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Abstract: In this second article of a three-paper series focusing on Stokes polarimetry of8

optical speckle fields resolved at the individual speckle grain scale, a theoretical study based9

on numerical simulations is presented in order to establish the optimum sensing, estimation10

and processing strategies that guarantee the best precision, accuracy and robustness for Stokes11

polarimetry in this specific context. In particular, it is demonstrated that the so-called State12

Of Polarization Analysis by Full Projection on the Poincaré space (SOPAFP) approach can be13

optimized in order to ensure best estimation performance. These numerical simulations also make14

it possible to establish that the SOPAFP approach provides better results in terms of robustness to15

residual experimental imperfections of the setup when compared to classical Stokes polarimetry16

approaches.17

1. Introduction18

This article is the second of a three-paper series titled “Optimized Stokes imaging for highly19

resolved optical speckle fields”. In the first article of the series [1], we have extensively described20

an optimized experimental Stokes polarimetric imaging system resolved at the speckle grain21

scale, and shown some preliminary results validating the experimental setup. In this second22

article, we will rely on numerical simulations to investigate and establish the optimal sensing and23

estimation strategies to perform Stokes imaging in the context of highly resolved speckle pattern.24

For that purpose, we will compare the performances of various estimation schemes for25

(full-Stokes) polarimetry:26

• either with approaches commonly used in standard polarimetric imaging involving a limited27

number (≥ 4) of intensity measurements along different polarization analyzing directions;28

• or with the so-called SOPAFP approach (State Of Polarization Analysis by Full Projection29

on the Poincaré space) proposed initially in [2], and which, as its name suggests, probes30

numerous (several 10’s to several 100’s) polarimetric states located at the surface of the31

Poincaré sphere.32

These various approaches and the optimal choice for these probe states are discussed in33

Section 3, after Section 2 recalls the mathematical formalism required. In Section 4, based on34

numerical simulations of realistic experiments, we evidence (for the first time to our knowledge)35

the fundamental interest of the SOPAFP approach by showing how it allows to guarantee the36

highest estimation accuracy and precision independently of the signal-to-noise (SNR) level or37

the degree of polarization (DOP) of light, while superseding classical approaches in terms of38

robustness or unbiasedness to certain experimental imperfections (such as calibration defects,39

misalignments,...). These comparisons are based on numerical simulations to evaluate various40

experimental influences encountered when studying the speckle field in a highly resolved manner.41

Indeed, the influence of SNR, orientation error and polarimetric analyzer calibration error on the42

quality of estimation of the state of polarization is evaluated, as is the ability of each approach to43

estimate partially depolarized states.44
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2. Mathematical formalism and notations45

Throughout this paper, we will rely on the so-called Mueller/Stokes formalism to describe the46

polarimetric light-matter (linear) interaction by matrix calculation. The polarimetric state S𝑜𝑢𝑡
47

resulting from the interaction of an incident polarization state S𝑖𝑛 with a given sample can be48

calculated as follows [3] as S𝑜𝑢𝑡 = 𝑀 S𝑖𝑛, where 𝑀 denotes a real 4 × 4 Mueller matrix which49

characterizes the polarimetric response of the sample. In the above equation, S𝑖𝑛 (respectively50

S𝑜𝑢𝑡 ) denotes the Stokes vector (4-component real, column vector) of the input (resp. output51

light). This Stokes formalism is widely used in polarimetric imaging due to its ability to52

describe any polarimetric state of a light source, whether the light is fully polarized or not,53

and to the accessibility of its parameters through experimental intensity measurements. It54

is therefore perfectly suited for polarimetric imaging of highly resolved speckle fields and is55

classically defined [4] as S =
[
𝑆0, 𝑆1, 𝑆2, 𝑆3

]𝑇 , where .𝑇 denotes matrix transposition and with56

𝑆0 = 𝐸2
0𝑥 +𝐸

2
0𝑦 , 𝑆1 = 𝐸2

0𝑥 −𝐸2
0𝑦 , 𝑆2 = 𝐸2

0𝑥𝐸
2
0𝑦 cos(𝜙) and 𝑆3 = 𝐸2

0𝑥𝐸
2
0𝑦 sin(𝜙), 𝐸0𝑥 (respectively57

𝐸0𝑦) denoting the horizontal (respectively vertical) component of the transverse electric field58

of the light. 𝑆0 represents the total intensity, 𝑆1 is the portion of light linearly polarized along59

the vertical or horizontal axis, 𝑆2 is the portion linearly polarized along the ±45◦ axes and 𝑆360

represents the portion circularly polarized right or left [4]. The degree of polarization can be61

determined from the Stokes vector as follows:62

𝐷𝑂𝑃 =

√︃
𝑆2

1 + 𝑆2
2 + 𝑆2

3

𝑆0
=

√︃
𝑠2

1 + 𝑠2
2 + 𝑠2

3 = ‖s‖ , (1)

where the 𝑠𝑖 = 𝑆𝑖/𝑆0, 𝑖=1,...,3 are the components of the reduced 3-dimensional Stokes vector s63

and with ‖.‖ denoting the vector quadratic norm.64

Experimental estimation of the full Stokes vector therefore requires a minimum of four65

intensity measurements 𝐼𝑘 resulting from the projection of the incident state 𝑆𝑖𝑛 with the66

probed polarimetric state S𝑃𝑆𝐴,𝑘 where 𝑘 represents the index of the probed state of the67

polarimetric analyzer. The intensity measured for each acquisition of index 𝑘 results from a68

scalar product of the input Stokes vector with the analysis Stokes vector, as 𝐼𝑘 = S𝑇
𝑃𝑆𝐴,𝑘

.S𝑖𝑛.69

More generally, the set of measured intensities I can be written as a 𝑘-dimensional column70

vector: I = [𝐼1, · · · , 𝐼𝑘 , · · · , 𝐼𝑁 ]𝑇 = 𝑊 S𝑖𝑛 where 𝑊 represents the analysis matrix composed of71

𝑁 probe states S𝑃𝑆𝐴,𝑘 (𝑘 ∈ [1, 𝑁]). The matrix can be defined through the following equation:72

𝑊𝑇 =
[
S𝑃𝑆𝐴,1 . . . S𝑃𝑆𝐴,𝑁

]
.73

The concept of estimating the polarization state using a Mueller matrix description of the74

polarization state analyzer is not new and has provided a rich (both theoretical and experimental)75

literature even recently with non standard approaches [5–7]. Thus, to estimate the Stokes vector76

for a single polarization state, there exists a variety of available𝑊 sensing matrices. The selection77

of this analysis matrix depends mainly on the experimental conditions, such as the accessibility78

of the probe states and the number of states to be probed as a function of the available time to79

perform the measurement. Some probe states are more easily accessible with conventional optical80

elements, but the use of a variable delay phase plates such as liquid-crystal variable retarders81

(LCVRs) now makes it possible to access to any probe state. Indeed, as extensively described82

in the Part I of this article series [1], using a pair of LCVRs with appropriate orientations,83

followed by a polarizer, it is possible to access any probe state across the Poincaré’s sphere,84

by addressing the LCVR1 (respectively LCVR2) with voltage level 𝑉1 (resp. 𝑉2), inducing an85

optical phase delay 𝜙1 (resp. 𝜙2) which is deduced from 𝑉1 from a calibration step performed86

at fixed temperature and given wavelength. It is important to notice that, troughout this article87

series, experiments and simulations were performed at a fixed monochromatic wavelength of88

𝜆 = 532 nm. Non-monochromatic illuminations could also be envisaged, but would require89

accounting for the dispersion of the optical elements and the optical phase delay of LCVRs. The90
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optimal choice of the 𝑊 analysis matrix is discussed in more details in next section.91

3. Analysis matrices 𝑊 and associated estimation methods92

This section describes the classical polarization analysis states (or equivalently, the analysis93

matrices 𝑊) commonly used in polarimetric imaging and the associated estimation approaches.94

The most widely used sets of polarization analysis states will be referred here as Stokes-495

(abbreviated St-4) and Stokes-6 (abbr. St-6), and are represented respectively on the top left and96

top right corners of Fig. 1. The bottom left corner of Fig. 1 shows the classical Tetrahedron (abbr.97

Tet) analysis matrix for which optimality results for the estimation performance under various98

noise models hold [8–14]. The last set of polarization analysis states, represented in the bottom99

right part of Fig. 1, and which will be referred to as Spiral (abbr. Sp), is much less widespread100

in the polarimetric imaging community. However, it has shown great experimental interest for101

polarimetric imaging of highly resolved speckle fields [15], and is at the core of the so-called102

SOPAFP approach described above.103

Fig. 1. Poincaré’s sphere representation of various sets of polarization analysis states
used in Stokes polarimetric imaging: (top left) Stokes-4, (top right) Stokes-6, (bottom
left) Tetrahedron and (bottom right) Spiral.

All of these approaches are based on the measurement of a set of intensity values, related to104

the incident polarimetric state by a system of linear equations recalled above. The performance105

of the various sets of analysis states (i.e., of matrices 𝑊) in solving such system is studied in106

the following sections, in terms of estimation accuracy and precision, as well as robustness to107

experimental imperfections. For this purpose, we need to introduce the condition number (CN) of108

an analysis matrix 𝑊 , defined as 𝐶𝑁 (𝑊) = ‖𝑊 ‖ ·


𝑊−1



 [16], where ‖.‖ denotes the Euclidian109

matrix norm. In this case, this CN is equal to the ratio between the largest and the smallest110

singular value of the matrix 𝑊 . In dimension 4, for the mathematical space of the Stokes vectors,111

it is well known that its optimal value is
√

3 (' 1.7321) [11].112

3.1. Stokes-4113

The Stokes-4 acquisition analysis matrix enables all these parameters to be evaluated in a114

minimum of four measurements. Typically, the four intensities measured are 𝐼𝐻 , 𝐼𝑉 ,𝐼+45 and115

𝐼𝐿 , corresponding to analyzing the light through standard directions of polarizations. These116

intensities are easily accessible with conventional optical elements (polarizer, quarter-wave phase117

plate, etc.), and correspond to the linear probe states (horizontal, vertical and +45°) and the118
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circular probe state (circular left in our case). The resulting conditioning number is not optimal119

and is equal to 3.226. With this configuration, the estimates of the incident Stokes vector are120

generally obtained directly through:121

ŜSt-4 =



𝑆0 = 𝐼𝐻 + 𝐼𝑉

𝑆1 = 𝐼𝐻 − 𝐼𝑉

𝑆2 = 2 · 𝐼+45 − 𝑆0

𝑆3 = 2 · 𝐼𝐿 − 𝑆0

(2)

where ŜSt-4 represents the estimated Stokes vector.122

3.2. Stokes-6123

The Stokes-6 analysis matrix is used to determine the Stokes vector from the following six intensity124

measurements: 𝐼𝐻 , 𝐼𝑉 ,𝐼+45 ,𝐼−45, 𝐼𝐺 and 𝐼𝐷 . These intensities correspond to the six probe states:125

horizontal, vertical, ±45◦ and circular left and right. They are easily accessible experimentally,126

as described above. However, since this analysis matrix forms a regular octahedron within the127

Poincaré sphere (platonic solid), it allows an optimal CN equal to
√

3 to be obtained. The incident128

Stokes vector is also estimated by a direct computation of:129

ŜSt-6 =



𝑆0 = 𝐼𝐻 + 𝐼𝑉

𝑆1 = 𝐼𝐻 − 𝐼𝑉

𝑆2 = 𝐼+45 − 𝐼−45

𝑆3 = 𝐼𝐿 − 𝐼𝑅

(3)

3.3. Tetrahedron130

With technological advances, and in particular owing to the democratization of variable delay131

LCVRs, it has become possible to choose the polarization analysis states at will across the132

Poincaré’s sphere. As a result, it is well-established that the optimum CN is obtained with133

minimum of 4 measurements when these states are located on the summits of a regular134

tetrahedron [8–14]. The incident Stokes vector is in that case estimated by a direct inversion of135

the analysis matrix 𝑊 (full-rank) as follows:136

Ŝ = 𝑊−1I (4)

3.4. SOPAFP approaches137

An alternative introduced as SOPAFP (State Of Polarization Analysis by Full Projection on138

the Poincaré space) was implemented for the first time by J. Dupont et al. in the context of139

Stokes imaging of highly resolved speckle grains [2, 15]. It consists in probing an important140

number 𝑁 of polarimetric states uniformly distributed across the surface of the Poincaré’s sphere.141

This approach makes it possible to acquire finer polarimetric results than previous approaches,142

particularly in low-intensity areas, at the expense of a longer acquisition time. In this seminal143

work, the distribution of the analysis states formed a spiral across the Poincaré’s sphere, and we144

shall refer to this set as "Spiral".145

3.4.1. Spiral146

The set of states used in [15] were chosen so as to form a spiral winding around the 𝑆3 axis (see147

bottom right of Fig. 1). In this work, the Stokes vector was estimated at each pixel of the CCD148
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sensor by using a non-linear regression [2,15] applied to an intensity curve obtained at each pixel149

of the sensor. Indeed, when the various sensing states are applied successively, the measured150

intensity at each pixel describes a curve as a function of the polarization state probed, and the151

shape of the curve unequivocally correspond to a given input state. An example of such curve152

is shown in Fig. 6 of the first article of this series [1], for a spiral composed of 𝑁 = 96 states,153

providing a CN of 1.742 >
√

3, but close to the optimal value.154

This approach, coupled to a non-linear regression estimation technique, was applied to the155

experimental bench in our laboratory and has been tested in this work on simulation results in156

order to compare the performance with other estimation approaches. In our implementation, a157

non-linear regression was applied to each intensity curve to estimate the parameters 𝑝, 𝜒 and 𝜓158

corresponding respectively to the DOP, the polarization ellipticity and the polarization azimuth159

of the input light polarization , at a given pixel. These estimated parameters were finally used to160

derive the incident reduced Stokes vector, described in spherical coordinates as s𝑇
𝑖𝑛

=
[
𝑠1 𝑠2 𝑠3

]𝑇 ,161

with 𝑠1 = 𝑝 cos(2𝜓) cos(2𝜒), 𝑠2 = 𝑝 sin(2𝜓) cos(2𝜒) and 𝑠3 = 𝑝 sin(2𝜒).162

We can note that this approach is similar to that used by Dupont, et al. in [2, 15], except that163

they relied on a different parameterization of the input Stokes vector. In our case, the intensity164

measured by the CCD sensor can be rewritten as a function of the three parameters 𝑝, 𝜒 and 𝜓 of165

the incident Stokes vector and of the optical delays 𝜙1, 𝑘 and 𝜙2, 𝑘 introduced by the LCVR1 and166

LCVR2 plates for each state 𝑘 = 1, . . . , 𝑁 to be analyzed as:167

𝐼𝑘 =
𝐼0
2
[
1−𝑝 · cos(2𝜒) cos(2𝜓) cos(𝜙2,𝑘 )

− 𝑝 · sin(2𝜒) cos(𝜙1,𝑘 ) sin(𝜙2,𝑘 )
+ 𝑝 · cos(2𝜒) sin(2𝜓) sin(𝜙1,𝑘 ) sin(𝜙2,𝑘 )

]
,

(5)

with 𝐼0 the total intensity of the input state. As described in Section 4, this equation has been168

used in the present work to simulate the intensity measurements (direct model).169

On the other hand, to evaluate the Stokes vector at each pixel from the measured intensity170

vector, we used an optimization algorithm (implemented on GNU Octave using the function171

fminsearch() [17]), to determine the parameters 𝑝, 𝜒 and 𝜓, given that the values of 𝜙1, 𝑘 and172

𝜙2, 𝑘 are in principle perfectly known and correspond to the optical phase delays introduced by173

the LCVRs if the system is properly calibrated. The criterion to minimize simply consisted in a174

root-mean-square (RMS) error, defined as :175

𝜖 (𝑝, 𝜒, 𝜓) =
𝑁∑︁
𝑘=1

|𝐼𝑠𝑖𝑚𝑢𝑙,𝑘 (𝑝, 𝜒, 𝜓, 𝜙1,𝑘 , 𝜙2,𝑘 ) − 𝐼𝑘 |2 (6)

This optimization algorithm, which is based on the Nelder-Maed’s [18] method, requires an176

approximate knowledge of the values of the parameters to be determined (initialization values)177

to prevent the optimisation of the algorithm from converging to a local minimum. To satisfy178

this requirement, an intensity look-up-table (LUT) has been generated for the phase shifts 𝜙1,𝑘179

and 𝜙2,𝑘 by varying each parameter 𝑝, 𝜒 and 𝜓 from 0 to 1 in steps of 0.1. In this way, 1331180

intensity curves were simulated in the LUT, allowing the initialization value of the parameters181

vector in the optimization algorithm to be determined by picking up the set of parameters that182

minimizes the RMS residual error described by (6) between the measured intensity curve and183

the 1331 tabulated curves. Once seeded with such initialization, the minimization algorithm184

was shown to converge easily towards an estimated value. An example of a result obtained is185

shown in Fig. 6 of the first paper of this series [1], where we simulated the intensity curve that186

would be obtained by illuminating a metal plate with a light source with left circular incident187

polarization, and analyzing the backscattered light through 𝑁 = 96 spiral analysis states. The188
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curve 𝐼𝑡ℎ corresponds to the theoretical polarization input state, whereas 𝐼𝑜𝑝𝑡 stands for the189

intensity variation obtained with the parameters estimated by numerical optimization.190

However, in an imaging context, this optimization must be carried out at each location (pixel)191

of the image, which requires significant post-processing time for images of the order of 700× 700192

pixels. For example, with a 4x4 pixel binning factor, the post-processing time lasts about193

5.3 × 103𝑠, i.e. almost 90 minutes on an ordinary computer. To minimize this processing time,194

we proposed to rely on a classical direct inversion scheme, involving the pseudo-inverse of 𝑊 ,195

since in this case 𝑊 is not an invertible square matrix anymore, i.e.,196

ŜSp = (𝑊𝑇𝑊)−1𝑊𝑇 I. (7)

As shown below, such inversion improves the processing time by several orders of magnitude.197

3.4.2. Spiral of tetrahedrons analyzing states198

As stated in the previous subsection, for 𝑁 = 96 states probed, the Spiral analysis matrix is close199

to the optimum CN, but it has the disadvantage that this CN depends on the number of states200

probed (see Fig. 2.b). By optimizing the location of the polarization probe states, it is possible to201

ensure that the CN of the selected matrix 𝑊 is strictly equal to
√

3. For that purpose, we propose202

to use a set of analysis states, referred to as Spiral of tetrahedrons (abbr. SpTet), which consists203

of a set of 𝑁𝑇 regular tetrahedrons inscribed in the Poincaré’s sphere, providing 𝑁 = 4 𝑁𝑇 probe204

states (i.e., a 4× 𝑁 analysis matrix). As a result it is possible to build a set of states with optimum205

CN of any size 𝑁 , provided 𝑁 is a multiple of 4. An example of such set of states is provided206

in Fig. 2.a: 𝑁 = 96 states have been generated from 𝑁𝑇 = 24 tetrahedrons using the following207

method (detailed in Supplemental Information 1): starting with a first reference tetrahedron,208

regular rotations are applied so that one of the vertices of the tetrahedrons follows the trajectory209

of a spiral wounded along the S3 axis (blue markers in Fig. 2.a) according to the previous Spiral210

approach. However, this rotation does not modify all four vertices in the same way, producing a211

less uniform distribution on the surface of the Poincaré’s sphere, and the procedure detailed in212

Supplemental Information 1 is used to warrant the maximal uniformity of the 𝑁 probe states213

accross the sphere.214

Fig. 2. (a) Distribution of analysis states for the Spiral of tetrahedrons analysis matrix,
where each colour represents the state resulting from the rotation of one of the vertices
of the reference tetrahedron. (b) Evolution of the CN of three analysis matrices (Spiral
of tetrahedrons, Spiral, and uniformly distributed random set of points) as a function of
the number of states 𝑁 ∈ {16, 52, 100, 324, 500, 1000, 5000, 10000}.

In Fig. 2.b, we represented the relative excess in CN, with respect to the minimum optimal215

value of
√

3, for three different sets of probe states with increasing number of points 𝑁 ∈216

{16, 52, 100, 324, 500, 1000, 5000, 10000}: the Spiral of tetrahedrons set, the Spiral set, and a217

uniformly distributed random set of states. This plot confirms that, by construction, the Spiral of218

tetrahedrons set maintains optimal CN of the matrix 𝑊 independently of the number of probe219

states. The conditioning of the "Spiral" matrix is very close to the optimal value when the number220
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of probe states is above 100. Finally, the CN obtained with the random set is very dependent on221

the number of states and increases very rapidly when the number of probe states decreases.222

Fig. 3. Example of histogram of the DOP estimated by non-linear regression (blue)
or direct inversion (red) on an experimental speckle image of 104 pixels. Inset: The
number of pixels in each class obtained by the direct inversion method is plotted against
those obtained by non-linear regression.

To conclude this section, we provide a comparison between the estimation results obtained on223

experimental data by the non-linear regression approach (as used in anterior implementations224

of the SOPAFP method [2, 15]), and by the direct inversion procedure of Eq. (7) in order to225

validate that this latter approach is able to provide the same results but with a huge acceleration226

in processing time. In Fig. 3, we plotted the histogram of the DOP values estimated on 104 pixels227

of a speckle image obtained by illuminating a metal plate with a vertically polarized incident228

homogeneous light beam. The experimental setup corresponds to the one described in the first229

part of this article series [1]. This graph shows that the two estimation methods are very similar,230

which is confirmed by the coefficient of determination 𝑅2 of 0.999. Across the whole field231

of view of 700 × 700 pixels accessible in this experiment, using a binning factor of 2 × 2, the232

non-linear regression estimation requires > 2 × 104 𝑠, whereas only 14.4 𝑠 are required for direct233

inversion, i.e., an speed-up factor of more than 1500 times. In the following of this article series,234

direct inversion estimation will then be used when the SOPAFP approach is implemented, and in235

particular in the simulation results presented in the next section.236

4. Comparative performances of analysis matrices for Stokes imaging237

In this section, we describe the methodology and performance metrics used to generate exhaustive238

simulations of the estimation performances (in terms of accuracy and precision) of the various239

sensing strategies detailed above. We then comparatively analyze the efficiency of these various240

matrices 𝑊 while varying the simulated experimental conditions in terms of signal-to-noise ratio241

(SNR), DOP and influence of an imperfect calibration/alignment of the experimental setup.242

4.1. Simulation methodology243

The five choices of analysis matrices 𝑊 presented above will be compared in this section in244

terms of Stokes vector estimation performance. To compare these various sensing approaches245

on a fair basis, we will consider a set of 𝑁 = 96 simulated experimental measurements for each246

matrix 𝑊 . For all matrices 𝑊 requiring fewer analysis states, we will consider a repetition of247

independent measurements in order to obtain the same number of 𝑁 = 96 intensity measurements,248

as summarized in Table 1.249

Now, in order to characterize the "average" estimation performance of each analysis matrix 𝑊250

over all the input polarimetric states S𝑖𝑛 that could be encountered, we further simulated 𝑀 = 103
251

randomly selected input Stokes vectors. These randomly simulated states were in practice252



Accepted manuscript

Table 1. Comparison between the number of analysis and repetition states for each
analysis matrix.

Matrix 𝑊 Stokes 4 Stokes 6 Tetrahedron Spiral Spiral of
tetrahe-
drons

# distinct states 4 6 4 96 96

# repetitions 24 16 24 1 1

Total measures 𝑁 = 96

produced so as to obtain Stokes vectors corresponding to a purely polarized light (𝐷𝑂𝑃 = 1),253

by drawing 𝑀 = 103 independent uniformly distributed values between −1 and 1 of the three254

reduced Stokes parameters 𝑠1, 𝑠2 and 𝑠3. After normalization of the vector s𝑖𝑛, and multiplication255

by a constant value 𝑆0, we obtain the set of simulated Stokes vectors as: 𝑆𝑇
𝑖𝑛

= 𝑆0
[
1 sin

𝑇

‖sin ‖
]
.256

Finally, we modeled the influence of the photon noise on the simulated acquisitions. This is257

important as, in the context of speckle imaging at the grain scale, the acquired intensity images258

are composed of bright grains (corresponding to constructive interferences) and dark areas259

(corresponding to destructive interferences). The SNR is therefore higher in the bright areas,260

while it is degraded in the regions of lower intensity. The SNR therefore varies spatially in the261

intensity image, and we must verify the robustness of the estimation procedure w.r.t. noise. For262

that purpose, all measurements were repeated over a number of 𝑅 = 103 independent realizations263

of Poisson noise affecting the intensity measurement simulated. For each simulated acquisition264

with average intensity 𝐼, we generated 𝑅 noisy versions of the measure 𝑛𝐼 𝑗 , 𝑗 ∈ [1, 𝑅] with265

𝑛𝐼 𝑗 identically and independently distributed according to a Poisson probability distribution of266

parameter 𝐼 (i.e., 𝑃𝑛𝐼 𝑗
(𝑛𝐼 𝑗 ) = 𝑒−𝐼 𝐼𝑛𝐼 𝑗 /𝑛𝐼 𝑗 !). Poisson noise being multiplicative, the SNR of the267

simulated acquisition is controlled by the value of the total intensity of the input light 𝑆0.268

In summary, the simulation results reported below will compare the performance of various269

sensing matrices 𝑊 over a set of 𝑀 = 103 distinct input Stokes vectors, each of them requiring270

𝑁 = 96 intensity measurements to be estimated, each estimation being repeated itself over271

𝑅 = 103 noise realizations.272

4.2. Mathematical performance descriptors273

In the following, we may resort to two definitions of performance metrics for the estimation274

problem at stakes, to account respectively on the accuracy and precision of the estimation method.275

4.2.1. Accuracy276

For given input Stokes vector, the accuracy of the estimation is evaluated through the computation277

of an average relative systematic bias 𝑏̂, defined by278

𝑏̂ =




S𝑠𝑖𝑚 − 〈̂S〉





‖S𝑠𝑖𝑚‖
, (8)

where the known simulated Stokes vector S𝑠𝑖𝑚 is compared to the mean estimated Stokes vector279

〈̂S〉 resulting from the 𝑅 = 103 noise realizations for each input Stokes vector.280

A further averaging over the 𝑀 = 103 distinct input Stokes vectors finally allows the average281

bias 〈𝑏̂〉 to be computed. This quantity will be used in the following as a global figure of merit of282

the estimation accuracy for the different matrices 𝑊 .283
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4.2.2. Precision284

Similarly, we proposed to evaluate the relative precision of the Stokes vector estimate by computing285

the norm of the vector of standard deviations of the Stokes vector components, evaluated over the286

𝑅 = 103 noise realizations, and normalized by the norm of the average Stokes vector estimate:287

𝜎̂ =







√︂〈

Ŝ
2〉

−
〈
Ŝ
〉2








〈Ŝ〉


 . (9)

A further averaging over the 𝑀 = 103 distinct input Stokes vectors finally allows the average288

relative precision 〈𝜎̂〉 to be computed. This quantity will be used in the following as a global289

figure of merit of the estimation precision for the different matrices 𝑊 .290

4.2.3. Graphical representation291

In the following graphs, these descriptors 𝑏̂ and 𝜎̂ will be represented in the form of a Turkey292

box indicating the distribution of the data in the form of quartiles (first and third quartiles), with293

the median represented by a red line, and the minimum and maximum value of the sample given294

by the vertical error bar. In addition, the mean values 〈𝑏̂〉 or 〈𝜎̂〉 over the 𝑀 = 103 various input295

Stokes vectors will also be represented with a pink square, as shown in Fig 4.b for instance.296

4.3. Simulation results and analysis297

In this subsection, we focus on the influence of the main experimental errors present on a298

polarimetric imaging system, such as the measurement noise, presence of partial depolarization,299

and finally a misalignment or a calibration error of the PSA.300

4.3.1. Influence of the SNR301

To estimate the influence of the SNR on the estimation of the Stokes vector, we generated similar302

simulations for three average intensities corresponding to 103, 104 and 105 photons for a fixed303

exposure time, leading respectively to SNR values of 31.6, 100 and 316.2. The results shown304

below, intending to compare the 5 different matrices 𝑊 for the estimation of the Stokes vector,305

have been carried out on the same set of simulated measurements.306

The simulation results in terms of estimation accuracy are displayed in Fig. 4, for the various307

SNRs and matrices 𝑊 studied. As expected, the relative average bias 〈𝑏̂〉 decreases as the SNR308

increases, as can be clearly seen in Fig. 4.a. On the one hand, we observe that the accuracy309

is clearly improved at low SNR (Fig. 4.b) when the "Tetrahedron", "Spiral" and "Spiral of310

Tetrahedrons" analysis matrices are considered: the mean bias is lower, but also the maximum311

bias observed is clearly diminished by a factor of about 3. This is interesting in the context of our312

study of polarimetry of highly resolved speckle grains, as the SNR will be severely degraded in313

low-intensity regions.314

On the one hand, at high SNR (Fig. 4.d) the relative average bias seems almost similar for315

the various analysis matrices. However, if we look at the distribution of estimated biases, the316

dispersion of the biases appears to be slightly lower for the "Spiral" and "Spiral of Tetrahedrons"317

matrices. This lower bias dispersion seems to indicate that an analysis matrix with many318

states distributed uniformly over the Poincaré’s sphere can provide a systematic bias that is less319

dependent on the polarimetric state to be analyzed, than with a matrix 𝑊 comprising only a few320

probed states.321

We now focus on the estimation precision of the different analysis matrices, which is evaluated322

through the computation of the normalized standard deviation of the vector estimates as in Eq. (9).323

As shown in Fig. 5 a., the precision logically increases with the SNR value. We also observe that324
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Fig. 4. (a) Average estimation bias over 1000 random polarimetric input states as a
function of the SNR and for different analysis matrices 𝑊 . (b-d) Distribution of the
relative estimation bias over the 𝑀 = 103 different polarization states, as a function of
different analysis matrices for three distinct SNRs.

for a given SNR, the mean relative precision 〈𝜎̂〉 remains of the same order of magnitude for325

the various matrices 𝑊 . More interesting to analyze is the dispersion of 𝜎̂ over the 𝑀 = 103
326

input states. We can clearly see that the span of values reached by the estimated relative standard327

deviation 𝜎̂ is 11 times (respectively 2.75 times) higher for the Stokes-4 approach (respectively328

for the Stokes-6 approach) than for the last three matrices 𝑊 , which seem to be a much better329

choice to avoid extreme values of standard deviations when the input Stokes vector is varied.330

In order to compare the relative performances of these last three approaches, two of them331

being by construction optimal as they reach the minimum CN of the matrix 𝑊 (Tetrahedron and332

Spiral of Tetrahedrons), we plot in Fig. 5.b the distribution of their relative standard deviations333

𝜎̂, for a SNR of 100. It can be seen that precision obtained for each matrix is very similar (a334

feature that occurred to be independent of the SNR, as tested during further simulations which335

are not reported here for the sake of conciseness). As discussed later, the non-optimality of the336

Spiral set of sensing states cannot be detected here, due to the important number of states 𝑁 = 96337

considered.338

As an intermediate conclusion, these first simulation results confirm that the SOPAFP339

approaches (using either Spiral and Spiral of tetrahedrons matrix) can be employed to determine340

any Stokes vector with a better accuracy than usual Stokes imaging approaches, in particular at341

low SNR. In addition, these matrices have the supplementary advantage of providing near-optimal342

estimation precision, with a much lower dispersion of the estimation standard deviation compared343

with the more conventional Stokes-4 and Stokes-6 measurement methods.344

4.3.2. Influence of depolarization345

In this subsection, we analyze the influence of a possibly non unitary DOP of the input Stokes346

vector to estimate. This is common in the context of applications of polarization imaging in347

the biomedical or industrial field, but this can also be relevant in our context of speckle grains348

polarimetry. Indeed, depending on the polarization properties of the illumination light source,349

the DOP within a speckle grain can range from 0 to 1 in the general case. Therefore, we analyzed350

the robustness of the various sensing matrices 𝑊 to a partial depolarization of the input Stokes351

vector. To this end, we simulated three different experiments, strictly similar to each other, except352

for the DOP 𝑝 of the simulated input Stokes vector, that was varied among 𝑝 ∈ {1, 0.5, 0.1}.353

This is easily operated by forming, for each normalized Stokes vector s𝑖𝑛 generated, the following354
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Fig. 5. (a) Influence of the SNR on the relative precision of the Stokes vector estimates
for various analysis matrices 𝑊 . For each analysis matrix, the three candlesticks
positioned from left to right correspond respectively to SNR levels of: 31.6, 100 and
316. (b) Dispersion of the precision 𝜎̂ of the Stokes vector estimates for the Tetrahedron,
Spiral and Spiral of Tetrahedrons analysis matrices for a SNR of 100.

Stokes vector: 𝑆𝑇
𝑖𝑛

= 𝑠0
[
1 𝑝

sin
𝑇

‖sin ‖
]
.355

Photon noise with a SNR of 100 was again applied to the simulated signals and 𝑅 = 103
356

realizations of noise were carried out for each of the 𝑀 = 103 random states to be estimated.357

Concerning the estimation accuracy, Fig. 6 shows that the average relative bias increases as the358

DOP decreases, in a similar way for all the analysis matrices studied. To be more quantitative,359

we note that the ratio between the average relative bias obtained for a DOP of 1 and that of 0.1 is360

of the order of 10.361

Fig. 6. Influence of the DOP of the input Stokes vector on the estimation quality of
each analysis matrix. For the same analysis matrix, the three candlesticks positioned
from left to right correspond respectively to a DOP of 1, 0.5 and 0.1. These simulations
were carried out with an SNR of 100 and over 𝑀 = 103 distinct input Stokes vectors.
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Furthermore, for a given DOP, is can be observed that the average bias (pink squares) is362

approximately comparable, regardless of the analysis matrix chosen, except for the Stokes-4363

configuration, where the average bias obtained is 1.4 times higher than that of the other matrices.364

However, in terms of dispersion of the bias, Fig. 6 tends to show that for a DOP of 0.1 the Spiral365

of tetrahedrons is the best analysis matrix, the dispersion for the other matrices being slightly366

higher.367

Fig. 7. Influence of depolarization on the estimation precision of the Stokes vector for
each analysis matrix 𝑊 . Three values of DOP are studied: 1, 0.5 and 0.1 respectively.

As for the estimation precision, Fig. 7 shows that the relative precision is degraded as the DOP368

decreases, by a factor of 10 between that obtained for a DOP of 1 and 0.1, independently of the369

analysis matrix. This ratio of precision degradation is similar to that calculated for the estimation370

accuracy. It can be seen that the Tetrahedron, Spiral and Spiral of Tetrahedrons analysis matrices371

have comparable accuracy (average value and dispersion) and evolve with the DOP in a similar372

way. The Stokes-4 cnfiguration is still the one with the highest precision dispersion, and is373

therefore of little interest in our case for fine polarimetric analysis of the speckle pattern. As for374

the Stokes-6 approach, the performance is lower than that of the Tetrahedron, Spiral and Spiral of375

tetrahedrons matrices for a high DOP, but as the polarization rate decreases, its precision and376

precision dispersion become comparable to those of the other three matrices.377

Once again, the sensing configuration proposed in this artice (Spiral of Tetrahedrons) allows378

one to guarantee the best compromise between estimation accuracy and precision. This is further379

evidence in the next subsection, where we analyze the robustness to experimental imperfections380

of the setup.381

4.3.3. Influence of experimental imperfections382

In this section, we study the influence of a misalignment or of an incorrect calibration of one of383

the elements of the PSA used in the Stokes imaging setup developed to study the polarimetry of384
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highly resolved speckle fields. The PSA classically consists of two LCVRs (𝐿𝐶𝑉𝑅1 and 𝐿𝐶𝑉𝑅2385

respectively), whose fast axes are aligned respectively along the vertical axis and at -45° from the386

horizontal axis in a clockwise direction, followed by a linear polarizer along the vertical direction.387

The Mueller matrix of such PSA reads 𝑀𝑃𝑆𝐴 = 𝑀𝑃 (𝜃𝑝)𝑀𝐿𝐶𝑉 𝑅2 (𝜃2, 𝜙2)𝑀𝐿𝐶𝑉 𝑅1 (𝜃1, 𝜙1)388

where 𝑀𝑝 (𝜃𝑝) is the Mueller matrix of an ideal polarizer whose eigenaxis is oriented along an389

angle 𝜃𝑝 and is defined as :390

𝑀𝑃 (𝜃𝑝) =
1
2

©­­­­­­­«

1 𝑐(2𝜃𝑝) 𝑠(2𝜃𝑝) 0

𝑐(2𝜃𝑝) 𝑐2 (2𝜃𝑝) 𝑐(2𝜃𝑝)𝑠(2𝜃𝑝) 0

𝑠(2𝜃𝑝) 𝑐(2𝜃𝑝)𝑠(2𝜃𝑝) 𝑠2 (2𝜃𝑝) 0

0 0 0 0

ª®®®®®®®¬
, (10)

where we set 𝑐(𝑥) = cos(𝑥) and 𝑠(𝑥) = sin(𝑥). In our case, 𝜃𝑝 is ideally set equal to 𝜋/2. The391

Mueller matrix of a variable phase plate is defined as :392

𝑀𝐿𝐶𝑉 𝑅 (𝜃, 𝜙) =

©­­­­­­­«

1 0 0 0

0 𝑐2 (2𝜃) + 𝑐(𝜙)𝑠2 (2𝜃) 𝑐(2𝜃)𝑠(2𝜃) [1 − 𝑐(𝜙)] −𝑠(𝜙)𝑠(2𝜃)

0 𝑐(2𝜃)𝑠(2𝜃) [1 − 𝑐(𝜙)] 𝑠2 (2𝜃) + 𝑐(𝜙)𝑐2 (2𝜃) 𝑠(𝜙)𝑐(2𝜃)

0 𝑠(𝜙)𝑠(2𝜃) −𝑠(𝜙)𝑠(2𝜃) 𝑐(𝜙)

ª®®®®®®®¬
, (11)

where 𝜃 and 𝜙 represent respectively the orientation of the eigenaxes and the voltage-controllable393

optical phase delay applied between the two propagation eigenaxes in the liquid crystal. In the394

ideal case, 𝜃1 = 𝜋/2 and 𝜃2 = −𝜋/4.395

In this section, to analyze the robustness of the estimation methods to experimental imperfec-396

tions, an orientation error 𝜖 of 1◦ was introduced successively on one of the PSA elements. As397

described below, we also simulated a possible incorrect value of the optical phase delays due to398

an imperfect calibration. The analyzer Mueller matrix is thus written as :399

𝑀𝑃𝑆𝐴 = 𝑀𝑃 (𝜃 ′𝑝)𝑀𝐿𝐶𝑉 𝑅2 (𝜃 ′2, 𝜙
′
2)𝑀𝐿𝐶𝑉 𝑅1 (𝜃 ′1, 𝜙

′
1), (12)

with 𝜃 ′
𝑖
= 𝜃𝑖 + 𝜖𝑖 , 𝑖 ∈ {𝑝, 1, 2}, and 𝜙′

𝑖
= 𝜙𝑖 + 𝛿𝜙𝑖 , 𝑖 ∈ {1, 2}. For instance, simulating an400

orientation error in LCVR1 only will thus consists in fixing 𝜖1 = 1◦, and 𝜖2 = 𝜖𝑝 = 0◦, 𝛿𝜙𝑖 = 0401

for 𝑖 ∈ {1, 2}. As in previous simulations, the generated signals are perturbed with photon noise402

corresponding to an SNR of 100, and 𝑀 = 103 input Stokes vectors are tested to compute an403

average accuracy/precision of estimation with different analysis matrices 𝑊 .404

Misalignment error: We analyze in Fig. 8 the influence of a misalignment of a PSA element405

on the accuracy of the estimation of the Stokes vector for the various analysis matrices. The main406

conclusion that can be drawn from this plot is that the Spiral and Spiral of Tetrahedrons analysis407

matrices have a similar influence on the mean relative bias and its dispersion, regardless of which408

optical element of the LCVR has an orientation error. Contrarily, for the other analysis matrices,409

the bias introduced by an orientation error has a much higher dependency on the misoriented410

element, particularly if the orientation error relates to one of the variable delay plates. Thus,411

by probing numerous states distributed uniformly over the surface of the Poincaré’s sphere, an412

error in the orientation of the axes of one of the PSA’s optical elements will generate a bias that413

is comparatively low, and roughly constant irrespectively of which element is disoriented. In414

addition, for these two analysis matrices, the distribution of third quartiles of the estimated states415

is clearly lower than for other sensing strategies. These simulations thus prove that one strong416
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Fig. 8. Influence of a misalignment of a PSA element on the accuracy of the estimation
of the Stokes vector for each analysis matrix. For each analysis matrix, the three
candlesticks positioned from left to right correspond respectively to an orientation error
of 1° on LCVR1, LCVR2 and polarizer.

Fig. 9. Influence of a misalignment of a PSA element on the precision of the estimation
of the Stokes vector for each analysis matrix. For each analysis matrix, the three
candlesticks positioned from left to right correspond respectively to an orientation error
of 1° on LCVR1, LCVR2 and polarizer.

interest in using the SOPAFP approach and its variants lies in its capacity to better limit the417

influence of experimental biases on the accuracy of the estimated results.418

The precision measurement is analyzed in Fig. 9, which shows that a limited misalignment419

of one of the elements of the PSA has no influence on the accuracy of the estimate of the420

Stokes vector. This observation can be interpreted by the fact that a (limited) misalignment421

of the PSA simply leads to the estimation of an inaccurate (biased) polarization state. In this422

way, analysis matrices composed of many states distributed uniformly over the surface of the423

Poincaré’s sphere have an rather constant bias regardless of the misaligned element (as shown424

above) and consequently, a less significant bias dispersion giving them greater robustness to425

experimental orientation errors of the optical setup.426

LCVR calibration error: Another source of experimental error can be encountered when427

an incorrect calibration of the LCVRs voltage setpoint is used (due to an imprecise calibration,428

temperature drifts...). Fig. 10.a shows the calibration curve of the LCVRs used in our experiment429

providing the optical phase delay generated when a control voltage V is applied on the cell, at a430

stabilized temperature of 24◦ 𝐶. As mentioned in the first article of this series [1], a polynomial431

fit of these calibration curves allowed us to easily simulate the influence of a systematic error 𝛿𝑉𝑖432

in the voltage setpoints, by simulating the following Mueller matrix for the PSA: .433

𝑀𝑃𝑆𝐴 = 𝑀𝑃 (𝜃𝑝)𝑀𝐿𝐶𝑉 𝑅2 (𝜃2, 𝜙
′
2)𝑀𝐿𝐶𝑉 𝑅1 (𝜃1, 𝜙

′
1), (13)



Accepted manuscript

Fig. 10. (a) Calibration curve for the two LCVR plates for 45 different voltages ranging
from 0 to 4.5 V, in steps of 0.1 V. (b) LCVR1 calibration curve with and without a
set-point voltage error 𝜖𝑉 = 0.05 .

with 𝜙′
𝑖
= 𝜙2 (𝑉𝑖 + 𝛿𝑉𝑖), 𝑖 ∈ {1, 2}. An error of 𝛿𝑉1 = 0.05 V has been simulated and provides434

the erroneous response in optical phase delay shown in Fig. 10.b.435

Fig. 11. Influence of a calibration error on one of the PSA variable delay plates on the
accuracy of the Stokes vector estimation for each analysis matrix. For each analysis
matrix, the three candlesticks positioned from left to right correspond respectively to a
perfect calibration, a calibration error on LCVR1 or on LCVR2.

Figure 11 shows the influence of such an imperfect voltage calibration on the accuracy of the436

Stokes vector estimation. It can first be observed that the average relative bias 〈𝑏̂〉 for a voltage437

error on LCVR2 is higher than that for an error on LCVR1 (except for the Stokes-4 matrix). In438

the case of a setpoint error on LCVR1, the average bias for the Spiral and Spiral of Tetrahedrons439

analysis matrices is half that of the other matrices. Furthermore, in this case they have a lower440

bias dispersion. However, this analysis is different if the setpoint voltage error affects LCVR2: in441

that case the Spiral and Spiral of Tetrahedrons analysis matrices are affected by a bias comparable442

to that of other sensing approaches. This difference in behaviour between the two LCVRs can be443

explained by looking at Eq. (5): the optical phase delay induced by LCVR2, 𝜙2, modifies three444

of the four terms of the equation, whereas the delay induced by LCVR1 only affects two of them.445

On the other hand, an error in the setpoint voltage on one of the variable delay plates has very446

little effect on the average precision of each analysis matrix as shown in Fig. 12. As a result, to447

conclude this section, it can be again observed that for a voltage calibration error on the LCVR448

setpoints, the Spiral and Spiral of Tetrahedrons analysis matrices exhibit a lower dispersion than449

the other analysis matrices in terms of accuracy (relative bias) and precision (relative standard450

deviation).451

5. Discussion and conclusion452

The numerical simulations presented in this study have permitted to clearly validate the relevance453

of SOPAFP sensing approaches in Stokes polarimetry, i.e., performing polarimetric sensing454
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Fig. 12. Influence of a calibration error on one of the PSA variable delay plates on
the precision of the determination of the Stokes vector for each analysis matrix. For
each analysis matrix, the three candlesticks positioned from left to right correspond
respectively to a perfect calibration, a calibration error on LCVR1 and on LCVR2.

using many (apparently superfluous) intensity measurements along a strong diversity of analysis455

states. Even though such approaches should be limited to particular experimental contexts where456

the acquisition time is not a limiting factor, the gain in estimation quality with the SOPAFP457

approach had already been noticed in the seminal paper of Dupont et al. [15], but without a clear458

demonstration of its origin.459

In this paper, we first demonstrated that the non-linear regression procedure implemented460

in [15] could be advantageously replaced by a direct matrix inversion (or pseudo-inversion), with461

a huge acceleration of processing times by a factor of more than 1500. We then proposed an462

alternative set of polarization analysis states, referred to as Spiral of Tetrahedrons, that allows463

one to perform SOPAFP with an important number of sensing states covering as uniformly as464

possible the Poincaré’s sphere, while at the same time ensuring an optimum CN of the analysis465

matrix to ensure optimal precision in the estimation by direct inversion.466

Using extensive simulations of realistic imaging/sensing situations, we demonstrated that467

SOPAFP approaches involving the Spiral and Spiral of Tetrahedrons analysis matrices could468

provide optimal estimation accuracy (in terms of relative estimation bias) and precision whatever469

the SNR or DOP of the input light. More interestingly, these SOPAFP approaches were shown to470

clearly supersede other classical sensing strategies involving only a limited number of analysis471

states in the case of slight experimental imperfections of the setup, resulting from improper472

alignment or bad calibration of the LCVRs for instance, that can happen in practice, due to473

temperature drifts. Indeed, we demonstrated that the SOPAFP approaches provide a low average474

relative bias and, more importantly, a very low dispersion of this relative bias as a function of the475

input polarization state to estimate, and for distinct imperfections of the PSA.476

Now, a last topic that can be discussed in this study is the effective interest of using the Spiral477

of Tetrahedrons analysis matrix we proposed instead of any kind of uniformly distributed set of478

points across de Poincaré’s sphere. As shown in Section 3.4.2, maximal coverage of the sphere479

does not guarantee that the CN of the analysis matrix is minimum: therefore using a non-optimal480

set of points should lead to a lower estimation precision. Although this was not detected in the481

simulations presented above due to the important number of sensing points used (𝑁 = 96), we482

compare in a last simulated experiment the relative performance in terms of precision between483

the Spiral and Spiral of Tetrahedrons analysis matrices, when the number of points 𝑁 is varied,484

and for three values of the DOP of the input Stokes vectors to estimate. The results obtained485

and displayed in Fig. 13 confirm the fact that the slight non-optimality of the CN of the Spiral486

analysis matrix which can be observd in Fig. 2.b) leads to a small degradation of the estimation487

precision with respect to the Spiral of Tetrahedrons analysis matrix which has an optimum CN,488

this degradation being more pronounced for lower DOP of the input Stokes vector. Depending489
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Fig. 13. Relative precision defined by the ratio of the precision of the Spiral and Spiral
of Tetrahedrons analysis matrices for three levels of degree of polarization (1, 0.5 and
0.1) for W matrices composed of 8 to 324 probe states.

on the application at hand, one could choose a different compromise between acquisition time490

and estimation precision/robustness by diminishing slightly the number of states composing the491

Spiral of Tetrahedrons. In the context of this article series, we sticked to a number of sensing492

points of 𝑁 = 96, leading in our case to acceptable acquisition times.493

As a conclusion, the SOPAFP approach and the proposed optimal alternative implementation494

using the Spiral of Tetrahedrons analysis matrix can prove very efficient in applicative contexts495

where very good accuracy/precision of the Stokes vector estimation is required, and in particular496

in low SNR contexts and in the presence of depolarized input states. Moreover, we proved in this497

study that such approaches are optimal also in terms of robustness to experimental imperfections.498

As suggested in Ref. [15], the experimental challenge of performing Stokes polarimetry of highly499

resolved speckle patterns at the individual grain scale is a perfect context for applying SOPAFP500

approaches. Using the experimental setup detailed in the first article of this series [1], we shall501

use the optimizes SOPAFP approach in the last article of the series [19] which details some of502

the imaging results obtained experimentally with such optimized setup, as well as new graphical503

representations of the polarization information, and an analysis of the distribution of polarization504

states accross a speckle pattern, and in vicinity of polarization singularities.505
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