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Abstract 379 

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. 380 

Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian 381 

systems have elucidated the key contribution of this process not only to (post-)embryonic development 382 

and adult tissue homeostasis but also to the etiology of multiple human disorders. Consistent with this 383 

notion, while defects in the molecular machinery for apoptotic cell death impair organismal development 384 

and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage 385 

in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and 386 

inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to 387 

critically summarize abundant pre-clinical literature mechanistically linking the core apoptotic apparatus 388 

to organismal homeostasis in the context of disease. 389 

  390 
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Facts 391 

• Intrinsic and extrinsic apoptosis are forms of regulated cell death (RCD) promoting the cellular 392 

demise along with the activation of proteases of the caspase family. 393 

• In mammalian organisms, executioner caspases are activated after cells are already committed to 394 

die. 395 

• Apoptosis can be manipulated by genetic or pharmacological means, and multiple genetically 396 

engineered animal models and pharmacological tools to modulate apoptosis have been developed. 397 

• Apoptosis is intimately involved in both (post-)embryonic development and adult tissue 398 

homeostasis. 399 

• Apoptosis deregulation promotes oncogenesis and contributes to the etiology of multiple human 400 

disorders, including cardiovascular, hepatic, inflammatory and neurological conditions. 401 

• To date, venetoclax is the only apoptosis inducer that has received regulatory approval for use in 402 

humans. 403 

Open Questions 404 

• Will inhibitors of apoptotic caspases with elevated target specificity become available? 405 

• Will agents specifically conceived to modulate apoptosis enter the clinical practice to treat solid 406 

tumors or other human disorders beyond hematological malignancies? 407 

• Is it conceivable to design combinatorial strategies aimed at inhibiting apoptosis while 408 

interrupting compensatory activation of other RCD signaling cascades? 409 

• Will it be possible to specifically inhibit apoptotic signaling without impacting on other processes 410 

dependent on apoptosis regulators such as differentiation, proliferation, and inflammatory 411 

reactions? 412 
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Introduction 413 

The health and homeostasis of multicellular organisms depend on the tight balance between cell 414 

proliferation and cell death. In this context, a large body of experimental evidence has demonstrated the 415 

existence of a form of regulated cell death (RCD) that is executed by a genetically programmed process, 416 

and hence amenable to manipulation by genetic or pharmacological means 1. Over the past decades, 417 

multiple variants of RCD have been characterized at the genetic, biochemical, functional, and 418 

immunological level 2, 3, 4, 5, 6, 7, 8. For instance, programmed cell death (PCD) has been functionally 419 

defined as a modality of RCD activated under purely physiological conditions (i.e., in the absence of 420 

perturbations of extracellular or intracellular homeostasis) in the context of embryonic/post-embryonic 421 

development or adult tissue homeostasis 1, 9. Conversely, pathological RCD is invariably initiated in the 422 

context of failure to adapt to shifts in extra-cellular or intra-cellular homeostasis, constituting a de facto 423 

organismal program for the elimination of excessively damaged and/or potentially harmful cells, such as 424 

cells infected with pathogens 1, 10. From a biochemical perspective, an increasing number of RCD 425 

modalities have been defined by the Nomenclature Committee on Cell Death (NCCD) based on the 426 

mechanistic involvement of specific molecular components 1, 11. For instance, apoptotic cell death has 427 

been defined as a form of RCD that is mainly executed by proteases of the caspase family, namely 428 

caspase 3 (CASP3), CASP6 and CASP7 initiated by CASP8 and CASP9 1, 12, 13. However, in mammalian 429 

organisms, with the exception of CASP8, apoptotic caspases simply accelerate RCD because their 430 

activation occurs when cells are already committed to die 1, 14, 15, 16. This means that contrarily to simpler 431 

organisms (e.g., C. elegans), in which apoptotic caspase elimination fully rescues cells from death, in 432 

mammals, apoptotic cell death can at most be retarded but not prevented by pharmacological or genetic 433 

strategies inhibiting the activity of these caspases. Mitochondrial permeability transition (MPT)-driven 434 

necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, 435 
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lysosome-dependent cell death, and autophagy-dependent cell death represent forms of RCD that involve 436 

precise molecular events and hence can also be manipulated with pharmacological or genetic 437 

interventions 1, 2, 3, 4, 5, 6, 17, 18, 19. Other RCD modalities have been recently identified, such as alkaliptosis 438 

20, cuproptosis 21 and PANoptosis (involving the simultaneous activation of pyroptosis, apoptosis, and 439 

necroptosis) 22, and their signal transduction modules are under investigation. The importance of several 440 

of these forms of RCD in health and disease is not yet known.  441 

Along with the identification of key RCD regulators and the advent of modern tools for genetic 442 

manipulation, a great experimental effort has been devoted to elucidating the role of RCD in the 443 

physiopathology of multi-cellular organisms 23. Thus, various studies in animals (mostly rodents) 444 

genetically altered to be deficient for or over-express components of the apoptotic apparatus (either at 445 

the whole-body level or in selected cell/tissue types) have provided formal proof of the relevance, but 446 

not always the exquisite requirement, of apoptosis for embryonic and fetal development or adult tissue 447 

homeostasis 24, 25, 26.  448 

Along similar lines, pharmacological and genetic tools aimed at altering apoptotic signaling in pre-449 

clinical disease models revealed the mechanistic contribution of apoptosis to the etiology of various 450 

conditions associated with the loss of post-mitotic or (in certain settings) non-post-mitotic cells, including 451 

a panel of neurological, cardiovascular, renal, hepatic, and inflammatory disorders 24. Extensive studies 452 

over the last five decades highlighted the apoptotic machinery as a major target for the development of 453 

new therapeutic interventions 27, not only for the induction of cell death in the context of disrupted tissue 454 

homeostasis (e.g., for neoplastic diseases) 28, but also for the inhibition of cell death in the context of 455 

ischemic, degenerative and inflammatory conditions 29, 30. However, while at least one drug designed to 456 

induce apoptosis is currently approved for use in humans, namely the BCL2 apoptosis regulator (BCL2) 457 

inhibitor venetoclax 31, 32, 33, 34 which is used alone or in combinatorial regimens for the treatment of 458 
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chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma and acute myeloid leukemia (AML) 459 

31, 35, 36, 37, 38, no other agents specifically conceived to inhibit the apoptotic apparatus have been licensed 460 

for clinical practice so far. The broad-spectrum caspase inhibitor emricasan received fast-track 461 

designation by the US Food and Drug Administration (FDA) for the treatment of non-alcoholic 462 

steatohepatitis in 2016 but demonstrated inconsistent clinical efficacy 39, 40, 41, and – as of now– is not 463 

approved for therapy in humans. 464 

The lack of clinically approved, selective apoptosis inhibitors and the inconclusive performance of 465 

emricasan in recent trials reflect several aspects of (apoptotic and non-apoptotic) RCD that began to 466 

emerge only recently (Figure 1). First, while detecting cell death as well as biomarkers of specific RCD 467 

variants in vitro is relatively straightforward 42, precise quantification of cell death in vivo in adult tissue 468 

remains challenging, at least in part because of rapid disposal of cell corpses by efferocytosis 43, 44, 45, 46. 469 

Thus, the actual contribution of cell death to the etiology of various human disorders is difficult to 470 

quantify by observational approaches 47, 48. Second, while for a long-time, specific forms of RCD were 471 

considered virtually independent entities, recently it became clear that the molecular machinery for RCD 472 

is composed of highly interconnected modules characterized by substantial redundancy, backup 473 

pathways and feedback loops 10, 49, 50. Thus, molecules that inhibit one specific form of RCD may 474 

ultimately be unable to confer actual cyto- and tissue protection instead only altering the kinetic and 475 

biochemical manifestations of death by allowing the engagement of a different RCD sub-routine. For 476 

instance, while CASP8 is a major signal transducer in death receptor (DR)-driven apoptosis (see below), 477 

it intrinsically inhibits necroptosis induced by DR and certain other signaling pathways, such as Toll-like 478 

receptor (TLR) signaling 51, 52, 53, suggesting that caspase inhibition in the context of DR signaling may 479 

promote necroptotic cell death 54, 55, 56, 57. Together with a low target specificity and selectivity within the 480 

caspase family 57, this can explain the inadequate efficacy of emricasan observed in pre-clinical and 481 

clinical studies. Third, even in the hypothetical scenario of agents capable of simultaneous inhibition of 482 
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all (known and unknown) RCD pathways, loss of cellular homeostasis due to failing adaptation to stress 483 

generally involve degenerative processes that at some stage cannot be reversed, such as widespread 484 

mitochondrial permeabilization and loss of RNA and protein synthesis 4, 58, 59, 60, i.e., even if all RCD 485 

modalities could be blocked effectively, cells might undergo uncontrolled necrotic death. In this setting, 486 

cell death may occur as a consequence of an irremediable degeneration of cellular functions that can no 487 

longer be rescued pharmacologically or even genetically 61. Supporting these latter notions, accumulating 488 

literature indicates that, at least in mammalian systems, perhaps with the exception of CASP8, so-called 489 

apoptotic caspases mainly control the kinetics of apoptotic cell death and its immunological 490 

manifestations, but not whether cell death ultimately occurs or not, 15, 16. This points to the caspase family 491 

as a major regulator of organismal homeostasis via control of inflammatory responses 62, 63. The 492 

simultaneous inhibition of multiple caspases, as for instance by emricasan, may thus also impact 493 

inflammation, as was demonstrated for TNF-induced systemic inflammatory respiratory syndrome 494 

(SIRS) in vivo for the pan caspase-inhibitor zVAD-fmk 54, 64. To complicate matters, multiple 495 

components of the core apoptotic machinery, including caspases and multiple members of the BCL2 496 

family have been reported to regulate a variety of non-apoptotic functions beyond inflammation, such as 497 

mitochondrial energy production, Ca2+ signaling and terminal differentiation 65, 66, 67, 68, 69, 70, 71, 72. 498 

Structurally, distinguishing between apoptotic and non-apoptotic functions of caspases and the BCL2 499 

family remains challenging. Finally, there is a hitherto unclarified heterogeneity in the regulation of RCD 500 

at distinct anatomical sites (possibly linked to micro-environmental features) at distinct stages of cellular 501 

differentiation, and in the context of diverse patho-physiological states (e.g., in young vs. adult and aged 502 

individuals).  503 

All these issues should also be kept under consideration in the context of the present review, in which 504 

the NCCD aims at critically discussing a large amount of pre-clinical data in support of a key role for the 505 

apoptotic machinery in mammalian diseases. Specifically, the interpretation of results of genetic and 506 
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pharmacological experiments presented herein should place particular attention on the aforementioned 507 

connectivity amongst different RCD variants as well as on discriminating between essential vs. accessory 508 

aspects of cell death 14. Another issue to be considered is the fact that most conclusions are based on use 509 

of knockout/congenic mice which often present other passenger mutations potentially influencing the 510 

observed phenotype 73. Our objective is not only to provide a critical summary of the existing literature, 511 

but also to offer an updated framework for interpretation of these findings in view of currently accepted 512 

models of RCD signaling. 513 

  514 

Intrinsic apoptosis in disease 515 

There are substantive supporting data from genetic studies to demonstrate that the molecular machinery 516 

for intrinsic apoptosis (described in Box 1 and Figure 2) is involved in embryonic and fetal development 517 

as well as in adult tissue homeostasis. Numerous preclinical studies in animal models of disease 518 

demonstrate that intrinsic apoptosis contributes to etiology in various disorders involving the loss of not 519 

only post-mitotic, but also non-post-mitotic tissues, including neurological, cardiac, renal, hepatic, 520 

autoimmune/inflammatory, oncological, and infectious conditions. However, as discussed above, the 521 

interpretation of these results should be taken with caution given the high interconnectivity of RCD 522 

pathways and the crosstalk between RCD and inflammatory response. Moreover, the activation of 523 

executioner caspases occurs after cells are already committed to intrinsic apoptosis 15, 16. Accordingly, 524 

caspase inhibition only delays the execution of cell death. In this context, the phenotypes observed under 525 

apoptotic caspase-deleted or inhibited conditions may reflect cell-extrinsic effects of caspase activity 526 

such as the release of immunomodulatory and cytotoxic signals from dying/dead cells, including damage-527 

associated molecular patterns (DAMPs) or cytokines (this concept is extensively discussed in 14). These 528 

phenotypes may also stem from the lack of processes independent of intrinsic (or extrinsic) apoptosis, 529 
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as, for instance, the lack of CASP3-mediated cleavage of gasdermin E (GSDME) leading to impaired 530 

pyroptosis and associated inflammatory response 74, 75. 531 

Below, we will provide details of the pro-apoptotic BCL2 proteins, the anti-apoptotic BCL2 proteins, the 532 

components of the apoptosome - a platform for the activation of initiator caspases composed of 533 

cytochrome c, somatic (CYCS), apoptotic peptidase activating factor 1 (APAF1) and pro-CASP9 - and 534 

effector caspases in disease. The instances of involvement encompass participation in the pathogenic 535 

mechanisms as well as experimental deletion or inhibition as a means of exploring potential utility as 536 

treatment targets. The effects of these regulators and effectors of the intrinsic apoptosis pathway on health 537 

are described in Box 2, Box 3 and Box 4. 538 

Neurological disorders. Intrinsic apoptotic factors are implicated in the pathophysiology of numerous 539 

neurological diseases (Figure 3). In a mouse model of amyotrophic lateral sclerosis (ALS), deletion of 540 

BCL2-associated X protein (Bax) reduces neuronal cell death coupled to attenuated motor dysfunction 541 

and neuromuscular degeneration 76. Additional ablation of BCL2-antagonist/killer 1 (Bak1) further 542 

enhances neuroprotection, resulting in improved overall animal survival 77. Similar protective effects 543 

were observed in mice lacking the BH3-only proteins BCL2 like 11 (BCL2L11, best known as BIM) and 544 

BCL2 binding component 3 (BBC3, best known as PUMA), as well as in transgenic mice overexpressing 545 

BCL2, X-linked inhibitor of apoptosis (XIAP) 78, 79, 80, 81, 82. Moreover, intra-cerebroventricular 546 

administration of the broad-spectrum inhibitor Z-VAD-FMK protects mice from ALS 83, although 547 

whether such protection arises from the inhibition of intrinsic apoptosis was not proven. Bax deletion 548 

also attenuates neuromuscular dysfunctions in a mouse model of congenital muscular dystrophy (another 549 

neurodegenerative disease affecting motoneurons) 84, while BCL2 overexpression limits neuromuscular 550 

disease progression in some (but not all) mouse models of progressive motor neuronopathy and muscular 551 

dystrophy 85, 86, 87. Finally, genetic or pharmacological inhibition of poly (ADP-ribose) polymerase 552 
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family, member 1 (PARP1) and PARP2 halts axonal degeneration and improves related motor 553 

phenotypes in Caenorhabditis elegans models of ALS 88. 554 

Multiple components of the molecular machinery for intrinsic apoptosis, including BAX, PUMA, BH3 555 

interacting domain death agonist (BID), Harakiri, BCL2 interacting protein (contains only BH3 domain) 556 

(HRK), were shown to drive neuronal death in Alzheimer's disease (AD) and Parkinson’s disease (PD) 557 

models 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101. Thus, overexpression of BCL2 decreases the appearance of 558 

early pathological markers of AD, such as amyloid precursor protein (APP) and microtubule-associated 559 

protein tau (MAPT, best known as tau) cleavage, which depend on caspases 102, 103, 104, resulting in 560 

attenuated neurological defects 105, 106. Some findings indicate a role of apoptotic caspases in the 561 

pathogenesis of AD. However, as discussed above, during intrinsic apoptosis, caspases simply accelerate 562 

the course of cell death, and, so, such effects may be linked to the release of cytotoxic and pro-563 

inflammatory factors from dying cells. In more detail, pharmacological inhibition of CASP3 reduces 564 

early synaptic failure in mouse models of AD, ultimately improving cognitive defects 107. Moreover, 565 

expression of a mutated form of amyloid β (an APP cleavage product) or administration of broad-566 

spectrum caspase inhibitors attenuates synaptic defects in models of AD, an effect only partially 567 

recapitulated by CASP3-specific inhibitors 108. Along similar lines, genetic deletion of Casp2 was 568 

reported to provide protection from synaptic loss and cognitive decline in a mouse model of AD 109. Such 569 

protection may be linked to the generation of a specific cleavage product (∆tau314) by CASP2, which is 570 

reported to impair cognitive and synaptic function by promoting the missorting of tau to dendritic spines 571 

110, 111. Accordingly, CASP2 inhibitors blocked tau truncation and restored excitatory neurotransmission 572 

in mouse models of tauopathies, including AD 112, 113. Of note, a role for CASP4 in AD pathogenesis is 573 

also reported 114, 115. Moreover, studies using senescence-accelerated OXY5 rat model of AD 574 

demonstrated that the treatment with mitochondria-targeted antioxidant SkQ1 improved mitochondrial 575 

fitness and slowed down the signs of Alzheimer’s disease-like pathology in older rats 116. Lack of BIM 576 
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(due to deletion of Bcl2l11) also confers protection to dopaminergic neurons in experimental PD imposed 577 

by inhibition of mitochondrial complex I, an effect that depends on BAX activation 117. In addition, 578 

genetic deletion or down-regulation of Casp3, as well CASP3 inhibition by transgenic, neuron-restricted 579 

expression of XIAP protects mice against pharmacologically induced PD, attenuating both dopaminergic 580 

neuron alterations and behavioral deficits 118, 119, 120, 121. Whether protection arises from the lack of cell-581 

intrinsic or cell-extrinsic processes dependent on apoptotic caspases has not been investigated. Finally, 582 

pharmacological inhibition of CASP3 confers neuroprotection to rat model of Huntington's disease (HD) 583 

122, 123, 124. That said, the precise mechanisms whereby components of the molecular apparatus for 584 

intrinsic apoptosis influence neurodegeneration need to be further explored. Two studies in clear 585 

contradiction to each other reported that at sublethal doses, pharmacological inhibition of myeloid cell 586 

leukemia sequence 1 (MCL1) improved disease outcome in a mouse model of AD with a mechanism 587 

independent of apoptosis induction and involving the stimulation of mitophagy 125, but that Mcl1 588 

haploinsufficiency accelerated the degeneration and dysfunctionality of motor neurons in mice 126. Also, 589 

there is evidence that necroptosis or ferroptosis rather than apoptosis can be the major contributor in 590 

neuronal cell destruction during AD 127, 128. Finally, although Bax deletion prevents the demise of 591 

cerebellar granule neurons in a transgenic model of inherited prion disease 129, the direct contribution of 592 

BAX to neurotoxicity during prion disorders is a matter of controversy 130.  593 

BCL2 family proteins have also been reported to contribute to axonal degeneration and neuronal cell 594 

death in animal models of brain trauma, degeneration, or neurotoxicity 131, 132, 133. Thus, BAX- or BID-595 

deficient mice, as well as transgenic mice overexpressing BCL2, display increased survival of cortical 596 

or hippocampal neurons after experimental traumatic brain injury, as compared to wild-type mice 134, 135, 597 

136, 137. Moreover, transgenic BCL2 overexpression protects mouse neurons against the detrimental 598 

effects of transection of the sciatic nerve 138. Likewise, BAX deficiency enhances the survival of 599 

oligodendrocytes in mice subjected to spinal cord injury 139. Both neuroprotection and functional 600 
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improvements were observed in rat or mouse models of traumatic spinal cord injury upon local 601 

administration of Z-VAD-FMK) and other caspase inhibitors 140, 141, 142. However, these findings need to 602 

be validated given the low selectivity of these inhibitors among caspases. Of note, in rats, post-traumatic 603 

neuroprotection can further be improved by combined inactivation of PARP1 and CASP3 143, suggesting 604 

a potential involvement for PARP1-dependent parthanatos in the process. 605 

Deletion of Bax (but not of the genes encoding BIM, PUMA or BID), as well as Bax haploinsufficiency, 606 

prevents the death or degeneration of retinal ganglion cells in mice subjected to optic nerve injury 144, 145, 607 

146, 147. Moreover, the demise of injured retinal ganglion cells is exacerbated in mice with a conditional 608 

loss of Bcl2l1 (leading to lack of BCL-XL) 148 and decreased in transgenic mice over-expressing XIAP 609 

149 or BCL-XL 150 in the eye, or in rodents treated with an XIAP-derived cell-permeant peptide targeting 610 

CASP9 151, or a CASP3-targeting small-interfering RNA (siRNA) 152, 153. Moreover, transgenic or 611 

adenovirus-driven XIAP expression protects the retina in various animal models of retinal disease, 612 

degeneration, or ischemia 154, 155, 156, 157, 158, 159, while a BCL-XL inhibitor alleviated pathogenic neo-613 

vascularization during diabetic retinopathy 160. Genetic deletion of Casp9 from endothelial cells protected 614 

retinal ganglion cells from ischemic death, supporting non-cell autonomous functions of CASP9 151. Of 615 

note, CASP7 seems to play a crucial role in retinal ganglion cell death, as demonstrated in a model of 616 

optic injury in Casp7-/- mice 161. However, both pro-survival (BCL2) and pro-apoptotic (BAK1, BAX 617 

and BIM) BCL2 family members contribute to retinal neo-vascularization in response to experimental 618 

ischemic retinopathy 162, 163, 164. In one of these papers, this effect is linked to an increased survival of 619 

endothelial cells in the absence of BAX and BAK1 164. Persistent endothelial cells promote rapid tissue 620 

re-vascularization, thus preventing the occurrence of a pathogenic excessive neovascularization. 621 

Moreover, the inhibition of the intrinsic apoptotic pathway by genetic inhibition of c-Jun N-terminal 622 

kinase 1 (Jnk1) or the administration of a broad-spectrum caspase inhibitor led to reduced choroidal neo-623 

vascularization in the murine model of wet age-related macular degeneration (AMD) 165. These 624 
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observations may indicate that factors released by dying cells regulate neo-vascularization in the retina 625 

or other eye tissues. 626 

Deletion of Bax, Hrk or Casp3 as well as transgenic overexpression of XIAP prevents neuronal loss 627 

and/or axon degeneration in mouse models of trophic factor deprivation including nerve growth factor 628 

(NGF) withdrawal 166, 167, 168. Conversely, lack of BIM or PUMA does not limit hippocampal neuronal 629 

injury upon experimental excitotoxicity 169, 170. Moreover, while in vivo delivery of an XIAP fusion 630 

protein protects neurons against death induced by glutamate or kainic acid 171, kainic acid-mediated 631 

neurodegeneration cannot be rescued by the CASP3 inhibitor DEVD-CHO 172. Conversely, BIM appears 632 

to be activated during excitotoxicity 173, and Bcl2l11-/- mice (which lack BIM) display attenuated neuro-633 

degeneration after experimental seizures induced by administration of kainic acid into the amygdala, at 634 

least in part because of decreased neuronal cell death in the hippocampus (but not in the neocortex) 174. 635 

Moreover, data from knockout mice suggest that experimental seizure-induced neuronal death involves 636 

BCL2-associated agonist of cell death (BAD), BCL2 interacting killer (BIK), BCL2 modifying factor 637 

(BMF), or PUMA 175, 176, 177, 178 and that BCL2-like 2 (BCL2L2; best known as BCL-W) may provide 638 

neuroprotective, seizure-suppressive functions 179. Confirming a certain degree of functional redundancy, 639 

phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, best known as NOXA) and BID seem 640 

dispensable for RCD driven by excitotoxicity, as shown in kainic acid-treated animals 180, 181.  641 

Intrinsic apoptosis is also involved in neuronal apoptosis post-ischemic injury in both developing and 642 

adult brains. In a mouse model of neonatal hypoxia-ischemia, neuroprotection was documented upon 643 

deletion of Bax 182, simultaneous absence of BIM and BAD 183, or transgenic overexpression of XIAP 644 

184. Conversely, Xiap-/- mice are sensitized to neonatal hypoxia-ischemia injury 185. Apparently at odds 645 

with these findings, Casp3-/- mice display increased vulnerability to such experimental perturbation, 646 

possibly due to complementary over-activation of CASP3-independent pathways 186. Of note, the 647 
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absence of CASP3, BAX, or PUMA (but not the absence of NOXA, BIM or HRK) also confers neuro-648 

protection to newborn mice acutely exposed to ethanol 187, 188, 189, while loss of BAX is neuroprotective 649 

in newborn mice exposed to isoflurane 190 as well as ionizing radiation 133, 191. At the same time, it is 650 

interesting to note that BAX-dependent neuronal RCD also contributes to reactive microgliosis during 651 

the recovery of the developing brain from acute alcohol exposure 192, pointing to an etiological role for 652 

activation of microglial cells by dead neurons. 653 

Bax-/- mice displayed pronounced neuroprotection when subjected to distinct experimental brain injuries, 654 

including middle cerebral artery occlusion 193. A similar protection against experimental ischemic insults 655 

has been observed in mice deficient for BMF 194, or BID 195, 196, 197. Conversely, NOXA seems to be 656 

dispensable for neuronal damage induced by experimental ischemic stroke 194. Moreover, the absence of 657 

BID fails to protect mice from ischemia-reperfusion, although it limits the associated inflammatory 658 

response 198. Transgenic over-expression of BCL2, BCL-XL or XIAP as well as inhibition of apoptotic 659 

caspases or genetic deletion of CASP6 ameliorates neuronal survival upon global ischemia, focal 660 

ischemia or stroke 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215. It should be noted, however, 661 

that in these settings, neuroprotection by inhibition or deletion of caspases may be related to the lack of 662 

cell-extrinsic or apoptotic-unrelated roles of caspases. Morevoer, various examples of caspase-663 

independent neuronal death after cerebral ischemia have been reported 216, 217, 218, 219. In thic context, it is 664 

important to note that apoptosis is dynamically regulated during lifespan in the brain 24. Indeed, while 665 

immature brain cells express high levels of many BCL2 proteins 133, 220, 221, most of these proteins are 666 

downregulated in the adult brain, when most post-mitotic neural cells become resistant to apoptosis 131, 667 

222. This may help explain the divergent findings on the mechanisms of neural cell death reported above. 668 

Cardiovascular conditions. While a role for RCD in non-reperfused myocardial infarction remains 669 

questionable, apoptosis and other cell death programs including necroptosis, MPT-driven necrosis, 670 



28 
 

ferroptosis, pyroptosis and autosis appear to contribute to cardiomyocyte death and tissue damage during 671 

myocardial infarction with reperfusion (also referred to as myocardial ischemia-reperfusion injury). 672 

However, the relative importance of the RCD and how they interconnect mechanistically and 673 

functionally to produce an integrated response remains poorly understood. For example, Bak1-/-mice with 674 

a cardiomyocyte-specific deletion of Bax displayed considerably reduced infarct size as compared to 675 

their wild-type littermates when subjected to experimental myocardial ischemia-reperfusion, although it 676 

remains unclear whether these effects are attributable to reductions in apoptosis or MPT-driven necrosis 677 

223, 224, 225, a RCD variant shown to participate in the pathogenesis of ischemic stroke 226. Protection 678 

against myocardial ischemia-reperfusion has also been reported in transgenic mice overexpressing BCL2 679 

227, 228, 229 or a BCL-XL-derived peptide 230. Likewise, deletion of Bbc3 (leading to lack of PUMA) 680 

ameliorates myocardial ischemia-reperfusion injury 231, ultimately translating into increased survival 232. 681 

Moreover, neurotrophin-3 was reported to confer cardioprotection fromischemic and reperfusion injuries 682 

by reducing BIM levels 233. Broad spectrum caspase inhibition 234, 235, 236 and XIAP mimicking peptides 683 

237 were shown to modestly reduce myocardial infarct size. Finally, simultaneous deletion of Casp3 and 684 

Casp7 had no cardioprotective effect during reperfused myocardial infarction 238, in line with the notion 685 

that the absence of caspase only delays cell death. 686 

In contrast to the large burst of cell death over several hours characterizing myocardial infarction, 687 

cardiomyocytes are lost gradually over months to years during heart failure with reduced ejection fraction 688 

3. The role of intrinsic apoptosis in these heart conditions is, however, debated. In a mouse model of 689 

cardiomyopathy based on the deletion of desmin (Des), the cardiomyocyte-specific over-expression of 690 

BCL2 reduces cardiac lesions and hypertrophy coupled to ameliorated cardiac functionality 239. 691 

However, despite improved survival, these mice show increased levels of necrosis due to the activation 692 

of alternative cell death pathways 240. Moreover, Casp3-/- mice display enhanced vulnerability to 693 

experimental cardiomyopathy, at least in part reflecting the inefficient activation of pro-survival AKT 694 
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serine/threonine kinase 1 (AKT1) signaling 241. As an alternative explanation, the absence of CASP3 695 

may foster RCD-driven inflammation as a consequence of increased type I interferon (IFN) release 242, 696 

243, 244. Indeed, experimental data linking dysregulated type I IFN release and cardiac conditions have 697 

recently emerged 245. 698 

As for therapeutic interventions, cardioprotective effects have been achieved by inhibition of CASP3 in 699 

rodent models of myocardial dysfunction induced by endotoxin 246, burn injury 247 or hypoxia 248, 700 

although perhaps such effects can be attributed to the lack of cell-extrinsic or apoptosis-unrelated effects 701 

of caspase activity. Moreover, inhibition of BAX prevents cardiotoxicity induced by doxorubicin in 702 

zebrafish and mice without affecting the anti-neoplastic activity of doxorubicin 249. Similarly, the 703 

endothelial cell-specific expression of B cell leukemia/lymphoma 2 related protein A1a (BCL2A1A) 704 

promotes survival in a model of allogeneic heart transplantation 250.  705 

Finally, the mechanistic links between intrinsic apoptosis and atherosclerosis remain a matter of debate. 706 

Indeed, while Casp3 deletion favors plaque development in mouse models of atherosclerosis 251, the 707 

absence of DNA fragmentation factor subunit beta (DFFB, best known as CAD)) 252 protects mice against 708 

the disease. Likewise, while conditional deletion of Mcl1 in myeloid cells is pro-atherogenic 253, genetic 709 

or pharmacological inhibition of BCL-XL reduces atherosclerosis via a mechanism involving the 710 

depletion of platelets 254. Moreover, the macrophage or leukocyte-specific deletion of the gene encoding 711 

BIM in mice has modest effects on plaque development, especially in the early phase of atherosclerosis 712 

255, 256. As the etiology of atherosclerosis involves a major inflammatory component, these apparently 713 

discrepant results may reflect (at least in part) the key role of some components of the apoptotic 714 

machinery in the control of inflammatory responses. 715 

Renal disorders. Germline or kidney-specific deletion of Bax attenuates acute kidney damage in mice 716 

subjected to experimental renal ischemia/reperfusion 257. A similar nephron-protection has been observed 717 
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in Bid-/- mice 258, as well as in transgenic mice specifically expressing BCL-XL in the kidney 259. 718 

Moreover, the simultaneous deletion of Bax and Bak1 in kidney proximal tubules limits tubular apoptosis 719 

and ameliorates kidney inflammation and fibrosis in a mouse model of renal fibrosis based on unilateral 720 

ureteral obstruction 260, 261. Apoptotic caspases also appear to contribute to the etiology of renal 721 

conditions, although, perhaps, this reflects cell-extrinsic effects of caspase activity. Casp3 deletion 722 

reduces microvascular rarefaction and renal fibrosis in mice subjected to experimental ischemia-723 

reperfusion injury 262, resulting in better long-term outcomes 263. Moreover, the lack of CASP3 increases 724 

the survival of mice with chronic kidney disease caused by a congenital mutation in cystin 1 (Cys1) 264. 725 

In this setting, CASP3-deficient mice display increased CASP7 and decreased BCL2 expression, which 726 

is in line with recent clinical evidence of constitutive BCL2 down-regulation in patients with polycystic 727 

kidney disease 265. Administration of broad-spectrum caspase inhibitors limits kidney damage and 728 

improves renal functionality after a variety of experimental insults to kidneys, as observed in animal 729 

models of renal ischemia 266, 267, polycystic kidney disease 268, glomerulonephritis 269, lupus nephritis 270 730 

and diabetic renal disease 271. Nonetheless, the specific targeting of apoptotic caspases will reveal 731 

whether this effect reflects the inhibition of intrinsic apoptosis. Indeed, these studies do not rule out the 732 

involvement of non-apoptotic RCD pathways in the etiology of acute and chronic kidney injury 272, 273. 733 

Moreover, some of the nephron-protective effects of broad-spectrum caspase inhibitors have been linked 734 

to decreased post-RCD inflammation rather than the sole inhibition of apoptosis 266, 274. In this context, 735 

Z-VAD-FMK aggravates (rather than ameliorates) renal dysfunction in a mouse model of cisplatin 736 

nephrotoxicity, by a mechanism involving the abrogation of cyto-protective autophagy 275. Similarly, Z-737 

VAD-FMK is ineffective in mouse models of osmotic nephrosis and contrast-induced acute kidney injury 738 

276, and this may be linked to the ability of Z-VAD-FMK to inhibit CASP8 (and hence promote 739 

necroptosis). Finally, acute loss of BCL-XL in all tissues of adult mice, except for hematopoietic cells, 740 
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caused severe renal tubular degeneration leading to fatal anemia due to the loss of erythropoietin 741 

production 277. 742 

Hepatic diseases. Abundant evidence highlights pathogenic roles of apoptosis in acute liver injuries, as 743 

well as in alcohol-related and alcohol-unrelated chronic liver disorders. Hepatocytes express high levels 744 

of BID, which connects DR signaling to mitochondrial outer membrane permeabilization (MOMP) upon 745 

CASP8-dependent cleavage 278, and this complicates distinguishing between the intrinsic and extrinsic 746 

pathways. Here, we shall discuss studies performed on animal models of liver injury unrelated to overt 747 

signaling engaged by the Fas cell surface death receptor (FAS; also known as CD95 or APO-1) or the 748 

TNF receptor superfamily member 1A (TNFRSF1A, best known as TNF-R1) (which instead will be 749 

discussed in the next section).  750 

Distinct preclinical models of hepatic ischemia-reperfusion injury demonstrated that deletion of Bcl2l11 751 

(leading to lack of BIM) and/or Bid as well as over-expression of BCL2 or administration of 752 

pharmacological broad-spectrum caspase inhibition mediate robust hepatoprotective effects 279, 280, 281, 753 

282. A similar improvement of hepatocyte survival and liver functionality was observed in rodents 754 

specifically expressing a mutated variant of BID in the liver and subjected to warm ischemia/reperfusion 755 

injury 283. As for other models of liver injury, BIM-deficient mice are protected against viral hepatitis 284. 756 

Moreover, deletion of the genes encoding BIM or PUMA, but not that of BCL2-related ovarian killer 757 

(Bok) limits liver injury in mice exposed to the hepatotoxic agent acetaminophen 285, 286, 287. Moreover, 758 

pre-treatment with Z-VAD-FMK improves the survival of mice subjected to extensive hepatectomy 288. 759 

There is contrasting evidence on the role of BID in the etiology of liver conditions unrelated to overt 760 

FAS and TNF-R1 signaling. In a model of alcohol-related liver disease, the lack of BID confers some 761 

protection against ethanol-induced fibrosis, although mice display persisting signs of inflammation and 762 

steatosis 289. Moreover, mice with a hepatocyte-specific deletion of Bid present reduced liver 763 
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inflammation and fibrosis when subjected to a choline-deficient diet to cause non-alcoholic 764 

steatohepatitis (NASH) 290. Also, administration of BID-targeting antisense oligonucleotides exerted 765 

significant hepatoprotective effects 291. However, BID deficiency fails to ameliorate liver injury and 766 

fibrosis upon bile duct ligation (as a model of obstructive cholestasis and chronic liver disease) 292. Of 767 

note, in the same experimental model, the liver-specific overexpression of MCL1 but not BCL2 protects 768 

animals from hepatic damage 293, 294, suggesting some specificity for MCL1. To add a layer of 769 

complexity, conditional deletion of Xiap in hepatocytes does not result in liver injury, steatosis, or 770 

fibrosis, possibly due to compensatory effects of other inhibitor of apoptosis protein (IAPs) isoforms 295. 771 

That said, Xiap-/- and Casp3-/- mice subjected to diet-induced hepatic steatosis and/or fibrosis, display 772 

exacerbated and attenuated liver damage, respectively 296, 297. These effects have been linked to the 773 

modulation of the inflammatory response rather than apoptosis. Finally, genetic co-deletion of Mcl1 and 774 

transformation-related protein 53 (Trp53, best known as p53) 298 as well as conditional deletion of the 775 

genes encoding BCL-XL or MCL1 promote fibrosis and/or carcinogenesis, two common final stages of 776 

liver disease 299. In this latter study, the additional deletion of Bak1 limited hepatotoxicity, which is in 777 

line with evidence indicating that deletion of Bid and/or Bok protects mice against experimentally 778 

induced hepatocarcinogenesis 300, 301, 302.  779 

CASP2 was found upregulated in mouse model of NASH and in NASH patients and was implicated in 780 

driving lipogenesis and steatohepatitis with a mechanism involving the cleavage of the site-1-protease 781 

(S1) followed by the activation of sterol regulatory element binding proteins (SREBP) 303. In this study, 782 

the ablation or pharmacological inhibition of CASP2 prevented diet-induced steatosis and NASH 783 

progression. Of note, CASP2 deficiency was also reported to protect mice from diet-induced obesity and 784 

metabolic syndrome 304. Supporting the etiological contribution of caspase activation to liver disease, the 785 

administration of broad-spectrum caspase inhibitors (e.g., emricasan, VX-166) reduced liver injury, 786 

inflammation and fibrosis in mice fed a diet rich in fat or deficient in methionine and choline 305, 306. 787 
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Along similar lines, emricasan reportedly decreased portal pressure, fibrogenesis and hepatic 788 

inflammation, and preserved liver function in rodent models of chronic carbon tetrachloride (CCl4)-789 

mediated cirrhosis or cholestasis driven by bile duct ligation 307, 308, 309. Preliminary anti-inflammatory 790 

effects coupled with improved liver function have also been observed in patients with NASH-related 791 

cirrhosis treated with emricasan 39, 310. However, follow-up, randomized clinical studies failed to observe 792 

beneficial effects of this agent on portal pressure and clinical outcome 40, 41, 311. At least in part, these 793 

findings may reflect the complex interconnection between multiple RCD variants involved in the 794 

pathogenesis of NASH. Supporting this possibility, the administration of CASP3-specific inhibitors that 795 

abrogate both pro-apoptotic and pro-pyroptotic activities of CASP3 protected mice against acute liver 796 

injury caused by bile duct ligation 312. Additional pharmacological and genetic studies specifically 797 

targeting intrinsic apoptosis (over other RCD pathways controlled by caspases) are needed to formally 798 

ascertain the involvement of this pathway in the etiology of hepatic disorders. 799 

Hematological malignancies and solid cancers. The role of the intrinsic apoptosis pathway in 800 

preventing oncogenesis has been demonstrated in multiple animal models of induced hematological and 801 

solid tumors. In particular, a wide range of evidence demonstrates that over-expression of BCL2, BCL-802 

XL or MCL-1 accelerates the onset of leukemia and lymphoma induced by over-expression of the MYC 803 

proto-oncogene, bHLH transcription factor (MYC) 313, 314, 315, 316, 317. Accordingly, the pharmacological 804 

inhibition of anti-apoptotic BCL2 proteins is effective against MYC-driven tumors, even when they lack 805 

p53 function 318, 319, 320, 321. In this context p53 has been shown to exert multiple roles in RCD (e.g., 322, 806 

323, 324). In particular, it acts as a direct or indirect regulator of the expression of several apoptotic genes 807 

325, 326, 327, 328 and connects apoptosis induction and cell cycle arrest 329. One main target of p53 in this 808 

context is cyclin dependent kinase inhibitor 1A (CDKN1A, best known as p21). p53-induced expression 809 

of CDKN1A leads to the activation of DREAM and RB/E2F transcriptional repressor complexes, in turn 810 

promoting cell cycle arrest by downregulating crucial cell cycle regulators such as cyclins and cyclin-811 
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dependent kinases 326, 327, 330. However, recent finding indicates that the p53-p21-DREAM or p53-p21-812 

RB/E2F axis can also downregulate CASP2 and CASP8-associated protein 2/FLASH (CASP8AP2), 813 

generating a feedback loop centered on p53 that limits rather than promoting the induction of apoptosis 814 

326, 327. Of note, when analyzing the impact of endogenous proteins, it was shown that the absence of 815 

BCL-XL but not BCL2 limits the development of lymphoma in transgenic mice expressing MYC under 816 

the IgH enhancer (Εμ-myc mice) 331, 332, thus supporting the therapeutic use of BCL-XL inhibitors against 817 

these blood cancers. Along similar lines, MCL1 overexpression 317 or Mcl1 ablation 318, 333, 334, 818 

respectively, accelerates and suppresses MYC-driven lymphomagenesis. Lending further support to the 819 

relevance of MCL1, prevalence and onset of MYC-driven lymphoma development were reduced by Mcl1 820 

haploinsufficiency 318, 334, or B cell-specific deletion of Mcl1 335. Of note, loss of one allele of Mcl1 (but 821 

not complete loss of the gene encoding BCL-XL) also impairs the development of thymic lymphoma in 822 

p53-deficient mice 336, which possibly explains the limited effect of the BCL-XL + BCL2 + BCL-W 823 

inhibitor ABT-737 in these models of tumorigenesis 337. The contribution of pro-survival BCL2 proteins 824 

in the development of AML has been demonstrated by using mice reconstituted with genetically modified 825 

bone marrow cells overexpressing MYC 338 and in human Burkitt lymphomas and diffuse large B-cell 826 

lymphomas (Diepstraten, 2020,31985804). Notably, the acute genetic removal of Mcl1 prevents the 827 

sustained survival and proliferation of AML driven by diverse oncogenic fusion proteins 339. 828 

Accordingly, MCL-1 specific BH3 mimetic drugs, such as S63845, are able to potently kill a diverse 829 

range of lymphoid and myeloid malignant cells in culture and even in tumor transplanted mice 340. 830 

Finally, ablation of Bcl2l2 (leading to lack of BCL-W) limits the development of MYC-mediated B cell 831 

lymphoma 341. 832 

In support of the relevance of the intrinsic apoptosis pathway in tumorigenesis, several studies 833 

demonstrated that the development of MYC-driven lymphoma and leukemia is accelerated in mice 834 

lacking the genes encoding BAX 342, BIM 343, 344, BAD 345, BMF 345 or PUMA 346, 347, 348. In particular, 835 
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these studies report that loss of only a single allele of Bcl2l11 (encoding BIM) accelerates the 836 

development of lymphoma and this effect was reversed following full ablation of Bcl2l1 (leading to lack 837 

of BCL-XL) 344. In this context, the presence of all prosurvival BCL2 proteins is shown to limit the impact 838 

of BIM in Eμ-Myc transgenic mice 349. Instead, the combined ablation of the genes encoding BIM and 839 

p53 or PUMA and p53 accelerates MYC-driven lymphomagenesis 350. This is in line with the evidence 840 

that loss of the genes encoding BAX or BIM augmented lymphomagenesis in p53-deficient mice 351, 352. 841 

Of note, PUMA seems to exert a strong tumor-suppressive role in blood cancers, as shown by the 842 

evidence that Bbc3 deletion accelerates the development of MYC-driven B-cell lymphomas and that Eμ-843 

Myc lymphomas developing in PUMA-proficient mice display downregulated expression of PUMA 347, 844 

348, 353. On the contrary, the loss of the gene encoding NOXA does not accelerate MYC-driven 845 

lymphomagenesis, and the role of BIK in this murine lymphoma model is debated 347, 354. Along similar 846 

lines, while CASP2 suppresses MYC-induced lymphomagenesis in mice 355, the tumor suppressive role 847 

of apoptosome components (Box 1) is questioned, as shown in lethally irradiated mice reconstituted with 848 

Eμ-Myc transgenic APAF1-deficient or CASP9-deficient fetal liver cells which showed no difference in 849 

the incidence of lymphoma compared to their wild-type counterparts 356. This is consistent with the 850 

notion that APAF1 and caspase-9 function downstream of the commitment to cell death (MOMP) and 851 

therefore do not act as tumor suppressors 15. 852 

Concerning other experimental animal models of induced hematological malignancies, the absence of 853 

PUMA (due to ablation of Bbc3) abrogated the development of both myelodysplasia, as shown in 854 

transgenic mice expressing a nucleoporin 98 (Nup98)-homeobox D13 (Hoxd13) fusion gene 357, and 855 

thymic T cell lymphoma induced by gamma radiation 358, 359. The explanation for these surprising 856 

findings is based on the fact that the absence of PUMA prevents the extensive death of hematopoietic 857 

cells caused by gamma radiation, which causes mobilization and extensive proliferation of hematopoietic 858 

stem and progenitor cells, resulting in elevated replication stress and genetic instability and 859 
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lymphomagenesis. These findings show that inhibition of apoptosis does not only promote the 860 

development of hematological malignancies, but in certain conditions can do the exact opposite and 861 

prevent lymphoma development. The absence of NOXA, augments the development of chronic 862 

lymphocytic leukemia in T cell lymphoma breakpoint 1 (TCL1) transgenic mice 360 and accelerated the 863 

development of thymic T lymphoma induced by gamma radiation 358. Moreover, conditional deletion of 864 

Bcl2l11 in B cells (leading to the absence of BIM) accelerates the development of mantle cell lymphoma 865 

in mice driven by cyclin D1 (CCND1) over-expression 361. Over-expression of MCL1 and/or BCL2 866 

promotes the development of acute myeloid leukemia driven by lysine (K)-specific methyltransferase 867 

2A (KMT2A, best known as MLL) fusion proteins 339, 362 and plasmacytoma driven by ABL proto-868 

oncogene 1, non-receptor tyrosine kinase (ABL1) 363. Conversely, the loss of one Mcl1 allele suppresses 869 

the development of T cell lymphoma, as shown in models based on sequential low-dose irradiation or 870 

the expression of a transgene encoding an IL2 inducible T cell kinase (ITK)-spleen tyrosine kinase (SYK) 871 

fusion protein 364. Finally, the absence of CASP2 accelerates lymphomagenesis in ataxia telangiectasia 872 

mutated (ATM)-deficient mice 365, but this may be due to the loss of the function of caspase-2 in mitotic 873 

cell division 366. Lending support to the role of intrinsic apoptosis in hematologic malignancies, the BCL2 874 

inhibitor venetoclax has entered clinical practice for the treatment of CLL as single agent or more 875 

effectively in combination with other therapeutic agents 31, 35, 36, 37. Combinatorial regimens of BCL2 876 

inhibition with epigenetic modulation have entered center stage in certain settings of AML 38, 367. 877 

However, mechanisms of resistance of CLL and AML to venetoclax related to defects in p53 and the 878 

apoptotic network or deregulated energy metabolism have been described 368, 369, 370, 371. Venetoclax-879 

based regimens also display effectiveness in patients with high-risk myelodysplastic syndromes 372, thus 880 

suggesting a potential application in these syndromes 373, 374.  881 

Significant work demonstrated a tumor suppressor role of the intrinsic apoptotic pathway in many 882 

cancers. For example, BCL2 overexpression accelerates the development of MYC-induced mammary 883 
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tumorigenesis 375. A similar acceleration of tumor development has been described for the loss of genes 884 

encoding BAX, BIM, CASP2 or PUMA in distinct models of breast cancer induced by expression or 885 

overexpression of C3(1)/SV40 T-antigen, MYC, or erb-b2 receptor tyrosine kinase 2 (ERBB2, best 886 

known as HER2) 376, 377, 378, 379. At odds with these results, BCL2 overexpression in the mammary gland 887 

suppresses the development of breast tumors driven by the administration of dimethylbenz(a)anthracene 888 

380. This latter finding may be explained in a similar way as was mentioned for the suppression of 889 

radiation-induced thymic T cell lymphoma development by over-expression of BCL-2 or loss of PUMA 890 

(see above). Conditional deletion of the genes encoding BCL2 or BCL-XL in intestinal epithelial cells 891 

delays the development of colorectal cancer driven by inflammation 381, 382, which is in line with the 892 

evidence that the absence of PUMA (due to Bbc3 deletion) exacerbates colorectal tumorigenesis as 893 

shown in a mouse model of intestinal oncogenesis driven by colitis or APC, WNT signaling pathway 894 

regulator (APC) 383. Interestingly, doxorubicin-induced intestinal cytotoxicity requires PUMA but not 895 

BIM, whereas the reverse is true for MYC-driven apoptosis in the gut, indicative of differential roles for 896 

different BH3-only proteins in this tissue 384. Intriguingly, treatment with BCL-XL, but not BCL2-897 

targeting BH3 mimetics is sufficient to prevent intestinal tumorigenesis, suggesting that BCL-XL is the 898 

crucial mediator of protection of early neoplastic cells in this model 385. In agreement, earlier work 899 

showed BCL-XL dependency in cell cultures derived from both colorectal and non-small cell lung 900 

cancers 386, 387. Moreover, a tumor suppressive effect is ascribed to BAX and CASP2 respectively in 901 

murine models of brain cancer 388, 389 and lung cancer 390 development. In line with this evidence, 902 

pharmacologic/genetic inhibition of MCL1 delayed tumor development in a mouse model of mutant 903 

KRas-driven adenoma/adenocarcinoma 391. In the same model, tumor progression was promoted by the 904 

ablation of pro-apoptotic Bok 392. Of note, there is evidence of a certain tissue-specificity in the epigenetic 905 

regulation of Bcl2 and Mcl1, such as the epigenetic mechanism centered on the deubiquitinase BRCA1 906 

associated protein 1 (BAP1) 393 a tumor suppressor that is frequently mutated in certain cancers 394 and 907 
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has been associated with tumor aggressiveness and therapy resistance 395, 396. Finally, age-related 908 

differences in the expression of pro-apoptotic members of the BCL2 family have been linked to the 909 

increased sensitivity of neonatal/childhood tissues, relative to adult counterparts, to chemotherapy and 910 

radiotherapy. This was causally linked to MYC-dependent expression of genes encoding BAX, BID and 911 

BIM, both in mice and humans 133. 912 

Cancer-specific contributions were attributed to particular BCL2 protein family members. For example, 913 

deletion of Bax accelerates the development of MYC-induced pancreatic tumors 397 which was not seen 914 

with ablation of Bak1 or Casp3 397, 398 but was achieved by BCL-XL overexpression 314, 399. Likewise, 915 

BOK seems to be crucial in hepatocarcinogenesis, as demonstrated in a mouse model of 916 

diethylnitrosamine-induced liver cancer which was accelerated on a Bok-/- genetic background 300. Using 917 

the same mouse model, enhanced hepatic cancer development was also demonstrated for the deletion of 918 

the genes encoding PUMA or CASP2 400, 401. Conversely, overexpression of BCL2 was shown to limit 919 

transforming growth factor-a (TGFA)-driven hepatic tumorigenesis 402, 403, perhaps because the death of 920 

certain cells in the liver causes massive mobilization and proliferation of progenitor cells, leading to 921 

acquisition of oncogenic lesions that drive tumorigenesis in a manner similar to radiation-induced thymic 922 

lymphoma development (see above). Finally, the transgenic overexpression of BCL-XL (but not BCL2) 923 

and the keratinocyte-specific deletion of Bcl2l1 (leading to lack of BCL-XL) respectively accelerates or 924 

limits chemically- and/or ultraviolet B (UVB)-induced skin tumorigenesis 404, 405, 406, 407. It will be 925 

important to investigate and better understand why in certain settings inhibition of apoptotic cell death 926 

promotes tumorigenesis whereas it inhibits tumorigenesis in others. 927 

Autoimmune and inflammatory diseases. There is substantial evidence linking intrinsic apoptosis to 928 

the development and progression of autoimmune diseases. However, the interpretation of these findings 929 
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should take into consideration the crosstalk between the apoptotic and inflammatory pathways and the 930 

fact that apoptotic caspases accelerate cell death and regulate its immunological manifestation. 931 

The first evidence that defects in the intrinsic apoptosis pathway can cause the development of 932 

autoimmune disease was reported when over-expression of BCL-2 in B lymphocytes 408 or loss of BIM 933 

in all tissues 409 was shown to cause fatal systemic lupus erythematosus (SLE)-like disease. Consistent 934 

with a critical role for the intrinsic apoptotic pathway in preventing autoimmune disease, the combined 935 

loss of the genes encoding BAX and BAK1 in hematopoietic cells, achieved by transplantation of lethally 936 

irradiated wild-type mice with hematopoietic stem/progenitor cells from the livers of E14.5 Bax-/-Bak1-/- 937 

embryos also causes fatal SLE-like disease 410. In mouse models of rheumatoid arthritis, ablation of the 938 

genes encoding BIM, BID or BAD, but not the loss of Bax and Bak1, accelerated the emergence and 939 

increased the duration and severity of this disease 411, 412, 413. Consistent with these findings, 940 

administration of a BIM mimetic suppressed inflammatory arthritis in mice 414. Mice deficient for BAX 941 

as well as transgenic mice expressing XIAP display increased severity of autoimmune encephalomyelitis 942 

induced by immunization with myelin oligodendrocyte glycoprotein (MOG) 415, 416. Similar results have 943 

been obtained in mouse models of autoimmune encephalomyelitis genetically engineered for 944 

hematopoietic cell-specific deletion of Bcl2l11 (leading to BIM deficiency), or the neuron-specific 945 

overexpression of BCL2 417, 418. Consistent with the notion that inhibition of apoptosis can promote the 946 

development of auto-immune disease, inhibition of BCL-2, BCL-XL and BCL-W using the BH3 mimetic 947 

drug ABT-263 substantially reduced pathology in several mouse models of autoimmune disease, 948 

including scleroderma 419. In apparent contrast with these results, studies using models of type 1 949 

(autoimmune) or type 2 (non-autoimmune) diabetes revealed that deletion of Bax alone or combined loss 950 

of Bax and Bak1 420, 421, deletion of the gene encoding BIM, alone or together with the gene encoding 951 

PUMA 417, 422, 423, 424 or loss of BMF 425 protect pancreatic β cells from autoimmune destruction. 952 

Moreover, the absence of BIM prevented the emergence of type 1 diabetes in non-obese diabetic (NOD) 953 
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mice 417, 422, while ablation of Trp53 in pancreatic β cells failed to halt cell death in multiple experimental 954 

models of diabetes 426.  955 

Based on the studies described above, inhibiting or deleting pro-apoptotic proteins or genes can have 956 

conflicting effects on autoimmune disease progression. This may depend on the cell type in which the 957 

major effect on apoptosis occurs, e.g., the immune cells (attacking the target cell) or the target cell. 958 

Inhibiting cell death in the target cells would provide protection and may improve disease outcome, 959 

whereas inhibiting cell death in the immune cell may lead to an accumulation of immune cells and 960 

aggravation of the autoimmune disease. The distinction could be explored by studying tissue-specific 961 

deletion of apoptosis regulator genes. 962 

In this context, there is evidence that inflammatory and autoimmune disorders may derive from increased 963 

survival of specific immune cell population. For instance, elevated levels of cytokines, such as GM-CSF, 964 

IL-3 and IL-5 in immune disorders have been associated with prolonged survival of neutrophils, 965 

eosinophils or basophils with a mechanism involving the upregulation of anti-apoptotic proteins MCL1, 966 

BCL-XL and Baculoviral IAP Repeat Containing 2 (BIRC2, best known as cIAP2) promoted by 427, 428, 967 

429, 430, 431, 432, 433, 434. Apoptosis also plays a relevant role in certain hemopathies, including beta 968 

thalassemia 435, Diamond-Blackfand anemia 436, and in the Cohen syndrome neutropenia 437. BIM, BID 969 

and BAD have all been shown to influence survival in mouse models of septic shock , as their targeting 970 

confer protective effects from tissue damage of multiple organs 438, 439, 440, as well as in patients with 971 

severe sepsis 441. On the contrary, the role of apoptotic caspase in septic shock is contentious 54, 73, 442, 443. 972 

The precise impact of apoptosis in widespread inflammation during sepsis requires further investigation. 973 

Concerning other inflammatory disease, while broad-spectrum caspase inhibition reportedly protected 974 

rats against severe acute pancreatitis 444, activation of intrinsic apoptosis appears to attenuate the severity 975 

of this disease by limiting inflammation, as shown in vivo in a pancreatitis mouse model lacking XIAP 976 



41 
 

445. These data reinforce the notion that inhibiting (apoptotic) cell death may exacerbate unwarranted 977 

inflammatory reactions that contribute to the pathology of various autoimmune and inflammatory 978 

disorders. In line with this notion, chronic colitis driven by dextran sulfate sodium in mice manifests with 979 

increased (rather than decreased) severity in BID- or BIM-deficient hosts as compared to their wild-type 980 

littermates, at least in part owing to immune dysregulation 446, 447. Similarly, inhibition of BCL2 and/or 981 

BCL-XL reduces inflammation and ameliorates experimental colitis 448, 449, an effect that was abrogated 982 

by concomitant deletion of the gene encoding BIM 449. PUMA-deficient mice displayed reduced levels 983 

of apoptosis amongst intestinal epithelial cells but not reduced inflammation in an experimental model 984 

of colitis 450. Corroborating the specific relevance of PUMA for intestinal homeostasis, mice deficient 985 

for PUMA but not Bax-/-Bak1-/- mice were protected against the gastrointestinal side effects of 986 

radiotherapy, at least in part due to increased survival of intestinal stem/progenitor cells 451, 452. Moreover, 987 

the absence of PUMA conferred protection to intestinal epithelial cells in mouse models of hypertensive 988 

gastropathy 453, ulcerative colitis (UC) 454 and intestinal ischemia/reperfusion 455. In the latter model, 989 

transgenic BCL2 expression limited intestinal epithelial cell death 456. On the other hand, deficiency in 990 

XIAP, an inhibitor of CASP3, CASP7, CASP9, causes X-linked lymphoproliferative syndrome 2 with 991 

one-third of these patients suffering from severe and therapy-refractory inflammatory bowel disease 457, 992 

458, 459, 460. Absence of XIAP also results in enhanced TNF production and TNF-R1/TNF-R2 targeting of 993 

TLR5-expressing Paneth cells and dendritic cells, leading to ileitis and dysbiosis 461. In this context, it is 994 

interesting to note that CASP3- or CASP7-deficient mice display an altered gut microbiome 462, which 995 

may play a hitherto unexplored role in multiple autoimmune and inflammatory disorders beyond 996 

intestinal conditions. However, recently it was found that under steady state conditions absence of 997 

CASP3 and CASP7 in the intestinal epithelial cells apparently does not affect the microbiome neither 998 

cause spontaneous inflammation, suggesting that apoptosis may be dispensable for intestinal epithelium 999 

turnover and homeostasis at steady state 463. 1000 
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Infectious diseases. Activation of RCD constitutes a protective mechanism against many microbial 1001 

infections by eliminating infected cells and potentiating the anti-infective immune response. Accordingly, 1002 

both viruses and bacteria have developed multiple strategies to overcome or disable host intrinsic 1003 

apoptosis thus improving survival of both the host cells and the infectious organisms 464, 465 Waguia Kontchou, 1004 

2022 35397654 Waguia Kontchou, 2022 35397654 Waguia Kontchou, 2022 35397654 Waguia Kontchou, 2022 35397654. Mice with loss of one 1005 

allele of the genes encoding BCL-XL displayed reduced pathology and had improved survival rates when 1006 

challenged with Japanese encephalitis virus (JEV), as compared with wild-type mice. This was attributed 1007 

to compromised viral propagation within JEV-infected cells succumbing to intrinsic apoptosis 466. There 1008 

is also evidence of a contribution of BAX and BAK1 to the response to murine cytomegalovirus (MCMV) 1009 

infection. In particular, the MCMV genome encodes inhibitors of BAK1 (m41.1 protein) and BAX 1010 

(m38.5 protein), promoting viral replication by inhibiting the induction of intrinsic apoptosis in infected 1011 

cells 467 Fleming, 2013, 23468630 Fleming, 2013, 23468630 Fleming, 2013, 23468630 Fleming, 2013, 23468630, 468 Manzur, 2009, 18949000 Manzur, 1012 

2009, 18949000 Manzur, 2009, 18949000 Manzur, 2009, 18949000. Supporting the requirement of the inhibition of intrinsic 1013 

apoptosis for optimal in vivo MCMV dissemination, the titers of m41.1-deficient viruses were higher in 1014 

salivary glands and other organs in Bak1−/− mice as compared to wild-type animals 467 Fleming, 2013, 23468630 1015 

Fleming, 2013, 23468630 Fleming, 2013, 23468630 Fleming, 2013, 23468630. Intrinsic apoptosis also protects against bacterial 1016 

infections, as demonstrated by the lethal course of disease in Bbc3−/− mice (which lack PUMA) after 1017 

Streptococcus pneumoniae infection 469. Such an effect has been attributed to insufficient immune-1018 

mediated bacterial clearance because of an increased neutrophil lifespan in the absence of PUMA-1019 

mediated apoptosis. 1020 

However, in certain other contexts, excessive activation of the intrinsic apoptosis pathway has been 1021 

reported to drive, rather than prevent, microbial disease pathogenesis and lethality. For example, loss of 1022 

Xiap increased the susceptibility of mice to Shigella infection, manifested with coalescing necrotic areas 1023 

and a high bacterial burden in the liver and this was associated with an inefficient immune-mediated 1024 
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resolution of the bacterial infection 470. Although at least part of this effect may be due to the requirement 1025 

for XIAP to activate NOD signaling, rather than its ability to inhibit caspases 458, 470, 471. Moreover, mice 1026 

lacking the genes encoding BIM and NOXA (i.e., Bcl2l11−/−Pmaip1−/− mice) displayed high resistance 1027 

to the challenge with high doses of Listeria monocytogenes, as shown by a decreased bacterial burden 1028 

and low apoptosis induction in the spleen 472. The overexpression of BCL2 in the hematopoietic 1029 

compartment increased the survival of mice infected with Ebola virus 473, while deletion of Bok increased 1030 

resistance of lung epithelial cells to apoptosis induced by SARS-CoV-2 virus membrane (M) protein 474. 1031 

Intriguingly, this study showed that the SARS-CoV-2 M protein, induced BOK to trigger apoptosis in 1032 

the absence of BAX and BAK1 474. In another example, conditional deletion of Casp3 in the murine 1033 

intestinal epithelium conferred protection from pathogenic Salmonella enterica, and this was attributed 1034 

to a reduction in cell death-induced nutrients that are critical for sustaining bacterial growth 475. Finally, 1035 

Casp3−/− mice subjected to intracranial inoculation of reovirus type 3 (strain Dearing) displayed limited 1036 

injuries in the central nervous system (CNS) and enhanced survival compared to wild-type mice 476. As 1037 

discussed above, the interpretation of the infection phenotypes using CASP3-, CASP7- and/or CASP9-1038 

deficient mice needs particular caution because of the crucial roles of these caspases in modulating 1039 

immune and inflammatory responses 242, 243, 244. Notably, there is evidence for a role of specific regulators 1040 

of apoptosis in the response to infection with human herpes simplex virus 1 (HSV-1). Thus, on the one 1041 

hand, a significant accumulation in total leukocyte and CD8+ T cells was observed in mice deficient for 1042 

BIM and PUMA upon infection with HSV-1 477, which is in line with a role of these BH3-only proteins 1043 

in controlling the survival of lymphoid and myeloid cells 409, 478, 479. On the other hand, mice deficient 1044 

for NOXA, BAD or BID were reported to mount a normal CD8+ T cell immune response to HSV-1 1045 

infection 477. Some of the contradictory results reported may arise from the divergent effects of inhibition 1046 

or promotion of apoptosis on immune cells versus other cell types affected by the infectious disease, a 1047 

distinction that cannot be addressed using mice in which apoptotic regulators have been deleted in the 1048 
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germline. In this context it is noteworthy that myeloid cell-specific deletion of the gene encoding BCL-1049 

XL or its inhibition using BH3 mimetic drugs massively reduced bacterial burden in the lung and 1050 

extended the survival of mice infected with Legionella bacteria 480. This indicates that BH3 mimetic 1051 

drugs might be effective for the treatment of intra-cellular bacterial infections. 1052 

Other diseases. Pro-apoptotic BCL2 proteins and caspases have also been implicated in disorders 1053 

affecting other tissues/organs, such as skeletal muscle and lungs. For instance, the conditional ablation 1054 

of Bax and Bak1 protected mouse skeletal muscles against pressure-induced injury 481. Similar results 1055 

have been obtained in rats receiving Z-VAD-FMK after being subjected to muscular compression or 1056 

blunt injury 482, 483. Moreover, deletion of Casp3 or CASP3 inhibition with Ac-DEVD-CHO limited 1057 

muscular damage and atrophy in experimental models of plaster-mediated immobilization 484, 485. In 1058 

mouse models of catabolic disorders, muscle wasting due to protein degradation was decreased by 1059 

lentiviral expression of XIAP 486, 487, although whether this effect reflects the inhibition of intrinsic 1060 

apoptosis needs further confirmation. Finally, Casp3-/- mice were protected against denervation-induced 1061 

muscular atrophy 488, while expression of a dominant-negative variant of CASP9 improved the 1062 

neuromuscular activity in a transgenic mouse model of slow-channel syndrome 489.  1063 

In a mouse model of oxidant-induced lung injury, the tissue-specific ablation of Bax and Bak1 but not 1064 

that of the genes encoding BID, BIM, NOXA or PUMA protected lung epithelial cells from degeneration 1065 

490. Among the anti-apoptotic BCL2 proteins, BCL2A1 (best known as A1) seems to exert a crucial role 1066 

in this setting, as Bcl2a1 deletion aggravated lung injury in mice subjected to hyperoxia 491, while lung-1067 

specific overexpression of BCL2 did not confer protection to mice exposed to excessive oxygen supply 1068 

492. That said, no critical cytoprotective effect of A1 was seen in acute lung inflammation and peritonitis 1069 

493. Intrinsic apoptosis has also been reported to be involved in pulmonary fibrosis 494. Bid-/- mice 1070 

displayed decreased levels of pulmonary fibrosis after intra-tracheal bleomycin administration 495. In 1071 
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apparent contradiction, in the same model of fibrotic pulmonary damage, similar protection was reported 1072 

in mice deleted for Bcl2 496 or in animals treated with inhibitors of BCL2 496 or caspases 497, 498. Along 1073 

similar lines, ablation of Bid limited acute lung injury in mice induced by exposure to lipopolysaccharide 1074 

499. Moreover, CASP3 depletion using short-hairpin RNAs (shRNAs) protected the lungs of mice 1075 

subjected to pulmonary ischemia/reperfusion 500, a protection further strengthened when necroptosis was 1076 

concomitantly also suppressed 501. BCL2 overexpression or caspase inhibition protected rodents 1077 

subjected to lung transplantation 502, 503. This is in line with the notion that delivery of the caspase 1078 

inhibitor Z-VAD-FMK to rodents ameliorated lung injury developing as a consequence of severe acute 1079 

pancreatitis or lipopolysaccharide administration 504, 505 but not as a result of pneumovirus infection 506. 1080 

In the latter case, lung damage was exacerbated by Z-VAD-FMK, perhaps due to increased inflammation 1081 

downstream of necroptotic RCD 506.  1082 

The studies briefly summarized above illustrate that components of the intrinsic apoptosis pathway can 1083 

be part of the pathogenic mechanism of disease, and, in certain cases, this may offer the opportunity for 1084 

therapeutic intervention. It is important to note though that in many pathogenic processes intrinsic 1085 

apoptotic cell death is the endpoint, and simply inhibiting it will not be curative. If the cells continue 1086 

being exposed to the initiating insult, they will likely undergo less regulated forms of cell death. 1087 

However, inhibiting the intrinsic apoptotic cell death may buy time to remediate the factors that are 1088 

damaging the cells in first place. Ischemia and hypoxia, in cases where the ensuing cell death has a 1089 

substantial intrinsic apoptotic component, are examples. If cells in the ischemic region were kept alive 1090 

until adequate circulation was restored, therapeutic benefits might be achieved. Other examples include 1091 

metabolic disorders, which may be amenable to correction, and traumatic injury, where healing might be 1092 

supported by inhibiting apoptosis. It would be worth concentrating on inhibiting intrinsic apoptotic cell 1093 

death in conditions where the initiating tissue insults can be (at least partially) reversed. In contrast, 1094 

failure to undergo intrinsic apoptosis is the initial pathogenic step or a contributing factor in certain 1095 



46 
 

malignancies. Here, the induction of apoptosis, for example by using BH3 mimetic drugs 33, 34, targets 1096 

the pathogenesis directly.  1097 

 1098 

Extrinsic apoptosis in disease 1099 

The molecular apparatus for extrinsic apoptosis is described in Box 5 and illustrated in Figure 4. Unlike 1100 

the intrinsic apoptotic pathway, DR-induced apoptosis is not required for embryonic or fetal development 1101 

but plays a critical role in adult tissue homeostasis, as detailed in Box 6 and Box 7. Of note, various 1102 

components of the extrinsic pathway of apoptosis are involved in the etiology of multiple human 1103 

disorders, although (1) with a considerable degree of context-dependency, and (2) with an effect not 1104 

necessarily linked to the activation of apoptosis but often due to the role of DR signaling in necroptosis 1105 

and inflammation, as outlined below.  1106 

Neurological diseases. Although numerous studies investigated FAS and TNF-R1 signaling in the 1107 

pathogenesis of multiple neurological diseases, the precise role of extrinsic apoptosis remains unclear 1108 

(Figure 5). Loss-of-function mutations of FAS ligand (Fasl) as well as Fas silencing prevented moto-1109 

neuron loss in mouse models of ALS driven by defect in superoxide dismutase 1, soluble (SOD1) 507, 508. 1110 

Moreover, the lack of TNF did not affect motor neuron loss and mouse survival in this model 509, while 1111 

binding of the TNF receptor superfamily member 1B (TNFRSF1B, best known as TNF-R2) appeared to 1112 

mediate neuroprotective effects 510. As an additional layer of complexity, TNF mediates neuroprotective 1113 

functions in wobbler mice - another mouse model of ALS that carries a point mutation in VPS54 GARP 1114 

complex subunit (Vps54), at least in part by promoting the upregulation of ADAM metallopeptidase 1115 

domain 8 (ADAM8) 511. CASP8 has not yet been implicated in the pathogenesis of ALS, and non-1116 

apoptotic forms of FAS-driven RCD may play a predominant role in this context. For example, FAS 1117 
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stimulation reportedly triggered the demise of motoneurons in mouse models of ALS by aggravating 1118 

endoplasmic reticulum stress 512. Similarly, cleavage of BID by CASP1 (and not CASP8) appears to 1119 

contribute to neurodegeneration in transgenic mice expressing a mutant form of human SOD1 513. 1120 

However, the precise contributions of endoplasmic reticulum stress and CASP1 in ALS and other 1121 

motoneuron disorders remain to be elucidated. 1122 

The ability of TNF-R1 signaling to influence neurodegenerative conditions involves not only the 1123 

induction of extrinsic apoptosis but also the activation of an inflammatory response. In distinct murine 1124 

models of AD, deletion of Tnf, modification of its untranslated region (UTR) as well as pharmacological 1125 

or genetic removal of TNF reduced plaque formation, resulting in attenuated neurological deficits 514, 515, 1126 

516, 517, 518, 519, 520, 521. Mechanistic studies in mice and monkeys revealed that TNF-R1 activation stimulates 1127 

the protein activator of interferon-induced protein kinase EIF2AK2 (PRKRA) network 522, which is 1128 

linked to PD in humans 523. Moreover, TNF-R1 signaling has been shown to favor microglial reactivity 1129 

during neurodegeneration, culminating in neuronal loss 524. Amelioration of disease was seen in mouse 1130 

models of AD upon genetic or pharmacological inhibition of TNF-R1 525, 526. AD-associated 1131 

neuroinflammation seems to depend on TNF-induced necroptosis rather than extrinsic apoptosis 527, 528. 1132 

Unexpectedly, AD pathogenesis was shown to be enhanced in mice bearing a co-deletion of the TNF 1133 

receptor superfamily member genes Tnfrsf1a and Tnfrsf1b 529, a phenotype that appears to impinge on a 1134 

complex network of mutual interactions between TNF-R1 and TNF-R2 signaling 530. Such a network 1135 

may also contribute to PD pathogenesis. Genetic ablation of Tnf or Tnfrsf1a plus Tnfrsf1b (leading to the 1136 

lack of both TNF receptors), as well as pharmacological inhibition of TNF, were reported to protect 1137 

dopaminergic neurons in murine models of PD following the administration of 1-metil 4-phenyl 1,2,3,6-1138 

tetraidro-piridina (MPTP) or 6-hydroxydopamine 531, 532, 533, 534. Notably, in the above-mentioned 1139 

experimental settings, TNF is thought to induce neuronal death in vivo by promoting microglia reactivity 1140 



48 
 

535 with a complex interaction between TNF-R1 and TNF-R2 signaling 536. Importantly, clinical evidence 1141 

from AD patients subjected to perispinal administration of the TNF blockers infliximab or etanercept 1142 

suggests that the inhibition of TNF can ameliorate AD 537, 538. In contrast, a dominant-negative variant of 1143 

TNF failed to protect mice against neuronal degeneration in a model of HD 539, suggesting that this 1144 

approach may not be viable in patients with HD. 1145 

TRAIL/TRAIL-R signaling has also been implicated in the onset and progression of AD 540, 541. 1146 

Specifically, in a mouse model of AD, neutralization of TNF superfamily member 10 (TNFSF10, best 1147 

known as TRAIL) with a monoclonal antibody resulted in decreased neuroinflammation and a reduction 1148 

in cognitive defects 540. However, these findings were not extensively validated. Similarly, the impact of 1149 

FASL-FAS signaling on neurodegenerative conditions is debated. Indeed, lymphoproliferative (lpr/lpr) 1150 

mice, which lack FAS 542 and to a lesser extent generalized lymphoproliferative disease (gld/gld) mice, 1151 

which lack FASL 542, are particularly susceptible to neuronal degeneration driven by MPTP 543. However, 1152 

contrasting results have been obtained in another study of MPTP-treated mice with FAS deficiency 544, 1153 

545. In this context, FAS-associated factor 1 (Faf1, a FAS binding protein that can initiate or enhance 1154 

apoptosis) was found increased in midbrain in murine models of PD 546. Moreover, a reduction in Faf1 1155 

expression reduced MPTP-induced dopaminergic cell loss 547. Such an apparent discrepancy in results 1156 

may originate from the pleiotropic role of FAS in apoptosis and inflammation and other pro-1157 

survival/regenerative signals.  1158 

CASP8 activation has been detected in the brain of both AD 548 and HD 549 patients as well as in 1159 

dopaminergic neurons of MPTP-treated mice and PD patients, a setting in which BID cleavage has also 1160 

been documented 119. This is in line with the ability of the broad-spectrum caspase inhibitor Q-VD-OPH 1161 

to inhibit BID cleavage and mediate neuroprotection in MPTP-treated mice and rats 550. Of note, CASP8 1162 

was also reported to promote microglia reactivity potentially leading to neuronal loss 551, 552, 553. In this 1163 
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context, genetic loss or pharmacological inhibition of CASP8 attenuated neurotoxicity by reducing 1164 

microglial reactivity, thus extending survival of neurons, at least in part by stimulating the necroptotic 1165 

death of activated microglial cells 551, 552, 553. Consistent with this notion, Casp8 deletion in myeloid cells 1166 

protected mice from MPTP-mediated neurotoxicity 554, suggesting that CASP8 inhibitors may be 1167 

harnessed for the treatment of neurodegenerative conditions. Corroborating this idea, a pharmacological 1168 

inhibitor of TNF-R1-associated death domain protein (TRADD) protected mice from disease in a model 1169 

of AD-like proteinopathy driven by mutant tau 555. However, pharmacological inhibition of CASP8 only 1170 

partially prevented neuronal alterations in other models of AD 108 and even exacerbated dopaminergic 1171 

neuronal necrosis in mice developing PD upon MPTP administration 556. Moreover, rare CASP8 loss-of-1172 

function variants have been associated with AD in a large cohort of patients 557. Thus, the precise 1173 

contribution of CASP8 signaling to neurodegenerative disorders and whether this relates to its function 1174 

in driving extrinsic apoptosis, inhibiting necroptosis or promoting inflammatory cytokine production 1175 

remains to be formally defined. Concerning dependence receptors, Netrin 1 (NTN1) upregulation was 1176 

shown to confer neuroprotection in murine models of PD, suggesting a potential role of dependence 1177 

receptors in neurodegenerative disease 558. 1178 

DR signaling has also been shown to contribute to neuronal death and inflammation in preclinical models 1179 

of CNS trauma. In a compression model of spinal cord injury, mice with loss of FAS (i.e., lpr/lpr mice) 1180 

as well as mice treated with FASL blockers displayed reduced post-traumatic neuronal degeneration and 1181 

inflammation coupled to considerable functional improvement 559, 560, 561. This beneficial effect also 1182 

involved reduced engagement of the intrinsic apoptosis pathway 562. Myeloid cell-specific deletion of 1183 

Fasl promoted neuronal regeneration and functional recovery in mice subjected to spinal cord injury 563. 1184 

A similar functional improvement after spinal injury was observed in mice with conditional deletion of 1185 

Tnf in macrophages and neutrophils but not in microglia 564. Moreover, neuroprotection and limited 1186 

neuroinflammation have been documented in FAS-deficient lpr/ lpr mice subjected to traumatic brain 1187 
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injury 565 as well as in mice subjected to experimental spondylotic myelopathy and exposed to FASL-1188 

neutralizing antibodies 566. Studies on mice with loss of Fas and Tnfrsf1a revealed at least some 1189 

redundancy between FAS and TNF-R1 signaling in the context of experimental brain trauma 567, 568, 569, 1190 

570, 571. Furthermore, TNF inhibition reduced damage in mice or rats experiencing spinal cord injury 572, 1191 

573, 574, and also reduced the appearance of signs of autonomic dysreflexia, a cardiovascular disease 1192 

associated with high-level spinal cord injury 572, 575. Interestingly, some of these studies point to a 1193 

neuroprotective function for TNF-R2 567, 569, 571, which is in line with at least some results from models 1194 

of ALS 510, 530. Moreover, several studies question a purely detrimental effect of TNF signaling in these 1195 

experimental settings 576, 577, 578, 579. In particular, TNF was reported to support, at least in part, 1196 

regeneration and long-term functional recovery in mice exposed to traumatic brain injury 577, 578, 579. 1197 

Conversely, TRAIL neutralization stands out as a promising strategy to promote neuronal regeneration 1198 

and functional recovery based on mice with spinal cord injuries 580, 581. In this context, injured neurons 1199 

seem to undergo Fas-associated via death domain (FADD)- and CASP8-dependent RCD 582. 1200 

Accordingly, Casp8 deletion or transgenic expression of a FADD inhibitor (the glycoprotein P45) 1201 

protected mice after spinal cord injury 583, 584. Similarly, transgenic expression of a dominant negative 1202 

mutant of FADD (FADD-DN) limited motoneuron loss in mice undergoing axotomy 585. 1203 

Components of the molecular apparatus for the extrinsic pathway are associated with disorders of the 1204 

visual system, again in the context of both exacerbated cell death and inflammation. Thus, in mouse and 1205 

rat models of optic nerve injury, deletion of Tnfrsf1a (encoding TNF-R1) or inhibition of CASP8 with 1206 

Z-IETD-FMK inhibited the degeneration of retinal ganglion cells 586, 587. Moreover, the absence of TNF-1207 

R1 (but not the absence of TNF-R2) attenuated neurodegeneration in a mouse model of retinal ischemia, 1208 

despite neuronal survival not being improved 588. Along similar lines, deletion of Tnf 589 as well as 1209 

inhibition of FAS 590 or TNF 591, 592 protected mice against retinal ganglion cell death in a model of 1210 

glaucoma. Similar neuroprotective effects were documented for the conditional deletion of Casp8 in 1211 
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astrocytes or intra-ocular Z-IETD-FMK administration 593. In this context, the conditional inducible 1212 

ablation of Casp8 from endothelial cells reduced postnatal retinal angiogenesis and pathological 1213 

neovascularization in a mouse model of oxygen-induced retinopathy 594 (note that ablation of Casp8 in 1214 

endothelial cells is embryonically lethal 595; see Box 7). Moreover, CASP8 inhibition could prevent 1215 

experimental neovascularization of the cornea 596. Finally, TRAIL neutralization protected the retinal 1216 

tissue from damage associated with AD in a mouse model 597.  1217 

Experimental models of ischemic stroke and hemorrhage revealed a role of DR signaling in the 1218 

pathophysiology of brain damage. In models of focal ischemia induced by middle cerebral artery 1219 

occlusion, lpr/lpr as well as gld/gld mice (deficient for FAS or FAS ligand, respectively) displayed 1220 

decreased infarct size and neuroinflammation 598, 599, 600. Robust neuroprotection was also observed in 1221 

lpr/lpr mice subjected to neonatal hypoxia-ischemia 601, as well as in lpr/lpr and gld/gld mice subjected 1222 

to hyperoxia 602. Accordingly, inhibition of FAS or FASL exerted neuroprotective effects in an 1223 

experimental murine model of stroke 603, 604. Likewise, TRAIL neutralization limited brain injury in rats 1224 

and mice subjected to middle cerebral artery occlusion 600, 605 or transient ischemia-reperfusion 606. 1225 

Moreover, despite some contention in this respect 607, 608, 609, 610, abrogation of TNF/TNF-R1 signaling 1226 

by genetic or pharmacological means prevented brain injury in rodent models of intracerebral 1227 

hemorrhage 611 and focal cerebral ischemia 612, 613, 614, 615, 616, 617, 618, 619, 620. Further corroborating a 1228 

pathogenic role of DR signaling, transgene-driven expression of dominant-negative CASP8 mutant and 1229 

of FADD-like apoptosis regulator (CFLAR; best known as c-FLIP) attenuated brain damage after middle 1230 

cerebral artery occlusion 621, 622. This is in line with the ability of CASP8 to drive BID activation upon 1231 

focal cerebral ischemia 196, as well as with the neuroprotective effects afforded by pharmacological 1232 

CASP8 inhibitors seen in mice experiencing subarachnoid hemorrhage 623 or mice and rats subjected to 1233 

focal cerebral ischemia 624, 625. Importantly, FADD and CASP8 expression and/or activation have also 1234 

been associated with ischemic stroke in humans 626, 627.  1235 
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Perhaps surprisingly, TNF appears to protect mice against experimental seizures, not only through the 1236 

engagement of TNF-R2 but also through TNF-R1 signaling 610, 628, 629, 630, 631, 632, 633 and consequent 1237 

modulation of NF-κB 634, 635. Conversely, lpr/lpr mice 636, mice with neuron-specific deletion of the gene 1238 

encoding TNF-R1 637 as well as mice and rats treated with Z-IETD-FMK 584, 638, 639 displayed a reduced 1239 

sensitivity to experimental seizures, pointing to a detrimental role for apoptotic DR signaling in this 1240 

condition. Precise mechanisms through which TNF-R1 signaling promotes anti-apoptotic and anti-1241 

inflammatory effects in the context of excitotoxic insults remain unclear.  1242 

Cardiovascular disorders. Data from preclinical models of ischemic and non-ischemic conditions 1243 

indicate the involvement of FASL, TRAIL and TNF in the onset and progression of myocardial infarction 1244 

with reperfusion and other heart diseases. In particular, both lpr/lpr mice (lacking FAS), as well as hearts 1245 

isolated from these animals, displayed reduced cardiomyocyte death and infarct area upon experimental 1246 

ischemia-reperfusion 640, 641. Nonetheless, no protection against ischemia-reperfusion was found in hearts 1247 

from Fas-/- or Fasl-/- mice 642. However, supporting the therapeutic potential of the inhibition of DR 1248 

signaling for the management of myocardial infarction, FASL-neutralizing antibodies conferred 1249 

cardioprotection, limited inflammation, and improved cardiac function in mice experiencing cardiac 1250 

ischemia-reperfusion 643, 644, 645. Likewise, TRAIL blockade protected monkeys, pigs, and rats against 1251 

experimental infarction by increasing cardiomyocyte survival and reducing inflammation 646. This is in 1252 

line with the predictive value of the levels of TRAIL as a biomarker for heart failure in patients 647, 648. 1253 

Of note, TRAIL has also been reported to exert apoptosis-independent roles in cardiomyocyte growth 1254 

and heart hypertrophy 649 as well as in angiogenesis and neovascularization upon experimental hindlimb 1255 

ischemia 650. Similar to neurological conditions, while TNF-R2 signaling appears to exert 1256 

cardioprotective effects, the engagement of TNF-R1 drives cardiac hypertrophy, inflammation and 1257 

cardiomyocyte loss 651, 652, 653, 654, 655, 656, 657, 658. The opposite outcome of TNF-R1 vs TNF-R2 signaling 1258 

has been invoked to explain the clinical failure of TNF blocking agents in patients with chronic heart 1259 
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failure 659, despite encouraging preliminary findings 660, 661, as well as cardiotoxic effects associated with 1260 

the use of TNF blockers in patients with rheumatoid arthritis 662. Confirming the involvement of extrinsic 1261 

apoptosis in cardiac diseases, cardiomyocyte-specific deletion of Fadd in mice improved cardiomyocyte 1262 

survival and heart function after ischemia/reperfusion 663. Accordingly, haploinsufficiency of the gene 1263 

encoding c-FLIP increased infarct area and aggravated cardiac dysfunction in mice subjected to 1264 

myocardial infarction, while the cardiomyocyte-specific overexpression of c-FLIP attenuated pathology 1265 

664, 665. Cardioprotection has been observed in a mouse model of ischemia/reperfusion upon shRNA-1266 

mediated CASP8 depletion 666 or treatment with the CASP8 inhibitor Q-LETD-OPh 667. Moreover, 1267 

transplantation of CASP8-/- cells did not increase neovascularization in wild-type mice subjected to 1268 

hindlimb ischemia 668, in line with a crucial role of CASP8 in the maintenance of endothelia in healthy 1269 

conditions 595 (see Box 7). That said, combined pharmacological inhibition of apoptosis and necroptosis 1270 

exerted greater cardioprotection than monotherapy in myocardial ischemia-reperfusion injury 669, 1271 

suggesting the involvement of multiple RCD pathways in cardiovascular disorders.  1272 

FASL neutralization has been reported to improve cardiomyocyte survival and cardiac function in a 1273 

model of cirrhotic cardiomyopathy 670. Conversely, a cardioprotective effect of TRAIL and TNF was 1274 

observed in mice developing cardiomyopathy upon the deletion of apolipoprotein E (ApoE) 671 or desmin 1275 

(Des) 672, respectively. Both FASL deficiency and administration of CASP8 inhibitors decrease tissue 1276 

inflammation and aneurysm formation in mice subjected to CaCl2-induced abdominal aortic aneurysms 1277 

673. A potential role of extrinsic apoptosis in gradual cardiomyocyte attrition during heart failure with 1278 

reduced fraction was also reported in a transgenic mouse model of inducible CASP8 overexpression 674. 1279 

Concerning TNF receptors, deletion of Tnfrsf1b resulted in increased cardiomyocyte death and 1280 

hypertrophy induced by isoproterenol 675. In contrast, deletion of Tnfrsf1a (but not Tnfrsf1b) was shown 1281 

to be cardioprotective in murine models of vascular thrombosis 676, and heart failure based on angiotensin 1282 

II administration 677. Similar cardioprotection to angiotensin II was reported after silencing of Tnfrsf1a 1283 
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678. In line with these findings, Cflar+/- mice (which lack c-FLIP) displayed increased sensitivity to 1284 

cardiac injury upon angiotensin II administration 679. 1285 

FASL and TNF have also been reported to promote cardiac maladaptation and hypertrophy in models of 1286 

pressure overload 680, 681, 682, 683, 684. Consistent with this notion, TNF inhibition 685 or transgenic c-FLIP 1287 

overexpression 686 limited experimental heart hypertrophy driven by hypertension. Moreover, treatment 1288 

with etanercept reduced cardiac fibrosis in a diet-induced mouse model of obesity 687. Conversely, both 1289 

FAS and TNF receptor superfamily member 10b (TNFRSF10B, best known as TRAIL-R2 or mTRAIL-1290 

R) were reported to protect mice against atherosclerosis, at least in part, by modulating TNF superfamily 1291 

member 11 (TNFSF11, best known as RANKL) signaling 688, 689, 690, 691, 692, while the impact of TNF on 1292 

experimental atherosclerosis remains a matter of debate 693, 694, 695, 696. Finally, pharmacological inhibition 1293 

of TNF prevented cardiotoxicity induced by doxorubicin in mice 697, 698, 699 1294 

Renal conditions. FASL, TNF and TRAIL have all been implicated in the development of acute kidney 1295 

injury by driving the activation of both extrinsic apoptosis and inflammation. Loss-of-function mutations 1296 

in Fasl, inhibition or depletion of FASL 700, 701, 702 as well as Fas 703 or Tnf 704 silencing, TNF 1297 

neutralization 705, 706, or TRAIL blockade 707 exerted nephron-protective effects in mouse models of renal 1298 

ischemia/reperfusion. Generation of chimeric mice reconstituted with spleen cells from gld/gld mice 1299 

(lacking FAS ligand) revealed a particular impact of FASL signaling in the hematopoietic compartment 1300 

on ischemic acute kidney injury 701. However, some functional overlap between DRs has also been 1301 

reported. Indeed, while one study suggested that FASL neutralization was more effective than Tnfrsf1a 1302 

deletion (leading to lack of TNF-R1) in preventing renal inflammation and cell death after acute kidney 1303 

injury 700, another study reported that the neutralization of TNF but not FASL prevented tubular apoptosis 1304 

and renal atrophy upon ischemia/reperfusion injury 705.  1305 
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TRAIL blockade reportedly protected mice against renal damage after full-thickness scald burn, burn of 1306 

all layers of the skin including epidermis and dermis 708, while TNF inhibition limited nephrotoxicity, in 1307 

mice treated with cisplatin 709, and acute tubulointerstitial nephritis, in cancer patients administered with 1308 

immune checkpoint inhibitors 710. TNF neutralization also reduced tubulointerstitial fibrosis and renal 1309 

injury in a mouse model of unilateral urethral obstruction 711, 712. Contesting these findings, Tnf-/- mice 1310 

showed increased fibrosis at later stages of ureteral obstruction 713. This apparent discrepancy may reflect 1311 

the distinct contribution of TNF-R1 and TNF-R2 signaling to different stages of renal fibrosis driven by 1312 

urethral obstruction 714. Conversely, experiments with lpr/lpr mice subjected to unilateral urethral 1313 

ligation demonstrated a limited impact of FAS signaling to pathology 715. The involvement of CASP8 in 1314 

acute kidney injury is debated. While Casp8 and Casp3 protected kidneys against damage induced by 1315 

renal ischemia, increasing the survival of these mice 703, 716, such a nephroprotective effect was not 1316 

observed after treatment with the broad-spectrum caspase inhibitor Z-VAD-FMK 717, potentially due to 1317 

caspase inhibition promoting necroptosis after DR stimulation. In line with this notion, chemical 1318 

inhibitors of receptor-interacting serine/threonine kinase 1 (RIPK1) as well as deletion of Ripk3 exerted 1319 

robust nephroprotection in mouse models of ischemia/reperfusion 717, 718. However, combined deletion 1320 

of Casp8 and Ripk3 did not extend the beneficial effects of the genetic loss of Ripk3 and was associated 1321 

with a more pronounced demise of tubular epithelial cells by intrinsic apoptosis 719.  1322 

DR activation has also been associated with chronic kidney disorders, but evidence involving CASP8-1323 

mediated apoptotic death is lacking. The conditional deletion of Tnf from macrophages 720, as well as the 1324 

administration of TNF inhibitors 720, 721, 722, 723, were reported to mediate beneficial effects in murine 1325 

models of diabetic nephropathy. Conversely, the impact of TRAIL on this renal condition remains 1326 

unclear 724, 725, 726, like that of TNF on polycystic kidney disease 727, 728. As for glomerular inflammation, 1327 

gld/gld mice (lacking FAS ligand), as well as wild-type mice treated with TNF blockers, displayed 1328 
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reduced tissue damage during crescentic glomerulonephritis 729, 730, 731, 732. Indeed, balanced TNF-R1 and 1329 

TNF-R2 signaling appeared to be critical for mice to resist experimentally induced glomerulonephritis 1330 

733, 734, 735, 736, 737, 738. This may explain apparently discrepant findings obtained with TNF-targeting 1331 

measures.  1332 

Hepatic disorders. TNF-deficient mice, as well as rodents treated with TNF inhibitors, presented with 1333 

attenuated liver injury and apoptosis upon experimental ischemia/reperfusion, resulting in improved 1334 

survival 739, 740, 741. Of note, this beneficial effect could not always be recapitulated in lpr/lpr and gld/gld 1335 

mice, lacking FAS or FAS ligand, respectively 741. Similarly, FAS inhibition, FASL neutralization, as 1336 

well as administration of low-dose TNF (as a pre-conditioning maneuver) have been shown to protect 1337 

the liver against ischemia/reperfusion injury by reducing hepatic cell apoptosis and/or inflammation 742, 1338 

743, 744. Protection of the liver from ischemia/reperfusion has also been observed in mice deficient for 1339 

TRAIL 745, as well as upon the conditional knockdown of CASP8 or CASP3, the combined deletion of 1340 

Casp8 and Ripk3, and the transgenic expression of a BID mutant that cannot be cleaved by CASP8 283, 1341 

746, 747. 1342 

Lpr/lpr mice lacking FAS 748, Tnfsf10-/- mice (which lack TRAIL) 286, as well as animals exposed to 1343 

TRAIL blockers 749, were protected against acetaminophen-induced liver damage, in line with the notion 1344 

that FAS signaling and TRAIL receptor exacerbate acetaminophen hepatotoxicity 750. Along similar 1345 

lines, the hepatocyte-specific deletion of the gene encoding c-FLIP enhances liver injury and fibrosis 1346 

induced by treatment with CCl4 or thioacetamide 751. Moreover, a large body of evidence demonstrates 1347 

that the abrogation of extrinsic apoptosis protects mice against fulminant hepatitis and hemorrhage in the 1348 

liver induced by FASL and TNF. This has been achieved with strategies including (but not limited to) 1349 

FADD blockade 752, 753, Casp8 595, 754, 755 or Fadd 756 ablation, and Casp8 silencing 757. Accordingly, 1350 

hepatocyte-specific deletion of Cflar augmented liver damage in mouse model of acute hepatic injury 1351 
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758. Consistent with the notion that engagement of the intrinsic apoptotic pathway is critical for DR 1352 

induced cell killing in the liver, Bid-/- mice resist fatal hepatitis and hepatocytes apoptosis induced by 1353 

FAS or TNF 278, 282, 759, 760, a protection enhanced by concomitant loss of BIM or CASP8 282. Conditional 1354 

deletion of the genes encoding BAX, BAK1 or PUMA, as well as overexpression of BCL2, can also 1355 

protect hepatocytes from FAS-induced killing 761, 762, 763, 764. The impact of loss of BAD on TNF-induced 1356 

hepatitis is controversial 765, 766. Mice deficient for CASP3 or treated with CASP3 or CASP8 inhibitors 1357 

have also been shown to be less sensitive to FAS-induced hepatocyte apoptosis 767, 768. Of note, some 1358 

degree of functional compensation between caspases and alternative mechanisms of caspase activation 1359 

have emerged from studies in hepatocytes responding to FAS agonists 769. Finally, FAS and TNF-R1 1360 

signaling, as well as FADD activation, are involved in liver regeneration following partial hepatectomy 1361 

770, 771, 772, 773, 774. In this context, liver-specific deletion of Casp8 resulted in dysregulated hepatocyte 1362 

proliferation upon partial hepatectomy coupled to the initiation of an inflammatory response 775. It has 1363 

been suggested that CASP8 modulates liver regeneration by balancing NF-κB activation and necroptosis 1364 

rather than by inducing apoptosis 776. 1365 

Gld/gld mice (lacking FAS ligand) chronically fed with ethanol displayed reduced liver injury, steatosis 1366 

and inflammation as compared to wild-type mice, but exhibited signs of incipient fibrosis 777. Some 1367 

degree of protection against alcohol-induced liver damage has also been documented in mice deficient 1368 

for the apoptosis-inducing TRAIL receptor mTRAIL-R 778 or TNF-R1 (but not TNF-R2) 779, as well as 1369 

in mice receiving a TRAIL-neutralizing antibody 780. Accordingly, the hepatocyte-specific ablation of 1370 

Casp8 limited hepatic steatosis in murine models of ethanol administration, although it failed to prevent 1371 

apoptotic RCD 781. Conversely, apoptosis driven in hepatocytes by chronic ethanol exposure could be 1372 

abolished by systemic inhibition of CASP3 with Ac-DEVD-FMK 782. 1373 
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The liver-restricted overexpression of FAS induces hepatic steatosis and insulin resistance in mice 1374 

subjected to a high-fat diet (HFD) 783. In the same experimental setting, hepato-protection was observed 1375 

with the hepatocyte-specific ablation of Fas or germline deletion of Bid 783. Moreover, Tnf deletion 784, 1376 

785, whole-body deletion of Tnfrsf1a (encoding TNF-R1) alone or in combination with the gene encoding 1377 

TNF-R2 786, 787 as well as inhibition of TNF 788, 789, 790 or TNF-R1 791 significantly reduced hepatic 1378 

steatosis, fibrosis, damage, and metabolic alterations in several diet-induced or genetic models of non-1379 

alcoholic fatty liver disease (NAFLD). In apparent contrast with these findings, the hepatocyte-specific 1380 

deletion of Tnfrsf1a failed to protect mice from diet-driven NASH 792. Moreover, Tnfrsf1a deletion 1381 

accelerated progression of steatosis to steatohepatitis in mice on HFD 793. Taken together, these findings 1382 

underscore the pleiotropic and context-dependent effects of TNF/TNF-R signaling in NAFLD. The 1383 

impact of TRAIL on NAFLD is also debated. Indeed, contrasting evidence from experiments with mice 1384 

deficient for TRAIL or treated with recombinant TRAIL suggests either a detrimental or a beneficial role 1385 

to TRAIL in NAFLD induced by HFD 794, 795, 796.  1386 

The absence of mTRAIL-R promoted hepatic inflammation and fibrosis in a genetic mouse model of 1387 

cholestasis 797. Similarly, lpr/lpr mice lacking FAS 798, 799, 800 as well as TNF-deficient 801, 802 and TRAIL-1388 

deficient 803, 804 mice displayed reduced hepatocyte apoptosis and fibrogenesis after experimental 1389 

cholestasis induced by bile duct ligation. In line with these results, expression of a phosphorylated FADD 1390 

mimicking mutant resulted in attenuated HFD-induced hepatomegaly and steatosis 805. Experiments 1391 

based on the hepatocyte-specific deletion of Cflar (encoding c-FLIP) or transgenic overexpression of c-1392 

FLIP revealed a role for this modulator of CASP8 activation as a suppressor of hepatic steatosis and 1393 

inflammation induced by HFD 806. Moreover, the hepatocyte-specific deletion of Cflar in mice resulted 1394 

in enhanced cholestatic liver injury and inflammatory responses upon bile duct ligation 807. Moreover, 1395 

the hepatocyte-specific deletion of Casp8 protected mice against liver injury in models of cholestatic 1396 

hepatitis caused by the administration of 3,5-diethoxycarbonyl-1,4-dihydrocollidine 808, as well as in 1397 
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models of steatosis caused by the feeding of a methionine- and choline-deficient diet 809. A similar 1398 

hepato-protection against obstructive cholestasis has been documented in mice with hepatocyte-specific 1399 

Casp8 deletion 810. Furthermore, liver parenchymal cell-specific ablation of the gene encoding FADD 1400 

prevented RIPK1-dependent but not TNF-R1-, FAS-, and TRAIL-R-independent hepatocyte apoptosis, 1401 

chronic liver inflammation and hepato-carcinogenesis in mice with liver-specific deficiency in Inhibitor 1402 

Of Nuclear Factor Kappa B Kinase Regulatory Subunit Gamma (IKBKG, best known as NEMO or 1403 

IKKgamma) 811, 812. Finally, decreased BID cleavage has been associated with attenuated liver injury in 1404 

mouse models of chronic cholestasis 813. 1405 

Hematologic malignancies and solid cancers.  1406 

Human patients with autoimmune lymphoproliferative syndrome (ALPS) caused by defects in FAS are 1407 

known to show abnormally increased predisposition to lymphoma development 814. Accordingly, FAS-1408 

deficient lpr/lpr mice develop plasmacytoma-like disease in advanced age 815. TRAIL also seems to exert 1409 

a tumor suppressive function in lymphomagenesis. The ablation of the gene encoding mTRAIL-R 1410 

accelerated the development of lymphoma in E-Myc transgenic mice 816. Moreover, deficiency in 1411 

TRAIL (but not in mTRAIL-R) promoted the development of lymphoma and other tumors in mice with 1412 

haploinsufficiency for Trp53 817, 818. Interestingly, mice engineered to express exclusively either 1413 

membrane-bound or secreted FasL showed an increased incidence of spontaneous tumor formation when 1414 

expressing only soluble FasL which was unable to induce FAS-mediated apoptosis but could exert 1415 

inflammatory effects 819.  1416 

The role of FAS and TRAIL-R in the development of colorectal cancer is controversial. For instance, the 1417 

loss of FAS was reported to enhance APC mutation induced but not inflammation induced intestinal 1418 

tumorigenesis 820, 821, 822. Along similar lines, while the ablation of Tnfrsf10b (leading to lack of mTRAIL-1419 

R) in mice did not impact tumorigenesis induced by Apc mutations 818, the administration of TRAIL 1420 
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suppressed tumorigenesis in a mouse model of colitis-associated colon cancer 823. Despite some 1421 

contention in this respect 824, 825, 826, 827, TNF seems to contribute to the development of colorectal cancer, 1422 

although whether such effects depend on the apoptotic function of TNF needs further demonstration. The 1423 

administration of TNF blockers 828, 829, 830, 831, 832 or ablation of Tnf 833 or Tnfrsf1a 833, 834 limited tumor 1424 

development, as shown in animal models of colorectal cancer induced by colitis, chemicals, or a mutation 1425 

in Apc. Finally, loss of the dependence receptor DCC netrin 1 receptor (Dcc) accelerated cancer 1426 

progression in a mouse model of Apc mutation driven colorectal oncogenesis 835. A tumor suppressor 1427 

role in colorectal cancer is also described for the dependence neurotrophic tyrosine kinase, receptor, type 1428 

3 (Ntrk3, best known as TrkC) 836. Of note, the association between gain of dependence receptors ligands 1429 

(e.g., NTN1) with tumor progression 837, may make their targeting a promising anti-cancer approach 838 1430 

(https://clinicaltrials.gov).  1431 

With regard to other tumor types, both TNF-R1 and FAS displayed a pro-oncogenic role in hepatic and 1432 

ovarian oncogenesis. Thus, conditional deletion of Fas in hepatocytes delayed chemically-induced 1433 

hepato-carcinogenesis, while Fas ablation suppressed the development of ovarian tumors in phosphatase 1434 

and tensin homolog (PTEN)-deficient/Kirsten rat sarcoma viral oncogene (KRAS) mutated mice 839. 1435 

Likewise, TNF neutralization limited the onset of hepatic cancer driven by experimentally induced 1436 

cholestatic hepatitis 840. Consistent with these findings, Casp8-/- mice are protected against the 1437 

development of inflammation-driven liver cancer 754. Hyperactivation of CASP8 in the context of RIPK1 1438 

and TNF receptor-associated factor 2 (TRAF2) deficiency has been implicated in the development of 1439 

hepatocellular carcinoma 841 although such effects may be independent of apoptosis induction 842, 843. In 1440 

contrast, recent studies show a tumor-suppressive function of CASP8 in the liver and certain other tissues 1441 

844, 845, 846, 847. In particular, there is evidence of a role of CAPS8 in early tumorigenesis (but not tumor 1442 

progression) exerted by modulating the DNA damage response 844 or the level of chromosomal instability 1443 

(CIN) 845. 1444 
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Consistent with a pro-tumorigenic effect of TNF, the ablation of Tnf or Tnfrsf1a or the blockade of TNF 1445 

in mice conferred some protection against chemically-induced skin cancer development 848, 849, 850, 851, 852, 1446 

853. In contrast, the impact of genetic and pharmacological inhibition of TNF in UVB-induced skin cancer 1447 

is debated 854, 855. Of note, the comparison between TNF-R1- vs. TNF-R2-deficient mice revealed a 1448 

primary role of TNF-R1 in chemically induced skin oncogenesis 850. Furthermore, TNF-R1 deficiency 1449 

suppressed the development of skin cancer induced by NF-B inhibition 856. A similar role for TNF-R1 1450 

in supporting tumorigenesis was described in murine models of N-methyl-N-nitrosourea/testosterone-1451 

induced prostate cancer 857 and methylcholanthrene (MCA)-induced fibrosarcoma 858. As opposed to 1452 

TNF-R1, TNF-R2 shows tumor-suppressive functions in mouse models of tumorigenesis, such as the 1453 

development of fibrosarcoma triggered by MCA 858 and of breast cancer induced by transgenic 1454 

expression of wingless-type MMTV integration site family, member 1 (Wnt1) 859. Moreover, the absence 1455 

of TNF impaired tumor growth in HER2-driven mammary tumorigenesis in mice 860 and TNF 1456 

neutralization suppressed chemically-induced oral 861 and urethane-induced pulmonary 862 1457 

tumorigenesis. Conversely, TNF overexpression in the airway epithelium enhanced mutant KRAS-1458 

driven lung cancer development 863. 1459 

Pre-clinical evidence indicates some tumor type-specificity for the role of TRAIL and its receptor(s) in 1460 

tumorigenesis. Transgenic expression of TRAIL in the skin delayed chemically induced carcinogenesis 1461 

864. This effect was recapitulated in mice lacking TRADD 865 but, curiously, not in mTRAIL-R-deficient 1462 

mice 866, with the latter actually showing enhanced lymph node metastasis. In support of an anti-tumor 1463 

function for the TRAIL/TRAIL-R system, TRAIL-deficient mice as well as mice treated with TRAIL 1464 

blockers displayed increased susceptibility to MCA-induced fibrosarcoma 867, 868. In a recent study the 1465 

combined treatment with recombinant TRAIL and inhibition of cyclin-dependent kinase 9 (CDK9) was 1466 

effective in a wide range of cancers 869. Yet in contrast to this and in support of a tumor-supportive role 1467 
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of endogenous TRAIL, deficiency in mTRAIL-R limited tumor growth and improved survival in a mouse 1468 

model of mutant KRAS-driven lung and pancreatic tumorigenesis 870. Moreover, malignant cell-specific 1469 

ablation of genes encoding mTRAIL-R or FADD reduced lung cancer growth and tumor-protective 1470 

inflammation 871, while systemic ablation of Tnfsf10 (leading to lack of TRAIL) had no impact on HER-1471 

2 driven breast oncogenesis 817. Interestingly, KRAS mutations have been shown to promote the switch 1472 

of FAS and TRAIL receptors from a predominantly death-inducing into a metastasis promoting function 1473 

872. Since TRAIL as well as FASL can trigger either apoptosis, necroptosis, inflammatory or pro-invasive 1474 

signaling, cancer-specific preferences for one or the other of these signaling outputs likely accounts for 1475 

the pleiotropic effects observed in various cancer models.  1476 

Autoimmune and inflammatory diseases. The interpretation of results on the impact of extrinsic 1477 

apoptosis in the etiology of autoimmune and inflammatory disease should consider the fact that DR 1478 

engagement can also result in the initiation of an inflammatory response not related to RCD (see Box 6 1479 

and Box 7), meaning that DR deregulation may lead to inflammatory diseases independently of the 1480 

induction of extrinsic apoptosis. The notion that defects in DR signaling can cause autoimmune disease 1481 

is supported by the observation that lpr/lpr as well as gld/gld mutant mice, deficient for FAS or FAS 1482 

ligand, respectively, as well as humans with defects in FAS develop systemic lupus erythematosus 1483 

(SLE)-like autoimmune disease accompanied by lymphadenopathy, splenomegaly and hepatomegaly 873, 1484 

874. A critical role for loss of caspase-CASP8 mediated apoptosis in this disease was demonstrated by the 1485 

observation that similar autoimmune disease is seen in mice lacking CASP8 and also RIPK3 or MLKL 1486 

(to prevent necroptosis) 51, 52, 875. However, the roles of DRs in autoimmune disease are complex. 1487 

TRAIL/TRAIL-R signaling was reported to protect mice and rats against autoimmune encephalomyelitis 1488 

876, 877, 878, 879, 880, 881, autoimmune arthritis 882, 883, 884, 885, 886 and type I diabetes 689, 882, 887, 888, 889, 890. Perhaps 1489 

surprisingly, the presence of FAS and TNF-R1 is associated with the development of certain autoimmune 1490 

conditions. Indeed, both lpr/lpr lacking FAS and gld/gld mice lacking FAS ligand, as well as TNF-R1-1491 
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deficient mice, were reported to be protected against experimental encephalomyelitis 891, 892, 893, 894. 1492 

Similar results were obtained in mice with Tnf deletion in monocytes and macrophages but not in mice 1493 

lacking TNF in microglial cells 895. Protection against experimentally induced autoimmune conditions 1494 

were also found in mice subjected to neutralization of TNF or TNF-R1 inhibition 896, 897, 898, 899, 900, 901, 902, 1495 

903. FAS-independent mechanisms also appear to support the pathogenesis of experimental autoimmune 1496 

encephalomyelitis 891, 904, with some studies pointing to a protective role for FAS-induced RCD amongst 1497 

lymphocytes in this disease model 905. Moreover, FAS engagement was reported to differentially 1498 

contribute to the initiation vs. the recovery from autoimmune encephalomyelitis 906, 907. In particular, 1499 

FASL expression in astrocytes appears to promote recovery from experimental autoimmune 1500 

encephalomyelitis, as shown by persisting demyelination and paralysis of mice with an astrocyte 1501 

restricted deletion of the Fasl gene 906. Finally, at least in some studies, Tnf deletion or TNF neutralization 1502 

failed to attenuate the severity of autoimmune encephalomyelitis once the disease was established 908, 909.  1503 

Mice with defects in FASL or TNF signaling are protected against arthritis induced by immunization 1504 

with xenogeneic type II collagen in complete Freund's adjuvant 910, 911, 912, 913. Similar protection was 1505 

observed in mice transplanted with mesenchymal stem cells engineered to express TNF inhibitors 914. In 1506 

keeping with this evidence, the myeloid cell specific deletion of Fas or the administration of antibodies 1507 

that target both TNF and chemokine (C-X-C motif) ligand 10 (CXCL10) resulted in accelerated disease 1508 

resolution in a model of rheumatoid arthritis induced by K/BxN serum transfer 915, 916. Genetic loss of 1509 

Fas or pharmacological inhibition of FAS conferred protection against autoimmune diabetes in certain 1510 

animal models, including NOD mice 917, 918, 919, 920, 921, 922. However, whether the impact of FAS on the 1511 

pathogenesis of autoimmune diabetes depends on its role in the death of pancreatic β-cell 917 or its role 1512 

in inflammation (e.g., in the context of insulitis) remains a matter of debate 920. Conversely, other studies 1513 

found no role for FAS in diabetes 923, 924, 925. TNF neutralization is effective only in a limited sub-group 1514 

of patients with inflammatory bowel disease 926, 927. This is in line with the finding that deletion of the 1515 
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gene encoding TNF-R1 exacerbated colitis in interleukin 10 (IL10)-deficient mice 928. Similar protection 1516 

was ascribed to TRAIL/TRAIL-R signaling in a dextran sodium sulfate-induced model of colitis model 1517 

929, 930. Finally, it has been suggested that FASL and TNF signaling contribute to the pathogenesis of 1518 

acute pancreatitis 931, 932. A similar detrimental role has been proposed for TNF in autoimmune neuritis 1519 

933, 934, 935, although there is also some contention 936, as well as in spondylarthritis 937 and psoriasis 938. 1520 

Conversely, mTRAIL-R appears to mediate beneficial effects in autoimmune thyroiditis 939, 940, 941, 942, 943 1521 

At least in part, these findings reflect the pleiotropic effects of whole-body/systemic inhibition of DRs 1522 

signaling, which concomitantly impacts both the target (i.e., parenchymal) and the perpetrator (i.e., 1523 

immune cells) of damage. 1524 

Some experimental evidence links CASP8 activation to autoimmune and inflammatory disorders. In a 1525 

recent study using a chemically-induced model of intestinal inflammation, the selective absence of 1526 

CASP8 in intestinal epithelial cells decreased their survival, also resulting in gut barrier dysfunction and 1527 

chronic inflammation 944. Of note, in these settings, inflammation can occur via a mechanism independent 1528 

of the induction of necroptosis (which is inhibited by CASP8) and involving the activation of RIPK1 and 1529 

the RNA Sensor RIG-I pathway 945, 946. Along similar lines, chronic proliferative dermatitis in mice 1530 

deficient for components of the linear ubiquitin chain assembly complex (LUBAC) was associated with 1531 

an increased keratinocyte apoptosis mediated by the engagement of TN-FR1 and the activation of the 1532 

RIPK1- and/or FADD-CASP8 cascade 947, 948, 949, 950, 951. Importantly in this mouse model of an 1533 

inflammatory disease the relevant contributions of cell death versus inflammatory signalling from TNF-1534 

R1 were genetically dissected demonstrating that excess apoptosis/necroptosis drove different elements 1535 

of the inflammatory response depending upon the affected tissue. Concerning autoimmunity, in a mouse 1536 

model of autoimmune encephalomyelitis, the oligodendrocyte-specific deletion of Fadd reduced 1537 

demyelination and this was accompanied by limited immune cell infiltration in the spinal cord 952. 1538 

Likewise, experimental autoimmune encephalomyelitis could be prevented by transgenic expression of 1539 
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FADD-DN (dominant negative form of FADD) in T cells 953 but it must be noted that this kills antigen 1540 

receptor activated T cells 954. Therefore, this protective effect is due to the removal of the T cells that 1541 

would cause tissue destruction. Activation of CASP8 was identified in the microglia of patients with 1542 

multiple sclerosis 955. Moreover, transgenic expression of FADD-DN or Casp8 ablation in pancreatic β 1543 

cells protected mice from autoimmune diabetes 956. This indicates that the killing of these cells is 1544 

mediated by death receptor induced apoptosis. BID appears to be dispensable for the development of 1545 

diabetes in NOD mice 957.  1546 

There are also contrasting observations on the impact of DR-induced apoptosis on the development and 1547 

resolution of autoimmune rheumatoid arthritis. The absence of c-FLIP (due to Cflar deletion) resulted in 1548 

increased disease severity but limited disease resolution in mice experiencing arthritis upon 1549 

intraperitoneal injection of serum from mice expressing both the T cell receptor transgene KRN and the 1550 

MHC class II molecule A(g7) (K/BxN mice) 958. In the same model, deletion of Casp8 in all myeloid 1551 

cells enhanced disease resolution, while deletion of Casp8 selectively in dendritic cells accelerated 1552 

disease onset 959. Further experiments are required to unveil the reasons for such cell type specificity for 1553 

the role of CASP8 to help more clearly understand the role of extrinsic apoptosis in this and other 1554 

autoimmune disorders.  1555 

Infectious diseases. Extrinsic apoptosis is reported to act as an anti-infective mechanism. FAS deficient 1556 

lpr/lpr, FAS ligand deficient gld/gld and Bid−/− mice exhibit delayed clearance of Citrobacter rodentium 1557 

and increased intestinal pathology 960. Confirming the importance of DR-induced apoptosis, this 1558 

pathogen was shown to inhibit extrinsic apoptosis of infected enterocytes by expressing specific 1559 

virulence proteins, such as N-acetylglucosamine transferase NleB1, which prevents FADD-mediated 1560 

recruitment and activation of CASP8 960 Li, 2013, 23955153 Li, 2013, 23955153 Li, 2013, 23955153 Li, 2013, 23955153. Along 1561 

similar lines, Fas−/− mice had shorter lifespan than wild-type mice after challenge with Listeria 1562 
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monocytogenes, succumbing to neurolisteriosis. This was proposed to be promoted by an impaired loss 1563 

of monocytes due to upregulated expression of c-FLIP by the bacterial protein InlB 961. In support of this 1564 

result, conditional deletion of Cflar in myeloid cells improved Listeria monocytogenes clearance and 1565 

animal survival 962. FAS signaling also conferred protection from infection with (i) human herpes simplex 1566 

virus 2 (HSV-2), as demonstrated by a decrease in the loss of monocyte and immune cell recruitment at 1567 

the infection site in Fas−/− and Fasl−/− mice 963, and (ii) Citrobacter rodentium or lymphocytic 1568 

choriomeningitis virus, as demonstrated by an increased neutrophil fraction in mice with conditional 1569 

deletion of Fas in the myeloid compartment 964.  1570 

Supporting an anti-infection role of CASP8, mice lacking RIPK1 kinase activity failed to control 1571 

systemic Yersinia infection, rapidly dying because of excess apoptosis driven by a kinase independent 1572 

function of RIPK1 965, 966. In line with this finding, Ripk3−/−Casp8−/− but not Ripk3−/− mice died from 1573 

Toxoplasma gondii infection due to acute toxoplasmosis, an observation supporting the anti-infection 1574 

role of CASP8-mediated apoptosis 967. Moreover, hepatocyte-specific deficiency for CASP8 facilitated 1575 

liver infection of mice by Listeria monocytogenes, resulting in inflammation and development of necrotic 1576 

lesions in the liver 775. These results also suggest an interconnection of multiple RCD pathways in 1577 

controlling infection. Accordingly, the deletion of Z-DNA binding protein 1 (Zbp1), an essential 1578 

cytoplasmic sensor of Influenza A virus (IAV) Z-RNA required for the activation of mixed lineage kinase 1579 

domain like pseudokinase (MLKL)-dependent necroptosis, RIPK1/FADD-dependent apoptosis and 1580 

NLRP3 inflammasome-dependent pyroptosis, as well as co-deletion of the genes encoding MLKL and 1581 

FADD, caused a defect in the control of Influenza A virus (IAV) infection, with these mutant mice 1582 

succumbing to lethal respiratory failure. These findings support an essential role of apoptosis, necroptosis 1583 

and pyroptosis in IAV clearance 968, 969 Oltean, 2021, 33976111, Nogusa, 2016, 27321907, Zhang, 2020, 32200799 Oltean, 2021, 1584 

33976111, Nogusa, 2016, 27321907, Zhang, 2020, 32200799 Oltean, 2021, 33976111, Nogusa, 2016, 27321907, Zhang, 2020, 32200799 Oltean, 2021, 1585 

33976111, Nogusa, 2016, 27321907, Zhang, 2020, 32200799. Similarly, combined activation of apoptosis and other RCD 1586 
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pathways contribute to the response of mice to Burkholderia thailandensis infection 970. Finally, 1587 

pharmacological or tissue specific genetic deletion of cIAP1 and cIAP2 results in better control of 1588 

hepatitis B virus and liver stage malaria parasites due to increased TNF induced death of infected cells 1589 

(Ebert, 2015 25902529; Ebert 2015, 25902530; Ebert 2020, 32234472).  1590 

Experimental evidence also suggests a detrimental role of extrinsic apoptosis during certain infections. 1591 

Mice deficient for both TNF-R1 and TNF-R2 displayed decreased sensitivity to lipopolysaccharide, 1592 

suggesting a critical role for TNF in tissue injury during gram-negative bacterial infection 971. Along 1593 

similar lines, TNF-R1-deficient mice were more resistant than wild-type mice to the cytopathic effects 1594 

of TNF during Sindbis virus infection, as evidenced by reduced mortality and delayed paralysis 972. 1595 

Moreover, ablation of Ripk1 protected mice from acute liver injury after infection with Listeria 1596 

monocytogenes 973, while knockout of Fas or Fasl reduced the effect of toxin A-induced enteritis in mice 1597 

infected with Clostridium difficile, which has been attributed to a reduction in enterocyte loss 974. 1598 

Additionally, the infectious spleen and kidney necrosis virus (ISKNV) induced tissue damage in 1599 

zebrafish by activation of DR-induced apoptosis by a viral protein encoding a TRADD interactor 975. Of 1600 

note, in this study, the absence of CASP8 protected zebrafish from ISKNV infection. Finally, 1601 

Ripk3−/−Casp8−/− mice exhibited high levels of protection from LPS-induced septic shock 976 or a lethal 1602 

cytokine shock and tissue damage driven by TNF and IFN-γ, mirroring that of SARS-CoV-2 977. This 1603 

evidence suggests that the combination of several types of RCD can also mediate infection-associated 1604 

pathogenesis, as demonstrated for infection with Salmonella 50. 1605 

Other diseases. TNF is reported to impair myogenesis in a mouse model of skeletal muscle regeneration 1606 

after hindlimb immobilization (hindlimb suspension) 978. Moreover, silencing of TRAIL improved 1607 

muscle regeneration in mice with acute skeletal muscle injury due to local injection of BaCl2 979. An 1608 

inhibitory role in myogenesis was also ascribed to FADD, at least in response to freezing-induced muscle 1609 
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injury 980. In apparent contrast with this result, combined deletion of the genes encoding TNF-R1 and 1610 

TNF-R2 limited skeletal muscle regeneration after cardiotoxin-induced injury 981, 982, suggesting the 1611 

relevance of a balance between TNF-R1 and TNF-R2 signaling in this model. TRAIL neutralization 1612 

increased muscular strength in a mouse model of Duchenne muscular dystrophy 983, while other studies 1613 

associated TRAIL and FASL to myositis 984, 985. 1614 

Activation of DRs has also been implicated in the pathogenesis of acute lung injury. Fas silencing as 1615 

well as TNF neutralization protected mice from lung injury induced by ischemia-reperfusion 986, 987. 1616 

Similarly, deletion of Tnfrsf1a (encoding TNF-R1) or pharmacological inhibition of TNF-R1 or CASP8 1617 

attenuated pulmonary edema formation and improved alveolar epithelial function in a murine model of 1618 

acute lung injury induced by acid inhalation 988, 989. A similar protective effect was provided by 1619 

pharmacological inhibition or genetic deletion of FASL or TNF in a lipopolysaccharide-induced mouse 1620 

model of acute lung injury 990, 991, 992, 993, 994, 995, 996. However, in one study FAS signaling was shown to 1621 

contribute to the resolution of acute lung injury by promoting the depletion of macrophages 997. Using 1622 

distinct mouse models of acute lung damage following sepsis, it was shown that the abrogation of FAS 1623 

and TNF-R1 signaling, including the silencing of Fadd, decreased pulmonary apoptosis and ameliorated 1624 

pathology, and in some cases this led to a survival benefit for the animals (e.g., 998, 999, 1000, 1001, 1002, 1003, 1625 

1004). Hyperoxia-induced lung injury and bleomycin-induced pulmonary fibrosis, a model for cancer 1626 

therapy-induced lung injury, are also impacted by the DR pathway. FAS and TNF deficiency exacerbated 1627 

hyperoxia-induced lung injury and/or inflammation in newborn mice 1005, 1006. In contrast, TNF inhibition 1628 

conferred protection against hyperoxia-induced lung damage in a murine model 1007, 1008, 1009. Moreover, 1629 

the absence of TNF-R1 (but not the absence of TNF-R2) improved survival in mice subjected to 1630 

excessive oxygen supply, although without decreasing inflammation 1010. In support of these results, 1631 

specific ablation of Fas in murine fibroblasts or T cells exacerbated pulmonary fibrosis induced by 1632 

bleomycin 1011, 1012. However, the level of bleomycin-induced pulmonary fibrosis was diminished in FAS 1633 
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deficient lpr/lpr or FAS ligand deficient gld/gld mice 1013 and remained unchanged in mice treated with 1634 

FAS neutralizing agents 1014. Likewise, contrasting findings support or refute a role for TNF 1015, 1016, 1017 1635 

and TRAIL 1018, 1019 in both the onset and resolution of pulmonary fibrosis after administration of 1636 

bleomycin. TNF neutralization has been reported to attenuate and enhance interstitial pulmonary fibrosis 1637 

induced by nitrogen mustard 1020 or rituximab 1021. Finally, FASL, TNF and/or TRAIL have been 1638 

implicated in infectious or non-infectious lung disorders, including (but not limited to) infection with 1639 

respiratory syncytial virus (RSV) 1022, 1023, 1024, 1025, 1026, 1027, 1028, adenovirus type 1 respiratory disease 1029, 1640 

1030, allergic reaction and asthma 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042 and idiopathic 1641 

pneumonia syndrome 1043, as well as to chronic lung diseases (e.g., chronic obstructive pulmonary 1642 

disease) 863, 1044, 1045. 1643 

The studies discussed above illustrate that DR-induced apoptosis is at the heart of many disorders either 1644 

promoting recovery or exacerbating disease. The active involvement in disease severity and progression 1645 

makes this pathway a potentially tractable target for therapeutic interventions in a wide range of diseases, 1646 

typically those with an inflammatory component. However, this effect may be llinked to the role of DR 1647 

signaling in other RCD pathways and in inflammation. Moreover, there is little consensus on the roles 1648 

of FASL, TNF and/or TRAIL, highlighting a high complexity of the systems which needs further 1649 

investigation. 1650 

Concluding remarks 1651 

Abundant preclinical evidence demonstrates that the intrinsic and the extrinsic pathways of apoptosis not 1652 

only contribute to adult tissue homeostasis and, in the case of the intrinsic pathway, to embryonic 1653 

development – the implication of CASP8 in normal development is mainly linked to its role as 1654 

necroptosis inhibitor (see Box 6 and Box 7) - but also contribute to the pathogenesis of multiple diseases, 1655 

including various cardiovascular, hepatic, neurological and renal disorders as well as multiple infectious, 1656 
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autoimmune, inflammatory and oncological conditions. However, despite great potential as targets for 1657 

therapeutic interventions and a considerable research effort dedicated to developing effective approaches, 1658 

the success of intrinsic or extrinsic apoptosis-targeting agents in clinical settings is so far limited to BH3 1659 

mimetic drugs, SMAC mimetics, caspase inhibitors as well as activators or inhibitors of DR signaling, 1660 

with only one compound, the BCL-2 inhibitor venetoclax (BH3 mimetic drug), approved for routine 1661 

treatment of patients with CLL or AML. 1662 

Rather than mitigating the enthusiasm about the clinical potential of modulators of apoptosis, this 1663 

challenge suggests the need for a substantial change in the experimental design and re-interpretation of 1664 

results, at different levels (Figure 1). One major issue is that studies evaluating the impact of apoptotic 1665 

cell death on disease have not always addressed the connections between the core components of the 1666 

intrinsic and extrinsic apoptotic machinery or their potential interaction and functional overlap with other 1667 

RCD pathways. Also, the potential activation of alternative RCD modalities as a mechanism to 1668 

compensate for the inhibition of apoptotic RCD has not always been explored and thus it has not been 1669 

tried to prevent or overcome these alternative forms of RCD to achieve superior outcomes. The 1670 

importance of independent replication of findings that suggest success from targeting a pathway in the 1671 

treatment of a disease cannot be emphasized enough. Only then can the costly process of clinical 1672 

translation be approached with confidence and with an increased chance of success. For example, the 1673 

findings that overexpression of BCL2 or its pro-survival relatives can promote tumorigenesis and can 1674 

render malignant cells resistant to diverse anti-cancer therapeutics had been reproduced hundreds of 1675 

times before BH3 mimetic drug development was started. This is not yet the case for many of the other 1676 

studies discussed here, as best demonstrated by the fact that for certain experiments diametrically 1677 

opposing results were reported by different groups. These questions must be resolved before considering 1678 

drug development programs.  1679 
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Moreover, certain regulators of apoptosis and signaling cascades have been reported to exert a variety of 1680 

functions beyond cell death control, including (but not limited to) inflammation (e.g., multiple activated 1681 

caspases and IAPs), cell differentiation (e.g., pro-and anti-apoptotic BCL2 proteins), cell proliferation 1682 

and survival (e.g., DR engagement). The relevance of these functions is often dependent on cell/tissue 1683 

type (as it is related to variable expression levels and activation status of other regulators of RCD) and 1684 

the intensity and duration of the initiating stimulus (as they can direct to a distinct biological outcome, 1685 

as exemplified by DR ligation). Of note, some of these cell death unrelated functions of bona fide cell 1686 

death regulators are highly controversial and much more work must be done to verify or discard these 1687 

notions. On the one hand, this pleiotropy may result in a variable (even including an antagonistic 1688 

protective vs. promoting) impact of apoptosis on distinct human diseases, also explaining the 1689 

considerable degree of context-dependency (e.g., effect of stromal and immune cells) observed for its 1690 

experimental modulation. On the other, the pathogenic effect of core components of the apoptotic 1691 

machinery is often mediated by such apoptosis-unrelated functions including inflammation, which may 1692 

point to unexplored targets for the development of new therapeutic agents or approaches.  1693 

In our opinion, investigating the molecular cascade of apoptotic cell death in the context of the functional 1694 

inter-connection between apoptotic and non-apoptotic pathways, for instance by interrupting some of the 1695 

molecular connections between different RCD signaling cascades, may instigate new advances, 1696 

ultimately leading to clinical use of specific apoptosis-modulatory agents for the treatment of many 1697 

diseases.  1698 
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Legends to Figures 5908 

Figure 1. Principal causes of the therapeutic failure of intrinsic or extrinsic apoptosis inhibitors. 5909 

The clinical development and success of agents inhibiting apoptosis is limited by multiple contributory 5910 

causes, including potential non-apoptotic, accessory or even protective roles of the targeted proteins 5911 

(exemplified by the involvement of certain BCL2 family members, caspases and death receptors in 5912 

processes as diverse as inflammation, cell differentiation, cell proliferation and cell survival), the high 5913 

interconnectivity between RCD pathway (potentially leading to the activation of compensatory RCD 5914 

variants in response to the inhibition of a specific RCD type), the low specificity and selectivity of the 5915 

inhibitors developed so far (exemplified by the broad-spectrum caspase inhibitors) and the difficulty to 5916 

precisely determine and quantify cell death in vivo. RCD, regulated cell death. 5917 

Figure 2. Molecular machinery of the intrinsic apoptosis. Intrinsic apoptosis can be activated by a 5918 

range of extracellular or intracellular stimuli, including, but not limited to, DNA damage, endoplasmic 5919 

reticulum (ER) or oxidative stress, growth factor withdrawal or microtubular alterations. The critical step 5920 

of the intrinsic apoptosis is the activation of the pro-apoptotic effectors of the BCL2 family, BAX, BAK 5921 

and possibly BOK, which drives the outer membrane permeabilization (MOMP) and commits cells to 5922 

death. MOMP results in the release from the mitochondrial intermembrane space into the cytosol of 5923 

proapoptotic proteins, including CYCS and SMAC. CYCS assembles with APAF1, dATP and pro-5924 

CASP9 into the apoptosome, leading to the activation of CASP9, which in turn promotes the activation 5925 

of the executioner caspases CASP3 and CASP7. The activation of the executioner caspases is facilitated 5926 

by SMAC, which sequesters and/or degrades members of IAP family that inhibit apoptosis.  5927 

Figure 3. Impact of intrinsic apoptosis players on neurological disorders. Intrinsic apoptosis is 5928 

directly or indirectly involved in the pathogenesis of multiple neurological disorders, including 5929 

neurodegenerative diseases, such as AD and PD, in brain damage caused by traumatic injury or 5930 
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neurotoxicity as well as in neuromuscular and retinal disorders. Pro- and anti-apoptotic members of the 5931 

BCL2 family are depicted, respectively, in blue and green, while caspases are illustrated in pale violet. 5932 

Figure 4. Molecular machinery of the extrinsic apoptosis pathway. Extrinsic apoptosis is initiated by 5933 

the binding of FASL to FAS or TRAIL to TRAIL-R1 or TRAIL-R2, which promotes the assembly, on 5934 

the cytoplasmic tail of these death receptors, of a platform known as the DISC. Extrinsic apoptosis is 5935 

also triggered by the binding of TNF to TNF-R1, which promotes the assembly of the Complex II. The 5936 

DISC comprises FADD, c-FLIPs and pro-CASP8. Complex II is a platform consisting of FADD and 5937 

pro-CASP8 in association with either TRADD (complex IIa) or  5938 

RIPK1 (complex IIb). The assembly of these complexes promotes the activation of CASP8, which 5939 

mediates CASP3 and CASP7 activation either directly, by catalyzing the proteolytic activation of CASP3 5940 

and CASP7 (in type I cells) or indirectly, via the proteolytic activation of the BH3-only protein BID and 5941 

the outer membrane permeabilization (MOMP) (in type II cells). Extrinsic apoptosis can also be induced 5942 

by dependence receptors like DCC, NTRK3, PTCH1, or UNC5A-D, which are activated by decreased 5943 

concentration of the related ligand, as illustrated in the figure. However, the role of this pathway in 5944 

normal physiology and disease is not yet established.  5945 

Figure 5. Impact of extrinsic apoptosis players on neurological disorders. Death receptor-induced 5946 

apoptosis is directly or indirectly involved in the pathogenesis of multiple neurological disorders, 5947 

including neurodegenerative diseases, such as AD and PD, in brain damage due to traumatic injury or 5948 

neurotoxicity as well as in neuromuscular and retinal disorders.  5949 

 5950 
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Box 1. Principle of intrinsic apoptosis.        1 

Intrinsic apoptosis is a type of regulated cell death (RCD) initiated by perturbations of the extracellular 2 

or intracellular microenvironment including (but not limited to) DNA damage, endoplasmic reticulum or 3 

oxidative stress, growth factor withdrawal, microtubular alteration. The critical step is mitochondrial 4 

outer membrane permeabilization (MOMP) 1, 2, 3, 4. MOMP - which involves constitutive outer membrane 5 

proteins, such as the voltage-dependent anion channel (VDAC), is modulated by the activity of multiple 6 

pro-apoptotic and anti-apoptotic members of the BCL2, apoptosis regulator (BCL2) protein family 5, 6, 7, 7 

8, 9. In response to apoptotic stimuli, MOMP leads to the sequential activation of the initiator caspase 9 8 

(CASP9) and then the executioner caspases CASP3 and CASP7 10, 11, 12, 13, 14. Two functionally distinct 9 

classes of pro-apoptotic BCL2 proteins have been identified. The first class encompasses the apoptotic 10 

activators BCL2 associated X, apoptosis regulator (BAX), BCL2 antagonist/killer 1 (BAK1), and BCL2 11 

family apoptosis regulator (BOK) 15. Once activated by apoptotic stimuli, BAX, BAK1 and BOK induce 12 

MOMP by generating pores across the outer mitochondrial membrane (OMM) 16, 17, 18, 19, 20. These pro-13 

apoptotic factors promote the release into the cytosol of several apoptogenic factors, including 14 

cytochrome c, somatic (CYCS) and diablo IAP-binding mitochondrial protein (DIABLO; also known as 15 

second mitochondrial activator of caspases, SMAC) 21. CYCS exerts apoptogenic activity by associating 16 

with apoptotic peptidase activating factor 1 (APAF1) and pro-CASP9 to generate a complex known as 17 

the apoptosome, leading to sequential activation of CASP9 and the executioner caspases CASP3 and 18 

CASP722. DIABLO/SMAC contributes to CASP3 and CASP7 activation by associating with and 19 

inhibiting X-linked inhibitor of apoptosis (XIAP) and other members of the inhibitor of apoptosis (IAP) 20 

protein family which restrain caspase activation 23. 21 

The second class of pro-apoptotic BCL2 proteins (known as BH3-only proteins 24) include BCL2 22 

associated agonist of cell death (BAD), BCL2 binding component 3 (BBC3; best known as p53-23 
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upregulated modulator of apoptosis, PUMA), BCL2 interacting killer (BIK), BCL2 like 11 (BCL2L11; 24 

best known as BCL2-interacting mediator of cell death, BIM), Bcl2 modifying factor (BMF), BH3 25 

interacting domain death agonist (BID), BCL2 interacting protein harakiri (HRK, also known as DP5), 26 

and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1; best known as NOXA 25, 26). Of these, 27 

caspase-cleaved BID (tBID), BIM, PUMA, and NOXA have been reported to also be able to promote 28 

BAX and BAK1 activation through a direct interaction with these proteins at the mitochondria 27, 28, 29, 30, 29 

31, 32, 33. All BH3-only proteins, including BAD, BIK, BMF and HRK activate BAX and BAK1 indirectly 30 

by associating with anti-apoptotic BCL2 family members, thereby blocking the inhibitory binding of the 31 

latter to BAX and BAK1 5, 9, 31, 33, 34, 35. Some BH3-only proteins, particularly BIM, PUMA and tBID, 32 

can potently bind and inhibit all anti-apoptotic BCL-2 proteins whereas others bind only some (e.g., 33 

NOXA only binds MCL1 and A1) 31, 33, 36, 37. It is noteworthy that BAX and BAK1 can induce apoptosis 34 

in the absence of all BH3-only proteins when the anti-apoptotic BCL2 proteins are genetically removed 35 

or inhibited by BH3 mimetic drugs 33, 34. However, BAX and BAK1 activation in the absence of BH3-36 

only proteins occurs at slower kinetics compared to that in the presence of BH3-only proteins 33. These 37 

findings support the existence of both BH3-dependent and BH3-independent activation of BAX and 38 

BAK1 where BH3-only proteins function as catalysts for BAX and BAK activation 33, 38.. In this context, 39 

BAX and BAK are also reported to be activated by the tumor protein p53 (TP53; best known as p53) in 40 

a fashion independent of BH3-only proteins 39, 40. The anti-apoptotic members of the BCL2 family 41 

encompass BCL2, apoptosis regulator (BCL2), BCL2 like 1 (BCL2L1; best known as BCL-XL), MCL1, 42 

BCL2 family apoptosis regulator (MCL1), BCL2 like 2 (BCL2L2; best known as BCL-W), and BCL2 43 

related protein A1 (BCL2A1; best known as A1) 5, 6, 7, 8. The anti-apoptotic activity of these BCL2 44 

proteins mainly involves MOMP maintenance, although, a non-canonical, cellular redox-dependent 45 

mechanism of cytoprotection has been ascribed in cancer cells at least for BCL2 41, 42, 43, 44 46 

 47 



3 
 

  48 



4 
 

Box 2. Impact of pro-apoptotic BCL2 proteins on health.      49 

Deletion of BCL2-associated X protein (Bax), BCL2-antagonist/killer 1 (Bak1) or BCL2-related ovarian 50 

killer (Bok) does not significantly affect mouse development 45, 46, 47, with the exception of a mild 51 

lymphocyte and neuron accumulation in Bax-/- mice which also exhibit male infertility due to 52 

seminiferous tubule malformation 45, 48. Of note, a recent study has demonstrated that such defects in 53 

germ cells occur in the fetal period 49, supporting the requirement for intrinsic apoptosis in testicular 54 

development 50, 51. Subsequent studies confirmed the role of BAX in neurogenesis, in particular the 55 

development of hippocampal and cerebellar neurons, cortical interneurons and astrocytes 52, 53, 54, 55, 56, 57. 56 

Accordingly, Bax-/- mice exhibit impaired neurological functions manifesting with increased anxiety, 57 

depression-like traits, compromised social and sexual behavior, and impaired spatial representation and 58 

olfactory system function 58, 59, 60. These mice also show accelerated medulloblastoma formation 61, which 59 

is in line with the oncosuppressive activity of apoptotic (and non-apoptotic) regulated cell death (RCD) 60 

62. 61 

Ablation of Bok does not compromise the relatively normal development of BAK1- or BAX-deficient 62 

mice, although Bax-/-Bok-/- mice exhibit an increased number of mature oocytes 63. In contrast, co-deletion 63 

of Bax and Bak1 causes perinatal death in the vast majority (more than 90%) of mice, mainly due to 64 

multiple developmental abnormalities and feeding difficulties 46, 64. Importantly, the developmental 65 

defects of Bax-/-Bak1-/- mice are exacerbated by additional deletion of Bok, underscoring not only some 66 

functional redundancy between BAX, BAK1 and BOK, but also a crucial role of pro-apoptotic BCL2 67 

family members in the development of the central nervous system (CNS) and hematopoietic 68 

compartment 64. However, since some Bax-/-Bak1-/- and Bax-/-Bak1-/-Bok-/- mice can reach adulthood 46, 69 

64, additional systems must be at play to compensate for defects in apoptosis in other organs. In is worth 70 

noting that the developmental defects of Bax-/-Bak1-/- mice can be further aggravated by deletion of 71 



5 
 

autophagy related 5 (Atg5) 65, which is involved in autophagy as well as in non-canonical vesicular 72 

pathways like LC3-associated phagocytosis 66, 67. However, whether autophagy-dependent cell death 73 

compensates for the apoptotic defects of Bax-/-Bak1-/- mice remains to be formally determined 68, 69. 74 

Further corroborating the relevance of intrinsic apoptosis for proper development, the few surviving Bax-75 

/-Bak1-/- mice and Bax-/-Bak1-/-Bok-/-mice display phenotypes related to defective programmed cell death 76 

(PCD), including webbed feet (due to the incomplete removal of interdigital webs), imperforate vagina 77 

and midline fusion defects including facial cleft 46, 64. CNS issues exhibited by these animals include a 78 

striking expansion of the tissue regions that harbor the neural stem cell pool 46, 64 as well as impaired 79 

function of the motor 70 and visual 71, 72 systems. Although the number of apoptotic cells were reduced 80 

to the limit of detection in embryos lacking BAX, BAK1 and BOK 64, anomalies in the urinary tract were 81 

conspicuously absent in these animals 64. This sparked a study examining if BID, in addition to linking 82 

the death receptor (DR) pathway and the intrinsic apoptotic pathway (Box 5), could act in a way similar 83 

to BAX and BAK1. Indeed, while loss of BID alone did not lead to anomalies during embryonic and 84 

fetal development, additional deletion of Bid in Bax-/-Bak1-/-Bok-/-mice mice revealed a redundant 85 

requirement for BID in urogenital tract development 73. In its previously recognized role, BID in the form 86 

of tBID activates BAX and BAK1, which would not have caused additional anomalies in the absence of 87 

BAX and BAK1. Therefore, these results indicate that BID can act in parallel with BAX, BAK1 and 88 

BOK. Congruently, full-length BID 73 or tBID 74 can mediate mitochondrial permeabilization and cause 89 

cytochrome c, somatic (CYCS) release. In this context it is worth considering that BID has been reported 90 

to be structurally similar to the multi-BH domain BCL2 family proteins, such as BAX and BCL-XL 9, 75, 91 

76, 77. 92 

Tissue-specific ablation of Bax and Bak1, confirmed the crucial role of these proteins in the hematopoietic 93 

system, and specifically in the homeostasis and functionality of B cells 78, T cells 79, megakaryocytes 80 94 
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and platelets 81. Mice reconstituted with fetal liver cells from Bax-/-Bak1-/- mice display massive 95 

lymphadenopathy and defective T cell proliferation, and the severity of these defects is even more 96 

pronounced when Bak1-/-Bax-/-Bok-/- fetal liver cells are used for reconstitution, an experimental setting 97 

that also reveals signs of autoimmunity 82, 83, 84. Similarly, mice reconstituted with a Bak1-/-Bax-/- 98 

hematopoietic compartment develop a fatal systemic lupus erythematosus (SLE)-like autoimmune 99 

disease 85. Moreover, the inducible co-deletion of Bax and Bak1 in lymphocytes of adult mice results in 100 

the development of severe autoimmune glomerulonephritis 78. Finally, conditional knockout mouse 101 

models reveal a crucial contribution of BAX and BAK1 to endothelial cell homeostasis 86, 87, but little 102 

impact on cardiac and intestinal functions, as shown by the absence of hyperplasia 88, 89. These results 103 

demonstrate that the multi-BH domain pro-apoptotic BCL2 proteins play critical roles for the normal 104 

development of multiple tissues but that, surprisingly, a few mice can reach weaning or even adulthood 105 

when all of these effectors of apoptosis are removed 64.  106 

Amongst the BH3-only proteins, BCL2 like 11 (BCL2L11, best known as BIM) appears the most critical 107 

for embryonic development and tissue homeostasis, as shown by the fact that approximately 30% of 108 

BIM-deficient mice die during embryogenesis 90. Surviving BIM-deficient mice display severe defects in 109 

the hematopoietic system including lymphoid hyperplasia and marked splenomegaly, and on a mixed 110 

C57BL/6 x 129SV background many of these mice spontaneously develop systemic autoimmunity often 111 

resulting in fatal kidney disease 90, a condition that can be accelerated by depletion of immunosuppressive 112 

CD4+CD25+FOXP3+ regulatory T (TREG) cells 91. Cells from BIM-deficient mice are profoundly 113 

resistant to growth factor deprivation, glucocorticoids, deregulated calcium flux and ER stress 90, 92. 114 

Accordingly, BIM-deficient mice also display dysregulated T cell development and homeostasis 93, 94, 95, 115 

96, 97 and hence exhibit defective cellular 98, 99, 100 and humoral 101, 102, 103 immune responses. Bcl2l11 116 

deletion (loss of BIM) has also been shown to extend the survival of granulocytes 104 and to perturb the 117 

development of mammary glands 105, 106, gastric epithelium 107 and the retina 108. Moreover, aged BIM 118 
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deficient mice show reduced adiposity 109. Of note, systemic deletion of Bax or Bak1 exacerbates the 119 

hematopoietic dysregulation of BIM-deficient mice 110. Conditional knockout systems confirmed a key 120 

role for BIM in the hematopoietic system homeostasis 111, 112, 113, 114, and revealed a role for BIM in the 121 

survival and differentiation of hippocampal neurons 115. Of note, myeloid cell-specific deletion of 122 

Bcl2l11 induces a systemic lupus erythematosus (SLE)-like disease that resembles the pathology 123 

developing in mice that lack BIM in all cells 116. 124 

Mice lacking BH3 interacting domain death agonist (BID), phorbol-12-myristate-13-acetate-induced 125 

protein 1 (PMAIP1, best known as NOXA) or BCL2 binding component 3 (BBC3, best known as 126 

PUMA) display normal embryonic development 117, 118, 119, 120. In these studies on BID-deficient mice, 127 

substantial reduction in FAS ligand-induced apoptosis was seen in hepatocytes 117, 121, pancreatic cells 128 

117, 122, 123 and possibly neurons 124, 125. Moreover, Bid-/- mice display a dysregulated myeloid compartment 129 

resulting in an increased likelihood of leukemogenesis 125, as well as cardiac dysfunction 126. Conditional 130 

gene deletion studies confirmed the relevance of BID in the homeostasis and functionality of hepatocytes 131 

and T cells 127, 128, 129. 132 

PUMA contributes to normal ovarian development, as shown by the evidence that two-thirds of the germ 133 

cells produced during embryonic development undergo PUMA-mediated cell death shortly after 134 

formation 130. Moreover, cells from PUMA-deficient mice are profoundly resistant to p53-induced 135 

apoptosis triggered by genotoxic drugs and lymphoid cells are also resistant to glucocorticoids, phorbol 136 

ester and growth factor deprivation 119, 120, 131, 132, 133. Cells from NOXA-deficient mice also showed 137 

resistance to DNA damage-inducing drugs, although to a lesser extent compared to cells lacking PUMA 138 

119, 134. Moreover, Pmaip1-/- mice (lacking NOXA) show limited stress-induced erythropoiesis 135. 139 

Germline deletion of the gene encoding PUMA or NOXA also affects humoral immune responses 136, 137 140 

and increases the abundance of multiple cell types in the retina 138. Interestingly, the loss of PUMA 141 
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greatly impairs radiation induced thymic lymphoma development and the formation of liver cancer 139, 142 

140, 141, 142 (see main text), potentially reflecting the ability of apoptotic cells to secrete mitogenic and 143 

immunosuppressive molecules such as prostaglandin E2 (PGE2) 
143, 144. PUMA was also shown to play 144 

a role in radiation-induced intestinal damage 145. 145 

Co-deletion of two or more genes coding for BH3-only proteins confirmed the pronounced relevance of 146 

BIM for development and underscored some degree of functional redundancy in the system. On the one 147 

hand, mice lacking both PUMA and NOXA develop normally but their cells are profoundly resistant to 148 

genotoxic agents, as resistant as cells lacking p53 146. Concomitant loss of PUMA but not the additional 149 

loss of NOXA, BAD, BID or BIK increases the severity of hematopoietic defects imposed by the lack of 150 

BIM 147, 148, 149, 150. On the other hand, Bcl2l11-/-Bbc3-/-Bid-/-and Bcl2l11-/-Bbc3-/-Bid-/-Pmaip1-/- mice 151 

displayed perinatal embryonic lethality and increased incidence of developmental defects, including 152 

webbed feet, imperforate vagina, and supernumerary neurons similar in extent to those seen in Bax-/-153 

Bak1-/- mice 33, 151. Of note, triple deficiency of BID, BIM, and PUMA completely abrogates BAX/BAK1 154 

dependent apoptosis in cerebellar granule neurons and T lymphocytes 151, providing in vivo evidence 155 

supporting direct activation of BAX and BAK1 by the BH3-only proteins. 156 

Mice lacking BCL2-associated agonist of cell death (Bad), BCL2 interacting killer (Bik), BCL2 157 

modifying factor (Bmf) and harakiri, BCL2 interacting protein (contains only BH3 domain) (Hrk) are 158 

viable and develop normally 152, 153, 154, 155. That said, BAD-deficient mice display a prolonged platelet 159 

lifespan 156, while Bmf-/- mice are characterized by mild lymphadenopathy, vaginal atresia 154, 157 as well 160 

as minor defects in mammary gland development and oogenesis 106, 158. Interestingly, female Bmf-/- mice 161 

had significantly more primordial follicles than wild-type control animals associated with an extended 162 

fertile life span 159, while Bmf-/- mice developed an accelerated gamma irradiation-induced thymic 163 

lymphoma 154. Combined deletion of some of the above listed BH3-only protein-coding genes does not 164 
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cause significant embryonic lethality or developmental abnormalities. Moreover, the combined absence 165 

of BIK and NOXA did not accelerate c-MYC-driven lymphoma development 160, while increased 166 

spontaneous tumorigenesis has been documented in Bad-/-Bmf-/- mice 161. Conversely, the absence of 167 

some of these BH3-only proteins aggravates the defects caused by the loss of Bcl2l11 (the gene encoding 168 

BIM). This applies to: (1) Bad  co-deletion with Bcl2l11, which enhances lymphocyte accumulation 156, 169 

(2) Bik co-deletion with Bcl2l11, which causes male infertility due to defective spermatogenesis 162, a 170 

phenotype resembling that of BAX-deficient mice, and (3) Bmf co-deletion with Bcl2l11, which 171 

considerably increases the incidence of developmental defects, vaginal atresia, lymphadenopathy, 172 

autoimmune glomerulonephritis, and spontaneous development of hematological malignancies 157, 163, 173 

164. 174 

  175 
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Box 3. Impact of anti-apoptotic BCL2 proteins on health.     176 

While myeloid cell leukemia sequence 1 (Mcl1) deletion in mice induces embryonic lethality at the 177 

blastocyst (embryonic E3) stage prior to implantation 165, 166, embryos lacking BCL2-like 1 (BCL2L1, 178 

best known as BCL-XL) die around embryonic day 13.5) with substantial cell depletion in the developing 179 

central nervous system (CNS) and erythroid progenitors 167. Concomitant deletion of BCL2-associated 180 

X protein (Bax) or caspase 9 (Casp9) considerably limited neuronal cell death genotype caused by the 181 

absence of BCL-XL 168, 169. Concomitant deletion of BCL2 like 11 (Bcl2l11, the gene encoding BIM) 182 

rescues the erythroid progenitors (but not the neuronal) cells from death in BCL-XL-deficient mice 170. 183 

Bcl2-/- mice are born but exhibit severe defects in their kidneys, alterations of the CNS, lymphoid cell 184 

depletion as well as premature graying of their hair and they succumb to polycystic kidney disease at a 185 

young age 171, 172, 173, 174, 175, 176, 177. These defects can all be rescued by concomitant deletion of the gene 186 

encoding BIM, and, remarkably, in the case of some defects the loss of even a single allele of Bim is 187 

sufficient 171. Mice with deletion of B cell leukemia/lymphoma 2 related protein A1a (Bcl2a1a, one of 188 

three isoforms of BCL2A1 in mice) or loss of all isoforms of BCL2A1 (best known as A1) show no 189 

developmental defects but display minor defects in the hematopoietic compartment 178, 179, 180, 181. The 190 

absence of BCL-W results in male infertility due to defective spermatogenesis 182, 183, 184. 191 

As opposed to homozygous deletion, haploinsufficiency for genes encoding MCL1 or BCL-XL did not 192 

result in defects in normal development 165, 167. However, Mcl1+/- mice display significant, albeit minor 193 

decreases in certain hematopoietic cell types 185, 186, and poor hematopoietic recovery from stress, such 194 

as gamma-radiation or treatment with 5-FU, which can be rescued by deletion of BCL2 binding 195 

component 3 (Bbc3; the gene encoding PUMA) 186. Moreover, the loss of one Bcl2l1 allele (encoding 196 

BCL-XL) limits male fertility due to defects in germ cell development 187 and shortens platelet lifespan 197 

188. Of note, while combined haploinsufficiency for Mcl1 and Bcl2, for Mcl1 and Bcl2a1a or for Bcl2l1 198 
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and Bcl2 does not markedly affect embryonic development in mice 189, 190, 191, Mcl1+/−Bcl2l1+/− double 199 

heterozygote mice display severe developmental defects and die during embryogenesis or early 200 

postnatally 190.Remarkably this defect that can be rescued by concomitant deletion of a single allele of 201 

the gene encoding BIM. These observations suggest that embryonic development is safeguarded by a 202 

delicate balance between pro- and anti-apoptotic BCL2 proteins. 203 

Conditional knockout studies confirmed the importance of the different pro-survival BCL2 family 204 

members in specific tissues at precise developmental stages. These studies showed that MCL1 is critical 205 

for the development and/or maintenance of most (but not all) hematopoietic cell populations including 206 

stem and progenitor cells 192, immature as well as mature B and T lymphocytes 193, 194, 195, 196 Jain, 2017, 207 

28972012;197, natural killer (NK) cells 198, neutrophils 199, 200, mast cells and basophils 201, as well as Ig 208 

secreting plasma cells 202, 203. Accumulating evidence suggests that the survival of some hematopoietic 209 

cell subsets is safeguarded by the combined activity of two or even more anti-apoptotic BCL2 family 210 

members 204. Conditional deletion of Bcl2l1 alone (leading to lack of BCL-XL) or in combination with 211 

loss of Mcl1 demonstrated functional redundancy between BCL-XL and MCL1 in developing 212 

lymphocytes 205, 206 and megakaryocytes 188, 207, 208, 209. Conversely, BCL2 and A1 appear to have 213 

overlapping actions in the survival of B cells and neutrophils 189, 210, 211 but not megakaryocytes and 214 

platelets 212. Data from hematopoietic chimeric mice confirm the role of these proteins in hematopoiesis 215 

104, 167, 213, 214. BCL2 is reported to contribute to the development and homeostasis of the mouse epidermis 216 

215.  Along similar lines, MCL1 and BCL- XL play roles in the development and homeostasis of several 217 

tissues including the myocardium 216, 217, the CNS 218, 219, 220, 221, 222, 223, 224, 225, 226, the hepatic parenchyma 218 

227, 228, 229, 230, 231, vascular endothelium 232, thymic epithelium 233, as well as the intestinal 234, mammary 219 

235, 236, lung 237 and renal 238 epithelium. 220 
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There are substantial differences in the severity of the defects caused by the conditional deletion of 221 

different pro-survival BCL2 family genes and between distinct tissues. For instance, conditional deletion 222 

of Mcl1 in mouse hematopoietic stem/progenitor cells 192, erythroid cells 239 or TREG cells 240 is lethal. In 223 

the latter case, lethality is ascribed to multiorgan autoimmunity caused by the depletion of the pool of 224 

TREG cells 240. Similarly, the megakaryocyte-specific combined deletion of the genes encoding MCL1 225 

and BCL-XL provokes embryonic or perinatal lethality 207, which can be rescued by the absence of BAK1 226 

80. Similar findings have been obtained upon the ablation of Mcl1 from the CNS or the myocardium, or 227 

the specific removal of the gene encoding BCL-XL from the respiratory epithelium, although these 228 

experiments did not include rescue approaches 217, 218, 219, 237. The functional overlap between MCL1 and 229 

BCL-XL appears to be particularly relevant in the CNS and liver 225, 228. Of note, the requirement of 230 

MCL1 and BCL-XL for neurogenesis appears to fluctuate between different stages of differentiation. The 231 

neurodevelopmental defects imposed by the deletion of Mcl1 or Bcl2l1 can be rescued by the absence of 232 

BAX 169, 225. The detrimental effects of the hepatocyte-specific ablation of Bcl2l1 or Mcl1 can be rescued 233 

by deletion of Bax and Bak1 as well as by that of Bcl2l11 (encoding BIM) and/or BH3 interacting domain 234 

death agonist (Bid) 241, 242. These observations demonstrate that organogenesis and adult tissue 235 

homeostasis depend on the balance between both anti-apoptotic and pro-apoptotic members of the BCL2 236 

family. Further substantiating this notion, deletion of the gene encoding BCL-XL from keratinocyte 237 

precursors limits skin cancer development driven by ultraviolet B (UVB) rays and chemical carcinogens 238 

243. Conversely, the hepatocyte-specific deletion of Mcl1 promotes hepatic carcinogenesis 244, as does the 239 

deletion of Mcl1 in intestinal epithelial cells 234. These latter findings may appear counterintuitive, as 240 

pre-malignant cells are expected to be more susceptible to succumb to environmental stress in the absence 241 

of MCL1 or BCL-XL. However, both hepatic and intestinal carcinogenesis involve a robust inflammatory 242 

component that is exacerbated by tissue damage and cell death 245. Moreover, MCL1-deficient tissues 243 

show an increased cell turnover, which results in elevated level of replicative stress and genetic 244 
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instability, potentially promoting carcinogenesis 231, 234. Also, when many cells die, progenitors get 245 

mobilized and must divide extensively. This increases the risk of such cells acquiring mutations that may 246 

drive neoplastic transformation, as firstly shown in a murine model of radiation induced thymic T cell 247 

lymphoma development 139, 140. 248 

249 
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Box 4. Impact of the apoptosome and apoptotic caspases on health    250 

The whole-body deletion of apoptotic peptidase activating factor 1 (Apaf1) or caspase 9 (Casp9) is 251 

associated with fetal lethality around E14.5 to E16.5 246, 247, 248. Severe abnormalities in APAF1-deficient 252 

fetuses include webbed feet, craniofacial malformations, incomplete neural tube closure and/or excessive 253 

brain growth and exencephaly resulting in alteration of the central nervous system (CNS) including in 254 

the visual, olfactory, and auditory systems 246, 248, 249, 250, 251, 252. Similar defects in the developing brain 255 

result from Casp9 deletion 166, 248, 253, a phenotype that was not exacerbated by Casp2 co-deletion 254. 256 

The absence of CASP9 did not rescue neuronal defects due p53 hyperactivation in neural crest cells 255. 257 

Of note, evidence linking mutations in APAF1, CASP9 and CASP3 to neural tube defects in humans has 258 

been reported 256, 257. Mice lacking cytochrome c, somatic (CYCS) die in midgestation 258, while the 259 

deletion of cytochrome c, testis (Cyct), which is specifically expressed in male gonads is associated with 260 

normal development but male infertility 259. The neuron-specific ablation of Cycs results in postnatal cell 261 

death 260. Confirming that the detrimental effects of Cycs deletion result from impaired apoptosis, mice 262 

expressing a mutant CYCS that retains the ability to shuttle electrons as a component of the mitochondrial 263 

respiratory chain but is unable to assemble the apoptosome exhibit perinatal lethality and developmental 264 

brain defects similar to APAF1- and CASP9-deficient mice 261.  265 

Importantly, the genetic background of the mouse strains appears to significantly influence the impact of 266 

the absence of core components of the apoptotic machinery on embryonic development. Thus, while 267 

genetic deletion of Casp3 in 129S1/SvImJ mice results in embryonic or early postnatal lethality due to 268 

the severe defects in brain development that are only partially rescued by concomitant deletion of the 269 

gene encoding BCL-XL, on a C57BL/6 background Casp3-/- mice develop normally and survive into 270 

adulthood 262, 263, 264, 265. A similar impact of genetic background on phenotype has also been observed 271 
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for Apaf1-/- and Casp9-/- mice 266, 267. Although Casp3-/- mice reach adulthood on a C57BL/6 background, 272 

they exhibit defects in complex brain functions including attention and (in males) social behavior 268, 269, 273 

as well as ear and vestibular dysfunction including hearing loss 270, 271, 272, 273, 274, Abnormalities were also 274 

seen in the kidney and spleen of aged Casp3-/- mice 275. Survival of Casp3-/- mice to adulthood in 275 

C57BL/6 mice was ascribed to the compensatory activation of CASP7 276. The combined ablation of 276 

Casp3 and Casp7 causes embryonic lethality on the C57BL/6 background, although death is caused by 277 

severe cardiac rather than brain defects 277. Such phenotypic differences may originate from some degree 278 

of substrate selectivity exhibited by CASP3 vs. CASP7 278, 279, 280, 281, 282. Moreover, a recent study 279 

performed in Casp7-/- mice indicates that CASP7 acts as a facilitator of the variants of RCD occurring in 280 

the context of pore-driven lysis rather than an apoptotic executioner 283. 281 

Approximately 5% of APAF1-deficient mice develop normally and survive into adulthood, although 282 

males are often sterile due to defective spermatogenesis 247; their phenotype is reminiscent of the 283 

phenotype of mice deficient for BAX, BAK1 and BOK (i.e., Bak1-/-Bax-/-Bok-/- mice) 64. Of note, rare 284 

adult Apaf1-/- male mice that retain fertility display expansion of the lateral brain ventricles coupled with 285 

behavioral abnormalities and growth retardation 267. Conversely, the rare mice expressing a CYCS 286 

variant specifically deficient in apoptotic functions that survive into adulthood exhibit impaired 287 

lymphocyte homeostasis 261. Whole-body deletion of diablo, IAP-binding mitochondrial protein (Diablo, 288 

coding for a pro-apoptotic factor also known as SMAC) alone or along with HtrA serine peptidase 2 289 

(Htra2) does not result in developmental defects in mice 284, 285, while the Diablo-/-Casp3-/- genotype 290 

accrues the perinatal lethality observed in Casp3-/- mice 286. Mice lacking the X-linked inhibitor of 291 

apoptosis (XIAP, the main target of the pro-apoptotic activity of SMAC and HTRA2) are also viable and 292 

develop normally, possibly due to functional compensation by other members of the inhibitor of 293 

apoptosis protein (IAP) family 287, 288, but they exhibit mild defects in late pregnancy that do not 294 

compromise lactation 287. Consistent with this SMAC-mimetic drugs that were designed to induce 295 
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apoptosis by antagonizing IAPs are quite well tolerated 289. Xiap-/- mice also show dysregulated innate 296 

immune responses 290, most likely linked to the modulatory role of XIAP in inflammation and necroptosis 297 

291, 292, 293, or to the inability of these animals to resolve infections 294. Accordingly, loss-of-function 298 

mutations in XIAP are associated with X-linked lymphoproliferative syndrome type 2 in humans 291, 295, 299 

296, 297. 300 

The myocardium-specific deletion of Casp3 and Casp7 impairs heart development in mice resulting in 301 

myocyte hypertrophy 298. The role of APAF1, CASP9 and CASP3 in hematopoiesis remains debated. 302 

Specific ablation of Apaf1 or Casp9 from the hematopoietic system using lethally irradiated wild-type 303 

mice reconstituted with hematopoietic stem/progenitor cells deficient for these factors did not expand 304 

the lymphoid or myeloid cell compartments 299. Likewise, no hematopoietic defects emerge from the 305 

whole-body deletion of Casp3 277. Moreover, mice lacking Casp9 in the hematopoietic system display a 306 

proper generation and functionality of megakaryocytes and platelets 300. Moreover, the clearance of 307 

Casp9-/- thymocytes seems to occur in a caspase-independent fashion 301. In the same line, although 308 

apoptosis is widely believed to be crucial for epithelial cell death and shedding in the intestine, during 309 

steady state, executioner CASP3 and CASP7 are dispensable for intestinal epithelial cell turnover at the 310 

top of intestinal villi, intestinal tissue dynamics, microbiome, and immune cell composition, suggesting 311 

high redundancy in non-challenged conditions 302. Apparently at odds with these observations, Casp3-/- 312 

mice were reported to have abnormally increased numbers of splenic B cells manifesting increased 313 

proliferative capacity 303, as well as a dysregulated activity in bone marrow stromal stem cells that 314 

attenuated osteogenic differentiation 304. A similar debate revolves around the requirement for APAF1 315 

and caspase activity in thymocyte selection and/or T cell responses 299, 305, 306, 307, 308, 309. Mouse bone 316 

marrow chimeras deficient for APAF1 or CASP9 in their hematopoietic cells displayed a defect in 317 

hematopoietic stem/progenitor cells that is caused by the aberrant type 1 interferon production caused by 318 

the fact that hematopoietic cells undergoing normal programmed cell death do not die in a “neat” non-319 
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inflammatory manner 310, 311. Taken together, these findings suggest that BAX/BAK1 dependent death 320 

of hematopoietic cells does not require caspases but that caspases are needed to prevent an inflammation 321 

causing form of cell demolition 312, 313, 314, 315. However, neither the degree of functional redundancy 322 

exhibited by CASP3, CASP6 and CASP7, nor the potential for APAF1-independent CASP3 activation 323 

has been formally excluded in these studies, most of which involved single genetic alterations.  324 

  325 
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Box 5. Principles of extrinsic apoptosis.        326 

Extrinsic apoptosis is a regulated cell death (RCD) process frequently triggered by immune effector cells 327 

expressing TNF superfamily death ligands binding the death receptor (DRs) upon binding of a cognate 328 

ligand 316, 317, 318. The principal DRs which will be discussed in the review are the Fas cell surface death 329 

receptor (FAS; also known as CD95 or APO-1), the TNF receptor superfamily member 1A (TNFRSF1A; 330 

best known as TNF-R1), the TNF receptor superfamily member 10a (TNFRSF10A; best known as 331 

TRAIL-R1 or DR4) and the TNF receptor superfamily member 10b (TNFRSF10B; best known as 332 

TRAIL-R2 or DR5). FAS is activated by the binding of FAS ligand (FASLG; also known as CD95L or 333 

APO-1L; FASL in mice), which is primarily expressed by effector immune cells 318. TNF-R1 is activated 334 

by tumor necrosis factor (TNF), a functionally pleiotropic cytokine expressed in cells in the spleen, 335 

thymus and certain other adult tissues 316. Of note, while the soluble form of TNF preferentially binds to 336 

TNF-R1, the membrane-anchored form mainly interacts with the TNF receptor superfamily member 1B 337 

(TNFRSF1B, best known as TNF-R2), which does not have death domain and therefore is not a DR 319. 338 

Finally, TRAIL-R1 and TRAIL-R2 are specifically activated by the binding of TNF superfamily member 339 

10 (TNFSF10; best known as TRAIL), which is expressed by a variety of cell subtypes of the innate as 340 

well as adaptive system, including monocytes, macrophages and effector T cells, as either a soluble or 341 

membrane-bound version 320. Of note, mice express only one TRAIL receptor (TRAIL-R2, referred in 342 

this article as mTRAIL-R) which is equally homologous to human TRAIL-R1 and TRAIL-R2. 343 

Upon ligand binding and trimerization and in certain instances formation of higher order complexes, the 344 

engagement of DRs promotes the assembly of multi-protein complexes, such as the death-inducing 345 

signaling complex (DISC) and complex II, resulting in the activation of caspase 8 (CASP8) and apoptosis 346 

321, 322, 323, 324. The DISC, which is assembled on the cytoplasmic tail of ligated FAS, TNF-R1, TRAIL-347 

R1 or TRAIL-R2, is comprised of the molecular adaptor Fas-associated death domain protein (FADD),  348 
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Fas (TNFRSF6)-associated via death domain (FADD), CASP8, and (FADD-like IL-1β-converting 349 

enzyme)-inhibitory protein distinct isoforms of CASP8 and FADD like apoptosis regulator (CFLAR; 350 

best known as c-FLIP), including the alternative splicing variants, the long form c-FLIPL and the short 351 

form c-FLIP S and (in human) c-FLIPR 
325, 326, 327, 328, 329, 330. Of note, c-FLIPs are catalytically inactive 352 

CASP8-like molecules acting as a modulator of CASP8 activation. Unlike FAS- and TRAIL-R-353 

associated DISCs, complex II is a cytosolic complex assembled secondarily upon TNF-R1 ligation, in 354 

conditions of reduced pro-survival signaling and protein synthesis as for instance upon administration of 355 

inhibitors of inhibitor of apoptosis proteins (IAPs) and cycloheximide 331. Complex II consists of FADD 356 

and CASP8 in association with either TNF-R1-associated death domain protein (TRADD) (complex IIa) 357 

or receptor interacting serine/threonine kinase 1 (RIPK1) (complex IIb), which is involved in the 358 

modulation of apoptosis and necroptosis 332. Upon the recruitment to the DISC (complex I), CASP8 is 359 

activated by a process involving CASP8 oligomerization and autoproteolysis. CASP8 then acts as the 360 

executor of extrinsic apoptosis by favoring the proteolytic activation of the effector caspases CASP3 and 361 

CASP7 333. This direct pathway is sufficient for FAS ligand induced killing thymocytes and mature 362 

lymphocytes (so-called type 1 cells), but the efficient killing of hepatocytes, pancreatic β cells, and most 363 

cancer cells (so-called type 2 cells) requires pathway amplification through caspase-8 mediated 364 

proteolytic activation of the BH3-only protein BID, leading to engagement of the intrinsic apoptotic 365 

pathway 117, 334, 335, 336, 337, 338, 339 PMID: 9501089 PMID: 9501089 PMID: 9501089 PMID: 9501089. Of note, the absence of 366 

XIAP converts type 2 cells into type 1 cells 123, indicating that a limited amount of caspase activity is 367 

needed for cell killing.  368 

Once activated, CASP8 also cleaves RIPK1 leading to the inhibition of necroptosis and the maintenance 369 

of inflammatory homeostasis 340. As a further layer of complication, the engagement of DRs by their 370 

respective ligands does not necessarily culminate in the activation of the extrinsic apoptosis signaling 371 
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pathway. Indeed, the engagement of FAS, TRAIL-Rs and TNF-R1 can also result in the activation of 372 

pro-survival pathways which is often but not always dependent on NF-κB signaling 320, 341, or, 373 

alternatively, in the initiation of inflammatory responses, the promotion of processes including cell 374 

differentiation/activation (as is the case of lymphocytes), and the activation or inhibition of other RCD 375 

variants, particularly necroptosis and pyroptosis 342. The induction of inflammatory chemokines and 376 

cytokines downstream of the activation of FAS and TRAIL-Rs is mediated by FADD and CASP8 by a 377 

mechanism that can be independent of apoptosis induction 343, 344. 378 

Extrinsic apoptosis can be activated by another class of cell surface receptors known as dependence 379 

receptor. In this case, cell death is ignited by the decrease in the availability of a specific ligand on which 380 

these receptors depend, while the latter through the binding of a cognate ligand 345, 346. The dependence 381 

receptors include (but are not limited to) the DCC netrin 1 receptor (DCC) and distinct types of unc-5 382 

netrin receptors (UNC5A, UNC5B, UNC5C, and UNC5D), all of which are bound by netrin 1 (NTN1), 383 

and the neurotrophic receptor tyrosine kinase 3 (NTRK3) and patched 1 (PTCH1), which are, 384 

respectively, ligated by neurotrophin and sonic hedgehog (SHH). The activation of dependence receptors 385 

stimulates hitherto poorly characterized signaling cascade often dependent on caspase activation, leading 386 

to the induction of cell death 347, 348. It is noteworthy that the relevance of the dependence receptor-387 

induced apoptosis for normal physiology and disease is not established.  388 
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Box 6. Impact of death receptors on health.        389 

A large body of data demonstrates that death receptor (DR) signaling is crucial for the maintenance of 390 

adult tissue homeostasis but nor for embryonic development as demonstrated by the normal appearance 391 

of mice double knockout for caspase 8 and mixed lineage kinase domain like pseudokinase (Casp8-/-392 

Mlkl-/- mice) or CASP8 and receptor-interacting serine-threonine kinase 3 (Casp8-/-Ripk3-/- mice) (before 393 

they develop lymphadenopathy and splenomegaly) 349, 350, 351, 352, 353, 354. Mouse strains with spontaneous 394 

mutations in TNF receptor superfamily member 6 (Fas) - the so-called lpr/lpr mice – or Fas ligand (TNF 395 

superfamily, member 6) (Fasl) - the so-called gld/gld mice - are viable but develop progressive 396 

lymphoproliferative and systemic lupus erythematosus (SLE)-like disorders 355, 356, 357, 358, 359. The 397 

severity of these pathologies is greatly influenced by genetic background: fairly mild on a C57BL/6 398 

background but very severe on the MRL or NOD backgrounds. Mice with heterozygous Fas or Fasl 399 

mutations are normal 359. These lymphoproliferative and autoimmune disorders are not accompanied by 400 

impaired thymocyte development 360. Transgenic overexpression of BCL2 335 or MCL1 361 in the 401 

lymphocyte compartment of lpr/lpr mice or the absence of BIM 362 massively exacerbate 402 

lymphadenopathy. This is consistent with the notion that intrinsic apoptosis and DR-induced apoptosis 403 

are distinct in lymphoid cells and act additively. FAS or FASL deficiency also perturbs the homeostasis 404 

or function of other mouse tissues, including (but not limited to) the liver 360, kidney 363, retina 364, 405 

pancreas 365 and intestinal epithelium 366, but these effects may all be a consequence of the deregulation 406 

of the lymphoid system in these mice, for example causing excess production of certain cytokines and 407 

chemokines. 408 

Conditional deletion of Fas and Fasl in specific immune cell subsets as well as transgenic expression of 409 

FAS in lymphocytes confirms the crucial role of FASL-FAS signaling in the homeostasis of lymphocytes 410 

and dendritic cells (DCs) 367, 368, 369, 370, 371. In this context, experiments in lpr/lpr mice deleted of BH3-411 
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only protein BCL2 like 11 (Bcl2l11, the gene encoding BIM) demonstrate some degree of cooperation 412 

between FAS and BIM in preserving the functionality of the immune system 362. However, abrogating 413 

FAS-FASL signaling ultimately has heterogeneous organismal consequences. The lymphoproliferative 414 

disorder caused by Fas or Fasl deletion confers protection from autoimmune diabetes 372. This may be 415 

explained by the fact that the distortion of the T cell repertoire caused by the lymphadenopathy in the 416 

lpr/lpr and gld/gld mice prevents the development of diabetogenic T cells. Finally, FAS appears to exert 417 

tumor suppressive effects in lymphoid cells. Indeed, both gld/gld mice as well as lpr/lpr mice lacking the 418 

T cell compartment have increased incidence of B cell lymphoma 373, 374, 375. Loss of FAS also predisposes 419 

humans to B lymphoma (see below). 420 

As for the other DRs, mice lacking TNF receptor superfamily member 10b (TNFRSF10B, best known 421 

as TRAIL-R2 or mTRAIL-R) or its ligand TNF superfamily member 10 (TNFSF10, beast known as 422 

TRAIL) are viable, fertile, and do not spontaneously develop autoimmune diseases 376, 377, 378, 379. 423 

Moreover, these mice exhibit normal immune system development and function 380, 381, 382, 383. Along 424 

similar lines, the whole-body deletion of the DR ligand tumor necrosis factor (Tnf) does not affect mouse 425 

development and fertility 384, 385. However, Tnf-/- mice often show early hearing loss and, despite 426 

presenting with an overtly functional immune system, these mice exhibit abnormally increased 427 

susceptibility to spontaneous bacterial infection, which has been ascribed to multiple defects including 428 

defective lymphoid organ architecture as well as deficient granuloma and germinal center formation 384, 429 

385, 386, 387, 388. Impaired responses to pathogens have been documented in Tnf+/- mice 384 as well as in mice 430 

lacking TNF receptor superfamily member 1A (TNFRSF1A, best known as TNF-R1) 386, 389, 390. 431 

Conversely, mice overexpressing TNF in cardiomyocytes suffer from lethal dilated cardiomyopathy, 432 

demonstrating that balanced TNF signaling is essential for the homeostasis of the cardiac tissue 391, 392, 433 

393. Of note, while the lack of TRAIL enhances the severity of lymphoproliferative and autoimmune 434 

disorders in gld/gld mice 394, the lack of TNF attenuates the lymphoproliferative phenotype, extending 435 
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the survival of gld/gld mice 395. The latter is probably due to the reduction in TNF-mediated inflammation 436 

attenuating lymphadenopathy caused by the absence of FAS ligand. These findings confirm the 437 

pleiotropy and redundancy of DR signaling, encompassing not only apoptotic and non-apoptotic 438 

regulated cell death (RCD)-related effects, but also various pro-survival and pro-inflammatory modules.  439 

Multiple clinical observations support the role of FAS ligand/FAS signaling in human hematopoiesis 396, 440 

397. Most human patients with autoimmune lymphoproliferative syndrome (ALPS) - a primary 441 

immunodeficiency manifesting with lymphadenopathy, splenomegaly as well as abnorrmal numbers, 442 

development and function of lymphocytes carry loss-of-function mutations in FAS or FASLG 398, 399, 400, 443 

401, 402, 403, 404. ALPS patients also display an increased incidence of non-Hodgkin and Hodgkin lymphoma 444 

405. While no mutations in the genes encoding TRAIL, TRAIL-R1 and TRAIL-R2 have so far been linked 445 

to human autoimmune diseases, autosomal dominant mutations in TNFRSF1A (leading to lack of TNF-446 

R1) have been identified in patients affected by TNF receptor-associated periodic syndrome (TRAPS), 447 

characterized by severe abdominal pain, arthralgias, and myalgias 406, 407, 408. 448 

  449 
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Box 7. Impact of extrinsic apoptosis complexes and caspases on health.   450 

Several signal transducers in the death receptor (DRs) pathway are essential for embryonic development 451 

in mice. Thus, deletion of Fas (TNFRSF6)-associated via death domain (Fadd), caspase 8 (Casp8) or 452 

CASP8 and FADD-like apoptosis regulator (Cflar) is embryonic lethal at mid-gestation as a consequence 453 

of severe vascular as well as cardiac defects associated with spontaneous intra-abdominal hemorrhage 454 

409, 410, 411, 412, 413, 414. Of note, CASP8-deficient mice also exhibit neural tube defects 413. A similar 455 

embryonic lethality has also been documented in mice expressing a mutant form of FADD deficient in 456 

its death domain 410. The absence of other components of DR-associated signaling complexes, such as 457 

TNFRSF1A associated via death domain (TRADD) and receptor-interacting serine/threonine kinase 1 458 

(RIPK1), causes different abnormalities. Thus, while Tradd-/- mice develop normally and do not display 459 

major hematopoietic defects 415, 416, 417, Ripk1-/- mice die early after birth due to severe multiorgan 460 

inflammation 418, 419. These findings are attributed to the pleiotropic contribution of RIPK1 and TRADD 461 

to a variety of processes beyond apoptosis, most notably necroptotic regulated cell death (RCD) and 462 

inflammation. This is exemplified by the observation that the embryonic lethality caused by the absence 463 

of CASP8 or FADD can be rescued by the concomitant loss of MLKL or RIPK3 (see text). Mice lacking 464 

baculoviral IAP repeat-containing 3 (BIRC3; best known as IAP1) and X-linked inhibitor of apoptosis 465 

(XIAP) or IAP1 and BIRC2 (best known as IAP2) but not mice lacking IAP2 and XIAP display 466 

embryonic lethality 420. These findings indicate specific functional redundancies among the inhibitor of 467 

apoptosis protein family. IAP1/IAP2-deficient mice display mid-gestation lethality, which was rescued 468 

to birth by the deletion of TNF receptor superfamily member 1A (Tnfrsf1a, encoding TNF-R1) but not 469 

that of TNF receptor superfamily member 1B (Tnfrsf1b, best known as TNF-R2) 420. Loss of one allele 470 

of Ripk1 or loss of Ripk3 prolonged embryonic survival of these mice 420. It is noteworthy, that, as 471 

discussed above, genetic background effects might contribute to the phenotype, as mice with concomitant 472 
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knockout of the genes encoding IAP1 and IAP2 using mutant alleles generated in C57BL/6 embryonic 473 

stem cells die in midgestation 420, whereas Iap1-/- and Xiap-/- double mutants generated using 129Sv 474 

embryonic stem cells are viable 421. 475 

It was demonstrated that embryonic lethality in Casp8-/- and Fadd-/- mice is due to excessive necroptosis, 476 

reflecting the ability of CASP8 to limit necroptosis downstream of DR activation 349, 350, 422, 423. 477 

Accordingly, deletion of genes encoding key components of the necroptotic machinery such as RIPK3 478 

or MLKL prevents all developmental defects and embryonic lethality in FADD- or CASP8-deficient 479 

embryos 349, 350, 351, 352, 354, 423, 424. Of note, Casp8-/-Ripk3-/- and Casp8-/-Mlkl-/- mice develop progressive 480 

lymphoproliferative disorders that resemble those caused by the absence of FAS or FASL 350, 351, 423. 481 

Moreover, embryonic lethality around E10.5 in mice lacking c-FLIP and the perinatal lethality of Ripk1-482 

/- mice depend on aberrant activation of both DR-induced apoptosis and DR-induced necroptosis. Indeed, 483 

the lethality of these animals can be rescued by concomitant deletion of Fadd and Ripk3, Casp8 and 484 

Ripk3, or Fadd and Mlkl 349, 350, 351, 352, 353, 354. Of note, mice with loss of Ripk1 that prevents its CASP8-485 

mediated cleavage die around E10.5 of embryonic development and this can be prevented by the 486 

combined absence of RIPK3 and CASP8 340, 425, 426. In a heterozygous state these mutations in the gene 487 

encoding RIPK1 cause severe auto-inflammation. As an additional layer of complexity, although the 488 

deletion of Tradd rescues Ripk1-/-Ripk3-/- embryos from perinatal lethality, triple knockout mice die 489 

postnatally 427, 428. Moreover, TRADD deficiency does not prevent the embryonic lethality caused by the 490 

loss of FADD 428. Additional studies confirm the importance of the inter-connectivity between multiple 491 

regulated cell death (RCD) pathways. Mice with a mutation that prevents auto-proteolytic activation of 492 

CASP8 develop normally 429, but akin to complete loss of CASP8, mutations in the CASP8 catalytic site 493 

result in embryonic lethality around E10.5 due to aberrant necroptosis 425, 430, while the genetic ablation 494 

of Mlkl or Mlkl plus Fadd prevent E10.5 embryonic lethality in these mice, the compound mutant mice 495 
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die soon after birth, likely due to aberrant inflammation and pyroptosis 431, 432. These observations point 496 

to the central role for CASP8 in the regulation of multiple RCD variants and inflammatory processes 433. 497 

The tissue-specific deletion of Fadd or Casp8 in mouse endothelial cells results in an embryonic lethal 498 

phenotype that resembles that of germline Fadd or Casp8 deletion 434, 435. Conversely, the absence of 499 

FADD in cardiomyocytes or cardiac progenitor cells appears to have no impact on embryonic 500 

development 434. Again, abrogation of necroptosis rescued the lethal phenotype of endothelial cell 501 

specific Fadd or Casp8 deletion 434, lending additional support to inhibitory role of FADD and CASP8 502 

in necroptotic RCD. FADD, CASP and CFLAR (best known as c-FLIP) have also been implicated in 503 

hematopoietic system homeostasis. However, the absence of FADD in specific immune cell subsets in 504 

mice via distinct experimental approaches, such as conditional gene deletion, injection of Fadd-/- 505 

embryonic stem cells into Rag1-/- blastocysts or transgenic expression of a dominant-negative variant of 506 

FADD does not drive lymphoproliferative disorders. Instead, FADD appears to be critical for the 507 

proliferation and/or development of T lymphocytes 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446 and B cells 447, 508 

most likely by preventing necroptosis through activation of CASP8 which then prevents RIPK1/RIPK3 509 

mediated activation of MLKL. Similar conclusions were derived from the analysis of mice with 510 

lymphocyte-specific ablation of Casp8 or Cflar 448, 449, 450, 451, 452, 453. A role for CASP8 in T cell 511 

proliferation has also emerged from the realization of the anti-proliferative effects of caspase inhibitors 512 

454. The T cell-specific deletion of Casp8 attenuates autoimmunity and improved the survival of mice 513 

lacking the BH3-only protein BCL2 like 11 (BCL2L11, best known as BIM) by limiting T cell 514 

proliferation and survival 455. Apparently at odds with these findings, the conditional deletion of Casp8 515 

in T cells has also been associated with an age-dependent, lymphoproliferative immune disorder 516 

resembling the condition of patients with CASP8 mutations 456. Whether mouse genetic background or 517 

other contextual variables (e.g., the mouse microbiota) underlie such apparent discrepancies remains to 518 

be elucidated. 519 
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The conditional loss of the functions of FADD or CASP8 also revealed a role for these proteins in early 520 

hematopoiesis, which may relate to their ability to promote the proliferation and differentiation of 521 

hematopoietic stem and progenitor cells by preventing necroptosis 435, 457, 458. Conditional deletion of 522 

Fadd in myeloid cells resulted in increased myeloid and B cell populations coupled to activation of 523 

inflammatory responses 459. Along similar lines, the macrophage-restricted deletion of Casp8 induced a 524 

mild systemic inflammatory disease potentially linked to altered macrophage polarization 460, 461, while 525 

the DC-specific deletion of the genes encoding c-FLIP or CASP8 elicited splenomegaly, inflammatory 526 

responses and autoimmune disorders 462, 463, 464. These effects all seem to be unrelated to the pro-apoptotic 527 

functions of FADD and CASP8 but reflect their ability to prevent necroptosis 350, 423, 443, 459, 460, 465, 466, 467. 528 

Corroborating these findings, loss-of-function mutations in FADD 468, 469, 470, 471, CASP8 or CASP10 472, 529 

473, 474 and TRADD 475 have been associated with ALPS-like syndromes and certain hematological 530 

diseases in humans. Of note, patients with ALPS bearing mutations in FADD or CASP8 but not ALPS 531 

patients with mutations in FAS or FASLG also exhibit immunodeficiency coupled with lymphocytic 532 

infiltrations in multiple organs, granulomas and/or inflammatory bowel disease 468, 472, 476, 477, 478. 533 

Tissue-specific deletion of Fadd, Casp8 and Cflar has also revealed a role for these proteins in the 534 

homeostasis of the liver, skin and intestine, although severity of the phenotype varies quite considerably, 535 

ranging from mild inflammatory response to embryonic or early postnatal lethality, again likely due to 536 

unleashed necroptosis. Conditional deletion of Cflar (resulting in lack of c-FLIP) in intestinal epithelial 537 

cells, hepatocytes or keratinocytes resulted in embryonic or perinatal lethality due to aberrant activation 538 

of cell death 479, 480, 481, 482. The inducible deletion of Cflar from the intestinal epithelium of adult mice 539 

caused severe inflammation that was often fatal 482. These findings are in line with the crucial role of c-540 

FLIP as an inhibitor of necroptosis 349, 483. Along similar lines, Fadd deletion in epidermal keratinocytes 541 

or intestinal epithelial cells causes severe chronic inflammation due to the induction of aberrant 542 

necroptosis 484, 485, 486, 487, 488, 489, 490. Accordingly, the removal of FADD (or CASP8) in intestinal 543 
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epithelial cells resulted in chronic inflammatory colitis and ileitis, which was prevented by concomitant 544 

deletion of Ripk3 or Mklk 430, 432, 485, 487, 490, 491. In one of these studies, acute deletion of Casp8 in the gut 545 

of adult mice resulted in enterocyte death, leading to disruption of tissue homeostasis, sepsis and death 546 

490. In this context, CASP8-deficient enterocytes displayed decreased in vivo survival and migration 547 

potential 492. Specific deletion of Casp8 in endothelial cells results in small intestinal hemorrhage and 548 

bowel inflammation, suggesting a key role of CASP8 in vascular homeostasis in the small intestine 493. 549 

Expression of a catalytically inactive variant of CASP8 resulted in embryonic lethality similar to Casp8-550 

/- mice, which was rescued by concomitant deletion of Mlkl 430. However, unexpectedly, catalytically 551 

inactive CASP8 mutant mice also deficient for MLKL died perinatally.  Loss of CASP8 catalytic activity 552 

specifically in intestinal epithelial cells induced intestinal inflammation similar to absence of CASP8 in 553 

the intestinal epithelium. This intestinal phenotype was aggravated by Mlkl deletion, resulting in 554 

premature death dependent on the induction of inflammatory responses and pyroptosis 430. As an added 555 

layer of complexity, deletion of tumor necrosis factor (Tnf) or Tnfrsf1a (encoding TNF-R1) attenuated 556 

colitis, but not ileitis, in mice with an intestinal epithelial cell-specific deletion of Fadd or Casp8 482, 485. 557 

A recent study indicated that this effect may also involve the aberrant activation of pyroptosis. Indeed, 558 

the CASP8-dependent activation of gasdermin D (GSDMD) appears to promote ileitis in mice with 559 

FADD-deficient intestinal epithelial cells 494. These results are in line with the crucial involvement of 560 

CASP8 and FADD in the activation of inflammation 495, 496 and indicate that the FADD-CASP8 axis 561 

regulates tissue homeostasis by balancing apoptosis, necroptosis, pyroptosis and inflammation. 562 

 563 

 564 

 565 
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