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Abstract—We prove simple theorems around the impossibility
of sending information backward in time without the violation
of the principle of quantum unitarity in physics. The result also
extends to faster than light information transfer. The theorem is
comparable to the ”no-cloning” theorem, which we generalize.
This result is a kind of reciprocal of the author former result
which proved that a repetitive unitary violation would make
possible retro-information.

Index Terms—quantum unitarity, relativity.

I. INTRODUCTION

Time travel has been a popular topic among science fiction
fans. Traveling forward in time is an every day experience.
However traveling backward in time would be impossible, to
the most popular belief in the scientific community mostly due
to the apparent trap of time paradoxes or causality violations.
However by toying with general relativity many astrophysicist
has demonstrated the possibility of closed time curves (CTC),
also called time loops. The General Relativity theorically
allows CTCs. In fact Gödel, the father of the mathematic
uncompleteness theory, was able to show that the equations
of general relativity accept some solutions which describe a
cyclic universe [3]. Tipler has also imagined that a infinitely
long rotating cylinder will create CTCs [5]. These solutions
have been criticised by the fact that they would need very
unrealistic initial conditions in order to materialize.

The concept of faster than light travels based on warp drive
within negative energy field [1] seems less ambitious and
attracts less criticism, but in fact it should not, since two
consecutive faster than light travels could result in a time
backward travel just by adjusting the Lorentzian referentials
at their ends. This will be developped in more detail in the
last part of our paper. Figure 1, illustrates this fact and shows
the convention that the time axis is vertical, the top oriented
to the future. This convention will be implicit in the following
figures.

Our aim is to investigate the possibility of sending infor-
mation backward in time (coined here by the term ”retro-
information”) which is a much weaker concept than time
travel. Contrary to time travel, retro-information is conceptu-
ally not against causality, because the so-called time paradoxes
would only result in transmission errors.

In [7] we have shown that a repetitive unitarity violation
of rate eν for ν ̸= 0 would imply the possibility of a retro-
information channel of capacity rate ν

log 2 . Here we show the
reversed result, namely that sending information backward in

Fig. 1. Two concatenated faster than light segments send information
backward in time.

time with non zero information rate would result in unitarity
violation:

Theorem 1 (Our contribution): The capability to transmit
information backward in time implies a violation of quantum
unitarity
The consequence of this theorem is that compared to the prob-
lem of time travel, the problem of transmitting information
backward in time, now switches from the status ”impossible”
to the status ”very difficult”, since unitarity is one of the
foundation of quantum mechanics.

Our paper is organized as follow. In the next section we
present a brief (and simplified) description of the principle of
unitarity. Then we present the proof of the no-cloning theo-
rems [10] which tells that an unknown quantum state cannot
be mechanically duplicated without violating unitarity. Those
proofs bear some resemblance with our theorem although not
being strictly on the information theory plan. We also present
the corollary about the unitarity violation of faster than light
information transfer.

II. THE PRINCIPLE OF UNITARITY

A. Schrödinger equation, first quantification

The quantum physics are based on the hypothesis that the
state of a massive particle is given at time t by a ”wave”
function |Ψ(t)⟩ by using the expression bra-ket of Paul Dirac.
The function is on R3 → C [9] and the space of such functions
is an Hilbert space with a metric. The dot product of this
Hilbert metric on an arbitrary pair of wave functions |Ψ⟩ and



|ϕ⟩ is defined by ⟨ϕ|Ψ⟩ =
∫
R3 ϕ

∗(z)Ψ(z)dz3. The quantity
ϕ∗(z) is the conjugate complex value of the quantity ϕ(z).

The time evolution of the state function |Ψ(t)⟩ is given by
the Schrödinger equation [9]:

iℏ
d

dt
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ (1)

where i is the complex number
√
−1; ℏ is the reduced Planck

constant; Ĥ is the Hamiltonian operator.
The Hamiltonian operator is a self adjoint operator whose

eigenvalues are the energy levels attainable by the particle. By
self-adjoint we mean that for all wave functions Ψ and ϕ we
have the identity

〈
Ĥϕ

∣∣∣Ψ〉
=

〈
ϕ
∣∣∣ĤΨ

〉
.

In general

ĤΨ(t, z) = − ℏ2

2m
∆zΨ(t, z) + V (t, z)Ψ(t, z) (2)

where m is the mass of the particle, ∆z is the Laplacian
operator on the variable z and V (t, z) is the potential function
acting on the particle. The potential may depend on time. The
equation is then too complicated to accept an analytic solution
and must be resolved via approximation or numerical methods
(except in some simple models including the hydrogen atom).

B. Eigenvectors, unitarity

When the Hamiltonian is independant of time, the eigen-
values are the energy levels En of the particle and may have
discrete values, thus n ∈ N. If |ϕn⟩ is an eigenvector, we have

Ĥ |ϕn⟩ = En |ϕn⟩ . (3)

The set of the states |ϕn⟩ when n varies makes an orthogonal
set, since the Hamiltonian is self-adjoint. It is possible that the
eigenspace corresponding to a given energy value En be of
dimension greater than 1, in this case the energy level is said
to have degeneracies. An orthonormal base of such eigenspace
would be |ϕn,j⟩. An arbitrary wave function |Ψ(t)⟩ can have
the decomposition

at t = 0: |Ψ(0)⟩ =
∑
n,j

αn,j |ϕn,j⟩ (4)

and ⟨Ψ(0)|Ψ(0)⟩ =
∑

n,j |αn,j |2.

And at time t: |Ψ(t)⟩ =
∑
n,j

αn,je
−iEnt/ℏ |ϕn,j⟩ . (5)

We see that ⟨Ψ(t)|Ψ(t)⟩ is invariant and equal to ⟨Ψ(0)|Ψ(0)⟩
which is set at 1: this is the principle of unitarity in quantum
mechanics.

We notice that ⟨Ψ(t)|Ψ(t)⟩ =
∫
R3 |Ψ(t, z)|2dz3, and the

quantity |Ψ(t, z)|2 is interpreted as the probability density of
the particle on z at time t.

When the Hamiltonian depends on the time, i.e. Ĥ = Ĥ(t),
the time variation of the solutions of the Schrödinger equa-
tion are more difficult to make analyse. However since the
Schrödinger equation is fundamentally linear, its resolution
goes through a linear operator which depend on t: |Ψ(t)⟩ =

U(t) |Ψ(0)⟩. The operators U(t) are unitary in the sense that
they preserve the Hilbertian dot product.

Indeed if |ϕ(t)⟩ and |Ψ(t)⟩ are both solution of the
Schrödinger equation, then ⟨ϕ(t)|Ψ(t)⟩ = ⟨ϕ(0)|Ψ(0)⟩. In-
deed:
d

dt
⟨ϕ(t)|Ψ(t)⟩ =

〈
d

dt
ϕ(t)

∣∣∣∣Ψ(t)

〉
+

〈
ϕ(t)

∣∣∣∣ ddtΨ(t)

〉
=

i

ℏ

〈
Ĥ(t)ϕ(t)

∣∣∣Ψ(t)
〉
− i

ℏ

〈
ϕ(t)

∣∣∣Ĥ(t)Ψ(t)
〉

= 0 (6)

since Ĥ(t) is self adjoint. Consequently we still have
⟨Ψ(t)|Ψ(t)⟩ = ⟨Ψ(0)|Ψ(0)⟩ = 1 as the expression of the
unitarity principle.

C. Klein-Gordon equation, special and general relativity
The previous description is valid for the non relativistic

Schrödinger equation where is it possible to separate the time
variable t with the space variables z in the wave function
Ψ(t, z). In relativistic setting it is not not possible to make
such a separation since the variables can be mixed via any
Lorentzian transforms. In this case the Schrödinger equation
must be changed into the Klein-Gordon equation [6]:

ℏ2∂2
tΨ(t, z) = ℏ2c2∆Ψ(t, z)−m2c4Ψ(t, z) (7)

where ∂t is the partial derivative with respect to the time
variable. When the energy levels En are small compared to
the rest energy mc2, the solution we would find back the
Schrödinger equation at first order:

ℏ∂2
tΨ(t, z) = −ℏ2∆zΨ(t, z)−m2c4Ψ(t, z) (8)

the term m2c4 reminding that the relativistic vector impulsion-
energy must have a Minkowski norm equal to m2c4. The
potential in the Hamiltonian may have a formulation which
depends on |Ψ⟩.

The unitarity have a different expression here since one must
consider probability current J(t, z) = Im (Ψ∗(t, z)∇4Ψ(t, z))
where ∇4 is the 4-gradient operator: (−∂t, c∇z). Thus J =
Im (Ψ∗∂tΨ, cΨ∗∇zΨ). This is the flow of the probability
current through an space like hyper-surface which determines
the density of probability at point (t, z) with the form s.J(t, z)
where s is a vector orthonormal to the hyper-surface. The
probability density may locally be negative, which calls for
the second quantization (not addressed here).

The unitarity condition with the Klein-Gordon equation is
equivalent to the conservation of the flow of probability, that
is the 4-divergence of the 4-vector J is null. Consequently the
difference of the flow of the probability current between two
hyper-surfaces is equal to the integral of the 4-divergence in
the separating volume.

∇4J = Im
(
Ψ∗∂2

tΨ−Ψ∗c2∆zΨ
)

+Im(∂tΨ
∗∂tΨ) + c2 Im(∇zΨ

∗ · ∇z) (9)

Since ∂tΨ
∗∂tΨ is real, thus Im(∂tΨ

∗∂tΨ) = 0, also
Im(∇zΨ

∗ · ∇z) = 0. Since ∂2
tΨ = c2∆zΨ− m2c4

ℏ2 Ψ we have

∇4J =
m2c4

ℏ2
Im(Ψ∗Ψ) = 0. (10)



which is the principle of unitarity in relativistic quantum
mechanics. We can still define the dot product between kets
⟨ϕ|Ψ⟩ when focusing on specific parameters such that spins
or polarization, via a suitable algebra similar to the one
introduced by Paul Dirac where unitarity is preserved.

In general relativity, the space-time has a non Euclidian
geometry with a curvature function of the density of mass
and energy. The Klein-Gordon equation becomes

1√
det(g)

∑
ij

∂i(g
ij
√

det(g)∂jΨ) +
m2c2

ℏ2
Ψ = 0 (11)

where g is the 4 × 4 matrix of the non euclidian metric. gij
(resp. gij) is the coefficient (i, j) of the matrix g (resp. of
the matrix g−1). The conservation of unitary between two
hyper-surface still holds as long as the metric does not show
singularity in the separating volume. This never occurs when
the metric is flat, but it may occur when we consider the
metric close to a black hole, where the matrix g is singular on
the event horizon as we know for the Schwartzschild deSitter
metric [8]. In this case the unitarity might be violated [11].

D. Multi-particle systems, second quantification

The wave function can be made more complicated by
defining it in RD × S → Cd where D ≥ 3 and d ≥ 1 and
S being a symmetry group, and this is just talking of first
quantification, the second quantification talks of creation and
annihilation of particles operators (thus d would be infinite).
In its simplest setting, R3 stands for the spatial position of the
particle and C stands for the intensity of the wave function.
The wave function summarizes the probabilistic properties of
the particle.

For example in a two state system with a binary outcome
u and v after a measurement, e.g a spin measurement, then
an arbitrary wave function |Ψ⟩ has the decomposition |Ψ⟩ =
α |u⟩+β |v⟩ where |u⟩ and |v⟩ are respectively the pure states
corresponding to the outcome u and v. The states |u⟩ and
|v⟩ being an orthonormal base then the unitarity condition
tells that every time |α|2 + |β|2 = 1. In fact as for the spin
measurement of a particle with angular momentum, the pure
states could be respectively the tensor products of the wave
function |ϕu⟩ (resp. |ϕv⟩) of the position of the particle in
R3 with |Σu⟩ (resp. |Σv⟩) the wave function of the angular
momentum. Thus |Ψ⟩ = α |ϕu⟩ ⊗ |Σu⟩ + β |ϕv⟩ ⊗ |Σv⟩
would still results in the identity |α|2 + |β|2 = 1. In this
simple framework to prove an unitarity violation it suffices
to show that for a particle it is impossible to have everytime
⟨Ψ|Ψ⟩ = 1.

In the case of a system, made of two distinct particles A
and B corresponding to a pair of positions, each in R3, the
resulting wave function will operate in R6. If the particles are
independent, A will have wave function |ΨA⟩ and B wave
function |ΨB⟩, the combined wave function will be the tensor
|ΨA⟩⊗|ΨB⟩ and its value at (z, z′) ∈ R6 is ΨA(z)ΨB(z

′). Of
course we can generalize to an arbitrary number of particles.
The unitarity violation will be revealed if it at a given time is
impossible to have both ⟨ΨA|ΨA⟩ = 1 and ⟨ΨB |ΨB⟩ = 1.

III. THE NO-CLONING THEOREM

What follow is the first proof of impossibility without uni-
tarity violation. To simplify our proofs we will only consider
pure quantum states with no degeneracy. Degeneracy won’t
change the result but would need to involve state projection,
or other operations which would complicate the presentation.

Theorem 2: It is not possible to make two copies of an
unknown wave function |Ψ⟩ without violating unitarity.

Proof: To simplify we consider two originally indepen-
dent particles A and B. The particle A has the wave function
|Ψ⟩A, supposed to be unknown (not fabricated, so that dupli-
cation would be trivial), and the particle B has the ”blank”
wave function |e⟩B which is supposed to be the vehicle of the
copy |Ψ⟩. Thus the original system wave function the tensor
product |Ψ⟩A ⊗ |e⟩B (to simplify we remove the sign ”⊗”
since it is only a multiplication. We want to find a process
which leads to the tensor product |Ψ⟩A ⊗ |Ψ⟩B .

The process cannot involve a measurement, because it
would destroy |Ψ⟩A. Thus the evolution should be completely
unitary. Let U be the unitary operator which maps |Ψ⟩A⊗|e⟩B
into e−iδ |Ψ⟩A ⊗ |Ψ⟩B (we can allow an extra phase shift
by an arbitrary real number δ). We know that U∗U = 1 by
property of unitary operators which must keep invariant the
dot products.

We suppose two possible candidate wave functions |Ψ1⟩A
and |Ψ2⟩A. We have U |Ψ1⟩A |e⟩B = eiδ1 |Ψ1⟩A |Ψ1⟩B and
U |Ψ2⟩A |e⟩B = eiδ2 |Ψ2⟩A |Ψ2⟩B for some real numbers δ1,
δ2. We have

⟨Ψ1|Ψ2⟩ ⟨e|e⟩ = ⟨Ψ1|A ⟨e|B U∗U |Ψ2⟩A |e⟩B
= e−iδ1+iδ2 ⟨Ψ1|A ⟨Ψ1|B |Ψ2⟩A |Ψ2⟩B
= e−iδ1+iδ2(⟨Ψ1|Ψ2⟩)2 (12)

Since ⟨e|e⟩ = 1, we get the identity | ⟨Ψ1|Ψ2⟩ | =
| ⟨Ψ1|Ψ2⟩ |2, which should hold for any arbitrary pair of wave
functions. This would imply that either |Ψ1⟩ = 0 or |Ψ2⟩ = 0
thus contradicting ⟨Ψ1|Ψ1⟩ = ⟨Ψ2|Ψ2⟩ = 1. Therefore the
operator U cannot be unitary.
This theorem is originally due to James Park in 1970 [10]. We
should be careful not to confuse the no-cloning theorem with
the fact one can fabricate particles with the same wave function
(for example multiple photon with the same polarization,
through a polarizer with a fixed angle). But in this case the
wave function |Ψ⟩ is fully known and the argument above with
an arbitrary pair (|Ψ1⟩ , |Ψ2⟩) won’t hold. But there would be
no information to obtain by measuring |Ψ⟩ since we already
know all its parameters. The theorem also applies on partial
wave function, i.e. wave functions restricted to one particle
parameter, e.g. the spin, as long as the isolated parameter
evolves unitarity.

Let ϵ > 0, we call ”ϵ-approximate” cloning the mapping of
an arbitrary wave function |Ψ⟩ into a wave function |fϵ(Ψ)⟩
such that for all |Ψ⟩: | ⟨Ψ|fϵ(Ψ)⟩ | > ϵ. Notice that ϵ = 1
is equivalent to perfect cloning (modulo an phase factor) We
have the easy follow-up theorem:



Theorem 3 (our contribution): For all ϵ > 0 ϵ-approximate
cloning would violate unitarity.

Proof: We assume that the transition from |Ψ⟩A |e⟩B to
|Ψ⟩A |fϵ(Ψ)⟩ is unitary, i.e there exist an unitarity operator
Uϵ such that Uϵ |Ψ⟩A |e⟩B = e−iδ |Ψ⟩A |fϵ(Ψ)⟩ for some real
number δ. Taking two arbitrary wave functions |Ψ1⟩ and |Ψ2⟩
and using the conservation of the dot product of |Ψ1⟩A |e⟩B
with |Ψ2⟩A |e⟩B we get

⟨Ψ1|Ψ2⟩ = ⟨Ψ1|A ⟨e|B |e⟩B |Ψ2⟩A
= U∗

ϵ ⟨Ψ1|A ⟨e|B Uϵ |e⟩B |Ψ2⟩A
= e−iδ1+iδ2 ⟨Ψ1|A ⟨fϵ(Ψ1)|B |Ψ2⟩A |fϵ(Ψ2)⟩B
= e−iδ1+iδ2 ⟨Ψ1|Ψ2⟩ ⟨fϵ(Ψ1)|fϵ(Ψ2)⟩ (13)

Thus we would have | ⟨fϵ(Ψ1)|fϵ(Ψ2)⟩ | = 1 as in general
⟨Ψ1|Ψ2⟩ ̸= 0. This would implies that all the |fϵ(Ψ)⟩ are
co-aligned with an unitary vector |wϵ⟩. But in this case the
approximate cloning of a wave function |Ψ⟩ orthogonal to w
will result in ⟨Ψ|fϵ(Ψ)⟩ = 0 which would contradict the ϵ
approximation condition.

An ϵ-approximate clone of Ψ for ϵ > 0 shares information
with the original wave function. This information theory point
of view is an excellent transition to our main theorem.

Besides the ϵ-approximate cloning should not be confused
with the approximate cloning of quantum system in general.
The later can be obtained via unitary operations (see [2]) but
with a non zero failure probability, or in other words the result
of an 0-approximate cloning.

IV. OUR THEOREM PROOF

Proof: To prove the theorem we assume a retro-channel
whose reception is at a space time point B. Since receiving
data is always based on physical measurements, thus neces-
sarily quantum measurements, we assume a binary outcome
0 or 1 at point B which is affected by some quantum states
at space-time point A located in the future of the reception
measurement (i.e. in the light cone of B). We assume two
transmit states |A0⟩ or |A1⟩ which can be located at point A,
so that

• if the transmit state is |A0⟩ then the wave function of
the reception state is |Ψ0⟩ = α0 |0⟩+β0 |1⟩ with |α0|2+
|β0|2 = 1;

• if the transmit state is |A1⟩ then the wave function of
the reception state is |Ψ1⟩ = α1 |0⟩+β1 |1⟩ with |α1|2+
|β1|2 = 1;

• |α0| and |α1| differ (and so also |β0| and |β1|) thus there
is an information transfer from the transmission space-
time point A to the reception space-time point B.

The selection of the state |A0⟩ and |A1⟩ is made on a point
E which may not be in the light cone of B (see figure 2) in
order to outline the fact that there might be no direct signal
from the source of information to the receiver located in the
space-time point B.

Till now, the story shows nothing special with respect to the
direction of the time arrow. But now we introduce one specific
aspect of time backward information transmission, that is the

Fig. 2. A retro-channel from A to B

reception can interfere with the emission, since the later is in
the future of the former. We call forward coupling the effect
of interference of the reception outcome with the emission
setting. We imagine two forward coupling scenarios:

• the scenario ”+”: if the reception outcome is 0 then
the emission setting is |A0⟩, otherwise if the reception
outcome is 1, the emission setting is |A1⟩;

• the scenario ”-” is the reverse: if the reception outcome
is 0 then the emission setting is |A1⟩, otherwise if the
reception outcome is 1, the emission setting is |A0⟩;

We denote |Ψ+⟩ (resp. |Ψ−⟩) the reception state function when
the coupling is ”+” (resp. ”−”): |Ψ+⟩ = α+ |u⟩+β+ |v⟩ (resp.
|Ψ−⟩ = α− |u⟩ + β− |v⟩). If we show that |α+|2 + |β+|2 ̸=
|α−|2 + |β−|2 ̸= 1 then we would have proven an unitarity
violation.

We imagine that at point E the mode of coupling is decided
by a quantum measurement between two state |E+⟩ and |E−⟩
with uniform probability, i.e. the coupling state is 1√

2
|E+⟩+

1√
2
|E−⟩. Let a point C in the light cones of both B and E

and such that A is in the light cone of C. We suppose that the
state of the forward coupling is decided at point C as a result
of the outcome of the measure at B and the measure ± at E
jointly received at C (see figure 3).

The wave function at point B and E before measurement
is |ΨBE⟩ = 1√

2
|Ψ+⟩ ⊗ |E+⟩+ 1√

2
|Ψ−⟩ ⊗ |E−⟩.

The joint wave function at space-time points B and E
involves the ancestor of the states |A0⟩ and |A1⟩ which we
assume to be located at space-time B to simplify. We take
advantage of the fact that the uniform weights between |E+⟩
and |E−⟩ is like a XOR (addition modulo 2) between the
binary sequence made of measurements on B and the random
uniform binary sequence made of the measurements on E,
assuming the state + is interpreted as a ”0”, and − as a
”1”. The consequence is that the dependencies inside the non
uniform sequence are lost. Therefore the wave function at B
is exactly as if as the states on A, |A0⟩ or |A1⟩, were chosen
randomly independently of the outcome 0 or 1 on B. Therefore



the joint wave function an the space-time point B is exactly

|ΨB⟩ = 1√
2
|Ψ0⟩ ⊗ U−1 |A0⟩+ 1√

2
|Ψ1⟩ ⊗ U−1 |A1⟩

= α0√
2
|0⟩ U−1 |A0⟩+ β0√

2
|1⟩ U−1 |A0⟩

+ α1√
2
|0⟩ U−1 |A1⟩+ β1√

2
|1⟩ U−1 |A1⟩

(14)
where U−1 is the reverse of the operator U which maps the
states |A⟩ from the ancestor B to the point A. If U is unitary
the state U−1 |A0⟩ and U−1 |A1⟩ forms an orthonormal basis.
The couplings + and - give a distinct subset of allowed states:

ΨBE = α0√
2
|0⟩ U−1 |A0⟩ |E+⟩+ β0√

2
|1⟩ U−1 |A0⟩ |E−⟩

+ α1√
2
|0⟩ U−1 |A1⟩ |E−⟩+ β1√

2
|1⟩ U−1 |A1⟩ |E+⟩ .

(15)
Collecting the states |E+⟩ and |E−⟩ we get the expression for
|Ψ+⟩ and |Ψ−⟩:{

|Ψ+⟩ = α0 |0⟩+ β1 |1⟩
|Ψ−⟩ = α1 |0⟩+ β0 |1⟩

(16)

where clearly |α0|2+|β1|2 ̸= |α1|2+|β0|2 yielding an unitarity
violation and hinting that the operator U from B to A is not
unitary.

Fig. 3. The retro-channel with forward coupling

Corollary 1 (Our contribution): Faster than light informa-
tion transmission implies an unitarity violation

Proof: We build the proof under the framework of special
relativity. Let assume that a communication device transmits
information from a space time point A to a space-time point
B. We denote the space-time 3-vector

−−→
AB = (t, z), where t

is the time component and z is a 3-vector. We suppose that
the vector

−−→
AB is a space kind vector, i.e. ∥z∥

t = w > c where
c is the speed of light (see figure 1).

We suppose that the property of faster than light information
transmission can be repeated independently of symmetry,
rotation and translation by uniform speed of the vector

−−→
AB. In

other words a copy of the channel over a vector
−−−→
A′B′ obtained

from
−−→
AB after an arbitrary symmetry, dilatation and uniform

translation will too be prone to faster than light transmission.
We consider that

−−−→
A′B′ in a second Lorentzian referential

is equal to
−−→
BA in the Lorentzian referential of the first Bell

system. We will show as an exercise that there exists a speed
of translation (slower than light) which makes this possible. In

other words we can make A′ = B and B′ = A in the absolute
space-time: the second Bell system makes possible to transfer
information backward from B to A.

We take the relative translation speed of the vector
−−−→
A′B′

parallel to the spatial component
−−→
AB. The problem becomes

a two dimensional problem: a spatial component and a time
component. By virtue of the Lorentzian transformation, a
vector (t, x) by a change of referential with uniform speed
v, (|v| < c) is mapped in the new vector (t′, x′):

t′ = (t− vx

c2
)γ (17)

x′ = (x− vt)γ, (18)

with γ = 1√
1−v2/c2

. If the vector (t, x) is the components

of the vector
−−→
AB then w = x

t . It turns out that with v = 2w
w2

c2
+1

(which is smaller than the speed of light c).
Therefore if

−−→
AB = (t, x) then (t,−x) is the spatial flipped

version of
−−→
AB and our main hypotheses assume that we can

build a faster than speed of light channel over this vector. If
this device is moved with a speed w′ = 2w

w2

c2
+1

along the x

abscissa, then the resulting vector is (−t,−x) which is
−−→
BA,

therefore the new channel returns information from B to A. Of
course the nature of the information transmission may differ
since the Lorentzian transform would modify the spin of the
particle if they are used to carry information.

Via a small perturbation of the Lorentzian referential, the
transmission can be made from a point A′ slightly in the future
of B to a point B′ slightly in the past of point A (see figure 1),
thus it would be possible to transmit information from A to
B then to forward it from from B to A′ and it back to B′ in
the past of A. This would imply an unitarity violation thanks
to theorem 1.
A consequence of this corollary is that an entangled pair
of particles in Bell state [4] cannot be used to transmit
information faster than light although the spooky interaction
is assumed to happen faster than light. The reason of this
impossibility comes from the fact that the theory of Bell states
is build in a full quantum unitary framework.

V. CONCLUSION

We have presented two contributions. (i) We show that for
any ϵ > 0 an ϵ-approximate quantum state cloning would
imply a quantum unitarity violation. This is proved via as a
simple extrapolation of the no-cloning theorem. (ii) We also
show that any transfer of information backward in time or
faster than light would also lead to unitarity violation. The
later contribution is more surprising because an information
transfer does not a priori refer to quantum mechanics. In
fact it does, because receiving data always implies to physical
measurements. Fundamentally the violation of unitarity might
not be impossible, but it is certainly very difficult. Therefore
everytime a person, inspired like Nostradamus, pretends to
foresee a fragment of the future, there should be a great
perturbation of the quantum physics as a consequence.
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