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This document contains supplemental information for the article Optimized Stokes imaging for
highly resolved optical speckle fields, part II: Optimal acquisition & estimation strategies. It addresses the
issue of the generation of a distribution of points accross the surface of a sphere (the Poincaré’s
sphere in the present case) ensuring optimum conditioning number of the matrix defined by
the concatenation of the points vector coordinates, and at the same time providing best uniform
coverage of the surface of the sphere.

1. SUPPLEMENTAL INFORMATION 1

Generating uniform distributions of points on a sphere is a problem that admits non unique and
non exact solutions [1, 2]. To generate the Spiral distributions used in this article, we relied on
an a numerical implementation directly inspired from Ref. [2]. One drawback of such spiral
approaches is that they do not guarantee an optimal CN for the generated matrix W. In order to
generate a distribution of N points composed of Nt = N/4 tetrahedrons that cover as uniformly
as possible the Poincaré’s sphere, we relied on the following approximate numerical procedure.
Using the approach of Ref. [2], we generated a set of Nt points, denoted {TA

1 , . . . , TA
Nt
} distributed

along a spiral trajectory around the polarimetric axix S3, and forming the set of vertices A of the
Nt tetrahedrons. Then, generating the set of the three remaining vertices {TB

i , TC
i , TD

i }, i ∈ [1, Nt]
that maximize the uniformity of the total number of points is not as straightforward as it may
appear.

Indeed, the natural idea is be to apply a similar rotation on the set of Nt vertices A in order
to rotate the spiral, these rotation operators being obtained by the rotation matrices allowing
the reference point TA

1 of coordinates [001]T to be rotated on the other vertices of a regular
tetrahedron (i.e., here, TB

1 = [
√
(2/3)

√
(2/3) − 1/3]T , TC

1 = [0 −
√
(8/3) − 1/3]T and

TD
1 = [−

√
(2/3)

√
(2/3) − 1/3]T). However, this solution does not permit to preserve

the spiral structure for the four sets of Nt points, hence leading to a highly non-uniform final
distribution of N states across the Poincaré’s sphere. This can be clearly understood by analyzing
a simple example: upon daily earth rotation, the harbours of Rotterdam (Netherlands) and
Marseille (France) which lie at distinct lattitudes do not travel the same distance. By generalizing
this reasoning, one realizes that two isometric trajectories on the unit sphere are obtained with
an axial rotation. The distance between the corresponding points by this isometry varies as a
function of the polar angle with respect to the rotation axis, and therefore cannot be linked by
a constant edge of a mobile rigid tetrahedron. It is thus impossible to “rotate” a set of points
forming a pattern on a sphere (here a spiral) in order to form 3 patterns, isometric with the
original one, and forming at the same time the vertices of regular tetrahedrons.

In order to circumvent this difficulty, an approximate solution was therefore adopted. The
principle of this solution is to use an initial regular tetrahedron {TA

1 , TB
1 , TC

1 , TD
1 } as a starting

point, and calculate the rotation matrix RA1−A2 that sends point TA
1 to point TA

2 . This isometry is
not unique, however, as it can be composed, on the left or right, by a rotation around the axis
defined by the line joining the center of the sphere and the point TA

1 or TA
2 respectively. We

therefore applied the following procedure: the initial rotation RA1−A2 was composed on the right
by a rotation of angle θ around the end point TA

2 , which rotation leaves the point TA
2 invariant

but modifies the position of points TB
2 , TC

2 , and TD
2 . For each angle θ, we then calculate the

angle of "displacement" ηB, ηC and ηD undergone by each point between its original and its final
position. Among all the possible angles θ ∈ [−π, π], we selected the value that minimized the

following quantity
∥∥∥[ηB − ηC, ηC − ηD, ηD − ηB]∥∥∥

1
(‖.‖1 denoting l1−norm) in order to optimize

the "uniform" filling of the sphere. This operation was then repeated step by step between the
point quadruplets {TA

i , TB
i , TC

i , TD
i } and {TA

i+1, TB
i+1, TC

i+1, TD
i+1}, until the Nt tetrahedrons have
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been constructed. The sets of points {TB
i , TC

i , TD
i }, i ∈ [1, Nt] no longer form spiral trajectories,

but the final distribution of N points on the sphere tends to be homogeneous, as can be seen in
Fig. 2.a of the main article.
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