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A B S T R A C T

The spatial quantification of solar resources is necessary for the deployment of solar systems and must consider
the local specificities of territories, such as complex topography in mountainous areas. This paper presents a
methodology for obtaining solar cadastres, based on the Solar Energy on Building Envelopes (SEBE) model
incorporated in QGIS and applied to French municipalities. The differences in solar potential between plain
and mountain villages are analyzed through the simulation of 92 carefully selected villages located in these
two types of regions. The distributions of annual rooftop irradiation per building are obtained for each studied
village and approximated with a Johnson’s SU density function. From this arises the definition of two statistical
indicators: the mode and the spread at one-third maximum. Main results include a mean decrease in the
mode of 189 kWh/m2 and a higher dispersion of 69 kWh/m2 between mountain and plain villages. Two
physical indicators, the Sky View Index (SVI) and the Diffuse Fraction Index (DFI), are defined to explain
these differences in the shape of the distributions. Higher cloud covers (high DFI) and the presence of distant
shading effects (low SVI), caused by terrain relief, explains respectively the smaller modes and the higher
dispersion observed in mountainous areas. SVI, DFI and latitude are fed to a multiple linear regression model,
allowing the estimation of distributions with smaller computational costs than the developed methodology.
Overall, this analysis demonstrates that the characteristics of mountainous environments greatly influence
solar resources and should be considered in energy planning.
1. Introduction

The increasing concerns about the consequences of energy produc-
tion and natural resources management in the climate change context
have led to the development of national and global policies. These
policies are essentially oriented towards the reduction of CO2 emissions
over the coming decades by transitioning from conventional to renew-
able energy sources. In March 2023, the European Union revised its
renewable energy targets, aiming to achieve a 42.5% share of renew-
ables by 2030 in line with the objective of attaining carbon neutrality
by 2050. To expedite progress toward these renewable energy goals, a
law called ‘Accelerating Renewable Production’ was enacted in France
in March 2023 [1]. This law empowers local authorities to identify
areas with high renewable energy potential within their territories,
underscoring the need to assess potential at the local level.

All territories must be considered, and among them, mountain re-
gions, which were often overlooked in energy policies until recently [2,
3], despite their importance being acknowledged as early as 1992
during the United Nations Conference on Environment and Devel-
opment [4]. The mountain territories represent 25% of the world’s

∗ Corresponding author.
E-mail address: apolline.ferry@univ-smb.fr (A. Ferry).

land area and 12% of the population [5] : they require sustainable
development and protection. Furthermore, these areas possess substan-
tial renewable energy resources, including wind energy (high wind
speed) [6], hydroelectricity (headwaters located in mountains) [7] and
biomass (one third of forests located in mountains) [8]. Solar energy
also holds potential, considering both photovoltaic, with reduced loss
factors due to low temperatures, and thermal systems [9]. This en-
ergy production can address the high residential energy demand in
these regions, particularly in winter [3,10], driven by harsh climatic
conditions and in some cases an aging building stock with poor ther-
mal properties [9]. It can also enhance their energy independence,
a necessity due to their remote locations [3], thus reducing energy
transport losses, and increase economic and social development for
lower population density region [11]. Currently, economy of mountain
region heavily relies on ski tourism, which is significantly impacted by
climate change and energy resources. Rising temperatures make them
vulnerable to snow scarcity. Snow supply risk can be mitigated through
snowmaking but requires substantial resources in terms of electricity
038-092X/© 2024 The Authors. Published by Elsevier Ltd on behalf of Internation
http://creativecommons.org/licenses/by/4.0/).
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and water [12]. Thus, mountainous regions are undergoing changes on
both socio-economic fronts, with a mandatory transformation of their
activities, and on the energy front, as there is a growing need to develop
renewable energy sources. Therefore, new smart approaches have been
tested recently to implement sustainable strategies in ski resorts and
maintaining sustainable winter tourism [2].

Among all renewable resources, solar energy is one of the most
promising sources of energy, with the sun being a clean and abundant
source across the entire surface of the globe. Technological progress,
decreasing costs and increasing public acceptance, even in alpine re-
gions [10], have led to a growing share of solar energy in the world
energy mix. To ascertain the potential development of solar systems,
especially within the build environment, precise and accurate modeling
of solar irradiation is needed. Solar cadastres quantify solar irradia-
tion through a mapping of its spatial distribution [13]. Geographical
Information System (GIS) tools facilitated their development in recent
years [14], in particular regarding urban areas [15,16] or for country-
scale studies [17,18]. Conversely, there have been very few cadastres
addressing mountainous regions [19,20], despite their differences from
urban areas.

Indeed, the causes of solar resources variations are two-folds. On a
global scale, the variations come from latitudinal gradients caused by
the Earth’s geometry and its rotation and revolution around the sun. At
regional and local scale, topography is the primary factor influencing
the radiation distribution, with variations in elevation, slopes, and
surface orientations [21]. Topography affects all three components of
global solar radiation [22]:

• Direct normal radiation is influenced both by variations in the
angle of incidence due to surface orientation and slope, as well
as by the surrounding topography, which can obstruct the direct
sun beams [22].

• Diffused radiation is reduced by mountains because there is a
smaller proportion of visible sky [23,24].

• Reflected radiation is more pronounced in mountainous areas
compared to plains due to the increased number of surrounding
surfaces that can reflect radiation [25].

hree topographic components have been identified by Olson and
upper [26]: cast shadows from the surrounding topography (blocking

he radiation), shaded terrain or self-shadowing by the slope itself
occurring when the incident angle is greater than 90◦), and the aspect
nd slope (altering the incident angle). The impact of these three
ffects have been assessed individually and it has been demonstrated
hat each component can be predominant depending on the surface’s
ocation [26]. The estimation of shadow is an essential part of solar
esource assessment as shadow could have negative impact on solar
ystems, especially photovoltaic, due to possible mismatch losses [27].

The estimation of solar resources is highly challenging in moun-
ainous areas, with significant inaccuracies in the radiation values
stimated using conventional methodologies compared to plain re-
ions [28]. Consequently, several approaches have been developed for
enerating solar radiation maps on complex terrain [29–31]. The first
IS-based radiation models were developed at the end of the 20th
entury based on empirical formulas that allowed the spatial mapping
f solar radiation, taking into account slope inclination, aspect, and
hadowing effects based on Digital Elevation Model (DEM). Notable
xamples include SolarFlux [24,32], a series of solar radiation algo-
ithms in Genasys GIS [33], Solei in the IDRISI GIS software [34,35],
nd SRAD [36]. More advanced algorithms have subsequently been
eveloped, such as Solar Analyst developed in ArcView GIS, which
enerates upward-looking viewsheds to consider sky obstructions [37],
r r.sun, which is suitable for large areas [21]. The significance of
aving a high-resolution DEM to account for shading phenomena in
ountainous regions has been demonstrated in comparative studies
ith experimental data [22,38].
2

New and diverse approaches have subsequently emerged to consider
opography, and improve the precision of results, the size of the studied
egions, or calculation speed. López et al. introduced a parametric
odel to derive daily values of clear-sky global solar irradiation based

n various parameters, considering the horizon obstruction by calculat-
ng synthetic irradiation using the SMARTS algorithm [39,40]. Satellite

imagery (Meteosat) has also been employed by Bosch et al. [41] in
combination with a Digital Terrain Model (DTM) and the Heliosat-2
algorithm, with a new horizon calculation method to reduce computa-
tional costs. An empirical approach coupled with kriging interpolation
was employed by Park et al. [42] to produce an irradiation map for
South Korea, incorporating a topographic factor to address the complex
terrain. However, spatial interpolation can be challenging for studies
at smaller scales in mountainous areas, as the number of measurement
stations is limited. Consequently, the use of deep learning, like neural
networks, has also been tested [43–45].

The previous studies primarily focus on estimating solar resources
over large territories but provide limited insight into the amount of
energy received by buildings. Some studies have been conducted at the
village level, with a particular focus on two villages in the mid and high
mountain regions. The first village, Hemberg, located in Switzerland, is
situated at 954 m and comprises 154 buildings [46,47]. The renewable
potential of the village was assessed using radiation data from a previ-
ous study [48] and a combination of software tools, including QGIS for
the creation of the DSM and CitySim for the calculation of photovoltaic
potential and energy demand. It has been demonstrated that more
than half of total energy demand can be covered in this village by
renewable energy sources, including PV and wind turbines, considering
some energy renovation scenarios [47]. It has also been shown that
it is possible to increase the renewable energy fraction in the future
with sustainable scenario of this village thanks to an increasing share
of PV panels production in the renewable production [46]. Then,
the Swiss village of Zernez, located at an elevation of 1474 m and
consisting of 154 buildings, has been the subject of studies [49,50]
to examine the rooftop solar potential and optimize the location of
photovoltaic installations, as well as explore the synergy with other
renewable energy sources. Particular attention was given to considering
the terrain’s topography using a raster approach, utilizing ArcGIS for
DSM construction and ArcMap for irradiation calculations across the
entire surface. These studies at the village scale demonstrate, thanks
to the use of solar potential maps, that PV systems can play a major
role in the energy transition of these mountainous villages. Finally, the
building-scale at high altitude was investigated by Notzon et al. [51],
who examined the potential energy generation through photovoltaic
systems on buildings located at 2469 m above sea level at the Great
St Bernard Pass. The study reveals that the presence of snow on the
ground and low temperatures lead to higher energy production than in
lowland regions during the summer. However, the presence of a snow
cover significantly diminishes this production during the winter.

Despite the increasing consideration of topography models at a
regional scale in mountainous areas, there is a lack of multi-scale
studies regarding the irradiation received by buildings spread across an
entire mountainous massif. Furthermore, to the best of our knowledge,
there are no studies comparing solar potential between mountainous
and plain areas at the village-scale.

The main contributions of the present paper are thus:

• The development of a methodology to obtain solar cadastres,
based on open-access databases, specially suited for large-scale
mountainous territories;

• The implementation of a statistical approach, applied on more
than 90 municipalities (representing 3627 km2 in total), enabling
the comparison of rooftop irradiation distributions in mountain-
ous and lowland villages;

• The analysis and the identification of easily computable weather
and topographical factors explaining differences in distributions
of irradiation within the studied villages;



Solar Energy 275 (2024) 112632A. Ferry et al.
Fig. 1. Workflow of the developed methodology to obtain solar cadastres and to model annual cumulative irradiation received by buildings roofs and facades.
• The prediction of the statistical rooftop irradiation distributions
through a limited set of morphological and meteorological indi-
cators;

• The establishment of recommendations on how these results
could help the energy transition planning in mountainous vil-
lages.

The remainder of the paper is organized as follows. Section 2 out-
lines the developed methodology. It consists in an adaptation of existing
tools for modeling solar irradiation, to the specific case of large-scale
mountainous territories. Section 3 describes the villages selected as case
studies and the selection process. Section 4 presents the distributions
of rooftop irradiation obtained for the cases studied. These are fitted
to an analytical function and characterized with carefully selected
indicators. The differences between lowland and highland villages are
consequently described through morphological and meteorological in-
dicators, and the predictions of the distributions are done through
multiple linear regression of these indicators. Finally, Section 5 presents
the impacts on energy transition planning, future developments of this
study and some uncertainties and limitations of this work.

2. Methodology

2.1. General framework

In this section, the methodology developed (see Fig. 1) to determine
solar potential in both mountainous territories and lowland areas is
presented. It relies on open-source tools and open-access databases as
input [52], offering the possibility to reproduce the results and simulate
large territories. Its main output is a solar cadastre, also called solar
map, which is a large-scale mapping of the solar potential [15].

The developed approach is based on the GIS software QGIS, which
is free and open-source. QGIS was chosen due to its Python extension,
which enables process automation and acceleration.

The methodology begins with the use of two databases covering
French territory (see Section 2.2).

First, a French municipality is selected based on an unique code
attributed by the French National Institute of Statistics and Economic
Studies (INSEE [53]). Buildings data and the DTM corresponding to
municipal territory of this village are collected.

To enable the inclusion of building heights in the Digital Terrain
Model (DTM) and thereby to generate a Digital Surface Model (DSM),
a spatial resolution of 1 meter is required. In order to attain this reso-
lution, the DTM is resampled using a bilinear method (Warp Reproject
function from GDAL library, allowing for reading and writing raster
and vector geospatial data formats, used in QGIS [54]). This would not
have been possible with the initial coarse resolution of 25 m. The pixels’
3

elevation is then modified according to the buildings’ height to create
the DSM (see Section 2.2).

The next step is the division of the territory into tiles in order
to account for the heterogeneity of the mountainous territories and
for computational purpose as described in Section 2.3. For each tile,
meteorological data files are obtained through an Application Program-
ming Interface (API) from the PVGIS tool [55]. The meteorological
files employed are Typical Meteorological Year (TMY) files, providing
representative values over 15 years. The most recent period (2005–
2020) has been chosen. The final weather file used for each tile is
a weighted average of several weather files from neighboring tiles,
allowing for consideration of the lower spatial resolution of the weather
files than the tile size (see Section 2.3).

The calculation of building facade orientations and heights is then
carried out with the Wall Height and Aspect function from UMEP.
Subsequently, the calculation of irradiation is performed using the
SEBE tool (Solar Energy on Building Envelopes) for each tile [56], as
presented in Section 2.4. This tool generates an irradiation map on the
surfaces of the territory of the considered tile. The results from the
different tiles are gathered in one file using the Merge function from
GDAL.

The roof irradiation is then obtained by superimposing the irradia-
tion map and building footprints. Finally, for each roof, the calculated
cumulative annual irradiation is then spatially averaged using the
Zonal Statistics tool from QGIS, so that each roof is associated with a
single value, representing its spatially-averaged cumulative irradiation.
A buffer of 1.5 m was previously applied, using the Buffer function from
QGIS, to reduce the building footprints. It was done in order to prevent
inconsistencies related to building’s edges effects caused by the pixel
resolution of the irradiation map.

2.2. Databases

The selection of suitable databases was challenging as they needed
to be uniformly accessible in the same standardized format across all
the territories under investigation, in order to ensure the consistency
and comparability of the different simulations.

2.2.1. Geographical databases
Two sets of geographical data are required:

• A DSM and eventually a DTM, which are raster layers containing
elevation values. It is particularly needed in mountainous area
to consider the surrounding topography. A DSM differs from the
DTM by containing also the elevation of buildings and sometimes
vegetation. A DTM is only required to build the DSM if the DSM
is not directly available.
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• Building geometry vector layers, with a morphological descrip-
tion of buildings. Footprints and heights of buildings are neces-
sary to have a 3D representation of structures.

The used database are :

• The EU-DEM model [57], which has been developed thanks to
Copernicus, the European Union’s Earth observation program.
This digital model covers 39 countries of the European Environ-
ment Agency. The spatial resolution of this DTM is 25 m.

• The BDTOPO database [58], a 3D vectorial description of ele-
ments of the French territory produced by the French National
Institute of Geographic and Forest Information (IGN). The objects
contained in that database are gathered by themes: Administratives
and Built are used in this work to obtain boundaries of municipal
territories and building footprints and information.

DSM were not available in open-access for the French territories,
they were therefore built using the DSM Generator function from UMEP,
by superimposing the DTM and the building geometry layer and adding
the specific height of each building to the ground elevation values
corresponding to the building footprint location. It is important to
note that this function assigns a unique height to the entire building
footprint, resulting in flat rooftops. The currently available data do not
allow us to know the actual orientation and slope of each roof section
for such a large amount of buildings and municipalities. It was thus
decided to work with flat roofs since it provides homogeneous data for
all considered buildings and valuable insights of incoming irradiation
at roofs level.

The use of alternative databases, in order for example to apply
the methodology to another country, is of course possible, but could
required preprocessing steps.

2.2.2. Meteorological databases
Irradiation databases constitute the second type of databases re-

quired for this study. The solar radiation database PVGIS-SARAH2,
derived from the second version of the Surface Solar Radiation Data
Set - Heliosat (SARAH-2) was chosen for investigation. The dataset
is accessible in PVGIS, where an API is available and facilitates data
retrieval [59]. This dataset is derived from satellite observations of the
geostationary Meteosat satellite and has been validated with ground
measurement [60]. Satellite data enable the utilization of long-term
average time series and coverage over a large geographical area. This
database covers Europe, as well as some parts of South America, Asia,
and Africa. The spatial resolution of SARAH-2 dataset is 5 km, but
the irradiation data are refined by PVGIS at a smaller spatial scale
considering the mask through a DTM with a resolution of 3 arc-seconds.
It allows for horizon calculation and determines when the sun is behind
mountains. During these times, solar irradiation originates solely from
the diffuse component of radiation. A TMY weather file generated by
PVGIS has been chosen for the study with a temporal resolution of 1 h.

2.3. Tiling methodology

Tiling is an important part of the methodology. Indeed, tiling has
been set up in order to consider the spatial variation of the terrain.
The meteorological files from PVGIS take into account distant masks.
Using a single weather file for the entire territory would work well
for lowland areas, without any strong elevation variations within the
municipality and around it, where irradiation distribution is relatively
uniform. However, this would not be the case for the mountain villages,
where the presence of complex terrain induces a high variability in
elevation, slope, and orientation of surfaces, thereby modifying the
spatial distribution of solar radiation. Therefore, using tiles allows to
have different meteorological files for one village.

It is also necessary given the large areas of the investigated terri-
4

tories that have been processed with the SEBE tool. Some calculation
steps are computationally intensive, and dividing the territory into tiles
helps to reduce the processing time.

To set up the tiling, a 1 km × 1 km grid was created using Create
grid function from QGIS. Each grid tile was then used to clip the data
using Clip raster by mask layer function from GDAL. Weather data are
btained through the PVGIS API for each center of tile.

However, due to the low resolution of SARAH-2 database, signifi-
ant variations in the meteorological data may be observed between
wo adjacent 1 km simulation tiles if they are associated to two distinct
km weather tiles. A weighted average of the meteorological data from

he studied tile and its 12 nearest neighboring tiles has been computed
o reduce these variations. The weighting coefficients were determined
ccording to the normal distribution based on the normalized dis-
ance from the center of the tile (Eq. (1)). This method effectively
moothed out the resolution disparity between meteorological data and
he chosen tile size for simulation, while accounting for masks and large
erritorial areas.

(𝑖) =
𝑓
(

𝑥(𝑖)
max(𝑥(𝑖))

)

∑12
𝑖=0 𝑓

(

𝑥(𝑖)
max(𝑥(𝑖))

) (1)

with 𝑓 the standard normal distribution, 𝑥 the distance to the center of
the studied tile, and 𝑖 the different neighboring tile, with 𝑖 = 0 being
the studied tile.

2.4. Description of SEBE tool

SEBE tool has been used for this study as it is integrated in QGIS and
both are open source. SEBE has been developed by Lindberg et al. [56]
and allows to estimate shortwave irradiation, on the ground, rooftops
and facades of buildings. This tool has been validated against on-site
measurements and shows a good performance for roof and facades
irradiation evaluation [56]. SEBE tool is classified as a 2.5D model,
using DSM and DTM in raster format (2D) to get irradiation information
on the geometry surfaces, with irradiation values available on the
ground plane and along the facade height. The use of raster for terrain
morphology (DSM and DTM) allows implementation over large areas,
as the time required for calculations is reduced compared to a vector-
based methodology [56]. To have an accurate estimation of the solar
irradiation, shadow patterns from buildings and ground topography
need to be considered. SEBE use a ‘‘shadow volumes’’ methodology
that have been developed by Ratti and Richens [61]. This methodology
allows to determine, for each azimuth and altitude angle of the sun,
whether surfaces are in sunlight or shade.

The other input of the SEBE tool, apart from terrain description,
is meteorological data. The model needs direct, diffuse and global
irradiance. If the diffuse irradiance is not available, this component
could be estimated from the global irradiance thanks to Reindl et al.
method [62], and the estimation could be improved with ambient air
temperature and relative humidity data. In this study, diffuse and direct
components have been estimated from weighted average of global
irradiance, temperature and relative humidity.

For each simulation, the diffuse and direct components are redis-
tributed into patches of similar solid angles throughout the sky vault
and then summed over the investigated period, in order to follow
the approach developed by Tregenza and Sharples [63]. Thus, SEBE
produces annual cumulative irradiation map.

The Plane of Array (POA) irradiance is thus calculated as the sum
of direct, diffuse and reflected components of the irradiance for each
patch of the sky vault decomposition, while considering the shadows
cast by buildings (Eq. (2)) [56]. In the present case, the vegetation was
not considered for the shadow calculation since suitable databases were
not available. The POA Irradiation received over an entire year will be

referred to as annual cumulative irradiation throughout the remainder
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Fig. 2. Topographic map of France with the simulated villages. The gray color scheme
indicates the elevation. Mountain villages are represented in red and plain villages
in orange. Villages at iso-latitude than Tignes and Le Grand-Bornand (mountainous
villages) can be seen on the west of the map. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

of the study, in accordance with the annual cumulative irradiation map
generated by SEBE.

𝑃𝑂𝐴 =
𝑝
∑

𝑖=1
[(𝐷𝑁𝐼 ⋅ 𝜔 ⋅ 𝑆 +𝐷𝐻𝐼 ⋅ 𝑆 + 𝐺𝐻𝐼(1 − 𝑆)𝛼)]𝑖 (2)

where p represents the number of patches of the hemisphere, DNI the
incident direct radiation, DHI the diffuse radiation, GHI the global radi-
ation from the 𝑖th patch, 𝛼 the surface albedo, 𝜔 the sun incidence angle
and S the shadows from buildings (and optionally from vegetation).

In one simulation, a single albedo value can be selected to be
applied to all the surfaces and in this work, the albedo was set to
𝛼 = 0.15 for all the simulations, which is a typical value for solar
potential simulations [21,64], in a peri-urban environment composed
of trees, grass and buildings [65,66]. The same albedo value is assumed
for plain and mountainous villages. Note that the presence of snow in
mountainous areas significantly increases albedo during winter months
but has complex effects, as snow can cover rooftops and solar installa-
tions, substantially reducing energy production [67]. This phenomenon
is intricate and would required in-depth analysis. Since this study fo-
cuses mostly on the impact of mountainous topography on irradiation,
the impact of snow is disregarded. This point is further discussed in
Section 5 regarding the limitations and future developments of this
study. Due to the nature of the study, which focuses on irradiance on
flat rooftops, the impact of albedo change is limited.

3. Presentation of the case studies

In this work, the distribution of the annual irradiation on rooftops
of buildings in mountainous municipalities is investigated. To that aim,
mountain villages in the French Alps were selected, represented in red
in Fig. 2. These villages are distributed across the entire Alpine massif,
providing a wide range of locations at varying latitudes. They were
specifically chosen as they are all ski resorts, ensuring that the villages
share similar characteristics.

Subsequently, each mountain village was paired with a village
located at the same latitude but located in a plain area, far from
mountainous areas (represented in orange in Fig. 2). In what follows,
these villages will be referred to as ‘plain villages’. These plain villages
do not exhibit significant terrain compared to the ski resorts. These
villages are situated in the Rhône valley, which is the closest plain
area to the Alps. By pairing each mountainous village with a plain
5

Table 1
Summary of the main characteristics of the studied villages.

Characteristics Mountain villages Plain villages

Number of village 38 54
Mean altitude (m) 1918 ± 329 312 ± 164
Number of buildings 1902 ± 1499 1018 ± 907
Municipality area (km2) 74 ± 69 15 ± 10

village, it is possible to investigate the distribution of irradiation on
rooftops while eliminating the impact of latitude. Indeed, differences
in latitudes would imply different sunpaths and, therefore, variations
in solar irradiation.

Note that among the plain villages, two sets of municipalities with
identical latitudes were also selected, and used in Section 4.6 to assess
the variation in irradiation for different longitudes over the French
territories.

When selecting the case studies, pairs of villages with similar num-
bers of buildings were chosen in order to keep consistency when
comparing them. Nevertheless, because of the lower density in the Alps,
mountainous villages typically have much larger land areas than plain
villages with same number of buildings. The average characteristics of
the selected villages in mountain and plain have been summarized in
the Table 1.

4. Results and analysis

First, irradiation maps obtained using the methodology described
above are presented. Subsequently, the annual cumulative irradiation
received specifically by each building rooftop is obtained in the form of
distributions, which are then approximated by a density function. This
function allows the establishment of indicators for characterizing the
distributions and facilitates the comparison of irradiation distribution
profiles between lowland and mountain areas. Two morphological and
meteorological indicators are then defined to describe the impact of the
mountain environment. Finally, a prediction of irradiation distributions
is presented, derived from the previous indicators, along with latitude
as a contributing factor.

4.1. Irradiation maps

The developed methodology allows to generate irradiation maps
with the annual total irradiation per square meter. Illustrations of these
maps, for the villages of Le Grand-Bornand and Trévoux, are presented
in Fig. 3. On the magnified view (Fig. 3a), the shape of the buildings
can be recognized and shadow zones around the buildings can also be
observed. The lack of consideration for roof slopes is also evident, with
minimal variation of irradiation in the roof surface of buildings.

The complex terrain is indeed considered in the mountainous village
(Fig. 3a), with the appearance of areas that are shaded by mountains,
corresponding to north-facing slopes that receive less irradiation than
south-facing faces. The low irradiation zones are thus much larger for
mountainous regions (Fig. 3a) compared to those in plains (Fig. 3b)
with areas of shadow caused by the presence of terrain relief being
added to those resulting from buildings’ shading. The variation in
irradiation within the village’s territory is significant and can reach up
to 1000 kWh/m2 between areas on different hillsides.

4.2. Distribution of irradiation on rooftops

The average rooftop irradiation is then calculated for each building.
As previously mentioned, the rooftops are modeled as flat because of
the lack of roof characteristic data. Thus, it corresponds to an average
horizontal rooftop irradiation per building.

The distributions of average annual irradiation per building are
plotted as density function in Figs. 4 and 5. The height of each bin
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Fig. 3. Illustration of irradiation map (Annual total irradiation in kWh m−2) obtained with the developed methodology (a) for the entire mountain village of Le Grand-Bornand
(lat.: 45.942◦, long.: 6.427◦, alt.: 1527 m) with a magnified view of the center of the village and (b) for the entire plain village of Trévoux (lat.: 45.942◦, long.: 4.775◦, alt.:
190 m).
Fig. 4. Distributions of average annual irradiation on building rooftops for three villages: (a) for the northern Alps village of Le Grand-Bornand (lat.: 45.942◦, long.: 6.427◦, alt.:
1527 m), (b) for the southern Alps village of Vars (lat.: 44.61◦, long.: 6.688◦, alt.: 2263 m) and (c) for the mountain village of Huez (lat.: 45.081◦, long.: 6.052◦, alt.: 2032 m).
The Johnson’s 𝑆𝑈 distribution estimation are displayed also for Le Grand-Bornand (a) and Vars (b). For the village of Huez (c), two peaks can be observed, preventing the fitting
of Johnson’s 𝑆𝑈 estimation.
in these figures corresponds to the proportion of buildings of the
studied village receiving an average annual rooftop irradiation within
the corresponding range.

These distributions were obtained for all the studied municipalities,
but present different characteristics if the villages are located in plains
or in mountains. The two cases are described in what follows.

4.2.1. Distributions for mountain villages
Two types of distributions are obtained for the mountain villages.

For the majority of the villages, the distributions show similar shapes
regardless of the village: whether the village is located in the southern
Alps (Fig. 4a) or northern Alps (Fig. 4b). In all these distributions,
a peak is formed around the mode (the irradiation with the highest
probability value) corresponding to the irradiation received by the
majority of the buildings in the village.

Few buildings receive significantly higher irradiation, correspond-
ing to buildings with perfect location like a south-facing mountain-
side. On the other hand, more buildings receive an irradiation that is
lower than the peak, forming a long tail of distribution towards low
irradiations.

A second type of distributions appears also for some villages: two
(and sometimes three) distinct peaks are present (Fig. 4c). It concerns
about one fourth of the mountain villages (10 out of 38). A widespread
village or a village forming two distinct zones, with for example the
center of the village in the valley and a hamlet at higher altitude, can
create these types of distributions. If these distinct areas are located
on different mountainsides or at different altitudes, irradiation range
could be very different. Thus, mountain villages could be constituted
6

of ‘‘irradiation sub-villages’’, with for each of these ‘‘sub-villages’’ a
distribution that is similar to the distribution of the other mountain
villages.

The width of the peak varies depending on the location of the
village, with larger peak width for mountain villages. The tails of the
distribution is also larger for these mountain villages with more build-
ings receiving less irradiation than the peak in mountains compared to
plains. This difference is explained by the presence of terrain. Indeed,
topography can, on one hand, result in buildings in mountain villages
being situated on different mountainsides, causing some buildings to
suffer from shadowing on the north-facing sides. Additionally, terrain
also acts as a distant mask, blocking solar radiation during certain parts
of the day, thereby reducing the amount received by specific buildings.
Hence, these two effects combine with the overshadowing phenomenon
due to surrounding buildings, which is also present in mountainous
areas. This results in a higher variability and lower values of average
rooftop irradiation among buildings within the municipal territory in
mountainous regions.

4.2.2. Distributions for plain villages
The shape of plain village distributions is broadly similar to those of

mountain villages (Fig. 5a), with the appearance of a peak. However,
unlike mountain villages, the emergence of several peaks (due to sev-
eral zones) is very rare. Indeed, plain villages are much less extensive
than mountain villages (Table 1) with the majority of buildings located
within the same area. In plains, the tail of the distribution corresponds
almost exclusively to buildings that are overshadowed by others, as
variations in elevation are very slight. Thus, an overwhelming majority
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Fig. 5. Distributions of average annual irradiation on building rooftops and their
ohnson’s S U distribution estimation for the lowland villages of (a) Leyment (lat.:
5.922◦, long.: 5.298◦, alt.: 247 m) and (b) Reventin-Vaugris (lat.: 45.468◦, long.:

4.841◦, alt.: 270 m).

of buildings will receive a rooftop irradiation in a very narrow range of
values, which can create very high peaks in the distributions (Fig. 5b).

4.3. Approximation by Johnson’s 𝑆𝑈 function

Since a large majority of distributions exhibit a similar shape, an
analytical approximation function was looked for in order to represent
the data distributions. It appeared that Johnson’s 𝑆𝑈 function could fit
well the distributions. Note that all the distributions from the scipy.stats
python module [68] were tried out but Johnson’s 𝑆𝑈 function provided
the best fit. The Johnson’s 𝑆𝑈 ‘‘unbounded system’’ distribution is a
four-parameters probability density function (Eq. (3)) that could be
expressed as a transformation of the normal distribution (Eq. (4)) [69].
The Maximum Likelihood Estimation method was used to fit the func-
tion to the observations and allows the estimation of fitting parameters
a, b, c, d.

𝑓 (𝑥, 𝑎, 𝑏, 𝑐, 𝑑) = 𝑏

𝑑
√

2𝜋
√

1 +
(

𝑥−𝑐
𝑑

)2

exp
(

−1
2

(

𝑎 + 𝑏 arcsinh
(𝑥 − 𝑐

𝑑

))2
)

(3)

(𝑦, 𝑎, 𝑏) = 𝑏
√

𝜙
(

𝑎 + 𝑏 log
(

𝑦 +
√

𝑦2 + 1
))

(4)
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𝑦2 + 1
with 𝜙 the probability density function (PDF) of the normal distribution
and 𝑦 = 𝑥−𝑐

𝑑 .
x, a, b, c, d are reals, c is the location parameter and d is the scale

parameter.
The superimposition of the raw data distribution and the Johnson’s

𝑆𝑈 function in Figs. 4 and 5 demonstrates that this approximation
provides a good fit of the data distribution. The fitting holds true for
mountain villages with one peak in the distribution but also for almost
all plain villages, regardless of their typology and location.

In order to assess the fitting quality of this approximation function
for the studied villages, the coefficient of determination, denoted by 𝑅2,
was calculated. This metric indicates the goodness of the fit between
the Johnson’s 𝑆𝑈 approximation to the raw data distributions and is
defined in Eq. (5).

𝑅2 = 1 −
∑𝑏

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2
∑𝑏

𝑖=1(𝑦𝑖 − 𝑦)2
(5)

with :

- b : Number of bins in the distribution, set to 150 for all the
villages, which corresponds to the number of observations

- 𝑦𝑖 : Observed values of probability for data point i
- 𝑦̂𝑖 : Predicted values of probability with Johnson’s 𝑆𝑈 approxima-

tion for data point i
- 𝑦 : Mean of observed values of probability

2, was calculated for each distribution and have been displayed on
igs. 4 and 5. Regarding plain villages and mountain villages with one
eak, 𝑅2 ranges from 0.46 to 0.99 with an average value of 0.86 and
tandard deviation 0.11. These high values show the high suitability
f Johnson’s 𝑆𝑈 distribution to describe the observed distributions, in
articular for mountain villages where average 𝑅2 is 0.94.

Using a analytical PDF function, instead of a discrete probability
distribution, has the advantage of being able to obtain the probability
associated with each irradiation value, as well as accessing certain
properties of the distribution through its analytical expression. This
also enables easier characterization of the distribution and facilitates
its representation and reproduction.

Since more than 90 municipalities are considered here, a simplified
description of distributions and their respective Johnson’s 𝑆𝑈 approx-
imations is needed. Therefore, for the sake of clarity, two statistical
indicators were defined to characterize the distributions:

• The Johnson’s 𝑆𝑈 mode, which corresponds to the irradiation
value with the highest probability.

• The peak width or spread at one-third maximum, which have been
obtained by calculating the difference between the two irradiation
values that have a probability equal to one-third of the mode’s
probability.

These two indicators allows to simply characterize the distribution
of irradiation for each village. They have been reported on Fig. 4a.

4.4. Clustering in mountainous villages

Presence of complex terrain could induce the appearance of several
peaks in the annual rooftop irradiation distribution of certain villages
as illustrated in Section 4.2.1. Therefore, it is not possible to fit the
Johnson’s 𝑆𝑈 distribution to the distribution of these villages but could
be possible for each peak separately as their shapes are similar to the
shape of the distribution of the other villages. In order to understand
and explain the presence of several peaks, buildings were split into
groups using a clustering algorithm. The K-medoids algorithm parti-
tions the data in groups by minimizing the distance between points of a
same group and select actual data points as centers of the cluster, called
medoids. This algorithm [70], available in the scikit-learn-extra library,

was chosen as it is robust to outliers. For each building, normalized
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Fig. 6. (a) Distributions of average annual irradiation on building rooftops and their Johnson’s 𝑆𝑈 distribution estimation for the two buildings clusters for the mountain village
of Huez (lat.: 45.081◦, long.: 6.052◦, alt.: 2032 m) and (b) topographic map of the center of the village of Huez with the location of the two clusters. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
values of latitude, longitude and altitude were obtained. They were
used as input data of the clustering algorithm to divide buildings into
groups as illustrated in Fig. 6b. The number of clusters was selected
accordingly to the number of peaks observed in the distributions. The
clustering algorithm allows to identify groups of buildings that are
present in the villages. These groups can come from the large extent
of territories with buildings located in different valleys or can be form
by the morphology of the territory with groups located on different
mountainsides or at different altitudes.

Then, distributions of rooftop irradiation were obtained for each
cluster and were fitted to the Johnson’s 𝑆𝑈 distribution 6a. Clustering
effectively divide the distribution according to the different observed
peaks with a fit of the Johnson’s 𝑆𝑈 function as good as for other moun-
tain villages. Thus, the topography and the morphology of territories
can explain that groups of buildings could receive different quantities
of irradiation.

Among the ten studied villages that have several peaks, clustering
allows to obtain two Johnson’s 𝑆𝑈 distribution for seven of them with
an average 𝑅2 of 0.90. For the three remaining villages, clustering does
not however allow to explain the complexity of these mountain villages.

The two indicators described in Section 4.3 can be calculated to
characterize the ‘‘sub-villages’’, which will be used in the rest of the
study.

4.5. Comparison between mountain and lowland villages profiles

The generation of distributions of average annual irradiation on
building rooftops and Johnson’s 𝑆𝑈 distribution estimations for all
the case studies enables comparisons between lowland and mountain
villages, particularly for pairs of villages at the same latitude. For each
pair of mountain/lowland villages, the distribution of the mountain
village is shifted towards low irradiation compared to the lowland
village as shown on Fig. 7. This shift is systematic, but its magnitude
varies depending on the characteristics of the two villages. The average
shift of the mode between plain and mountain villages is around
189 kWh/m2 for all the investigated pairs.

The shape of the peak differs between the two village typologies,
with a greater peak width for mountain villages and a sharp peak
for lowland villages. Indeed, the average value for the spread at one-
third maximum is 108 kWh/m2 for mountain villages while being only
39 kWh/m2. Thus, the spread of the distribution of the average annual
irradiation on buildings increases with the presence of topography.

The mode values and the spread at one-third maximum have been
plotted against the latitude for all the considered villages (Fig. 8).
Two clear trends can be observed. First, the mode decreases with the
latitude (Fig. 8a). This is expected since as latitude increases, in the
8

northern hemisphere, the irradiation received on flat surfaces globally
decreases [71]. Latitude does not significantly influence the spread,
as the dispersion of irradiation values is mainly due to local spatial
variation in buildings and terrain (Fig. 8b). But most importantly, it
is clearly possible to see the difference between mountain and plain
villages for each latitude on both figures, with lower modes and higher
spreads at one-third maximum in the mountains than in the plains.

Consequently, these two figures show that the two indicators em-
ployed to describe the distributions allow to separate mountainous
villages from those in lowlands and can be used to differentiate them.

4.6. Influence of the mountainous terrain compared to the longitude vari-
ability

In order to assess whether this shift in the irradiation distribution
is also impacted by the longitude over the French territories, the
irradiation distribution of two mountainous villages, Tignes and Le
Grand-Bornand, have been plotted (see Fig. 9) against the irradiation
distributions of several villages. These villages are located in the plains
and at the same latitude as the ski resorts, but at different longitudes.
All of these villages can be seen in Fig. 2 as they form two ‘lines’ at
iso-latitude, while only four of them have been displayed in Fig. 9 for
the sake of clarity.

The distribution of the mountain village is the lowest in both cases.
The mountain village of Tignes has a distribution much more shifted
towards low irradiations compared to its plain villages than Le Grand-
Bornand. The difference of typology of this two mountain villages could
partly explain the variability in the shift. Indeed, Le Grand Bornand
is situated in a mountain range with lower elevation compared to the
mountain range housing Tignes, resulting in reduced shading effects.
Valley morphology can also be a contributing factor, with a more
open valley and more distant mountains, leading to less obstruction for
buildings in Le Grand-Bornand.

4.7. Influencing parameters

In order to better understand and explain the shape of the distribu-
tions and the differences observed with plain villages, the impact of
topography and mountainous climate has been investigated. To that
aim, for each village, two physical indicators are defined. The first
indicator is the averaged Sky View Index (SVI) defined as:

𝑆𝑉 𝐼 = 1
𝑁𝑏

𝑁𝑏
∑

𝑖=1

(

Visible sky area from building i
Unobstructed visible sky area

)

, (6)

with 𝑁 the number of buildings in the investigated village.
𝑏
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Fig. 7. Comparison of distributions of average annual irradiation on building rooftops with Johnson’s 𝑆𝑈 distribution estimation between a mountain village and a plain village
at same latitude (a) in the northern Alps (La Clusaz and Meximieux (lat.: 45.904◦)) and (b) in the southern Alps (Orcières and La Roche-sur-Grane (lat.: 44.683◦)). A magnified
view of the topographic map of France with the location of each pair of villages is also displayed. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 8. Comparison of (a) the mode and (b) the spread at one-third maximum of the
average annual irradiation on building rooftop distributions for mountain and lowland
villages. Mountain villages are represented by blue triangles and lowland villages by
orange circles.
9

Fig. 9. Distributions of average annual irradiation on building rooftops for some
villages at the same latitude as (a) Le Grand-Bornand (lat.: 45.942◦) and (b) Tignes
(lat.: 45.469◦). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

SVI, illustrated on Fig. 10, is the averaged proportion of sky visible
from village’s buildings, calculated by the ratio of orange area to blue
area. This indicator is inspired by the Sky View Factor [72], but only
far masks are considered in the present case. It is calculated for all
the buildings in each village, and the average value per village is
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Fig. 10. Horizon profile and sky areas for the town hall of the village of Châtel. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

retained. SVI represents here the averaged masks due to mountains,
which are impacting building rooftops. A low SVI indicates that the
village’s buildings suffer from far masks caused by mountains.

Sky areas are obtained using the PVGIS API [73], which provides
horizon profiles. These horizon profiles take into account all the terrain
features that can block sunlight at certain times of the day. They
are calculated using ground elevation data with a resolution of 3
arc-seconds (around 90 m).

The second indicator, elaborated for this study, is the Diffuse Frac-
tion Index (DFI). It aims at quantifying the impact of the cloud coverage
nd is defined as :

𝐹𝐼 = 1
𝑁𝑡

𝑁𝑡
∑

𝑡=1

⎛

⎜

⎜

⎜

⎝

∑365
𝑗=1

(

∑15
ℎ=10 𝐷𝐻𝐼(ℎ, 𝑗, 𝑡)

)

∑365
𝑗=1

(

∑15
ℎ=10 𝐺𝐻𝐼(ℎ, 𝑗, 𝑡)

)

⎞

⎟

⎟

⎟

⎠

, (7)

with 𝑁𝑡 the number of tiles of the investigated village.
The ratio of the annual cumulative Diffuse Horizontal Irradiance

(DHI) by the annual cumulative Global Horizontal Irradiance (GHI)
is used to calculate DFI. DFI allows taking into account the cloud
over, as it will be higher if the proportion of diffuse radiation is more
mportant. Indeed, the diffuse radiation represent the part of the global
adiation that is absorbed and then reflected by clouds and particles
n the atmosphere. Only hours between 10:00 and 15:00 (10 a.m. to

p.m.) of each day of the year are considered in the calculation. The
hosen interval avoids considering far masks, as the sun is high enough
n the sky at these times. Shading by surrounding terrain is already
aken into account in the calculation of SVI. DFI is calculated for each
eteorological file used in simulations, i.e. for each tile as presented in

ection 2.3. It is then averaged for each village.
The relation between the mode and the spread at one-third maxi-

um of the studied villages have been plotted against SVI and against
FI on Fig. 11. Linear regressions were obtained and plotted on these
raphs. The coefficient of determination, 𝑅2, which assesses the quality
f the regression, was calculated and is also displayed.

It can be seen from (Fig. 11a) that the mode i.e. the cumulative
nergy received by the majority of roofs, increases with the SVI. This
hows the influence that the masks have on the irradiation distribution
ithin a mountain village. The higher the mask, the lower the energy
10

eing received by building rooftops. It is also interesting to see the t
mpact of the latitude here. On top of the linear trend with the SVI,
there is a secondary trend with the latitude which was already observed
in Fig. 8. Incorporating the latitude in a two-variable regression model
improves the 𝑅2 up to 0.73.

Mode’s value decreases linearly with the DFI (Fig. 11b), which is a
direct consequence of a higher cloud coverage in mountainous areas.
In these regions, the Foehn effect [74], which induces an increased
presence of clouds on windward ascending slopes, partly explains
the high cloud coverage. The variations with the latitude are not as
pronounced, but lower latitudes appear to have smaller DFI values.

Consequently, the presence of far masks and high cloud coverages
explains the shift of the distributions of rooftop irradiation observed
between plains and mountains in Fig. 7.

The effects are opposite when it comes to the spread at one-third
maximum. The spread increases as the SVI decreases, which is asso-
ciated with the numerous far masks present in mountainous villages
(Fig. 11c). Buildings in these villages are scattered across large terri-
tories, often spanning several mountainsides. Consequently, the terrain
also contributes to the heterogeneity of incoming radiation blocked by
far masks and to the variability of shading by the surrounding topogra-
phy, that are added to the overshadowing effects from nearby buildings.
Therefore, the irradiation received by rooftops vary significantly among
buildings in mountainous areas, explaining the higher values of spread
compared to plain areas (Fig. 7).

Regarding the relation between the DFI and the spread, no clear
rends can be observed. This is mostly due to the fact that the DFI indi-

cates the predominance of diffuse radiation over each village. However,
these diffuse radiations generally exerts a global impact on the entire
village. It thus displaces the irradiation received on all buildings, as
depicted in Fig. 11b, but it affects the village uniformly and, therefore,
does not contribute to the spreading of the distribution of irradiation
within the village.

Hence, the mode is primarily explained by the proportion of diffuse
irradiance, which determines the highest possible irradiation value
for the village, while the dispersion of values is more significantly
influenced by the presence of topography.

4.8. Predictions of irradiation distributions

As correlation appeared between mode, spread at one-third maxi-
mum, and the three parameters mentioned above (SVI, DFI and lati-
tude), a prediction of the distributions has been done only by calcu-
lating these indicators. To this aim, the shape of the distributions was
estimated with the prediction of fitting parameters of the Johnson’s 𝑆𝑈
distribution a, b, c, d (see Eq. (3)). The prediction of the parameters was
carried out using a multiple linear regression model available in the
scikit-learn library [75]. The model utilizes the ordinary least squares
method to minimize the residual sum of squares between the observed
values and the values predicted by the linear approximation.

The data obtained earlier during the simulation of villages were
split into two groups, 80% for training, and 20% for testing. A linear
regression model was created for each of the four parameters, with the
three influencing parameters as variables.

The similarity between the Johnson’s 𝑆𝑈 function obtained through
fitting with real data and the one obtained through linear regression
using only the three indicators is illustrated in Fig. 12. The similarity
depends on the villages but is rather promising. The quality of the
prediction is assessed with the coefficient of determination 𝑅2, as it was
one for approximation by Johnson’s 𝑆𝑈 (see 4.3), calculated between
aw data and the predicted distribution.

For the village of Morzine (Fig. 12a), the predicted curve closely
atches the fitted one. For the village of Saint-Lager-Bressac (Fig. 12b),

he result is slightly less accurate, but the predicted mode is still close
o the actual mode, with only a difference in peak height. In the case of

he village of Les Orres (Fig. 12c), the predicted curve deviates from the
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Fig. 11. At the top, relation between mode, latitude and (a) Sky View Index or (b) Diffuse Fraction Index. At the bottom, relation between spread at one-third maximum, latitude
and (c) Sky View Index (SVI) and (d) Diffuse Fraction Index (DFI). Triangles represent mountain villages whereas circles represent plain villages. Each village is also colored based
on its latitude, a darker color meaning a lower latitude. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Comparison of fitted Johnson’s 𝑆𝑈 PDF function and predicted for the village of (a) Morzine (lat.: 46.179◦, long.: 6.709◦, alt.: 1549 m), (b) Saint-Lager-Bressac (lat.:
44.694◦, long.: 4.709◦, alt.: 236 m) and (c) Les Orres (lat.: 44.515◦, long.: 6.549◦, alt.:2116 m).
fitted one, with a shift towards lower irradiation values in the obtained
distribution. However, the prediction still provides useful estimates of
the distributions.

To evaluate the precision of the model, the relative error between
the fitted values and the predicted values of modes and spreads at
11
one-third maximum have been calculated on the testing set. The model
demonstrates good precision in predicting the mode values, with an
average difference of only 2.2% and a median value of 1.5%. How-
ever, the dispersion of annual cumulative irradiation is less accurately
predicted: though the median value of the relative error of the spread
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is 25%, a small number of poor predictions contributes to a mean value
of 76%.

The model could be probably improved to increase accuracy for
all villages, but it currently offers a rapid estimation of distributions
with the calculation of these indicators, without the need to run time-
consuming simulations. The estimation of individual rooftop irradiation
is however not possible with this model, and would require more
indicators [76] or a more complex method [77].

5. Discussions and perspectives

5.1. Perspectives and impact on energy transition planning

The methodology developed in this article is valuable for assess-
ing the solar potential of villages, especially those in mountainous
regions, using publicly available databases that cover a large territory.
The aim of this methodology was to be deployable on a large scale
with reasonable computational time. This study has demonstrated that
the distribution of rooftop irradiation in a village can be effectively
characterized by an analytical function. It has been used to compare
the difference of annual solar irradiation between plain and mountain
villages. Furthermore, the use of latitude and two new indicators
defined in this study provide an estimation of the distribution at low
computational cost and an initial insight of the received irradiation.

The methodology requires a minimal amount of data and offers
significant flexibility, thanks to the use of QGIS software and Python
extensions. As a result, it can be applied to villages located in various
regions or countries to conduct similar studies or simply to generate a
solar cadastre for identifying sunny rooftops.

Solar cadastres and distributions of irradiation within a village,
along with their predictions, can be valuable for energy planning
purposes at the scale of one or multiple villages. Indeed, to deploy
a solar strategy in mountainous areas, it is crucial in a first time to
evaluate solar resources in these territories. The distribution of solar
irradiation over the mountainous territories needs to be understood, as
it differs from the distribution of plain villages. With the high number
of mountain villages analyzed in this study, it is possible to have a
broad overview of the distribution of solar energy in mountainous
municipalities and observe several cases.

The first conclusion that could be drawn is that, despite the presence
of shading and cloud cover, solar resources remain sufficiently high
in mountainous areas to be of interest. Indeed, buildings’ rooftops or
ground surfaces could receive a cumulative annual irradiation between
1300 and 1400 kWh/m2 in almost all the villages. Therefore, these
villages should not be neglected in energy transition planning.

Secondly, this study reveals that the morphology of mountain vil-
lages – in particular building’s location – can lead to significant vari-
ations in rooftop potentials. The main trend is a higher dispersion
(spread at one-third maximum) than in plains due to far masks shading.
Moreover, for certain villages, distinct zones of irradiation may emerge
as explained in Section 4.4. This second result shows that geographical
boundaries define building clusters that do not necessarily match with
administrative boundaries. This information could be of importance for
local decision makers to select areas of interest (i.e. high irradiation
zones).

The benefits of utilizing available solar energy could be higher in
mountains than in flat terrain, as mountain villages are isolated and
have high energy demands, especially in winter. Solar maps could
be utilized by decision-makers within municipalities to gain a better
understanding of the potential of renewable energy generation and,
consequently, the potential for energy self-sufficiency.

Lastly, further development of a model to estimate photovoltaic or
thermal production could be beneficial. This would enable to estimate
the amount of electricity and heat that could be produced by each vil-
lage or ‘‘irradiation sub-village’’. To that aim, an accurate modeling of
the impact of snow on PV and thermal systems would be required. This
would be valuable information for the promotion of the development
12

of solar systems in mountain villages.
5.2. Uncertainties

Many sources of uncertainty are present in our study. These sources
primarily stem from the inputs of our model. Firstly, the meteorological
data required to estimate the annual cumulative irradiation from SEBE
is the largest source of uncertainty. Indeed, this data is estimated
from satellite models with a resolution of only 5 km × 5 km. Despite
the overall good accuracy of these data, precision may degrade in
mountainous areas due to the presence of snow, which can be confused
by algorithms with cloud cover. Furthermore, geographic data such
as the DTM and cadastral data also contain uncertainties. The spatial
resampling of the DTM, from 25 m resolution to a resolution compatible
with building scale, adds to uncertainties. Cadastral data are also
simplified representations of building shapes. Subsequently, the SEBE
tool contains several sources of uncertainty, which may arise from the
patch redistribution model or the Reindl model [62] for estimating the
diffuse component.

Thus, irradiation received by buildings entail numerous uncertain-
ties, but the probabilistic approach used with distribution analysis and
the use of the mode to describe irradiation received by villages help
smooth the uncertainties associated with the deterministic approach of
the SEBE tool.

5.3. Limitations

One limitation of this study is the impossibility to accurately ac-
count for the real structure and the morphology of rooftops due to a
lack of data, particularly the consideration of orientations and slopes.
It would have been possible to define standardized orientations and
slopes based on typical French roof morphologies. But dwellings located
in mountain area often have unique roof structures. For instance, it
is common to find roofs with two slopes oriented along the width of
the buildings, rather than the length, as is more typical in the rest of
the country. More generally, the diversity of rooftops within a given
territory makes it challenging to use average values. However, when
more accurate data will become available, such as precise LiDAR data
(LIght Detection and Ranging), the consideration of orientation and
slope will be feasible using this methodology.

In this study, about a hundred villages were selected with the
aim of observing the difference between lowland and mountainous
areas. It would also be interesting to study villages across the entire
French territory, which could not been possible so far due to the
computational time required by the simulations. Indeed, the simulation
durations were relatively long and roughly proportional to the size
of the municipalities. The total duration of the simulation, including
data preprocessing and postprocessing, for a village of average area
(40 km2) is approximately 12 h and exceeded 5 days for the largest
village. The machine we used to run simulations is a shared working
station. It is equipped with an Intel Xeon W-2125 CPU (release date
Q3 2017) and 256 GB of memory. It runs Ubuntu 22.04. An Anaconda
environment with the following packages and plugins was used: Python
(3.9.17), Qgis (3.32.2), GDAL (3.7.1), UMEP for processing (2.0.1). No
computation was done on GPU due to a software limitation, yet it could
largely speed up some of the processing steps.

6. Conclusion

A methodology was developed in order to adapt existing tools for
irradiation prediction on buildings to large mountainous territories.
This approach employs a DSM combined with a tiling methodology
to consider distant obstructions, thus accounting for the terrain. This
methodology is entirely based on open-access data sources (IGN, EU-
DEM) and on existing open-source algorithms (QGIS, SEBE). Rooftop
irradiation for 92 municipalities, located in both mountainous and
plain areas is calculated. The distributions of the irradiation on build-

ing rooftops are observed to follow a similar pattern that can be



Solar Energy 275 (2024) 112632A. Ferry et al.

m
i
f
c
y
D
d
a
d
t
m
m
i
a
d
v
e
t

t
c
m
d

D

c
i

D

G

A

G
N
(
a

R

well approximated by a continuous probability distribution, here a
Johnson’s 𝑆𝑈 distribution function. Exceptions are observed in certain

ountainous villages, which could be addressed through the cluster-
ng of buildings based on their locations and fitting the distribution
unction to each cluster accordingly. This approximation facilitated the
haracterization of distributions using multiple indicators and the anal-
sis of distributions disparities between plain and mountain villages.
istributions are shifted towards lower irradiations and show greater
ispersions for mountain villages. Two indicators, the Sky View Index
nd the Diffuse Fraction Index, were defined to explain the observed
ifferences. The presence of mountainous terrain and cloud cover were
hus identified as factors contributing to reduced solar radiation in
ountainous regions. The presence of far masks and of specific village
orphologies in mountainous areas also leads to higher variability in

rradiation values within a village compared to plain villages. Through
multiple linear regression model, the density function could be pre-

icted using the two aforementioned indicators and the latitude as
ariables. Despite varying results across the studied villages, this model
nables obtaining preliminary outcomes with reduced computational
imes.

This study has thereby highlighted that the characteristics of moun-
ainous regions have a significant impact on solar potential. These
onclusions could be used to establish energy planning strategies for
ountainous areas, with the solar cadastres here obtained helping to
etermine the priority areas for installations of rooftop solar systems.
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