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Abstract

This paper explores a growth model with capital that can be "brown"
or "green," impacting other firms’ total factor productivity (TFP). Brown
capital acts as a negative externality, lowering productivity, while green
capital, either human or natural, spills over and generates positive exter-
nalities, boosting productivity. We prove the existence of a competitive
equilibrium with these externalities and demonstrate the occurrence of
two-period cycles through local and global stability analysis. Notably,
cycles in the case of negative externalities require strong intertemporal
income effects, while positive externalities lead to cycles with significant
substitution effects.

Keywords: Romer model, sustainable growth, brown and green cap-
ital externalities, competitive equilibrium with externalities, local and
global stability.

JEL codes: C62, O44.

1 Introduction

Economic growth has long been considered the engine of human progress, en-
abling rising living standards, technological advancement, and poverty reduc-
tion. However, the current growth paradigm faces a critical challenge: sustain-
ability. Global warming and environmental degradation significantly threaten
long-term economic growth and human well-being. Traditional growth models
often treat capital accumulation as a homogenous process, neglecting its impact
on the environment. Such a myopic perspective has led to a situation where
economic prosperity is increasingly threatened by climate change, resource de-
pletion, and environmental degradation. Our paper addresses this critical gap by
proposing a new framework for analyzing growth that explicitly considers the
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environmental dimension of capital accumulation. We introduce a one-sector
growth model where capital can be categorized as "brown" or "green."
Brown capital represents traditional, polluting forms of capital that generate

negative externalities such as environmental damage, reducing other firms’ to-
tal factor productivity (TFP). Market failures caused by negative externalities
promote private investment that ignores climate damage (Rezai, 2011). Exist-
ing data paints a concerning picture. From 1850 to 2022, the yearly carbon
footprint has multiplied by almost 14 (Jones et al., 2023), the population by
more than 6 (Gapminder, 2023 and UN, 2022), and therefore, the individual
footprint more than doubled. This rapid growth is primarily driven by fossil
fuel dependence, which contributes significantly to greenhouse gas (GHG) emis-
sions (IPCC, 2007). The consequences are severe, potentially leading to a sixth
mass extinction event (Barnosky et al., 2011; Ceballos et al., 2016). Economic
sectors contribute unevenly to GHG emissions, where factories relying on fos-
sil fuels or industrial processes that release harmful pollutants are the heaviest
contributors, accounting for over two-thirds of global emissions. WRI’s 2023
report highlights that electricity and heat generation (31%), ground transport
(16.51%), manufacturing and construction (12.34%), and agriculture (11.34%),
are the biggest polluters. These sectors rely heavily on brown capital, generating
negative externalities that reduce the productivity of other firms. The negative
impacts of pollution on health, agriculture, and overall economic efficiency are
well documented (Xepapadeas, 2005).
Conversely, green capital encompasses knowledge-based and natural capital

stocks that create positive externalities, boosting their TFP. Human capital, em-
bodied in education, skills, and innovation, fosters positive externalities through
knowledge spillovers from research and development (Romer, 1986), investments
in renewable energy, or sustainable resource management practices. Similarly,
natural capital, comprising forests, clean water, and biodiversity, provides essen-
tial ecosystem services that enhance overall productivity (UNEP, 2021). Green
capital investments can lead to cleaner production processes, resource efficiency,
and reduced reliance on fossil fuels.
Several theoretical studies have explored the interplay between environmen-

tal considerations and economic growth. Gradus and Smulders (1993) investi-
gate how environmental concerns influence technology selection when pollution
arises as a side-product of physical capital accumulation. Acemoglu et al. (2012)
focus on the dirty sector’s negative impact on environmental quality. Boucekkine
et al. (2013) introduce pollution dynamics into a two-sector AK model and cal-
culate the optimal timing for switching from a dirtier technology to a cleaner
one. Similarly, Acemoglu et al. (2016) analyze the transition to cleaner tech-
nology. However, these studies often focus on models with distinct brown and
green capital stocks competing in production, along with the question of opti-
mal switching between them. A key limitation of the existing literature is its
reliance on numerical solutions rather than analytical ones. For instance, Rezai
(2011) integrates greenhouse gas externalities into the DICE-07 model, showing
optimal climate policy can boost welfare: the internalization of climate dam-
age, lowering the private return to capital, favors mitigation and consumption.
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Similarly, Rezai et al. (2012) explore how global warming’s negative externality
can be mitigated, using simulations to show potential Pareto gains from invest-
ments in mitigation strategies. Hoel et al. (2019) perform simulations using the
RICE-10 model (Nordhaus 2010), suggesting that well-designed international
climate agreements, optimizing investments and emissions to distribute welfare
across generations, can achieve Pareto improvements (no one loses compared to
inaction).
In contrast, our paper adopts a different approach. We present a single-sector

market economy model where the capital can be "brown" or "green" depending
on its externalities. Negative externalities represent pollution (brown capital),
while positive externalities reflect knowledge spillovers, human capital accumu-
lation, or natural capital benefits (green capital). In this respect, our model is
more general, allowing us to encompass both negative and positive externalities
within a single model. Moreover, we prioritize analytical solutions over solely
numerical approaches, offering a clearer understanding of the model’s dynamics.
This paper deliberately excludes the demographic transition. While population
growth undoubtedly impacts sustainability, its inclusion necessitates a more
complex and hybrid modeling approach beyond our single-sector framework.
Furthermore, according to Liu and Turnovsky (2005), production externalities
have a widespread impact, causing persistent distortions in the long-term eco-
nomic equilibrium regardless of the elasticity of labor supply. Our simplified
model allows for a clear examination of the core interplay between capital and
externalities, paving the way for future research that integrates additional com-
plexities.
Building upon the literature’s gaps, our paper tackles two crucial aspects:

(1) the proof of the existence of competitive equilibrium with both positive and
negative externalities, and (2) the analytical characterization of local and global
dynamics in such scenarios.
(1) The existence of a competitive equilibrium with positive externalities has

received limited attention in the literature. We consider works most relevant
to ours. Romer (1986) presents a continuous-time infinite-horizon model where
private firms use knowledge as a productive input, but the total knowledge
stock in the economy positively impacts all firms’ outputs. Additionally, the
knowledge growth rate depends on the investment rate and can be positive in
the long run. Exploring positive externalities and their impact on growth, Le
Van et al. (2002) provide a detailed but simple proof of equilibrium existence
in a discrete-time version of Romer’s model. Similarly, Uzawa (1965) and Lucas
(1988) study models where externalities stem from human capital accumulation
alongside physical capital. While d’Albis and Le Van (2006) focus solely on
effective labor as input, they establish sufficient and necessary conditions for a
unique competitive equilibrium with human capital externalities.
Key differences distinguish our work from these studies. In Romer (1986)

and Le Van et al. (2002), the positive externality arises from the existing knowl-
edge stock, which depends on the investment rate. Greiner and Semmler (2002)
also argue that investment generates positive externalities, promoting knowl-
edge capital accumulation through education, explaining sustained per capita
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growth as an endogenous phenomenon driven by constant or increasing returns
on capital, supported by empirical evidence. Similarly, for Uzawa (1965) and
Lucas (1988), the externality is linked to human capital accumulation based on
worker training time. Klenow and Rodriguez-Clare (2005) incorporate inter-
national knowledge spillover as externalities in their growth model, suggesting
diffusion drives most income above subsistence. From an empirical perspective,
Costantini and Monni (2008) show that investment in human capital (education
and health) outweighs resource dependence in achieving and sustaining higher
future consumption levels. These studies integrate positive externalities on the
TFP from knowledge capital into growth models. We extend this framework by
incorporating both negative and positive externalities, arising from brown (pol-
lution) and green capital (knowledge spillovers) respectively, impacting the total
factor productivity (TFP). Unlike Romer’s model, which exhibits endogenous
growth, we focus on bounded externalities within a framework that captures the
diminishing returns to capital accumulation observed in the real world. This al-
lows for a more nuanced and realistic representation of the complex relationship
between capital accumulation, environmental impact, and economic activity.
Furthermore, we analyze the non-linear dynamics of capital (physical or hu-
man) through the lens of bifurcations, a topic not addressed in the literature
mentioned above.
(2) The influence of externalities on growth and stability properties has

been widely studied in the literature. Romer (1986) laid the foundation for
the endogenous growth literature with the assumption of positive externalities.
Further contributions exploring endogenous cycles and self-fulfilling prophecies
under such conditions include seminal works by Benhabib and Farmer (1994)
and Boldrin and Rustichini (1994). Withagen (1995) highlights how stock exter-
nalities can lead to unbalanced growth patterns compared to traditional mod-
els and emphasizes the role of abatement technology in influencing long-term
growth rates, without providing a general model. Antoci (2005) analyzes growth
dynamics in an economy with leisure, environmental goods, and private goods,
finding that negative externalities on agents from production can drive growth
through exploiting positive externalities (knowledge accumulation), but coordi-
nation failures can lead to undesirable growth paths (either a “poverty trap”
or a “private consumption trap”). Regarding negative externalities (pollution),
Xepapadeas (2005) provides a comprehensive survey in the Handbook of Envi-
ronmental Economics. Yörük (2007) displays a potential bias in growth analysis
in an empirical study of 28 OECD countries, where ignoring negative externali-
ties (CO2 emissions) can lead to an overestimation of convergence for low-income
countries. This focus on short-term output growth may overlook environmental
and social costs, hindering sustainable development. In an alternative per-
spective, Bartolini (2003) proposes that economic growth reflects a progressive
substitution of free (environmental) resources with costly alternatives (private
goods), prompting increased work hours to offset negative externalities, and
suggests exploring the implications for environmental economics, particularly
the unexplained high work effort but lack of happiness despite income growth,
in future research. However, a crucial gap exists in this literature: the proof
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of equilibrium existence with negative externalities. While stability properties
have been analyzed, the challenging issue of equilibrium existence proofs is often
missing. We also highlight the limitations of existing overlapping generations
(OG) models in environmental economics. Existence proofs for positive exter-
nalities remain elusive in OG models (Howarth, 1998; Dao and Davila, 2014;
Karp and Rezai, 2014). Our paper addresses this gap by rigorously demonstrat-
ing the existence of a competitive equilibrium in a model with both positive
and negative externalities, laying the groundwork for further analysis of sus-
tainable growth dynamics. We demonstrate the emergence of two-period cycles
in a simple Ramsey-style setting. Building upon the existing literature on the
stability of growth models with externalities (e.g., Benhabib and Farmer, 1994;
Boldrin and Rustichini, 1994), we show how the interplay between externalities
and income-substitution effects can lead to the emergence of two-period cycles.
These cycles occur under significant intertemporal income effects for negative
externalities and substantial substitution effects for positive externalities. In
our general equilibrium stability analysis, this result holds for both hyperbolic
and locally isoelastic externality functions, highlighting the robustness of our
findings.
By establishing a robust foundation for further investigation in analyzing

growth models with brown and green capital, this model contributes to stimulat-
ing further research that can guide policymakers toward strategies that promote
sustainable economic development while mitigating environmental damage. To
fully explore the model’s potential, future research should further investigate
the empirical significance of negative externalities and their magnitude, which
is crucial for calibrating the model to real-world data. Additionally, justifying
the assumption of bounded externalities requires further theoretical develop-
ment.
The rest of the paper is organized as follows. Section 2 establishes the model,

focusing on a basic one-sector market economy and how brown or green capi-
tal influences growth. Sections 3 and 4 tackle the crucial challenge of proving
equilibrium existence under these conditions. Section 5 explores general results
concerning equilibrium stability. To gain further insights, Section 6 assumes
hyperbolic externalities and analyzes the stability properties, particularly the
possibility of two-period cycles. Section 7 examines locally isoelastic external-
ities and demonstrates the robustness of two-period cycles within the model.
Finally, Section 8 concludes the paper, summarizing the key contributions and
outlining potential avenues for future research. All the proof is gathered in the
Appendix.

2 Brown or green capital

We consider the Cobb-Douglas production function of firm j with negative or
positive aggregate externalities: F (Kjt, Ljt) ≡ A

!
K̄t
"
Kα
jtL

1−α
jt .
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Definition 1 Capital K̄t is said to be: (1) brown when the externality is nega-
tive (pollution): A′

!
K̄t
"
< 0; (2) green, when the externality is positive (knowl-

edge): A′
!
K̄t
"
> 0.

The production per capita is defined as usual

f (kt) ≡
F (Kt, Lt)

Lt
= A

!
K̄t
"
kαt (1)

where kt ≡ Kt/Lt is the capital intensity.
In order to prove the existence of a competitive equilibrium, we introduce a

plausible assumption of bounded external effects. We observe that, for now, we
do not require any monotonicity hypothesis. Importantly, Definition 1 is also
useful to study the stability issue (section 5).
Assumption 1 The Total Factor Productivity (TFP) is bounded: 0 < a0 ≤

A
!
K̄t
"
≤ a1 <∞ for any K̄t > 0.

Consider a sequence of externalities:
!
K̄t
"∞
t=1
, and, given this sequence,

the maximization problem P
!
K0,

!
K̄t
"∞
t=1

"
under a sequence of resource con-

straints:

max
∞#

t=0

βtu (ct)

ct + kt+1 ≤ A
!
K̄t
"
kαt (2)

for any t ≥ 0. These resource constraints are the reduced forms of the consumer’s
budget constraints:

ct + kt+1 − (1− δ) kt ≤ rtkt +wt (3)

where, for the sake of simplicity, labor supply is supposed to be inelastic and
equal to one, capital depreciation to be full (δ = 1) and capital and labor prices
(rt, wt) to be determined by a standard profit maximization (firm by firm):

max
$
A
!
K̄t
"
Kα
jtL

1−α
jt − rtKjt −wtLjt

%
(4)

that is by its first-order conditions: rt = αA
!
K̄t
"
kα−1t andwt = (1− α)A

!
K̄t
"
kαt .

We observe that the capital intensity kt = Kjt/Ljt turns out to be the
same for any firm j and coincides with the individual wealth in the consumer’s
constraint (3). We notice also that K̄t is not a choice variable. Each producer
takes it as given.
Maximizing the intertemporal utility under the sequence of budget con-

straints: ct + kt+1 ≤ rtkt +wt, is equivalent to maximizing under the sequence
of resources constraints: ct + kt+1 ≤ A

!
K̄t
"
kαt .

Assumption 2 u is increasing, strictly concave and continuously differen-
tiable with u (0) ≥ −∞ and u′ (0) = +∞.
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For instance, this assumption is satisfied by the popular class of isoelastic
utility functions:

u (c) =
c1−1/σ

1− 1/σ
if σ '= 1 (5)

u (c) = ln c if σ = 1 (6)

where σ > 0 denotes the constant elasticity of intertemporal substitution. We
observe that, in the case of dominant income effects (σ < 1) or balanced income
and substitution effects (σ = 1), u (0+) ≡ limc→0+ u (c) = −∞, that is the
utility function is unbounded from below.

3 Existence of an optimal capital path in a growth
model with capital externalities

Market clearing requires Ct + Kt+1 = A
!
K̄t
"
Kα
t L

1−α
t where capital letters

denote the aggregate variables. We assume that all agents work and total popu-
lation is normalized to one: Lt = 1 for any t. Hence, we recover our resource con-
straint with equality: ct + kt+1Lt+1/Lt = ct + kt+1 = A

!
K̄t
"
kαt . Since Lt = 1,

let k̄t ≡ K̄t/Lt = K̄t for any t in the following and, thus,
!
k̄t
"∞
t=1

=
!
K̄t
"∞
t=1

with k0 = K0.
We reformulate the initial program as a Problem P

!
k0,
!
k̄t
"∞
t=1

"
with k0 > 0

and k̄t ≥ 0 for any t > 0: max
&∞
t=0 β

tu (ct) subject to ct + kt+1 ≤ A
!
k̄t
"
kαt ,

ct ≥ 0 and kt+1 ≥ 0 for any t ≥ 0 with 0 < α < 1.

Definition 2 (kt)
∞
t=0 is a feasible sequence if 0 ≤ kt+1 ≤ A

!
k̄t
"
kαt for any

t ≥ 0.

Since 0 < α < 1, Assumption 1 implies

kt ≤ m ≡ max {k0, κ1} (7)

for any t ≥ 0 where κ1 ≡ a
1/(1−α)
1 .

When u (0+) = −∞, the function (kt)
∞
t=0 *→

&∞
t=0 β

tu
!
A
!
k̄t
"
kαt − kt+1

"

is upper semi-continuous for the product topology.1 When u (0) > −∞, this
function becomes continuous.2

Lemma 3 For any initial condition k0 > 0 and any sequence
!
k̄t
"∞
t=1
, there

exists ζ > 0 such that: 0 < ζ < A (k0) kα0 and 0 < ζ < A
!
k̄t
"
ζα for any t > 0.

In particular, a0ζ
α − ζ > 0. The stationary sequence (ζ, ζ, . . .) is feasible for

Problem P
!
k0,
!
k̄t
"∞
t=1

"
.

1 See Lemma 5.2.3 at page 103 in Le Van and Dana (2002).
2Apply step 3 at pages 17-18 in the proof of Proposition 2.2.1 in Le Van and Dana (2002)

to the new function v (x) ≡ u (x)− u (0).
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Lemma 4 For any ε > 0, there exists Tε such that limε→0 Tε = ∞ and, for
any k0 > 0, there is a feasible stationary sequence (ζ, ζ, . . .) with:
(0) 0 < ζ < A (k0) kα0 ,
(1) 0 < ζ < A

!
k̄t
"
ζα for any 1 ≤ t ≤ Tε,

(2) 0 < ζ < a0ζ
α − ζ ≤ A

!
k̄t
"
ζα − ζ for any t > Tε.

Definition 5 Q (k0) is a set of bounded sequences:

Q (k0) ≡ {(kt)
∞
t=1 : 0 ≤ kt ≤ m for any t > 0}

We observe that the set of feasible sequences is a subset of Q (k0).

Lemma 6 The set Q (k0) is compact for the product topology and convex.

Let (k∗t )
∞
t=1 denote the optimal sequence of Problem P

!
k0,
!
k̄t
"∞
t=1

"
, solution

to max
&∞
t=0 β

tu
!
A
!
k̄t
"
kαt − kt+1

"
subject to 0 ≤ kt+1 ≤ A

!
k̄t
"
kαt for any

t ≥ 0, given k0 > 0.

Proposition 7 Problem P
!
k0,
!
k̄t
"∞
t=1

"
has a unique optimal solution

!
k∗t+1

!!
k̄t
"∞
t=1

"
, c∗t
!!
k̄t
"∞
t=1

""∞
t=0

given the initial condition k0.

It is straightforward to prove that (k∗t )
∞
t=1 ∈ Q (k0).

Definition 8 The mapping ϕ : Q (k0) → Q (k0) is the optimal sequence of
capital stocks:

!
k̄t
"∞
t=1

∈ Q (k0) *→ ϕ
!!
k̄t
"∞
t=1

"
= (k∗t )

∞
t=1 ∈ Q (k0).

Recalling that 0 ≤ k∗t+1 ≤ A
!
k̄t
"
k∗αt for any t ≥ 0, we observe that

∞#

t=0

βtu
!
A
!
k̄t
"
k∗αt − k∗t+1

"
≥

∞#

t=0

βtu
!
A
!
k̄t
"
ζα − ζ

"
≥

∞#

t=0

βtu (a0ζ
α − ζ) = ω > −∞

Continuity of ϕ is key.

Lemma 9 ϕ is a continuous mapping for the product topology.

This lemma deserves a few remarks.
If (kt)

∞
t=1 is feasible, then the expression

&∞
t=0 β

tu
!
A
!
k̄t
"
kαt − kt+1

"
ex-

ists, that is it is real-valued or equal to −∞. To show this point, let T ≡'
t : u

!
A
!
k̄t
"
kαt − kt+1

"
≥ 0

(
. Since 0 ≤ kt+1 ≤ A

!
k̄t
"
kαt ≤ a1kαt , we have

0 ≤ kt+1 ≤ a1m
α for any t ≥ 0. Hence, 0 ≤

&
t∈T β

tu
!
A
!
k̄t
"
kαt − kt+1

"
≤&

t∈T β
tu (a1mα) and

&
t∈T β

tu
!
A
!
k̄t
"
kαt − kt+1

"
is a non-negative real value.

In this case,

∞#

t=0

βtu
!
A
!
k̄t
"
kαt − kt+1

"
=

∞#

t∈T

βtu
!
A
!
k̄t
"
kαt − kt+1

"
+

∞#

t/∈T

βtu
!
A
!
k̄t
"
kαt − kt+1

"
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and it exists since
&∞
t/∈T β

tu
!
A
!
k̄t
"
kαt − kt+1

"
= −∞ or to a negative real

value, as sum of negative terms.
When the production function is A (kt) kαt with A (kt) ≤ a1 for any k, As-

sumption H3 at page 102 in Le Van and Dana (2002) is satisfied. Then, the
function defined by (kt)

∞
t=1 feasible *→

&∞
t=0 β

tu
!
A
!
k̄t
"
kαt − kt+1

"
is upper

semi-continuous for the product topology.3

Moreover, since the stationary sequence (ζ, ζ, . . .) is feasible with
)
k̃t

*∞
t=1

and (k∗t )
∞
t=1 is optimal, we have

∞#

t=0

βtu
)
A
)
k̃t
*
k∗αt − k∗t+1

*
≥

∞#

t=0

βtu (a0ζ
α − ζ) > −∞

Finally, by applying a standard fixed-point theorem (Brouwer), we obtain
the existence of a competitive equilibrium with externalities.

Theorem 10 Since ϕ maps Q (k0) into Q (k0), there exists a fixed point (k∗t )
∞
t=0.

In the next section, we will prove that, actually, this fixed point is the
competitive equilibrium with externalities (k∗t )

∞
t=0 we are looking for.

4 Existence of a competitive equilibrium with
externalities

Let
)
k̃t

*∞
t=0

denote the fixed points of ϕ and c̃t = A
)
k̃t

*
k̃αt − k̃t+1 be the

associated consumption.
We want to show that there exists a sequence of prices (p̃t)

∞
t=0 ≥ 0 verifying&∞

t=0 p̃t < ∞ such that
)
q∗,
)
p̃t, c̃t, k̃t+1

*∞
t=0

*
with initial condition k0, is a

competitive equilibrium, that is the following three points hold.
(1) π∗ is the maximal profit of firm:

π∗ ≡ max
(kt)

∞
t=1

+
∞#

t=0

p̃t
,
A
)
k̃t
*
kαt − kt+1

-
− q∗k0

.

(2) (c̃t)
∞
t=0 solves: max

&∞
t=0 β

tu (ct) subject to
&∞
t=0 p̃tct ≤ π

∗ + q∗k0.

(3) Markets clear: c̃0 + k̃1 = A (k0) k
α
0 and c̃t + k̃t+1 = A

)
k̃t
*
k̃αt for any

t > 0.
Observing that k̃t ≤ m for any t, where m is given by (7), we define µ ≡

m1−α/ (αa0).

Theorem 11 Suppose µ < 1. Given the initial condition k0,
)
p̃t, c̃t, k̃t+1

*∞
t=0
,

with p̃t = β
tu′ (c̃t) for any t, is a competitive equilibrium with externalities.

3 See again Lemma 5.2.3 at page 103 in Le Van and Dana (2002).
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5 Dynamics around the steady state

Theorem 11 with, now, kt = k̄t for any t > 0 (as in Romer, 1986), paves the
way to compute the equilibrium system. Market clearing and Euler condition
(equation (46) in the proof of Theorem 11) form a two-dimensional dynamic
system:

ct + kt+1 = A (kt) k
α
t (8)

u′ (ct)

u′ (ct+1)
= αβA (kt+1) k

α−1
t+1 (9)

The capital intensity of steady state is given by

A (k) kα

k
=

1

αβ
(10)

and the consumption level by

c

k
=
A (k) kα

k
− 1 =

1− αβ
αβ

(11)

We introduce the elasticity of externalities: ε (k) ≡ kA′ (k) /A (k), and the
elasticity of intertemporal substitution: σ (c) ≡ −u′ (c) / [cu′′ (c)] > 0. Accord-
ing to Definition 1, capital is brown if ε (k) < 0, green if ε (k) > 0.

Lemma 12 The linearization of system (8)-(9) around the steady state is given
by /

dkt+1
k

dct+1
c

0
= J

1
dkt
k
dct
c

2
(12)

where J is the Jacobian matrix with trace and determinant

T = 1 +
α+ ε (k)

αβ
+ σ (c) [1− α− ε (k)]

3
1

αβ
− 1
4

(13)

D =
α+ ε (k)

αβ
(14)

Focus now on the two-dimensional space spanned by the eigenvectors as-
sociated to the eigenvalues λ1 and λ2. We can study the stability properties
considering T ≡ λ1 + λ2 and D ≡ λ1λ2 instead of the eigenvalues λ1 and λ2.
Using a geometrical method introduced by Samuelson (1942) and developed by
Grandmont et al. (1998), we can represent these properties in the (T,D)-plane
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instead of the Argand plan (Figure 1).

Fig. 1 Stability triangle

We evaluate the characteristic polynomial P (λ) ≡ λ2 − Tλ+D at −1 and
1: along the line D = T − 1, one eigenvalue is equal to 1 because P (1) =
1 − T + D = 0; along the line D = −T − 1, one eigenvalue is equal to −1
because P (−1) = 1 + T + D = 0. Along the segment D = 1 with |T | < 2,
the eigenvalues are nonreal and conjugate with unit modulus. Focus on points
outside these lines and the segment. Inside the triangle, the steady state is a
sink (D < 1 and |T | < 1+D). It is a saddle point if (T,D) lies on the left cone
of the lines D = T − 1 and D = −T − 1, or on the right cone of these lines
(|1 +D| < |T |). It is a source otherwise. A local bifurcation arises when one
eigenvalue crosses the unit circle in the Argand plan or, equivalently, the pair
(T,D) goes through one of the lines D = T − 1 or D = −T − 1, or the segment
D = 1 with |T | ≤ 2. When a bifurcation parameter changes, (T,D) moves in
the (T,D)-plane. Generically, a generic saddle-node occurs when (T,D) crosses
D = T − 1, a flip when (T,D) goes through the line D = −T − 1, whereas a
Neimark-Sacker when (T,D) crosses the segment D = 1 with |T | ≤ 2.
The geometrical method introduced by Grandmont et al. (1998) allows for

a complete characterization of local bifurcations if the locus obtained in the
(T,D)-plane when a bifurcation parameter varies, is linear.
In the following, for simplicity, we consider isoelastic preferences.
Assumption 3 The elasticity of intertemporal substitution is constant (ex-

pressions (5) and (6)).
According to Assumption 3, in expressions (13) and (14), we have σ (c) = σ.

11



6 Hyperbolic externalities

Focus on the hyperbolic case:

A
!
K̄t
"
≡ a+

η

1 + K̄t
(15)

with a > 0.

6.1 Existence of a competitive equilibrium

Proposition 13 If η > −a and η '= 0 (externalities matter), a competitive
equilibrium exists.
In this case, the Euler equation holds:

u′ (ct)

u′ (ct+1)
= αβA (kt+1) k

α−1
t+1 (16)

and the steady state is given by the Modified Golden Rule:

1

αβ
= A (k) kα−1 (17)

In the following, we consider separately the cases of negative and positive
externalities.

6.2 Dynamics with negative externalities

6.2.1 Steady state

The externality parameter η is key. Since A (k) depends on η, the steady state
k depends on η as well: k = k∗ (η). The following proposition shows that, in
the case of negative externalities, the steady state is an increasing function of
η.

Lemma 14 If η > 0 (negative externalities), the steady state k∗ (η), solution
to

k1−α

αβ
= a+

η

1 + k
(18)

is a well-defined strictly increasing C1 function of η from k∗ (0) = (aαβ)
1/(1−α)

to k∗ (∞) =∞.

6.2.2 Local dynamics

The intuition suggests that, in the case of negative externalities, cycles take
place because a rise in production today entails a rise in pollution which lowers
the productivity tomorrow. The case η > 0 corresponds precisely to a negative
impact A′

!
k̄t
"
< 0 and to a negative elasticity of externalities ε (k) < 0.

12



As we will see, negative externalities are not sufficient to generate persis-
tent fluctuations even if they generates damped oscillations. However, strong
externalities and large intertemporal income effects (that is low elasticity of
intertemporal substitution) promote the occurrence of persistent cycles.

Lemma 15 If η > 0 (negative externalities), at the steady state, the elastic-
ity of hyperbolic externalities (15) is a C1 function ε̃ (η) ≡ ε (k∗ (η)), strictly
decreasing from ε̃ (0) = 0 to ε̃ (+∞) = −1.

Reconsider the trace and the determinant with η ≥ 0:

T (η) ≡ 1 +
α+ ε̃ (η)

αβ
+ σ [1− α− ε̃ (η)]

1− αβ
αβ

D (η) ≡
α+ ε̃ (η)

αβ

where ε̃ (η) ≡ ε (k∗ (η)). We know that ε̃ (0) = 0, ε̃ (∞) = −1 and ε̃′ (η) < 0.
Thus, moving η from 0 to ∞ is equivalent to moving ε̃ from 0 to −1. Since
ε̃ is continuously strictly decreasing, any bifurcation value ε̃B for ε̃ determines
unambiguously the corresponding bifurcation value ηB for η: ηB = ε̃

−1 (ε̃B).

Hence, we can study directly how the pair
)
T̃ , D̃

*
with

T̃ (ε̃) ≡ 1 +
α+ ε̃

αβ
+ σ (1− α− ε̃)

1− αβ
αβ

D̃ (ε̃) ≡
α+ ε̃

αβ

moves when ε̃ decreases from 0 to −1.
We need the following assumption to have positive bifurcation values.
Assumption 4 α < 1/ (1 + β).
We introduce the following critical elasticities of intertemporal substitution

σ0 ≡
2

2− α
1− α (1 + β)
1− αβ

(19)

σ1 ≡
1

1− αβ
(20)

σ2 ≡
2

1− αβ
(21)

Under Assumption 4, σ0 > 0. It is easy to see that these critical elasticities
are ranked:

0 < σ0 < 1 < σ1 < σ2

In addition, we introduce the critical elasticity of externalities:

ε̃F ≡ −α−
2αβ + σ (1− αβ)
2− σ (1− αβ)

(22)
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Lemma 16 Under Assumption 4, cycles of period two generically arise through
a flip bifurcation at ε̃ = ε̃F provided that ε̃F ∈ (−1, 0) or, equivalently, σ < σ0.

Proposition 17 Let Assumption 4 hold.
If σ < σ0, the steady state is a source if ε̃ ∈ (−1, ε̃F ) and a saddle point if

ε̃ ∈ (ε̃F , 0). The economic system generically undergoes flip and period-doubling
bifurcations at ε̃ = ε̃F ∈ (−1, 0) (expression (22)) and, in particular, two-period
cycles arise. In terms of η, the flip bifurcation point is unambiguously given by
ηF = ε̃

−1 (ε̃F ).
If σ > σ0, the steady state is always a saddle point.

Remark 18 Since σ0 < 1, the steady state is always a saddle point when σ > 1
(positive utility).
Oscillations are possible even when σ > σ0 (saddle-point stability). Indeed,

as shown in the proof of Proposition 17, the determinant becomes negative for
low values of ε̃ (sufficiently close to −1). in this case, the eigenvalues are real
because of the saddle configuration, but one becomes negative, while the other
remains positive. This means that damped oscillations are possible along the
stable branch.

Proposition 19 The critical value ηF is given by

ηF = (1 + kF )

3
k1−αF

αβ
− a

4
(23)

where kF is solution to

ε̃F =
k

1 + k

3
aαβ

k1−α
− 1
4

(24)

It is interesting to notice that technology and preferences plays a role on the
critical level of externalities. In particular, deriving expression (22), we have
the following corollary.

Corollary 20 The higher the elasticity of intertemporal substitution (dominant
substitution effects), the larger the externalities needed to generate cycles:

∂ε̃F
∂σ

= −
2 (1− αβ) (1 + αβ)
[2− σ (1− αβ)]2

< 0

In other terms, cycles are more likely when agents smooth consumption over
time with more difficulty.

6.2.3 Simulations

Let α = 1/3, β = 0.96, σ = 1/4. In this case, Assumption 4 is satisfied (α =
1/3 < 1/ (1 + β) = 0.5102). Using (19), we verify that σ = 1/4 < σ0 = 0.61176.
According to Proposition 17, there is room for a flip bifurcation. Therefore,

14



we can compute the critical value: ε̃F = −0.77596 ∈ (−1, 0). Generically,
two-period cycles exist when ε̃ lies in a neighborhood of ε̃F . The image of the
interval [−1, 0] ∋ ε̃ by the function

)
T̃ , D̃

*
is the blue segment S in Figure 2

connecting the endpoints E−1 ≡
)
T̃ (−1) , D̃ (−1)

*
= (−0.19792,−2.0833) and

E0 =
)
T̃ (0) , D̃ (0)

*
= (2.3958, 1.0417).

As you can see, the blue segment S crosses the red line of flip bifurcations
D = −T − 1 precisely when ε̃ = ε̃F = −0.77596.
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Fig. 2 Flip bifurcation

Applying Proposition 19, we obtain also the critical steady state and the
critical value of the fundamental externality parameter: kF = 6.0688 and ηF =
66.427.
When η is close to its critical value, a persistent two-period cycle arises

around the steady state. When η steps aside, the cycle disappears and, instead,
we observe damped oscillations and convergence to the steady state.
To illustrate these situations, we consider two values of the externality pa-

rameter:
η1 = 30 < η2 = 66.4 < ηF = 66. 427

We observe that η2 = 66.4 is sufficiently close to the bifurcation value ηF =
66. 427 to generate a cycle.
(1) Let η = η1 = 30. The steady state is given by (18): k

∗ = 3. 665 9. The
dynamic system

ct+1
ct

=

1
αβ

3
a+

η

1 + kt+1

4
kα−1t+1

2σ
(25)

ct + kt+1 =

3
a+

η

1 + kt

4
kαt (26)

15



can be rewritten as a second-order difference equation:

kt+2 =

3
a+

η

1 + kt+1

4
kαt+1

−
13
a+

η

1 + kt

4
kαt − kt+1

21
αβ

3
a+

η

1 + kt+1

4
kα−1t+1

2σ
(27)

Consider a starting point k0 = 5. Using the transition function (27) jointly
with this initial and final conditions k0 = 5 and k∞ = k∗ = 3. 665 9, we represent
the converging discrete dynamics and its damped oscillations in Figure 3.

Fig. 3 Damped fluctuations for σ = 1/4

(2) Let η = η2 = 66.4. The steady state is now given by k
∗ = 6.067237454153,

according to (18). Dynamic system (25)-(26) can be rewritten as

kt+1 = ϕ (kt, ct) (28)

ct+1 = ψ (kt, ct) (29)

where

ϕ (kt, ct) ≡
3
a+

η

1 + kt

4
kαt − ct

ψ (kt, ct) ≡ ct



αβ



a+ η

1 +
)
a+ η

1+kt

*
kαt − ct




13
a+

η

1 + kt

4
kαt − ct

2α−1



σ

Focus on the second iterate, that is on

kt+2 = ϕ (kt+1, ct+1) = ϕ (ϕ (kt, ct) , ψ (kt, ct))

ct+2 = ψ (kt+1, ct+1) = ψ (ϕ (kt, ct) , ψ (kt, ct))

A cycle of period two is solution to the system

k̃ ≡ kt = kt+2

c̃ ≡ ct = ct+2
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with k̃ '= ϕ
)
k̃, c̃
*
and c̃ '= ψ

)
k̃, c̃
*
. More explicitly, we have to solve the system

k̃ =



a+ η

1 + ϕ
)
k̃, c̃
*



ϕ
)
k̃, c̃
*α
− ψ

)
k̃, c̃
*

c̃ = ψ
)
k̃, c̃
*1
αβ

3
a+

η

1 + k̃

4
k̃α−1

2σ

or, equivalently, the reduced system

1
αβ

3
a+

η

1 + ϕ̃

4
ϕ̃α−1

2σ
=

)
a+ η

1+ϕ̃

*
ϕ̃α − k̃

)
a+ η

1+k̃

*
k̃α − ϕ̃

(αβ)
2

3
a+

η

1 + k̃

43
a+

η

1 + ϕ̃

4
=

)
ϕ̃k̃
*1−α

with respect to
)
k̃, ϕ̃

*
where ϕ̃ ≡ ϕ

)
k̃, c̃
*
.

This system has three solutions: the lower and the higher points of the cycle,
k∗L and k

∗
H , and, clearly, the steady state between the two: k

∗ ∈ (k∗L, k
∗
H).

Solving the system with η = 66.4 in a neighborhood of the flip bifurcation
point, we get

k∗L = 6.00012865853 < k
∗ = 6.067237454153 < k∗H = 6.13502771443

Remark 21 In our model, we obtain the critical flip bifurcation value by lin-
earizing the non-linear system (25)-(26). This approximation entails a loss
of information. In particular, the Jacobian matrix does not allow us to know
whether the cycle is stable or not. In order to know the subcriticity (insta-
bility) or the supercriticity (stability) of the cycle, we would need to know the
terms of higher order of the Taylor expansion, through complicated computa-
tions. Instead, we observe that, when η = 0, we recover the Ramsey model
and the equilibrium is saddle-point stable. In other terms, the steady state is
attractive along the one-dimensional stable branch. This branch is the center
manifold where the bifurcation takes place. Increasing η to ηF generates a cycle
around the steady state and along the center manifold when, according to our
simulations, η enters a left neighborhood of ηF (η = 66.4 < ηF ). We conjecture
that, by continuity with respect to the Ramsey case, the attractive steady state
in the left neighborhood of ηF is surrounded by a repulsive cycle, that is the
flip bifurcation is subcritical. Additional simulations based on the second-order
difference equation (27) seems to prove that this is indeed the case.

Remark 22 We observe that, generically, cycles of period 2n with n > 2
(through period-doubling bifurcations) and, eventually, chaos are also possible
in our model. To compute cycles of higher order, the interest reader has to find
the stationary solutions to the two-dimensional iterate of order 2n of system
(28)-(29) and discard the stationary solutions of the two-dimensional iterate of
order 2n−1.
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6.3 Dynamics with positive externalities

Focus on the case −a < η < 0 (positive externalities). In this case, there is room
for multiple steady state and, surprisingly, persistent cycles are still possible, but
now, contrarily to the case of negative externalities, they arise under dominant
intertemporal substitution effects (high elasticity σ).

6.3.1 Steady states

Proposition 23 If −a < η < 0 (positive externalities), a steady state k∗, solu-
tion to (18), always exists.
(1) If

a ≤ ã ≡
1

αβ

3
2− α
α

4α
(30)

the steady state is unique.
(2) If a > ã, then there exist two distinct values η2 and η1 > max {−a, η2}

such that:
(2.1) if η ∈ (η2, η1), there are three steady states,
(2.2) if η ∈ {η2, η1}, there are two steady states (non-generic case),
(2.3) if η /∈ [η2, η1], the steady state is unique.

6.3.2 Local dynamics

Let σ (c) = σ > 0, a constant. We introduce the following critical values:
εP = 1− α and

σF ≡
2

1− αβ
ε (k) + α (1 + β)

ε (k)− (1− α)
(31)

We observe that the RHS of (31) does not depend on σ.

Proposition 24 (local dynamics) When 0 < ε (k) < εP , the steady state is
a saddle point.
When εP < ε (k) < εF , the steady state is a source.
When εF < ε (k), the steady state is again a saddle point.

The following proposition shows the possibility of pitchfork and flip bifurca-
tions.

Proposition 25 (pitchfork bifurcation) If

−a < η ≤ −a
1− α

1− α+
!
α
2

"2 (32)

a pitchfork bifurcation (from one to three steady states) generically arises at
β = β− and β = β+, where

β− ≡
κ1−α−

α
)
a+ η

1+κ−

* and β+ ≡
κ1−α+

α
)
a+ η

1+κ+

*

18



with 0 < κ− < κ+, provided that 0 < β± < 1. The expressions for κ− and κ+
are given in the proof.

Proposition 26 (cycles of period two) If ε (k) > 1 − α, a flip bifurcation
generically arises at σ = σF > 0.

It is easy to show that limit cycles are ruled out.

Proposition 27 (no limit cycles) There is no room for Neimark-Sacker bi-
furcations.

The Neimark-Sacker bifurcation is the discrete-time equivalent of the Hopf
bifurcation in continuous time.

6.3.3 Simulations

Let α = 1/3 and β = 0.96. In this case, Assumption 4 is satisfied (α = 1/3 <
1/ (1 + β) = 0.5102). We focus on the case σ > σ2 = 2. 941 2. Let σ = 6.
Equations (13) and (14) hold, that is

D =
T

1− σ (1− αβ)
−
1

αβ

αβ + σ (1− αβ)
1− σ (1− αβ)

(33)

with D ≡ (α+ ε) / (αβ) ≥ D0 = 1/β and T ≤ T0 = 10. 542, where T0 is solution
to (33) with D = 1/β.
Under restriction T ≤ T0, (33) becomes the blue half-line in Figure 4.
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Fig. 4 Pitchfork bifurcation

The pitchfork bifurcation generically arises at ε = εP = 1− α = 2/3 (inter-
section of the blue half-line line with the red line D = T − 1). We observe that
the flip bifurcation value (31) with σ = 6 is εF = 1. 935 9 solution to

σ =
2

1− αβ
ε+ α (1 + β)

ε− (1− α)
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Definition 28 The set of admissible points A is the subset of the half-line de-
fined by (33) and T ≤ T0, corresponding to a (real) positive steady state k.

Lemma 29 There exists ã > 0, such that, for any a > ã, the intersection
between the set of admissible points A and the flip bifurcation line D = −T − 1
is nonempty. This intersection corresponds to the critical value ε = εF .

In our case,

PF = (1− α) (1 + εF )
− α
1−α α

1+α
1−αβ

1
1−α = 0.040663

and ãF is solution to ζ (a) = εF − PFa1/(1−α) = 0, that is ãF = 13.136 > 0.
Thus, for any a > ãF there exists a steady state k (a) > 0 with εF = 1.9359 as
bifurcation value.
In other terms, for our calibration, the set of admissible points (T,D) which

is a subset of the blue half-line crosses the flip bifurcation line D = −T − 1.

7 Isoelastic externalities
We consider isoelastic externalities

A (k) ≡ Akε (34)

with finite constant elasticity ε ∈ R. Externalities are negative when ε < 0 and
positive when ε > 0. When ε = 0, we recover the standard Ramsey model. For
example, consider A = 1 and ε = −1, 1/2, 2: clearly, externalities in Figure 5 are
unbounded and don’t satisfy Assumption 1. We consider bounded externalities,
but locally isoelastic in the next subsection.
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Fig. 5 Isoelastic externalities
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Fig. 6 Bounded externalities
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7.1 Existence of a competitive equilibrium

In the local analysis, as long as the entire equilibrium trajectory lies in the
neighborhood of an attractor (steady state or cycle), we require the externality
to be only locally isoelastic. Thus, we can introduce boundaries for A (k) outside
the neighborhood we are interested in, for instance, by considering a square
sufficiently large to include the steady state k. For instance, in Figure 5, we can
introduce simple boundaries and obtain Figure 6.
In the following, we consider bounded externalities locally isoelastic around

the steady state.

Lemma 30 Fix µ ∈ (0, 1− α) and bounds a0 and a1 such that 0 < a0 < b0 ≤
b1 < a1 where

b0 ≡ min
=
A (αβA)−1−

1−α
µ ,A (αβA)−1+

1−α
µ

>

b1 ≡ max
=
A (αβA)−1−

1−α
µ , A (αβA)−1+

1−α
µ

>

Consider elasticity values ε /∈ (1− α− µ, 1− α+ µ).
(1) In the case of negative externalities (ε < 0), define:

A (k) ≡ b1 if k <
3
b1
A

4 1
ε

A (k) ≡ Akε if
3
b1
A

4 1
ε

≤ k ≤
3
b0
A

4 1
ε

A (k) ≡ b0 if k >
3
b0
A

4 1
ε

(1) In the case of positive externalities (ε > 0), define:

A (k) ≡ b0 if k <
3
b0
A

4 1
ε

A (k) ≡ Akε if
3
b0
A

4 1
ε

≤ k ≤
3
b1
A

4 1
ε

A (k) ≡ b1 if k >
3
b1
A

4 1
ε

In both these cases, for any ε /∈ (1− α− µ, 1− α+ µ), the externalities are
isoelastic around the steady state and they satisfy Assumption 1 (boundedness).

In the following, σ is constant and ε locally constant.
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7.2 Dynamics with negative externalities

7.2.1 Steady state

According to (10), (11) and (34), the steady state is unique and the correspond-
ing levels of capital and consumption are given by

k = (Aαβ)
1

1−α−ε (35)

c =
1− αβ
αβ

k (36)

7.2.2 Local dynamics

We introduce the following critical values:

σ1 ≡
1

1− αβ
< σ2 ≡

2

1− αβ

εF ≡ −α−
2αβ + σ (1− αβ)
2− σ (1− αβ)

(37)

Remark 31 This critical values are the same of the hyperbolic case (expressions
(20), (21) and (22)), but, now, the elasticity of externalities ε is constant and
may by unbounded (ε ∈ (−∞, 0)). In the case of hyperbolic bounded externali-
ties, the elasticity of externalities ε̃ was endogenous and bounded (ε̃ ∈ (−1, 0)).

Proposition 32 (flip bifurcation) Let Assumptions 3 and 5.
(1) If 0 < σ < σ2, then the steady state is a source for ε < εF and a saddle

point for εF < ε < 0. Cycles of period two (and powers of two) generically arise
through a flip bifurcation (and period-doubling bifurcations) at ε = εF .
(2) If σ2 < σ <∞, then the steady state is a saddle point for any ε.

7.2.3 Simulations

To illustrate Proposition 32, let us fix the fundamental parameters as follows
α = 1/3, β = 0.96, σ = 1.1. In this case, we have 0 < σ = 1.1 < σ2 = 2.941 2.
Thus, there is room for a flip bifurcation. The critical value is given by εF =
−1.442. Thus the steady state is a saddle if −1.442 < ε < 0 and a source if
ε < −1.442. We do not know whether the cycle arising at εF = −1.442 is sub
or supercritical. The intersection between the red and the blue lines in Figure
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7 corresponds to εF = −1.442.

43210-1-2

1

0

-1

-2

-3

-4

T

D

T

D

Fig. 7 Flip bifurcation

7.2.4 Global dynamics

In the logarithmic case, we can compute the explicit trajectory.

Proposition 33 If u (ct) ≡ ln ct, the solution of dynamic system (8)-(9) be-
comes

kt = (αβA)
1−(α+ε)t
1−a−ε k

(α+ε)t

0 (38)

ct = (1− αβ)Akα+εt (39)

and, if |α+ ε| < 1, the trajectory converges to the steady state: limt→∞ kt =
(αβA)1/(1−a−ε).

We observe that, when −1 < α + ε < 0 we have a convergence through
dumping fluctuations, and persistent fluctuations when α+ ε = −1 with

kt = (αβA)
1−(−1)t

2 k
(−1)t
0

Thus, in this case, the two values of the cycle are k2τ = k0 and k2τ+1 =
αβA/k0 for any τ ≥ 0. Notice also that, in the case of a logarithmic utility,
σ = 1 and the flip bifurcation value (37) becomes εF = −1 − α. Precisely, we
get α+ εF = −1.

7.3 Dynamics with positive externalities

7.3.1 Steady state

As in the case of negative externalities, there is a unique non-negative real steady
state and the corresponding levels of capital and consumption are given by (35)
and (36).
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7.3.2 Local dynamics

We introduce the following critical values: εB ≡ 1−α and the same expression
for εF as in (37).

Proposition 34 The steady state is unique.
(1) If 0 < σ < σ1, it is a saddle point for 0 < ε < 1− α − µ and a source

for ε > 1− α+ µ.
(2) If σ1 < σ < σ2, it is a saddle point for 0 < ε < 1− α− µ and a source

for ε > 1− α+ µ.
(3) If σ2 < σ <∞, it is a saddle point for any 0 < ε < 1−α−µ, a source for

1−α+µ < ε < εF and again saddle point for εF < ε. Cycles of period two (and
powers of two) generically arise through a flip bifurcation (and period-doubling
bifurcations) at ε = εF .

Focus on case (3). Beyond 1 − α + µ, the steady state become a source.
Since the capital intensity kt is a predetermined variable, if k0 '= k, then the
equilibrium moves away from the steady state, maybe towards a surrounding
attractor.
A two-period cycles generically arises in a left neighborhood of εF when the

flip bifurcation is supercritical (stable cycle) or in the right neighborhood of εF
when the flip bifurcation is subcritical (unstable cycle). Because of the lineariza-
tion, local analysis remains uninformative about the stability of the cycle. In
order to capture its sub- or super-critical nature a higher-order approximation
(Taylor polynomial) of the original system is needed.

Remark 35 We observe that, now, a flip bifurcation takes place under dom-
inant substitution effects. In other terms, when the externalities are negative,
the occurrence of cycles requires dominant income effects; conversely, when the
externalities are positive, it requires dominant substitution effects.

7.3.3 Simulations

To illustrate Proposition 34, let us fix the fundamental parameters as follows
α = 1/3, β = 0.96, σ = 6. We simulate the case σ > σ2 = 2.9412 with
ε /∈ (1− α− µ, 1− α+ µ) (the "hole") and, for instance, µ = 1/24.
The blue half-line is still given by (33) with D ≥ D0 = 1/β, that is T ≤

T0 = 10.542. It crosses the red line D = T − 1 at εB ≡ 1 − α = 2/3 and the
"hole" around is given by (T+, T−) where T− and T+ are obtained replacing
ε− ≡ εB − µ and ε+ ≡ εB + µ in the trace expression (13).

T+ = 1 +
1 + µ

αβ
− σµ

1− αβ
αβ

= 3.7240

T− = 1 +
1− µ
αβ

+ σµ
1− αβ
αβ

= 4.526

The flip bifurcation value is given by (37): εF = 1.9359, determining, ac-
cording to (13), the intersection (TF ,DF ) = (−8.0914, 7.0914) between the blue
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half-line and the flip bifurcation red line D = −T − 1 in Figure 8.
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Fig. 8 Flip bifurcation

8 Conclusion

Under the assumption of bounded externalities, we have proven the existence
of a competitive equilibrium.
In the case of hyperbolic negative externalities, we have shown the occurrence

of flip bifurcations and period-doubling bifurcations, and the emergence of cycles
of period two when, under largely dominant income effects, the externalities are
sufficiently strong.
Conversely, in the case of positive externalities, the occurrence of cycles

require sufficiently large substitution effects.
We have recovered similar results in the case of locally isoelastic externalities.

9 Appendix

Proof of Lemma 3
Let κ0 satisfy 0 < κ0 = a0κα0 , that is κ0 ≡ a

1/(1−α)
0 .

(1) If 0 < k0 ≤ κ0, take whatever ζ ∈ (0, k0). Then, 0 < ζ < a0ζ
α <

A (k0) k
α
0 and, clearly, 0 < ζ < a0ζ

α ≤ A
!
k̄t
"
ζα for any t > 0.

(2) If k0 > κ0, take also whatever ζ ∈ (0, κ0). This gives 0 < ζ < a0ζ
α <

a0κ
α
0 < a0k

α
0 < A (k0) ζ

α and 0 < ζ < a0ζ
α ≤ A

!
k̄t
"
ζα for any t ≥ 0.

In both cases, we obtain a0ζ
α − ζ > 0.

Proof of Lemma 4
For any ε > 0, fix Tε such that β

Tε < ε. Then, ε → 0 implies Tε → ∞.
For instance, let Tε ≡ 1 + [ln ε/ lnβ] > ln ε/ lnβ, where [x] denotes the unique
integer z ∈ Z such that z ≤ x < 1 + z.
According to Lemma 9, we know that there exists a sequence

)
ζ̃, ζ̃, . . .

*
such

that a0ζ̃
α
− ζ̃ > 0. However, whatever sequence (ζ, ζ, . . .) with ζ ∈

)
0, ζ̃
*
also
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satisfies Lemma 9. We can choose ζ > 0 such that a0ζ
α − 2ζ > 0 to obtain

a0ζ
α − ζ > ζ > 0.
(0) If t = 0, clearly, 0 < ζ < A (k0) kα0 .
(1) If 1 ≤ t ≤ Tε, the feasible stationary sequence (ζ, ζ, . . .) satisfies 0 < ζ <

A
!
k̄t
"
ζα.

(2) If t > Tε, then

0 < ζ < a0ζ
α − ζ ≤ A

!
k̄t
"
ζα − ζ (40)

Proof of Lemma 6
By definition of compactness and convexity, the proof is immediate.
Proof of Proposition 7
The strict concavity of the production function (1) and the utility function

u, the compactness and convexity of Q (k0) imply the existence, the uniqueness
and the continuity of the solution

!
k∗t+1

!!
k̄t
"∞
t=1

"
, c∗t
!!
k̄t
"∞
t=1

""∞
t=0
.

Proof of Lemma 9
Consider a converging sequence of sequences

!!
k̄nt
"∞
t=1

"∞
n=0

∈ Q (k0) with

limn→∞
!
k̄nt
"∞
t=1

=
)
k̃t

*∞
t=1
. Lemma 6 ensures that

)
k̃t

*∞
t=1

∈ Q (k0). Since

Q (k0) is compact and (kn∗t )
∞
t=1 ∈ Q (k0) for any n ≥ 0, where (kn∗t )

∞
t=1 is

solution to Problem P
!
k0,
!
k̄nt
"∞
t=1

"
, we have also that (kn∗t )

∞
t=1 → (k∗t )

∞
t=1.

Moreover, 0 ≤ k∗t+1 ≤ A
)
k̃t

*
k∗αt for any t ≥ 0.

Let the sequence (xt)
∞
t=1 satisfy 0 ≤ x1 ≤ A (k0) k

α
0 and 0 ≤ xt+1 ≤

A
)
k̃t
*
xαt for any t ≥ 0. (xt)

∞
t=1 is a feasible path associated with

)
k̃t
*∞
t=1

and (xt)
∞
t=1 ∈ Q (k0). To prove that ϕ is continuous, it is sufficient to prove

that
&∞
t=0 β

tu
)
A
)
k̃t
*
k∗αt − k∗t+1

*
≥
&∞
t=0 β

tu
)
A
)
k̃t
*
xαt − xt+1

*
.

Let ε > 0 and Tε be associated with ε as in Lemma 4. Consider λ ∈ (0, 1).
Then, 0 < λζ + (1− λ)x1 < A (k0) kα0 and, for any t > 0,

0 < λζ+(1− λ)xt+1 < λA
)
k̃t

*
ζα+(1− λ)A

)
k̃t

*
xαt < A

)
k̃t

*
[λζ + (1− λ)xt]

α

(41)
since f (z) = zα is strictly concave.
Define zt ≡ λζ + (1− λ)xt for any t ≤ Tε and zt ≡ ζ for any T > Tε.

According to (41), we have 0 < z1 < A (k0) kα0 and 0 < zt+1 < A
)
k̃t
*
zαt for

1 ≤ t ≤ Tε, and, according to (40), 0 < ζ < A
)
k̃t
*
ζα for any t > Tε.

By continuity, there exists Nε such that, for any n ≥ Nε, we have 0 < zt+1 <
A
!
k̄nt
"
zαt for any t ≤ Tε. Since, according to Lemma 3, 0 < ζ < a0ζ

α, we get
0 < ζ < A

!
k̄nt
"
ζα for any n ≥ Nε. Therefore, the sequence (zt)

∞
t=1 is feasible
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with
!
k̄nt
"∞
t=1
. In this case,

Tε#

t=0

βtu
!
A
!
k̄nt
"
zαt − zt+1

"
+

∞#

t=Tε+1

βtu
!
A
!
k̄nt
"
ζα − ζ

"

≤
∞#

t=0

βtu
!
A
!
k̄nt
"
kn∗αt − kn∗t+1

"
(42)

where (kn∗t )
∞
t=1 is the optimal path associated with

!
k̄nt
"∞
t=1
.

We observe that 0 < a0ζ
α − ζ ≤ A

!
k̄nt
"
ζα − ζ ≤ a1ζα − ζ. Hence,

∞#

t=Tε+1

βtu (a0ζ
α − ζ) ≤

∞#

t=Tε+1

βtu
!
A
!
k̄nt
"
ζα − ζ

"
≤

∞#

t=Tε+1

βtu (a1ζ
α − ζ)

and, according to Lemma 4,
∞#

t=0

βtu
!
A
!
k̄nt
"
kn∗αt − kn∗t+1

"

=

Tε#

t=0

βtu
!
A
!
k̄nt
"
kn∗αt − kn∗t+1

"
+

∞#

t=Tε+1

βtu
!
A
!
k̄nt
"
kn∗αt − kn∗t+1

"

≤
Tε#

t=0

βtu
!
A
!
k̄nt
"
kn∗αt − kn∗t+1

"
+

∞#

t=Tε+1

βtu (a1m
α)

<

Tε#

t=0

βtu
!
A
!
k̄nt
"
kn∗αt − kn∗t+1

"
+ ε

u (a1mα)

1− β

since βTε < ε.
In (42), let λ→ 0. Then,

Tε#

t=0

βtu
!
A
!
k̄nt
"
zαt − zt+1

"
→

Tε#

t=0

βtu
!
A
!
k̄nt
"
xαt − xt+1

"

and (42) becomes

Tε#

t=0

βtu
!
A
!
k̄nt
"
xαt − xt+1

"
+

∞#

t=Tε+1

βtu
!
A
!
k̄nt
"
ζα − ζ

"

≤
∞#

t=0

βtu
!
A
!
k̄nt
"
k∗αt − k∗t+1

"

=
Tε#

t=0

βtu
!
A
!
k̄nt
"
k∗αt − k∗t+1

"
+

∞#

t=Tε+1

βtu
!
A
!
k̄nt
"
k∗αt − k∗t+1

"

≤
Tε#

t=0

βtu
!
A
!
k̄nt
"
k∗αt − k∗t+1

"
+ ε

u (a1m
α)

1− β
(43)
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We have
∞#

t=Tε+1

βtu (a0ζ
α − ζ) ≤

∞#

t=Tε+1

βtu
!
A
!
k̄nt
"
ζα − ζ

"
≤

∞#

t=Tε+1

βtu (a1ζ
α − ζ)

or

u (a0ζ
α − ζ)

βTε+1

1− β
≤

∞#

t=Tε+1

βtu
!
A
!
k̄nt
"
ζα − ζ

"
≤ u (a1ζα − ζ)

βTε+1

1− β
(44)

Let n→∞. (43) becomes

Tε#

t=0

βtu
)
A
)
k̃t
*
xαt − xt+1

*
+

∞#

t=Tε+1

βtu
)
A
)
k̃t
*
ζα − ζ

*

≤
Tε#

t=0

βtu
)
A
)
k̃t

*
k∗αt − k∗t+1

*
+ ε

u (a1m
α)

1− β
(45)

We know that

lim
T→∞

T#

t=0

βtu
!
A
!
k̄t
"
kαt − kt+1

"
=

∞#

t=0

βtu
!
A
!
k̄t
"
kαt − kt+1

"

for any sequence
!
k̄t
"∞
t=1

and any feasible sequence (kt)
∞
t=1 associated with!

k̄t
"∞
t=1
.

Take the limit of (45):

lim
ε→0

Tε#

t=0

βtu
)
A
)
k̃t

*
xαt − xt+1

*
+ lim
ε→0

∞#

t=Tε+1

βtu
)
A
)
k̃t

*
ζα − ζ

*

≤ lim
ε→0

Tε#

t=0

βtu
)
A
)
k̃t
*
k∗αt − k∗t+1

*

∞#

t=0

βtu
)
A
)
k̃t

*
xαt − xt+1

*
+ 0 ≤

∞#

t=0

βtu
)
A
)
k̃t

*
k∗αt − k∗t+1

*

since limε→0 Tε =∞, and

u (a0ζ
α − ζ)

βTε+1

1− β
≤

∞#

t=Tε+1

βtu
)
A
)
k̃t
*
ζα − ζ

*
≤ u (a1ζα − ζ)

βTε+1

1− β

imply limε→0
&∞
t=Tε+1

βtu
)
A
)
k̃t
*
ζα − ζ

*
= 0.

Finally, let us observe that, since

lim
Tε→∞

Tε#

t=0

βtu
)
A
)
k̃t
*
xαt − xt+1

*
=

∞#

t=0

βtu
)
A
)
k̃t
*
xαt − xt+1

*
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the path (k∗t )
∞
t=1 is optimal with

!
k̄t
"∞
t=1

as externality sequence.
Proof of Theorem 11
The proof is articulated in three steps.
(1) The Euler equation holds:

βtu′ (c̃t) = β
t+1u′ (c̃t+1)A

)
k̃t+1

*
αk̃α−1t+1 (46)

for any t.
Define p̃t = β

tu′ (c̃t) for any t. Then, according to Assumption 1,

p̃t+1
p̃t

=
1

A
)
k̃t+1

*
αk̃α−1t+1

≤
m1−α

αa0
≡ µ < 1

Hence, p̃t ≤ µtp̃0 for any t and
&∞
t=0 p̃t ≤ p̃0/ (1− µ) <∞.

(2) The sequence (c̃t)
∞
t=0 maximizes the consumer’s intertemporal utility

function.
Since c̃t+k̃t+1 = A

)
k̃t
*
k̃αt for any t > 0, we have p̃tc̃t = p̃t

,
A
)
k̃t
*
k̃αt − k̃t+1

-

for any t. Summing over t, we find
&∞
t=0 p̃tc̃t =

&∞
t=0 p̃t

,
A
)
k̃t

*
k̃αt − k̃t+1

-
. Let

(ct)
∞
t=0 satisfy

&∞
t=0 p̃tct ≤ π

∗+q∗k0. Since π∗+q∗k0 =
&∞
t=0 p̃t

,
A
)
k̃t
*
k̃αt − k̃t+1

-
,

we have
&∞
t=0 p̃tc̃t ≥

&∞
t=0 p̃tct.

Since u is concave,
&∞
t=0 β

tu′ (c̃t)−
&∞
t=0 β

tu′ (ct) ≥
&∞
t=0 β

tu′ (c̃t) (c̃t − ct) =&∞
t=0 p̃t (c̃t − ct) ≥ 0. Therefore,

&∞
t=0 β

tu′ (c̃t) ≥
&∞
t=0 β

tu′ (ct).

(3) It remains to prove that the sequence
)
k̃t

*∞
t=1

maximizes the profit of

the firm.
Let ∆T ≡

&T
t=0 p̃t

,
A
)
k̃t
*
k̃αt − k̃t+1

-
−
&T
t=0 p̃t

,
A
)
k̃t
*
kαt − kt+1

-
, where

the sequence (kt)
∞
t=1 satisfies 0 ≤ kt+1 ≤ A

)
k̃t
*
kαt for any t. By concavity,

k̃αt − kαt ≥ αk̃
α−1
t

)
k̃t − kt

*
and

∆T ≡
T#

t=0

p̃tA
)
k̃t
*)
k̃αt − k

α
t

*
−

T#

t=0

p̃t
)
k̃t+1 − kt+1

*

≥
T#

t=0

p̃tA
)
k̃t
*
αk̃α−1t

)
k̃t − kt

*
−

T#

t=0

p̃t
)
k̃t+1 − kt+1

*

=
T#

t=1

p̃tA
)
k̃t

*
αk̃α−1t

)
k̃t − kt

*
−

T#

t=0

p̃t

)
k̃t+1 − kt+1

*

=
T−1#

t=0

p̃t+1A
)
k̃t+1

*
αk̃α−1t+1

)
k̃t+1 − kt+1

*
−

T#

t=0

p̃t
)
k̃t+1 − kt+1

*

=
T−1#

t=0

p̃t
)
k̃t+1 − kt+1

*
−

T#

t=0

p̃t
)
k̃t+1 − kt+1

*

= p̃TkT+1 − p̃T k̃T+1 ≥ −p̃T k̃T+1
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since k̃0 = k0 and p̃t+1A
)
k̃t+1

*
αk̃α−1t+1 = p̃t (Euler equation).

Since
&T
t=0 p̃t < ∞, we have limt→∞ p̃t → 0. Moreover, since k̃t ≤ m for

any t, in the limit, we obtain limT→∞∆T ≥ limT→∞
)
−p̃T k̃T+1

*
= 0. This

ends the proof of Theorem 11.
Proof of Lemma 12
We linearize system (8)-(9) around the steady state. Using (10) and (11),

we obtain

αβ
dkt+1
k

= [α+ ε (k)]
dkt
k
− (1− αβ)

dct
c

σ (c) [1− α− ε (k)]
dkt+1
k

+
dct+1
c

=
dct
c

that is (12), where

J =

/ α+ε(k)
αβ 1− 1

αβ

σ (c) [α+ ε (k)− 1] α+εαβ 1 + σ (c) [α+ ε (k)− 1]
)
1− 1

αβ

*
0

Proof of Proposition 13
Case 1: −a < η < 0. We have A′

!
K̄t
"
= −η/

!
1 + K̄t

"2
> 0, that is A

is strictly increasing. We observe that A (0) = a + η and A (∞) = a. Fixing
a0 ≡ a+ η and a1 ≡ a, we obtain 0 < a0 ≤ A

!
K̄t
"
≤ a1 <∞ and Assumption

1 is satisfied (bounded TFP).
Case 2: η > 0. We have A′

!
k̄t
"
= −η/

!
1 + K̄t

"2
< 0, that is A is strictly

decreasing. We observe that A (0) = a+ η and A (∞) = a. Fixing a0 ≡ a and
a1 ≡ a + η, we obtain 0 < a0 ≤ A

!
K̄t
"
≤ a1 < ∞ and Assumption 1 is also

satisfied (bounded TFP).
The program becomes: max

&∞
t=0 β

tu (ct) subject to ct+ kt+1 ≤ A
!
K̄t
"
kαt .

An optimal path always exists (product topology) since kt+1 ≤ a1kαt for any t.
Moreover, it is interior because of the Inada condition u′ (0) = ∞. Thus, the
Euler equation (16) holds and the steady state is given by (17).
Proof of Lemma 14
According to (15) and (17), the steady state is solution to

k1−α

αβ
= A (k) = a+

η

1 + k
(47)

If η > 0, the RHS of (18) is strictly decreasing in k from a + η > a to
a > 0. The LHS is strictly increasing in k from 0 to ∞. This implies that the
solution is unique, say k∗ (η). It is easy to see that k∗ (0) = (aαβ)1/(1−α) and
k∗ (∞) =∞. Moreover, the upward-sloping curve on the LHS of (18) does not
depend on η while the downward-sloping curve on the RHS moves up when η
increases. Then, the intersection k∗ (η) moves on the right when η increases,
that is k∗′ (η) > 0.
Proof of Lemma 15
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The elasticity of hyperbolic externalities (15) at the steady state is a function
of η.

ε̃ (η) ≡ ε (k∗ (η)) =
k∗ (η)A′ (k∗ (η))

A (k∗ (η))
= −

k∗ (η)

1 + k∗ (η)

η
1+k∗(η)

a+ η
1+k∗(η)

(48)

This function is negative and continuous. In addition, ε̃ (0) = 0 and ε̃ (η) < 0
for any 0 < η <∞. Moreover, since k∗ (∞) =∞, according to (18):

lim
η→∞

η

1 + k∗ (η)
= lim
η→∞

+
[k∗ (η)]1−α

αβ
− a

.
=∞

and, thus, according to (48),

lim
η→∞

ε̃ (η) = − lim
η→∞

k∗ (η)

1 + k∗ (η)
lim
η→∞

η/ [1 + k∗ (η)]

a+ η/ [1 + k∗ (η)]
= −1

We observe that k∗ (η) / [1 + k∗ (η)] is increasing in η because, according to
Lemma 14, k∗′ (η) > 0. In addition, η/ [1 + k∗ (η)] = [k∗ (η)]1−α / (αβ) − a is
also increasing in η because the RHS is increasing. Then, expression

η/ [1 + k∗ (η)]

a+ η/ [1 + k∗ (η)]

is increasing in η and, finally, the expression in the RHS of (48) is decreasing in
η, that is ε̃′ (η) < 0.
Proof of Lemma 16
A flip bifurcation generically occurs at ε̃ solution to D̃ (ε̃) = −T̃ (ε̃)−1, that

is at ε̃ = ε̃F .
Since ε̃ ∈ (−1, 0), we require ε̃F ∈ (−1, 0). ε̃F < 0 is equivalent to σ < σ2.

ε̃F > −1 is equivalent to σ < σ0 or σ > σ2.
Thus, ε̃F ∈ (−1, 0) is equivalent to σ < σ0 and σ < σ2, that is to σ < σ0,

provided that σ0 > 0, that is Assumption 4 holds.
Proof of Proposition 17
The locus S ≡

=)
T̃ (ε̃) , D̃ (ε̃)

*
: ε̃ ∈ [−1, 0]

>
is linear. Let

E−1 ≡
)
T̃ (−1) , D̃ (−1)

*
and E0 ≡

)
T̃ (0) , D̃ (0)

*

be its endpoints, that is S = {λE−1 + (1− λ)E0 : λ ∈ [0, 1]}.
Clearly, S is a segment. Indeed, T̃ (ε̃) is a continuous function and the image

of the unit interval [−1, 0] is the compact interval
,
T̃ (−1) , T̃ (0)

-
=

1
1−

1− α
αβ

+ σ (2− α)
1− αβ
αβ

, 1 +
1

β
+ σ (1− α)

1− αβ
αβ

2

Similarly, D̃ (ε̃) is a continuous function and the image of the unit interval [−1, 0]
is the compact interval

,
D̃ (−1) , D̃ (0)

-
= [− (1− α) / (αβ) , 1/β].
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Focus now on Figure 1. We observe that

D̃ (0) = T̃ (0)− 1− σ (1− α) (1− αβ) / (αβ) < T̃ (0)− 1

and D̃ (0) = 1/β > 1. Moreover,

D̃ (−1) = T̃ (−1)− 1− σ (2− α) (1− αβ) / (αβ) < T̃ (−1)− 1

and D̃ (−1) = − (1− α) / (αβ) < 0. The half space below the line D < T − 1
is the union of two cones: C0 ≡ {(T,D) : D < T − 1, D < −T − 1} and C1 ≡
{(T,D) : D < T − 1, D > −T − 1}, and the half-line between (D = −T −1 and
D < T − 1).
C0 is a cone of sources, while C1 is a cone of saddles (see Figure 1).
The segment S is compact and its endpoints lie below the line D = T − 1

(indeed, D̃ (−1) < T̃ (−1)− 1 and D̃ (0) < T̃ (0)− 1), then all the points of the
segment S lie below the line D = T − 1. In other words, any point of S belongs
to C0 (source) or C1 (saddle).
We know that E0 ∈ C1. This is coherent with the Ramsey model. Indeed,

when η = 0 (no externalities), that is ε̃ = 0, our model reduces to the basic
Cass-Koopmans version of the Ramsey model.
We will prove that, according to Lemma 16, that E−1 ∈ C0 if σ < σ0 and

E−1 ∈ C1 if σ > σ0.
Thus, under Assumption 4, the segment crosses the line D = −T − 1 where

the flip bifurcation occurs if and only if E−1 ∈ C0, that is σ < σ0. In this
case, S crosses the flip bifurcation at ε̃ = ε̃F ∈ (−1, 0) and the steady state is a
source if ε̃ ∈ (−1, ε̃F ) and it is a saddle if ε̃ ∈ (ε̃F , 0). If σ > σ0, the segment
S lies entirely in the cone C1 and the steady state is always a saddle point. In
particular, this is true when σ > 1 because 1 > σ0, that is when the utility is
positive.
Now, let us show that E−1 ∈ C0 if and only if σ < σ0. We observe that

D̃′ (ε̃) = 1/ (αβ) > 0 and T̃ ′ (ε̃) = 1/ (αβ)− σ (1− αβ) / (αβ) > 0 if and only if
σ < σ1.
The slope s (σ) of S is given by D′ (T ), where D (T ) = D̃

)
T̃−1 (T )

*
, and

s (σ) = D̃′ (ε̃) /T̃ ′ (ε̃) = 1/ [1− σ (1− αβ)] > 0 if and only if σ < σ1.
We observe that s′ (σ) > 0, thus, the segment S rotates in a counterclockwise

sense. More precisely, we have:

s (0) = 1 < s (σ0) = (2− α) / [α (1 + 2β)] < s (1) = 1/ (αβ) < s
!
σ−1
"
= +∞

and s
!
σ+1
"
= −∞ < s (σ2) = −1 < s (+∞) = 0− where the inequality 1 <

s (σ0) holds under Assumption 4. There is a discontinuity at σ = σ1.
We consider all the possible cases for σ under the Assumption 4.
(1) 0 < σ < σ0. Then, D̃′ (ε̃) > 0, T̃ ′ (ε̃) > 0 and 1 < s < (2− α) / [α (1 + 2β)].

According to Lemma 16, there is room for a flip bifurcation occurring at ε̃ = ε̃F .
When −1 < ε̃ < ε̃F , the steady state is a source; when ε̃F < ε̃ < 0, it is a saddle.
However, we don’t know whether this bifurcation is sub- or super-critical.

32



(2) σ0 < σ < 1. Then, D̃′ (ε̃) > 0 and T̃ ′ (ε̃) > 0 with (2− α) / [α (1 + 2β)] <
s < 1/ (αβ).
(3) 1 < σ < σ1. Then, D̃′ (ε̃) > 0 and T̃ ′ (ε̃) > 0 with 1/ (αβ) < s < +∞.
(4) σ1 < σ < σ2. Then, D̃′ (ε̃) > 0 and T̃ ′ (ε̃) < 0 with −∞ < s < −1.
(5) σ2 < σ < +∞. Then, D̃′ (ε̃) > 0 and T̃ ′ (ε̃) < 0 with −1 < s < 0.
In cases (2) to (5), since σ > σ0, according to Lemma 16, the endpoint E−1

belongs to C1 and, thus, C1 includes the entire segment S. The equilibrium
is always saddle-path stable but, since D̃ (−1) = − (1− α) / (αβ) < 0, for low
values of ε̃ (sufficiently close to −1), the determinant becomes negative (the
eigenvalues are real because of the saddle, but one becomes negative, while the
other remains positive). This means that damped oscillations are possible along
the stable branch.
Proof of Proposition 19
Let kF ≡ k∗ (ηF ) be the critical steady state. Consider equations (47) and

(48). The critical pair (ηF , kF ) is solution to system

k1−α

αβ
= a+

η

1 + k
(49)

ε̃F = −
k

1 + k

η
1+k

a+ η
1+k

(50)

Equation (49) gives

η = (1 + k)

3
k1−α

αβ
− a

4
(51)

Replacing (51) in (50), we obtain (24). Replacing in turn the solution kF to
(24) in (51), we obtain (23).
Proof of Proposition 23
A steady state k∗ is solution to (17), that is to ϕ (k) ≡ (1 + k)

!
k1−α − aαβ

"
=

ηαβ. We have ϕ (0) = −aαβ < ηαβ < 0 and ϕ (∞) = ∞. Thus, a solution
always exists. Moreover, ϕ′ (k) = [1 + (1− α) (1 + k) /k]k1−α − aαβ and

ϕ′′ (k) =
1− α
kα

3
2− α

1 + k

k

4

We observe that ϕ′′ (k) ≥ 0 if and only if k ≥ α/ (2− α) ≡ k̃ where k̃ is
the unique inflexion point of a concave-convex function with ϕ′ (0+) = +∞ and

ϕ′ (+∞) = +∞. Moreover, ϕ′
)
k̃
*
= (2/α− 1)α − aαβ and ϕ′

)
k̃
*
≥ 0 if and

only if a ≤ ã, where ã is solution to ϕ′
)
k̃
*
= 0, that is (30).

If a ≤ ã, solution unique (ϕ is strictly increasing for a < ã and for a < ã
and k '= k̃).
If a > ã, there is a local maximum at k1 and a local minimum at k2 with

k1 < k̃ < k2 and ϕ (k1) > ϕ (k2).
Let η1 ≡ ϕ (k1) / (αβ) > η2 ≡ ϕ (k2) / (αβ) and observe that η1 > −a, that

is η1 > max {−a, η2}. Then, if η ∈ (η2, η1), there are three steady states. If
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η ∈ {η2, η1}, there are two steady states. If η /∈ [η2, η1], there is only one steady
state.
Proof of Proposition 24
According to (13)-(14):

T = 1 +
α+ ε (k)

αβ
+ σ [(1− α)− ε (k)]

3
1

αβ
− 1
4

(52)

D =
α+ ε (k)

αβ
(53)

From (48), the elasticity of hyperbolic externalities (15) at the steady state
is a function of η.

ε̃ (η) ≡ ε (k∗ (η)) =
k∗ (η)A′ (k∗ (η))

A (k∗ (η))
= −

k∗ (η)

1 + k∗ (η)

η
1+k∗(η)

a+ η
1+k∗(η)

(54)

which is always positive. We observe that, always, D = [α+ ε (k)] / (αβ) > 1.
Moreover, when 0 < ε (k) < εP , we have T > 1+ [α+ ε (k)] / (αβ) = 1+D that
is D < T − 1.
The subcone 1 < D < T − 1 is included in a cone of saddle points. Thus,

the steady state is a saddle point for 0 < ε (k) < εP .
Proof of Proposition 25
The occurrence of a pitchfork bifurcation requires D = T −1, that is ε (k) ≡

1− α. Using (54), we have

−
k

1 + k

η
1+k

a+ η
1+k

= 1− α

Solving for k, we get two roots:

κ− =
−η (2− α)−

?
η2 (2− α)2 + 4aη (1− α)
2a (1− α)

− 1 > 0

κ+ =
−η (2− α) +

?
η2 (2− α)2 + 4aη (1− α)
2a (1− α)

− 1 > κ−

These solutions are real if and only if η2 (2− α)2 + 4aη (1− α) ≥ 0, that is
(32) holds. We observe that κ+ > κ− and

η ≤ −a
1− α

1− α+
!
α
2

"2 ⇒ η < −a
1− α

1− α+ α
2

⇒ κ− > 0

According to (18), the steady state satisfies

β =
k1−α

α
)
a+ η

1+k

*
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Replacing κ− and κ+, we obtain the pitchfork bifurcation values β− and β+.

Proof of Proposition 26
A flip bifurcation generically arises when a real eigenvalue crosses −1, that is

when D = −T −1. Using (52) and (53), and solving for σ equation D = −T −1,
we obtain the critical bifurcation value (31).
Proof of Proposition 27
Simply notice that, always, D = [α+ ε (k)] / (αβ) > 1. So the product D

of the two nonreal and conjugated eigenvalues (square of the modulus) never
equals one.
Proof of Lemma 29
Replacing η/ (1 + k) = k1−α/ (αβ)− a in

ε = −
k

1 + k

η
1+k

a+ η
1+k

we obtain the steady state equation

ε = −
k

1 + k

3
1− a

αβ

k1−α

4
(55)

Can we find a > 0 such that the equality (55) with α, β ∈ (0, 1) and ε > 0
has a solution k > 0?
(55) can be written as

ϕ (k) ≡ ε+ (1 + ε) k − aαβkα = 0 (56)

We observe that ϕ′ (k) = 1+ε−aα2βkα−1 and ϕ′′ (k) = aα2β (1− α) kα−2 >
0. Moreover, ϕ′ (0) = −∞ and ϕ′ (∞) = 1 + ε.

k̄ ≡
3
aα2β

1 + ε

4 1
1−α

(57)

is solution to ϕ′ (k) = 0. Because of the strict convexity of ϕ, ϕ
!
k̄
"
< ϕ (0) =

ε < ϕ (∞) =∞.
Hence, there exists a > 0 such that (55) has a solution k if and only if

ϕ
!
k̄
"
< 0.

Replacing (57) in (56), we obtain ϕ
!
k̄
"
≡ ε− Pa1/(1−α) ≡ ζ (a), where

P ≡ (1− α) (1 + ε)−
α

1−α α
1+α
1−αβ

1
1−α > 0

Therefore, ϕ
!
k̄
"
< 0 if and only if ζ (a) < 0. We observe that ζ (0) = ε,

ζ (∞) = −∞ and

ζ ′ (a) = −
P

1− α
a

α
1−α < 0

Therefore, there exists a unique solution ã > 0 to ζ (a) = 0 and ζ (a) < 0
(entailing a strictly positive steady state k) if and only if a > ã.
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Proof of Lemma 30
According to (34), externalities are bounded if a0 < Akε < a1. From (10)

and (34), we obtain the steady state k = (αβA)1/(1−α−ε). Thus, we require
a0 < A (αβA)

ε/(1−α−ε) < a1.
Fix 0 < µ < 1− α and consider the following functions

ϕ (ε) ≡
ε

1− α− ε
for any ε /∈ (1− α− µ, 1− α+ µ)

and ψ (ϕ) ≡ A (αβA)ϕ. ϕ is strictly increasing and ψ is strictly monotonic if
αβA '= 1.

min
ε/∈(1−α−µ,1−α+µ)

ϕ (ε) = −1−
1− α
µ

< −2

max
ε/∈(1−α−µ,1−α+µ)

ϕ (ε) = −1 +
1− α
µ

> 0

ϕ can take all the values in the set [−1− (1− α) /µ,−1 + (1− α) /µ] \ {1}.
Let

b0 ≡ min
=
A (αβA)−1−

1−α
µ ,A (αβA)−1+

1−α
µ

>

b1 ≡ max
=
A (αβA)−1−

1−α
µ , A (αβA)−1+

1−α
µ

>

If a0 and a1 are chosen such that 0 < a0 < b0 ≤ b1 < a1, then a0 < Akε < a1.

Proof of Proposition 32
Reconsider (13)-(14) with ε (k) = ε and σ (c) = σ. Define

T (ε) ≡ 1 +
α+ ε

αβ
+ σ (1− α− ε)

3
1

αβ
− 1
4

(58)

D (ε) ≡
α+ ε

αβ
(59)

The set {T (ε) ,D (ε)}−∞≤ε≤0 is a half-line.
We can compute the half-line D̃ (T ) in the (T,D)-plane. Replacing ε =

αβD − α in (13), we find

D̃ (T ) =
T

1− σ (1− αβ)
−
1

αβ

αβ + σ (1− αβ)
1− σ (1− αβ)

The origin of this half-line is given by

T (0) ≡ 1 +
1

β
+ σ (1− α)

3
1

αβ
− 1
4
≥ 1 +

1

β
> 2

D (0) ≡
1

β
> 1
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and the slope by

s = D̃′ (T ) ≡
D′ (ε)

T ′ (ε)
≡

1

1− σ (1− αβ)
(60)

where D′ (ε) = 1/ (αβ) > 0 and T ′ (ε) = [1− σ (1− αβ)] / (αβ).
We observe that: 0 < σ < σ1 if and only if 1 < s < ∞; σ1 < σ < σ2 if

and only if −∞ < s < −1; σ2 < σ < ∞ if and only if −1 < s < 0. The
flip bifurcation value for ε is given by the intersection between the half-line
{T (ε) ,D (ε)}−∞≤ε≤0 and the line D = −T − 1 in the (T,D)-plane, that is by
εF . Notice that, always D′ (ε) > 0. That is, when ε goes from 0 to −∞, the
determinant decreases. The following holds.
(1) If 0 < σ < σ1, then 1 < s < ∞. Then saddle point for εF < ε < 0 and

source for ε < εF . Flip bifurcation at ε = εF .
(2) If σ1 < σ < σ2, then −∞ < s < −1. Then saddle point for εF < ε < 0

and source for ε < εF . Flip bifurcation at ε = εF .
(3) If σ2 < σ <∞, then −1 < s < 0. Then saddle point for any ε.
Summing up, we have Proposition 32.
Proof of Proposition 33
System (8)-(9) becomes: ct+kt+1 = Akα+εt and ct+1/ct = αβAkα+ε−1t+1 , with

solution kt+1 = αβAkα+εt . Indeed, ct = Akα+εt − kt+1 = (1− αβ)Akα+εt and

ct+1
ct

=
(1− αβ)Akα+εt+1

(1− αβ)Akα+εt

=
Akα+εt+1

Akα+εt

=
Akα+εt+1

kt+1/ (αβ)
= αβAkα+ε−1t+1

The explicit trajectory (38)-(39) is computed by induction and the steady
state is given by

lim
t→∞

kt = lim
t→∞

1
(αβA)

1−(α+ε)t
1−a−ε k

(α+ε)t

0

2
= (αβA)

1
1−a−ε k00 = (αβA)

1
1−a−ε

provided that |α+ ε| < 1.
Proof of Proposition 34
As in the case of negative externalities, reconsider (13)-(14) with constant

elasticities of externality and intertemporal substitution, that is expressions (58)
and (59). The set {T (ε) ,D (ε)}0≤ε<∞ is an half-line.

We can compute the half-line D̃ (T ) in the (T,D)-plane. Replacing ε =
αβD − α in (13), we find

D̃ (T ) =
T

1− σ (1− αβ)
−
1

αβ

αβ + σ (1− αβ)
1− σ (1− αβ)

The origin of this half-line is given by

T (0) ≡ 1 +
1

β
+ σ (1− α)

3
1

αβ
− 1
4
≥ 1 +

1

β
> 2
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and D (0) ≡ 1/β > 1. We notice that D (0) > 1 and D (0) < T (0)− 1 for any
σ > 0, that is, when ε is close to 0, the steady state is a saddle point as in the
basic Ramsey model (no externalities).
The slope is still given by (60). As above, we observe that: 0 < σ < σ1 if

and only if 1 < s <∞; σ1 < σ < σ2 if and only if −∞ < s < −1; σ2 < σ <∞
if and only if −1 < s < 0. Notice that, always D′ (ε) > 0. That is, when ε goes
from 0 to ∞, the determinant increases. The following holds.
(1) If 0 < σ < σ1, then 1 < s <∞. Then saddle point for 0 < ε < 1−α−µ

and source for ε > 1− α+ µ.
(2) If σ1 < σ < σ2, then −∞ < s < −1. Then saddle point for 0 < ε <

1− α− µ and source for ε > 1− α+ µ.
(3) If σ2 < σ < ∞, then −1 < s < 0. Then saddle point for any 0 < ε <

1− α− µ, source for 1− α+ µ < ε < εF and saddle for εF < ε.
ε = 1−α corresponds to the solution to equation D (ε) = T (ε)−1. Equation

(35) is equivalent to
kε+α−1 = (Aαβ)−1 (61)

A degenerate bifurcation takes place at ε = 1 − α. Indeed, in this case,
equation (61) become 1 = k0 = 1/ (Aαβ) with, generically, no solution.
The flip bifurcation value for ε is given by the intersection between the

half-line {T (ε) ,D (ε)}0≤ε≤∞ and the line D = −T − 1 in the (T,D)-plane.
The critical value εF (expression (37)) corresponds to the solution to equation
D (ε) = −T (ε)− 1. Summing up, we obtain Proposition 34.
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