, we also have
k(r) ≤ −y(r) ,

that is

k(r) ≤
√
k′(r)rN−1

which yields, after integration on (r,+∞),

k(r) ≤ (N − 2)rN−2 . (2.8)

Being N + 2(1− γ) > N − 2, estimates (2.7) and (2.8) give a contradiction, showing that the
constructed solution u cannot be globally positive in [0,+∞).
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As an immediate consequence of the above result and Theorem 2.7, we deduce the following

Corollary 2.12. Let r̄ be defined as in Theorem 2.11. Then λ̄′γ(B(0, 1) \ {0}) = r̄γ−2.

Remark 2.13. Let us observe that, as in the case of equations with continuous coefficients,
one could prove the existence of a numerable set of radial eigenvalues, by proving the oscil-
latory behavior of the solution u constructed in Theorem 2.11, see [21] and [22].

2.3. The stability of the principal eigenvalue and related eigenfunctions

The results of the present section give, as a corollary, the proof of Theorem 1.1.
Let us start by proving the stability with respect to the ε−regularization of the singular
potential. We recall that rε = (r2 + ε2)

1
2 and λ̄εγ = λ̄(F, 1

rγε
, B(0, 1)).

Theorem 2.14. One has
λ̄′γ = lim

ε→0
λ̄εγ .

Furthermore, if {uε} is the sequence of the eigenfunctions associated with the eigenvalue λ̄εγ
and satisfying uε(0) = 1, then, one can extract from {uε} a subsequence uniformly converging
on B(0, 1) to the eigenfunction associated with λ̄′γ which takes the value 1 at zero.

Proof. Let {uε} be the sequence as in the statement. Then, each uε is a smooth positive
function in B(0, 1), radially symmetric by [16], satisfying in particular

F (D2uε) + λ̄εγ
uε
rγ
≥ 0 in B(0, 1) \ {0} ,

so that, by Theorem 2.7, one has λ̄εγ ≥ λ̄′γ . Moreover, the sequence {λ̄εγ} is monotone
increasing with respect to ε. Thus, we deduce

µ := lim
ε→0

λ̄εγ ≥ λ̄′γ .

On the other hand, by the monotonicity properties of radially symmetric solutions of elliptic
equations, we know that u′ε(r) ≤ 0 for r ∈ [0, 1]. Since

M+(D2uε) ≥ F (D2uε)

we deduce that, independently of the sign of u′′ε (r), one has

u′′ε + (Ñ+ − 1)
u′ε
r
≥ −

λ̄εγ
λ
uεr
−γ
ε .

This implies

(u′εr
Ñ+−1)′ ≥ −

λ̄εγ
λ
uε
rÑ+−1

rγε
≥ −

λ̄εγ
λ
rÑ+−1−γ ,
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and therefore, by integrating,

0 ≥ u′ε(r) ≥ −
λ̄εγ

λ(Ñ+ − γ)
r1−γ .

Hence, on B(0, 1), the functions uε are uniformly Lipschitz continuous if γ ≤ 1, and uniformly
(2 − γ)−Hölder continuous if γ > 1. In both cases, up to a subsequence, {uε} is uniformly
converging to a continuous radial function u ∈ C(B(0, 1)) which satisfies u(0) = 1 and

F (D2u) + µ
u

rγ
= 0.

Hence, u is C2(B(0, 1) \ {0}) and, by the standard strong maximum principle, u is strictly
positive in B(0, 1). This yields, by definition, µ ≤ λ̄′γ . Hence, µ = λ̄′γ and the conclusion
follows from Proposition 2.10.

As a consequence of the previous theorem, we finally obtain the following

Corollary 2.15. One has

λ̄γ = lim
δ→0

λ̄γ

(
B(0, 1) \B(0, δ)

)
= λ̄′γ .

Proof. We observe that the function δ 7→ λ̄γ (B(0, 1) \B(0, δ)) is monotone increasing. More-
over, by their own definition, we have that

λ̄′γ ≤ λ̄γ ≤ λ̄γ (B(0, 1) \B(0, δ)) for all δ ≥ 0 .

On the other hand, by Theorem 2.14, for any η > 0 there exists ε0 > 0 such that

λ̄ε0γ ≤ λ̄′γ +
η

2
.

Furthermore, by using the continuity of the principal eigenvalue with respect to the domain
for equations with regular coefficients, see e.g. [14], there exists δ0 > 0 such that

λ̄ε0γ (B(0, 1)) \B(0, δ0)) ≤ λ̄ε0γ +
η

2
≤ λ̄′γ + η .

Now, since ε 7→ λ̄εγ (B(0, 1)) \B(0, δ0)) decreases when ε decreases to zero, one gets

λ̄γ (B(0, 1) \B(0, δ0)) ≤ λ̄ε0γ (B(0, 1)) \B(0, δ0)) ≤ λ̄′γ + η ,

which gives the conclusion.
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3. The case γ = 2 : Proof of Theorem 1.2.

The aim of this section is to give the proof of Theorem 1.2.
Let us start by recalling that, in the semilinear case, the eigenvalue related to Laplace op-
erator with an inverse quadratic potential can be defined by a variational approach, i.e. by
considering the minimum problem

λ̄2(∆) : = inf
u∈H1

0(B(0,1))∫
B(0,1)

u2

|x|2
dx=1

∫
B(0,1)

|∇u|2dx.

In this case, one has

λ̄2(∆) =

(
N − 2

2

)2

.

Indeed, on the one hand, by Hardy inequality, every function u ∈ H1
0 (B(0, 1)) satisfies∫

B(0,1)

u2

|x|2
dx ≤

(
2

N − 2

)2 ∫
B(0,1)

|∇u|2dx

and then

λ̄2(∆) ≥
(
N − 2

2

)2

.

On the other hand, for every ε > 0, the function uε(r) = r−
N−2

2
+ε(− log r) belongs to

H1
0 (B(0, 1)) and satisfies∫

B(0,1)
|∇uε|2 =

[(
N − 2

2

)2

+ ε2

]∫
B(0,1)

|uε|2

|x|2
dx ,

so that

λ̄2(∆) ≤
(
N − 2

2

)2

+ ε2 , ∀ ε > 0 .

As it is well known, the infimum defining λ̄2(∆) is not achieved, that is the Dirichlet problem −∆u = λ̄2(∆) u
r2

in B(0, 1)

u = 0 on ∂B(0, 1)

has not finite energy solutions u ∈ H1
0 (B(0, 1)).

A kind of variational approach is possible also in the fully nonlinear framework for the case
of Pucci’s operators. From now on, we consider the operatorM+, being obvious the changes
to be made for the operator M−.

25



Let us introduce the space of functions

V =
{
u ∈ C2([0, 1]) : u′(0) = 0 , supp(u) compact in [0, 1)

}
,

endowed with the norm

‖u‖ =

(∫ 1

0
|u′|2rÑ+−1dr

)1/2

,

and let us denote by H1
0 the closure of V. Then, for all γ ≤ 2, we can consider the minimum

problem

λ̄γ,var : = inf
u∈H1

0∫ 1
0 u

2rÑ+−1−γdr=1

∫ 1

0
|u′|2rÑ+−1dr .

In the next results, we will relate the two values λ̄γ(M+) and λ̄γ,var, and we will study their
asymptotic behavior as γ → 2.

Theorem 3.1. One has

λ̄2,var =

(
Ñ+ − 2

2

)2

.

Proof. For any ε > 0, let uε(r) = r−
Ñ+−2

2
+ε(− log r). Then, it is easy to check that uε ∈ H1

0

and a direct computation shows that∫ 1

0
|u′ε|2rÑ+−1dr =

(Ñ+ − 2

2

)2

+ ε2

∫ 1

0
u2
εr
Ñ+−3dr ,

hence

λ̄2,var ≤

(
Ñ+ − 2

2

)2

+ ε2 , ∀ ε > 0 .

On the other hand, we observe that the function u = r−
Ñ+−2

2 (− log r) satisfies, for r > 0 ,

u′′ + (Ñ+ − 1)
u′

r
= −

(
Ñ+ − 2

2

)2

ur−2.

Let us multiply the above equation by v2

u r
Ñ+−1, where v ∈ V is arbitrarily fixed. Since

Ñ+ > 2, we have that u′rÑ+−1

u tends to zero as r → 0. As a consequence, integrating by
parts, we get

−

(
Ñ+ − 2

2

)2 ∫ 1

0
v2rÑ+−3dr =

∫ 1

0

(
u′

u
v − v′

)2

rÑ+−1dr −
∫ 1

0
(v′)2rÑ+−1dr ,
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which yields, by the arbitrariness of v ∈ V,

λ̄2,var ≥

(
Ñ+ − 2

2

)2

.

In order to establish the relationship between λ̄γ,var and λ̄γ we need to investigate on the
monotonicity and convexity properties of the functions u realizing the infimum in the defini-
tion of λ̄γ,var.

Proposition 3.2. Let 1 < γ < 2 and assume that uγ ∈ H1
0, with uγ ≥ 0, realizes the infimum

defining λ̄γ,var. Then, uγ ∈ C2((0, 1]) is bounded, u′γ ≤ 0 and u′′γ ≥ 0 in (0, 1).

Proof. Since uγ is a minimum, for any v ∈ H1
0 one has∫ 1

0
u′γv

′rÑ+−1 = λ̄γ,var

∫ 1

0
uγvr

Ñ+−1−γ .

In particular, uγ satisfies in the distributional sense

−(u′γr
Ñ+−1)′ = λ̄γ,varuγr

Ñ+−1−γ (3.1)

By regularity theory, this implies that uγ belongs to C2((0, 1]), it is strictly positive in (0, 1)
and it satisfies uγ(1) = 0. Let us prove that uγ is bounded and that it can be extended as
a continuous function on [0, 1]. Indeed, by multiplying equation (3.1) by a smooth function
v ∈ C2([0, 1]), having compact support in [0, 1) and satisfying v(0) 6= 0, and integrating on
[ε, 1] for ε > 0, one has

λ̄γ,var

∫ 1

ε
uγ(r)rÑ+−1−γv(r) dr =

∫ 1

ε
u′γ(r)rÑ+−1v′(r) dr + u′γ(ε)εÑ+−1v(ε) .

Letting ε go to zero, we deduce limε→0 u
′
γ(ε)εÑ+−1 = 0. It then follows, again from (3.1),

that u′γ(r) ≤ 0 and that there exists some positive constant c0 such that

u′γ(r) ≥ −c0 r
1−Ñ+ for r ∈ (0, 1] .

This implies that

uγ(r) = −
∫ 1

r
u′γ(s) ds ≤ c0

∫ 1

r
s1−Ñ+ds ≤ d0r

2−Ñ+
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with d0 = c0
Ñ+−2

> 0, which, in turn, yields

u′γ(r)rÑ+−1 = −λ̄γ,var
∫ r

0
uγ(s)sÑ+−1−γds ≥ −λ̄γ,var d0

∫ r

0
s1−γds = −c1r

2−γ .

Thus, we have

u′γ(r) ≥ −c1 r
1−Ñ++2−γ

and, then,

uγ(r) ≤ d1r
2−Ñ++2−γ .

Iterating the above inequalities, we obtain that for all integers j ≥ 0 such that 2− Ñ+ +j(2−
γ) < 0, there exist positive constants cj and dj satisfying

u′γ(r) ≥ −cj r1−Ñ++j(2−γ) , uγ(r) ≤ djr2−Ñ++j(2−γ) . (3.2)

Now, if there exists j ∈ N such that 2 − Ñ+ + j(2 − γ) = 0, i.e. if Ñ+−2
2−γ ∈ N, then, by

integrating the estimates obtained at the (j − 1)-th step, we obtain

u′γ(r) ≥ −cj r−1 , uγ(r) ≤ dj (− ln r) .

Integrating once more, we finally deduce

u′γ(r) ≥ −cj+1(− ln r)r1−γ =⇒ uγ(r) ≤ dj+1 =
cj+1

(2− γ)2
.

On the other hand, if Ñ+−2
2−γ is not integer, by integrating estimates (3.2) for j =

[
Ñ+−2
2−γ

]
, we

obtain

u′γ(r) ≥ −cj+1r
1−Ñ++(j+1)(2−γ) =⇒ uγ(r) ≤ dj+1 =

cj+1

2− Ñ+ + (j + 1)(2− γ)
.

This shows that, in any case, uγ is bounded.
Let us finally prove that u′′γ ≥ 0. We introduce the function

yγ(r) := (Ñ+ − 1)u′γ(r) + λ̄γ,varr
1−γuγ(r) ,

which verifies yγ = −ru′′γ . Hence, we need to prove that yγ(r) ≤ 0 for r ∈ (0, 1]. An easy
computation shows that

y′γ(r) + (Ñ+ − 1)
yγ(r)

r
= λ̄γ,var

(
u′γ(r)r1−γ + (1− γ)uγ(r)r−γ

)
≤ 0 ,

so that
(yγ(r)rÑ+−1)′ ≤ 0 .

Since uγ is bounded and −c0r
1−γ ≤ u′γ(r) ≤ 0, we deduce that yγ(r)rÑ+−1 → 0 as r → 0.

Hence, yγ(r) ≤ 0 for r > 0.
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Corollary 3.3. Let γ ∈]1, 2[. Then

λ̄γ(M+) = Λ λ̄γ,var .

Proof. It is not difficult to prove that the infimum defining λ̄γ,var is achieved for 1 < γ < 2.
Thus, there exists vγ ∈ H1

0, which can be assumed to be positive in [0, 1), and which satisfies
in (0, 1)

Λv′′γ + λ
N − 1

r
v′γ = −Λ λ̄γ,varvγr

−γ .

By Proposition 3.2, we have that vγ is bounded, v′γ ≤ 0 and v′′γ ≥ 0, so that vγ satisfies

M+(D2vγ) + Λ λ̄γ,varvγr
−γ = 0 in B(0, 1) \ {0} .

By definition, it then follows that λ̄γ(M+) = λ̄′γ(M+) ≥ Λ λ̄γ,var. Furthermore, analyzing
the boundary condition, we get, by regularity, that vγ(1) = 0 in the classical sense. If,
by contradiction, Λ λ̄γ,var < λ̄′γ(M+), then Theorem 2.7 would give vγ ≤ 0 in B(0, 1), a
contradiction.

Corollary 3.4. One has

lim
γ→2

λ̄γ(M+) = Λ

(
Ñ+ − 2

2

)2

.

Proof. By Theorem 3.1 and Corollary 3.3, it is sufficient to prove that λ̄γ,var → λ̄2,var as
γ → 2.
We first observe that, by their own definition, λ̄2,var ≤ λ̄γ,var.
On the other hand, for any ε > 0 there exists v ∈ H1

0 such that∫ 1

0
|v′|2rÑ+−1dr ≤ (λ̄2,var + ε)

∫ 1

0
|v|2rÑ+−3dr .

Moreover, there exists γ0 sufficiently close to 2 in order that, for γ ≥ γ0 ,∫ 1

0
|v|2rÑ+−1−γdr ≥ (1− ε)

∫ 1

0
|v|2rÑ+−3dr .

Thus, one has ∫ 1

0
|v′|2rÑ+−1dr ≤ (λ̄2,var + ε)(1− ε)−1

∫ 1

0
|v|2rÑ+−1−γdr

which yields
λ̄γ,var ≤ (λ̄2,var + ε)(1− ε)−1 .
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We are now ready to prove statement (i) of Theorem 1.2.

Theorem 3.5. One has

λ̄2(M+) = Λ

(
Ñ+ − 2

2

)2

and the function u(r) = r−
Ñ+−2

2 (− ln r) is an explicit solution of{
M+(D2u) + λ̄γ

u
rγ = 0 in B(0, 1) \ {0}

u = 0 on ∂B(0, 1)

Proof. For any positive constants c1 and c2, let us consider the function

u(r) = r−
Ñ+−2

2 (c1(− ln r) + c2). (3.3)

An easy computation, analogous to the one made in the proof of Theorem 3.1, leads to

M+(D2u) + Λ

(
Ñ+ − 2

2

)2
u

r2
= 0 in B(0, 1) \ {0} .

This gives, by definition, that

λ̄2(M+) ≥ Λ

(
Ñ+ − 2

2

)2

.

On the other hand, by observing that λ̄γ ≥ λ̄2 for all γ ≤ 2 and by using Corollary 3.4, we
also have

λ̄2(M+) ≤ lim
γ→2

λ̄γ(M+) = Λ

(
Ñ+ − 2

2

)2

.

As a consequence of Corollary 3.4 and Theorem 3.5, we immediately deduce the first stability
property of λ̄2(M+) stated in Theorem 1.2-(ii). The other ones are given by by the following
result.

Corollary 3.6. For the operators F =M±, one has

lim
δ→0

λ̄2(B(0, 1) \B(0, δ)) = λ̄2 = lim
ε→0

λ̄ε2 .
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Proof. We observe that
λ̄2(B(0, 1) \B(0, δ)) ≥ λ̄2

and that λ̄2(B(0, 1) \B(0, δ)) is decreasing with respect to δ. Hence,

lim
δ→0

λ̄2(B(0, 1) \B(0, δ)) ≥ λ̄2.

In order to prove the reverse inequality, we can use Theorem 3.5 jointly with Corollary 3.4,
as well as Corollary 2.15. Indeed, for any η > 0 let γ0 < 2 such that, for all γ0 ≤ γ < 2, one
has

λ̄2 ≥ λ̄γ − η .

Moreover, let δ0 = δ(γ, η) be such that, for any δ < δ0,

λ̄γ(B(0, 1) \B(0, δ)) ≤ λ̄γ + η .

It then follows

λ̄2 ≥ λ̄γ(B(0, 1) \B(0, δ))− 2η ≥ λ̄2(B(0, 1) \B(0, δ))− 2η .

The assertion concerning lim λ̄ε2 can be proved in the same way by using Theorem 2.14.

In order to complete the proof of Theorem 1.2, it is enough to observe that statement (iii)
immediately follows from statement (i), the definition of λ̄2(F ) and the ellipticity inequalities
(1.9).

4. The case γ > 2 : Proof of Theorem 1.3

This section is completely devoted to the proof of Theorem 1.3. Let us assume, by contra-
diction, that for γ > 2 there exists u ∈ C2(B(0, 1) \ {0}) positive and radial, satisfying

M−(D2u) ≤ −µur−γ in B(0, 1) \ {0} ,

for some µ > 0.
Then, arguing as in the proof of Lemma 2.1, it follows that u′(r) has constant sign in a right
neighborhood of zero. If u′(r) ≥ 0 for r small, then, by the equation, u′′(r) ≤ 0 and then we
would have

(u′rÑ+−1)′ ≤ −µur
Ñ+−1−γ

Λ
.

This implies that u′rÑ+−1 has a nonnegative limit for r → 0, and if this limit is strictly
positive, we get that u becomes large negative as r → 0, a contradiction. Then the limit
is zero, and then from the inequality above we get u′(r)rÑ−1 < 0, a contradiction again.
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Therefore, we have u′(r) ≤ 0 for r > 0 sufficiently small. Then, we observe that, whatever is
the sign of u′′, one has

u′′ + (Ñ− − 1)
u′

r
≤ −µ

Λ
u r−γ .

Thus,

(u′rÑ−−1)′ ≤ −µ
Λ
u rÑ−−1−γ < 0 , (4.1)

and then u′(r)rÑ−−1 has a non positive limit as r → 0. If the limit is strictly negative, then

u′(r)rÑ−−1 ≤ −c < 0 in a neighborhood of zero. Then, we get

u(r) ≥ c1r
2−Ñ−

for r small and a positive c1. Hence, by integrating (4.1) between r and s > r sufficiently
small, we deduce

−u′(s)sÑ−−1 + u′(r)rÑ−−1 ≥ c2

∫ s

r
t1−γdt = c2

s2−γ − r2−γ

2− γ

and, since γ > 2, this yields u′(r) > 0 for r small enough: a contradiction.

Thus, one has limr→0 u
′rÑ−−1 = 0 and, by (4.1), u′(r) < 0 for r > 0.

Next, by an inductive argument analogous to the one used in the proof of Proposition 3.2, we
prove that for all integer j ≥ 0 such that Ñ− − 2 + j(2− γ) > 0 and for r sufficiently small,
one has, for some cj > 0,

u(r) ≥ cjrj(2−γ). (4.2)

Indeed, (4.2) holds true for j = 0, since u′ < 0 and u is positive. Let us suppose that (4.2) is
true for j and that Ñ− − 2 + (j + 1)(2− γ) > 0. Then, by (4.1),

−u′(r)rÑ−−1 ≥ µ

Λ
cj

∫ r

0
sÑ−−1+j(2−γ)−γds =

µ

Λ

cj

Ñ− − 2 + (j + 1)(2− γ)
rÑ−−2+(j+1)(2−γ) ,

which, by integration, yields (4.2) for j + 1.

Now, let us assume that Ñ−−2
γ−2 is not integer. Then, using estimate (4.2) with j =

[
Ñ−−2
γ−2

]
jointly with (4.1), we deduce for r0 > r > 0

−u′(r0)r
Ñ−−1
0 + u′(r)rÑ−−1 ≥ µ cj

Λ
(
Ñ− − 2 + (j + 1)(2− γ)

) sÑ−−2+(j+1)(2−γ)
∣∣∣r0
r
.

Since Ñ− − 2 + (j + 1)(2− γ) < 0, this yields the contradiction

lim
r→0

u′(r)rÑ−−1 = +∞ .
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On the other hand, if Ñ−−2
γ−2 = j + 1 is integer, then Ñ−− 2 + j(2− γ) = γ − 2 > 0, and from

(4.2) it follows that

u(r) ≥ cjrγ−Ñ− ,

hence
u(r)rÑ−−1−γ ≥ cjr−1 .

From (4.1) we then deduce, for 0 < r < r0,

−u′(r0)r
Ñ−−1
0 + u′(r)rÑ−−1 ≥ µ cj

Λ
(ln r0 − ln r)

and we reach, also in this case, the contradiction

lim
r→0

u′(r)rÑ−−1 = +∞ .
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doi:10.1016/j.anihpc.2004.05.004.
URL https://doi.org/10.1016/j.anihpc.2004.05.004

[22] F. Demengel, Generalized eigenvalues for fully nonlinear singular or degenerate operators
in the radial case, Adv. Differential Equations 14 (11-12) (2009) 1127–1154.

35


