N

N
N

HAL

open science

Asynchronous parallel multi-splitting mixed methods

Pierre Spitéri, Lilia Ziane Khodja, Raphael Couturier

» To cite this version:

Pierre Spitéri, Lilia Ziane Khodja, Raphael Couturier. Asynchronous parallel multi-splitting mixed
methods. 6th International Conference on Parallel, Distributed, GPU and Cloud Computing for En-
gineering ( PARENG 2019), Jun 2019, Pecs, Hungary. Paper 15, 10.4203/ccp.112.15 . hal-04596050

HAL Id: hal-04596050
https://hal.science/hal-04596050

Submitted on 31 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04596050
https://hal.archives-ouvertes.fr

© Civil-Comp Press, 2019

¥ | Proceedings of the Sixth International Conference on

& Parallel, Distributed, GPU and Cloud Computing for Engrireg
P. Ivanyi and B.H.V Topping (Editors)

Civil-Comp Press, Stirlingshire, Scotland

Paper 15

Asynchronous par allel multi-splitting mixed methods

P.SPITERI!, L. ZIANE-KHODJA?, R. COUTURIER?
HRIT- INPT, University of Toulouse, Toulouse, France
2FEMTO — ST Institute, University of Bourgogne Franche Cen@élfort, France

Abstract

The present study deals with the solution of univalued pseuéhear problems using par-

allel asynchronous multisplitting methods . With apprafgiand realistic assumptions, the
behavior of such parallel iterative algorithms will be giza&ld by contraction techniques. An
application to a discretized boundary value problem isgresd and the parallel experiments
are analyzed.

Keywords: asynchronous parallel algoritm, high performance comgutinultisplitting meth-
ods, Krylov method, Newton method, discretized pseudealirproblem, large scale systems,
nonlinear boundary value problems

1 Introduction

The present study focuses on the analysis and applicatiorixefd multisplitting methods to
solve pseudo - linear stationary problems. These problemstationary either intrinsically
or as the result of the discretization of time evolution peofs by implicit or semi-implicit
time marching schemes. The considered problems are deSratadfine applicatiodlV — F
perturbed by an increasing diagonal operdtas follows

AU — F+ ®(U) =0, 1)

where in the sequell has the property of being a large scale M-matfixa vector,U is the
unknown vector. Note that this type of problem occurs whdwisg elliptic, parabolic or
hyperbolic second order boundaries values problems andhbavi-matrix property is well
verified after discretization by classical finite differescscheme, finite volumes scheme or
finite elements method provided that, in this last case, tiggeacondition is verified. In the
present paper, the operai@r— ®(U) in problem [[1) is considered as a strongly non-linear
univalued operator.

In such a case, problerh](1) will be solved by a specific metlesdlting from a local
linearization corresponding to the implementation of tieeative Newton method. Thus the
calculation method consists in solving a large sparselisgstem. This linear system is then
associated with a fixed point problem which will be solved kyrechronous parallel itera-
tions [1]-[5]. Taking into account the properties of the matd and the operator’s monotony



property of the perturbed diagonal operator, it can be sed¢he sequel that the fixed point
application is contractive with respect to a uniform weaghhorm [6], which ensures on the
one hand the existence and uniqueness of the solution ofgllkraic system to be solved and
on the other hand the convergence of parallel iterationsadsgnous towards the solution of
the target problem.

In addition, in order to unify the presentation and analggialgorithm behavior, we con-
sider multisplitting methods that unify the presentatibsuddomain methods, either to model
subdomain methods without overlap, or to model subdomaithode with overlap such as
Schwarz’s alternating method. The multisplitting methaoasvintroduced by O’Learry and
White and also White (sek&l[7]4[8]) in order to give a unifieégentation of subdomain meth-
ods. Several contributions have been developed by mangm@usiich as J. Arnal, ZZ bai, R.
Bru, A. Frommer, V. Migalon, J. Penades. D. Szyld, ... etim.collaboration with several co-
authors (see [9]-[20]) for the solution of linear and noahn problems. Nevertheless, it should
be noted that these previous works do not concern solutiomutifvalued problem excepts for
the work of J. Bahi et al.[[21] developed in an hilbertian et So in the sequel, this last
study is extended to the case of the non hilbertian contetxés@& multisplitting methods are
then applied to solve the target problem (1), the converg@malysis being still carried out
by contraction techniques with respect to a weighted umfaprm. To effectively solve the
model problems, efficient methods are used to solve eacte &ubproblems handled by each
processor. More precisely, a coupling between asynchsopauallel methods and Krylov
methods([2R] is considered, since each diagonal subproblgained by the decomposition
of problem [1) is solved by this last type of algorithm.

As application, we consider a diffusion-convection prablgerturbed by an increasing di-
agonal operator [23], the problem being solved by a mixed tdew multisplitting method,
each linearized subsystem being solved by the generalizeitnal residual method (GM-
RES). Thus we present and discuss the results of parallelaiion achieved on a cluster.

The present paper is organized as follows. In section 2 tirauiation of synchronous
and, more generally, asynchronous parallel algorithmseasgnted and some results allowing
to analyze the convergence by contraction techniques @ea.gin the next section the paral-
lel asynchronous multisplitting algorithms applied toyde — linear problems are detailled.
Section 4 is devoted to the presentation of boundary valablgms, which, after appropri-
ate discretization lead to solve pseudo — linear algebsaitems. Thus the following section
is devoted to the presentation of implementation of theistugarallel numerical methods.
Section 6 presents the results of parallel experimenteaetiion a local cluster. Finally a
conclusion and some future studies conclude the paper.

2 Parallel asynchronous algorithms associated to pseudo linear
problems

Consider probleni{1) and let us transform such problem iriceal point problem as follows
U=FV) (2)

whereF' is a fixed point mapping defined in an implicit way; in the catproblem [1) such
fixed point mapping is naturally defined as follows by considga block decomposition ia
blocks



j=1j#i
whereA = (A4, ;) corresponds to the block decompositidnandF; are the block components
of the vectord’ and F.

Using the fixed point equatiofi](2), the parallel iterativgrashronous algorithms are then
classically defined inJ1] for the solution of large lineagelbraic systems andl[2] for large
algebraic systems. In such a computational method, to nfekenbst of computing power
by eliminating idle times due to blocking expectations, @yonizations are not necessarily
required which avoids waiting for the communication of tredues computed by the other
processors; thus each processor performs its own calmsatising available data calculated
by other processors. Then each processor advances its toulatians at its own pace, with
communications taking place in no pre-established ordbe dhoice of the relaxed compo-
nents is performed using a component selection strateggcht gep of the calculation; this
strategy is in fact a non-empty subset of the 8et, . .., o} which models parallelism be-
tween the processes, since each element of the strategylimiied to a single element. In
addition, theoretically, each block component of the tkaector is continuously updated; but
in practice the parallel iterative method is ended by a stappriterion, which in the asyn-
chronous context, is very hard to perform. For a fixed proctss asynchronism between
updates is modelled by the introduction of delayed compitsneaiculated by other processors
to take into account the necessary coupling between theusprocesses. During the first
work on asynchronous parallel iterations, delays were dedr(see[]1] and_[2]); in fact in
[3] G. Baudet has extended the framework of the study to coaees in which delays are
no longer bounded, allowing for cases of failure of one orenmiocessors to be taken into
account.

The formulation of the parallel asynchronous method is ggnelndeed when the val-
ues of the components of the iterate vector, representmgnthractions between the parallel
processes, are not delayed, the corresponding algorithmféat the parallel synchronous
method; such a situation is in fact the parallel method otsssive iteration and corresponds
to the parallel block Jacobi matrix. Moreover, in the conteiyparallel synchronous methods,
for particular choice of strategy we find the block Jacobilmdt or the block Gauss — Seidel
method and the Alternating Direction Implicit (A.D.l.) ninetd.

Assuming the following assumptions
A'is an M-matrix, 4)

the mappind/ — ®(U) is a diagonal monotone operator, (5)

then, thanks to the use of a result inl[24]425] we know that, &ny block decomposition
the fixed point mapping is contractive with respect to a unifaveighted norm; thus this
result allows us to state that on the one hand the solutiosefgo — linear problerfi](1) exists
and is unique and on the other hand that the parallel synohsoand asynchronous methods
applied to the parallel solution of problef (1) are convatgewardU* solution of problem
(@) whatever the initial guess is.

In practice we do not have as many processors as the blockatiixrA. Let 8 << « the
number of processors. So, from an algorithmic point of viesgather several adjacent blocks
of the matrixA in (3 large blocks and we consider large blocks decompositidii,di’ and ®



accordingly, such decomposition corresponding in factsalzdomain method without over-

lapping. Now, using the result stated in [24]-[25], sincewmsptions[(4) and (5) are satisfied,
due to the fact that any fixed point mapping associated to aogrdposition of the problem to

solve is contractive, the parallel synchronous and asymcius subdomain methods without
overlapping converge towald* solution of problem[{{1) whatever the initial guess is.

Moreover we can also solve the considered pseudo — linebtgons by subdomain meth-
ods with overlapping, like the Schwarz’s alternating meitfin this case, due to the augmenta-
tion process of the Schwarz’s method, the pseudo-linediigmts [1) are respectively written
as follows

AT — F+®(0) = 0. (6)

Using a result of D.J. Evans and Van Deren ($eé [26]), i§ an M-matrix, thend is also an
M-matrix. Moreover, by applying the augmentation proceis,diagonal operatob is still
diagonal monotone operator. So we are in the framework oftidy of [24]-[25] and can
still apply the results of this paper concerning the conerog of parallel synchronous and
asynchronous subdomain methods without overlapping.

3 Themultisplitting method

Consider now the solution of probler (1) by the parallel $ynoous or, more generally,
asynchronous multisplitting method. In our case, due tdabethat a pseudo — linear problem
has to be solved by the Newton method, for the solution ofitieatized system derived from
this last method”6U = F', whereC' is an M-matrix, we consider regular splittings([27] of
the matrix A, such that

C=M-Nl=1,...m,

where M!,l = 1,...,m, are M-matrices and in the general case the syst&iti = F
needs to be solved. For that we assoctatéixed point mappings in a similar way than the
one considered if13). Moreover, for the efficient applmatof the parallel asynchronous
multisplitting method, it is usually necessary that eachhefm fixed point mappings asso-
ciated with the problem to solve, are contracting; in ourecainceC' is an M-matrix, such
condition is not restrictive thanks to the use of the respitessiously obtained in[24]-[25].
Indeed, as precised in sectibh 2, that under assumpfidbren@f), using the result of this
latter reference, any fixed point mapping associated withdatomposition of the problem
was contracting; sincé' is an M-matrix, the results of the two latter references dao be
applied. Consequently, under assumptidms (4) @hd (5) #rerguarantees that asynchronous
parallel multisplitting methods can be used successfsiye [21]).

Interested readers can refer to the work presented in [7]-ff# a detailed presentation
of asychronous parallel multisplitting methods and, maia [21] for target applications.
The algorithmic principle of this type of method can be defires follows. Let us denote
by F',l = 1,...,m, each of the fixed point applications associated with thelproto be
solved; then the numerical algorithm consists in computiivegn following vectors

U'=F') Wi Vvh)i=1,...,m, @)
k=1



whereV'!, ... V™ arem vectors of the spadg’Y, whereN is the dimension of the matrix,
or C andW, ; are nonnegative diagonal weighting matices satisfyingfidre {1,...,m}

m
> Wie=Id,l=1,...,m,
k=1

where, forl = 1,...,m, Id; is the identity.

Note that[(¥) allows to define an extended fixed point mapgirand since each of the fixed
point mappingF’ associated with the problem to be solved is contractingy tising a similar
result to the one stated in [21], the extended fixed point nmgp@ is also contracting with
respect to an adapted uniform weighted norm. As a consegqubrcparallel asynchronous
multisplitting methods applied to the solution of the linpaoblem converge.

Note also that considerable saving in computational worl bepossible by using such
numerical methods, since a componenvdfneeds not be used if the corresponding diagonal
entry of the weighting matrices are zero; then, in paralehputing, the role of such matri-
cesW;; may be regarded as determining the distribution of the caatipmal work of the
individual processors.

Note finally that according to the weighting matrid@$ ; we can obtain various iterative
methods and particularly on the one hand a subdomain metitbdui overlapping and on
the other hand the classical Schwarz alternating methodoing to [21] the block Jacobi
method corresponds then to the following choice\df

M = diag(Id, .., 1d,Cyy, Id, .., Id) (8)
and to the choice oY ;, = W, given by
W, = diag(0, ..,0,1d,0, ..,0) (9)

which means that the entries of the weighting matrices awaldéq one or zero.

For the additive Schwarz alternating method more than oaegssor computes updated
values of the same component and the weighting diagonalicesthave positive entries
smaller than one. The reader is referred to [7] and to oth@owsreferences for other choices
of weighting diagonal matrices and splittings for the déitami of various multisplitting meth-
ods.

For each splitting, I = 1, ... ,m, starting with an initial gues&’:(?) we have to solve
AU + o (UY -~ F =0,
by the Newton method; then, globally, at stepf the Newton method we have to solve

oD (UH™)

o0 )oub®D = F — AU — (Uh0)

(A+
and then
Ul,(i+1) — Ul,(i) + 6Ul’(i), (10)
until the convergence of the iterative method.
Let C(ULD) = A + %&’(Z)) and according to the choice of the weighting matridgs,
let us consider a block decomposition of the mari" (") such that
o(Uh0)
+ Q)

Cr(Uh)y = (A
La(U) = ( Su bl

(11)



denotes the block diagonal of the matdXU"(*), and since the operatdi — ®(U) is
diagonal increasing, then the Jacobian matri®ofiven by%&’m), is a positive diagonal
rpatrix; for the same reason, due to the fact thal/) is diagonal the off-diagona[ blocks of
C(U4)), denotedd, , are reduced to the blocks . of the matrixA. Consequently (U4 ())

is an M-matrix.
So the implementation of the Newton method requires thetisolof the following linear
system A )
C(UhHeU' = F(UY,
which will therefore be solved by a multi-splitting methaince the matri>C‘(Ul) is an M-
matrix, the multi-splitting method will converge (sée [R1]

For the solution of probleni]1) by the Newton method, by cdessng for example the
block Jacobi method obtained by choosing’ and W, given by [8)49), the implemented
multisplitting method associated to the iteration numbafrthe Newton method leads to solve

iteratively in parallel for = 1,...,m, the algebraic sub-systems
G su? = B, (12
whereB; is given by ‘
k£l

F(U"™) is the right hand side resulting from the Newton process, i.e
FUby = F —oUh®) — AUHO), (14)

and the values of the components of the vecﬁdifg’(j(k)) come from the computation per-
formed on the splitting numbet, £ # [, and performed by other processors by using the
iterate numbeyj (k) of an iterative method.

Then, each sub-systefn {12) is solved independently by a&gsoc or a set of processors
and communications are required to update the right-hadelafieach sub-system, such that
the vectors updated by the other processors represent thele@endencies between the dif-
ferent blocks. For the target applications, in the impleteémulti-splitting method, we have
in fact a two level iteration; an external parallel iteratiand an inner iteration due to the fact
that, since the matrice@l,l are also sparse, it is highly recommended to solve the subsys
tems [12) by an iterative method. In our implementation alétrynethod has been chosen
for the solution of each sub-problef 1{12). It should be ndtext for the external parallel
iteration, the considered computing method fits well witthia formulation of general parallel
asynchronous methods described in sediion 2, since imbeegsors communications can be
synchronous or asynchronous.

4 Application to the numerical solution of non-linear boundary
value problem

There are several kinds of partial differential equatiortsic, after discretization, lead to
the solution of pseudo-linear algebraic systems such asrteefound in[(ll). In the sequel
we will denote by2 an open domain included iR?3, 90 the boundary of, f a sommable



square function and — ¢(u) a diagonal monotone increasing, convex and continuously
differentiable nonlinear operator. So the following naeir convection — diffusion problems
can be considered

ou ou ou ;
{ —vAu+agy +bgy + o +dut ¢(u) = f, everywhere i, (15)

u = 0, everywhere irdS,

wherev, a, b, ¢, d are some constant coefficients;> 0,d > 0.

Problem [[(Ib) can occur in plasma physics or to model solan®©{&3]; such a problem
arises from the implicit temporal discretization of parab@roblems that appear in similar
applications modeled as the one modeled below

% —vAu(t,z) + Q'Vu + €™ = g(t, z), everywhere if0, 7] x Q,b > 0,
u(t,z) = 0, everywhere if0, T] x 99, (16)
u(0,2) = up(z), everywhere irf,

whereT" > 0, ug : 2 — R is the initial condition is a vector with components, b, ¢).

After temporal discretization the stationary problem agged with the implicit time march-
ing scheme, is defined as follows

{ —vAu+ Q'Vu+ 3+ + ™ = f, everywhere i2 C R?,

u = 0, everywhere ird(2, (7)

whered; is the time step arising in the implicit scheme.

After spatial discretization the aim is to solve a pseudedr algebraic systems similar to
(@) by combining the Newton method with the parallel asynobus multisplitting method.
Note that, by choosing appropriate finite difference apipnation, particularly for the convec-
tion term where according to the sign of the coefficients ¢, forward or backward schemes
are considered so that the discretization matrix is an Mrmanhoreover since(u) is a diag-
onal monotone increasing nonlinear operator, assump@@rend [(5) are well verified. Thus
the previous parallel synchronous or asynchronous mlittisg studied method for the par-
allel solution of this problem can be applied.

5 Nonlinear multisplitting method implementation

This section presents the implementation of our multitspdj method to solve nonlinear sta-
tionary systems like nonlinear convection-diffusion gesbs presented in Sectibh 4. It should
be noticed that we do not no difference is made between Boresr cores.

The focus was put on solving 3D nonlinear systems of equaiivolving a single variable
which can be formulated as i](1). The well-known Newtonati&n method was used to
linearize the nonlinear problem. Then the parallel mytiténg iteration scheme was applied
to solve each algebraic linear system issued from the lizeg@on, in such a way that each
system is associated to splittings as shown in.(12).

The Newton-multisplitting method was implemented on a $atad parallel platform com-
posed ofm blocks that correspond to the splittings in Formulal(1l2). In this case, each split-
ting was solved in parallel on a group (or a block)poprocessors by using the well-known
Krylov iterative method GMRES [29]. The outer iterationstieé multi-splitting methodi(e.



Algorithm 1: Parallel Nonlinear multi-splitting method performed onlaster
Output: SolutionU,,cy

1 Setinitial solution:U,,¢,: = 1.0

2 while||U°%, [|2 > €Newton O

3 | Reset the initial local solutiob’°'d, . to an arbitrary value

4 Update global right-hand side: Formulal14)

5 Update local sparse matriX,,,,.;;;: Formula [(11)

6 | while||UZ,; — Untiilloo > Entuntisplitting dO

7 Compute local right-hand sidé3,,,.,;;;: Formula [I8)

8 Parallel GMRES to solved,,,,it; X U, = B Formula (1)
9 Exchange local shared values(@f:;,. with neighbor blocks
10 Upid = Upit,

1 end

12 Compute solutionUpewt = Upewt + USY,.: Formula [10)

13 end

intra-blocks communications) are either synchronous ym@sonous, but the inner iterations
(GMRES iterations) are synchronous.

Algorithm[d presents the main key-points of our multi-gjig method executed in parallel
to solve nonlinear systems. All variables are local to abliggissors which are gatheredrin
blocks ofp processors or cores.

The algorithm uses the Newton iteration to linearize thelinear system to be solved
(lines from[2 toIB). From lin€l6 to ling71L1, each linear sub=mysissued from the linear-
lization is solved in parallel using a multi-splitting meth First the local right-hand side
B,nuiti, corresponding td3; involved in the formula[(112) and defined Hy {13) (see [ihe 7) is
computed, then the GMRES method is applied in parallel teesthle subsystem like (112) by
a block of p processors (linE]8). The GMRES iteration represents theriitaration of the
multi-splitting method. At each outer iteration, blocksckange the data of their local solu-
tion Ui, corresponding in fact thll’(Z) involved in the formula[(12), shared with their
corresponding neighbors (see I[de 9). The solution of theimear system is updated at each
Newton iteration (lin€_12).

The outer iterations of the multi-splitting method can ibei synchronous or asynchronous.
In the synchronous version, the global convergence of thié-splitting method is detected
when the value ot/,,,..;+; is stabilized corresponding to the following stopping test

HUS@lthi — Upatiilloo < €uitisplitting (18)

where e nryirisplitting 1S the tolerance threshold for the computationlof,,;;;. However in
the asynchronous version, the global convergence is @etechen all blocks have locally
converged. The convergence detection implemented wasmauited as in [30].

6 Experiments

In the following, the conducted experiments are describ&de problem considered is de-
scribed in section 4. Each dimension of the 3D problem isreiszed in150 elements using



Nb. Proc.| Mode | Exec. Times (in s) Asyn. Gain
2x8 Sync 127.9
2x8 Async 111.86 1.14
2 x 16 Sync 61.19
2x16 | Async 48.51 1.26
2% 32 Sync 25.79
2x32 | Async 21.93 1.17

Table 1: Execution times of both synchronous and asyncluoiteration modes of the 3D
problem of sizel50°.

a finite difference scheme. So there af®? elements to take into consideration. In all the
experiments, the following parameters have been chosgniiipsplitting = 1 x 108 and
ENewton = 11074, Up to64 cores were used to conduct our experiments. Experimenés hav
been achieved on the mesocentre of the University of Fra@dmaté. Machines are composed
of Xeon(R) CPU E5-2640 v3 @ 2.60GHz processors. They aredinkith an Infiniband net-
work. The code is parallelized with MPI. As the mesocentresisd by many users, jobs are
run automatically by the scheduler and users cannot haveantyol on the cores used.

In Table[1, execution times of the synchronous version aadalynchronous version are
reported using respectively 16, 32 and 64 cores. The nunilidocks was fixed t@ because
it was observed that this would lead to obtain the best pmidoces possible. So in this
table, 2 x 8 represents a case with 16 cores using 2 blocks with 8 coresanltbe seen
that the asynchronous version is always faster than thehsymous version. Moreover, each
solution computed with the synchronous and asynchronoweras been compared with the
solution computed with a standard solver in order to be abt®tpute the error. For all the
experiments, the error with the max norm is betwgen10~7 and1 x 10~8. As the machine
used only enables one to submit parallel jobs Witttores, larger scale experiments could not
be run.

7 Conclusion

In the present study, a mixed method combining parallel @sgmous method as an outer it-
eration with the Krylov method for the solution of diagonabgroblems, was presented. Such
a calculation method has been used for the solution of urédapseudo - linear stationary
problems and implemented in a cluster. In future work we galhsider the use of such mixed
methods for the solution of multivalued pseudo - linearigtetry problems. These problems
arise in boundary value problems where the solution is stegjeto some constraints. We will
also implement the proposed mixed method on grid architedar the parallel solution of
univalued or multivalued pseudo - linear stationary protde
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