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Abstract

The present study deals with the solution of univalued pseudo - linear problems using par-
allel asynchronous multisplitting methods . With appropriate and realistic assumptions, the
behavior of such parallel iterative algorithms will be analyzed by contraction techniques. An
application to a discretized boundary value problem is presented and the parallel experiments
are analyzed.
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1 Introduction

The present study focuses on the analysis and application ofmixed multisplitting methods to
solve pseudo - linear stationary problems. These problems are stationary either intrinsically
or as the result of the discretization of time evolution problems by implicit or semi-implicit
time marching schemes. The considered problems are defined as an affine applicationAU−F

perturbed by an increasing diagonal operatorΦ as follows

AU − F +Φ(U) = 0, (1)

where in the sequelA has the property of being a large scale M-matrix,F a vector,U is the
unknown vector. Note that this type of problem occurs when solving elliptic, parabolic or
hyperbolic second order boundaries values problems and that the M-matrix property is well
verified after discretization by classical finite differences scheme, finite volumes scheme or
finite elements method provided that, in this last case, the angle condition is verified. In the
present paper, the operatorU → Φ(U) in problem (1) is considered as a strongly non-linear
univalued operator.

In such a case, problem (1) will be solved by a specific method resulting from a local
linearization corresponding to the implementation of the iterative Newton method. Thus the
calculation method consists in solving a large sparse linear system. This linear system is then
associated with a fixed point problem which will be solved by asynchronous parallel itera-
tions [1]-[5]. Taking into account the properties of the matrix A and the operator’s monotony
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property of the perturbed diagonal operator, it can be seen in the sequel that the fixed point
application is contractive with respect to a uniform weighted norm [6], which ensures on the
one hand the existence and uniqueness of the solution of the algebraic system to be solved and
on the other hand the convergence of parallel iterations asynchronous towards the solution of
the target problem.

In addition, in order to unify the presentation and analysisof algorithm behavior, we con-
sider multisplitting methods that unify the presentation of subdomain methods, either to model
subdomain methods without overlap, or to model subdomain methods with overlap such as
Schwarz’s alternating method. The multisplitting method was introduced by O’Learry and
White and also White (see [7]-[8]) in order to give a unified presentation of subdomain meth-
ods. Several contributions have been developed by many authors such as J. Arnal, ZZ bai, R.
Bru, A. Frommer, V. Migalon, J. Penades. D. Szyld, ... etc ...in collaboration with several co-
authors (see [9]-[20]) for the solution of linear and nonlinear problems. Nevertheless, it should
be noted that these previous works do not concern solution ofmultivalued problem excepts for
the work of J. Bahi et al. [21] developed in an hilbertian context. So in the sequel, this last
study is extended to the case of the non hilbertian context. These multisplitting methods are
then applied to solve the target problem (1), the convergence analysis being still carried out
by contraction techniques with respect to a weighted uniform norm. To effectively solve the
model problems, efficient methods are used to solve each of the subproblems handled by each
processor. More precisely, a coupling between asynchronous parallel methods and Krylov
methods [22] is considered, since each diagonal subproblemobtained by the decomposition
of problem (1) is solved by this last type of algorithm.

As application, we consider a diffusion-convection problem perturbed by an increasing di-
agonal operator [23], the problem being solved by a mixed Newton - multisplitting method,
each linearized subsystem being solved by the generalized minimal residual method (GM-
RES). Thus we present and discuss the results of parallel simulation achieved on a cluster.

The present paper is organized as follows. In section 2 the formulation of synchronous
and, more generally, asynchronous parallel algorithms is presented and some results allowing
to analyze the convergence by contraction techniques are given. In the next section the paral-
lel asynchronous multisplitting algorithms applied to pseudo – linear problems are detailled.
Section 4 is devoted to the presentation of boundary value problems, which, after appropri-
ate discretization lead to solve pseudo – linear algebraic systems. Thus the following section
is devoted to the presentation of implementation of the studied parallel numerical methods.
Section 6 presents the results of parallel experiments achieved on a local cluster. Finally a
conclusion and some future studies conclude the paper.

2 Parallel asynchronous algorithms associated to pseudo linear
problems

Consider problem (1) and let us transform such problem into afixed point problem as follows

U = F (V ) (2)

whereF is a fixed point mapping defined in an implicit way; in the case of problem (1) such
fixed point mapping is naturally defined as follows by considering a block decomposition inα
blocks
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Ai,iUi +Φi(Ui) = Fi −
α
∑

j=1j 6=i

Ai,jVj , j = 1, . . . , α, (3)

whereA = (Ai,j) corresponds to the block decomposition,Ui andFi are the block components
of the vectorsU andF.

Using the fixed point equation (2), the parallel iterative asynchronous algorithms are then
classically defined in [1] for the solution of large linear algebraic systems and [2] for large
algebraic systems. In such a computational method, to make the most of computing power
by eliminating idle times due to blocking expectations, synchronizations are not necessarily
required which avoids waiting for the communication of the values computed by the other
processors; thus each processor performs its own calculations using available data calculated
by other processors. Then each processor advances its own calculations at its own pace, with
communications taking place in no pre-established order. The choice of the relaxed compo-
nents is performed using a component selection strategy at each step of the calculation; this
strategy is in fact a non-empty subset of the set{1, 2, . . . , α} which models parallelism be-
tween the processes, since each element of the strategy is not limited to a single element. In
addition, theoretically, each block component of the iterate vector is continuously updated; but
in practice the parallel iterative method is ended by a stopping criterion, which in the asyn-
chronous context, is very hard to perform. For a fixed process, the asynchronism between
updates is modelled by the introduction of delayed components calculated by other processors
to take into account the necessary coupling between the various processes. During the first
work on asynchronous parallel iterations, delays were bounded (see [1] and [2]); in fact in
[3] G. Baudet has extended the framework of the study to covercases in which delays are
no longer bounded, allowing for cases of failure of one or more processors to be taken into
account.

The formulation of the parallel asynchronous method is general. Indeed when the val-
ues of the components of the iterate vector, representing the interactions between the parallel
processes, are not delayed, the corresponding algorithm isin fact the parallel synchronous
method; such a situation is in fact the parallel method of successive iteration and corresponds
to the parallel block Jacobi matrix. Moreover, in the context of parallel synchronous methods,
for particular choice of strategy we find the block Jacobi method, or the block Gauss – Seidel
method and the Alternating Direction Implicit (A.D.I.) method.

Assuming the following assumptions

A is an M-matrix, (4)

the mappingU → Φ(U) is a diagonal monotone operator, (5)

then, thanks to the use of a result in [24]-[25] we know that, for any block decomposition
the fixed point mapping is contractive with respect to a uniform weighted norm; thus this
result allows us to state that on the one hand the solution of pseudo – linear problem (1) exists
and is unique and on the other hand that the parallel synchronous and asynchronous methods
applied to the parallel solution of problem (1) are convergent towardU⋆ solution of problem
(1) whatever the initial guess is.

In practice we do not have as many processors as the blocks in matrix A. Let β << α the
number of processors. So, from an algorithmic point of view we gather several adjacent blocks
of the matrixA in β large blocks and we consider large blocks decomposition ofU , F andΦ
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accordingly, such decomposition corresponding in fact to asubdomain method without over-
lapping. Now, using the result stated in [24]-[25], since assumptions (4) and (5) are satisfied,
due to the fact that any fixed point mapping associated to any decomposition of the problem to
solve is contractive, the parallel synchronous and asynchronous subdomain methods without
overlapping converge towardU⋆ solution of problem (1) whatever the initial guess is.

Moreover we can also solve the considered pseudo – linear problems by subdomain meth-
ods with overlapping, like the Schwarz’s alternating method; in this case, due to the augmenta-
tion process of the Schwarz’s method, the pseudo-linear problems (1) are respectively written
as follows

ĀŪ − F̄ + Φ̄(Ū) = 0. (6)

Using a result of D.J. Evans and Van Deren (see [26]), ifA is an M-matrix, thenĀ is also an
M-matrix. Moreover, by applying the augmentation process,the diagonal operator̄Φ is still
diagonal monotone operator. So we are in the framework of thestudy of [24]-[25] and can
still apply the results of this paper concerning the convergence of parallel synchronous and
asynchronous subdomain methods without overlapping.

3 The multisplitting method

Consider now the solution of problem (1) by the parallel synchronous or, more generally,
asynchronous multisplitting method. In our case, due to thefact that a pseudo – linear problem
has to be solved by the Newton method, for the solution of the linearized system derived from
this last method̂CδU = F̂ , whereĈ is an M-matrix, we considerm regular splittings [27] of
the matrix A, such that

Ĉ = Ml −N l, l = 1, . . . ,m,

whereMl, l = 1, . . . ,m, are M-matrices and in the general case the systemĈδU = F̂

needs to be solved. For that we associatem fixed point mappings in a similar way than the
one considered in (3). Moreover, for the efficient application of the parallel asynchronous
multisplitting method, it is usually necessary that each ofthem fixed point mappings asso-
ciated with the problem to solve, are contracting; in our case, sinceĈ is an M-matrix, such
condition is not restrictive thanks to the use of the resultspreviously obtained in [24]-[25].
Indeed, as precised in section 2, that under assumptions (4)and (5), using the result of this
latter reference, any fixed point mapping associated with any decomposition of the problem
was contracting; sincêC is an M-matrix, the results of the two latter references can also be
applied. Consequently, under assumptions (4) and (5), there are guarantees that asynchronous
parallel multisplitting methods can be used successfully (see [21]).

Interested readers can refer to the work presented in [7] - [21] for a detailed presentation
of asychronous parallel multisplitting methods and, mainly to [21] for target applications.
The algorithmic principle of this type of method can be defined as follows. Let us denote
by F l, l = 1, . . . ,m, each of the fixed point applications associated with the problem to be
solved; then the numerical algorithm consists in computingthem following vectors

U l = F l(
m
∑

k=1

Wl,kV
k), l = 1, . . . ,m, (7)
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whereV 1, . . . , V m arem vectors of the spaceRN , whereN is the dimension of the matrixA,
or Ĉ andWl,k are nonnegative diagonal weighting matices satisfying forall l ∈ {1, . . . ,m}

m
∑

k=1

Wl,k = Idl, l = 1, . . . ,m,

where, forl = 1, . . . ,m, Idl is the identity.

Note that (7) allows to define an extended fixed point mappingF and since each of the fixed
point mappingF l associated with the problem to be solved is contracting, then using a similar
result to the one stated in [21], the extended fixed point mapping F is also contracting with
respect to an adapted uniform weighted norm. As a consequence the parallel asynchronous
multisplitting methods applied to the solution of the linear problem converge.

Note also that considerable saving in computational work may be possible by using such
numerical methods, since a component ofV k needs not be used if the corresponding diagonal
entry of the weighting matrices are zero; then, in parallel computing, the role of such matri-
cesWl,k may be regarded as determining the distribution of the computational work of the
individual processors.

Note finally that according to the weighting matricesWl,k we can obtain various iterative
methods and particularly on the one hand a subdomain method without overlapping and on
the other hand the classical Schwarz alternating method. According to [21] the block Jacobi
method corresponds then to the following choice ofMl

Ml = diag(Id, .., Id, Ĉl,l , Id, .., Id) (8)

and to the choice ofWl,k ≡ W̃l given by

W̃l = diag(0, .., 0, Id, 0, .., 0) (9)

which means that the entries of the weighting matrices are equal to one or zero.

For the additive Schwarz alternating method more than one processor computes updated
values of the same component and the weighting diagonal matrices have positive entries
smaller than one. The reader is referred to [7] and to other various references for other choices
of weighting diagonal matrices and splittings for the definition of various multisplitting meth-
ods.

For each splittingl, l = 1, . . . ,m, starting with an initial guessU l,(0) we have to solve

AU l +Φ(U l)− F = 0,

by the Newton method; then, globally, at stepi of the Newton method we have to solve

(A+
∂Φ(U l,(i))

∂U
)δU l,(i) = F −AU l,(i) − Φ(U l,(i))

and then
U l,(i+1) = U l,(i) + δU l,(i), (10)

until the convergence of the iterative method.

Let Ĉ(U l,(i)) = A+ ∂Φ(U l,(i))
∂U

and according to the choice of the weighting matricesWl,k

let us consider a block decomposition of the matrixĈ(U l,(i)) such that

Ĉl,l(U
l,(i)) = (A+

∂Φ(U l,(i))

∂U
)l,l (11)
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denotes the block diagonal of the matrix̂C(U l,(i)), and since the operatorU → Φ(U) is

diagonal increasing, then the Jacobian matrix ofΦ, given by ∂Φ(U l,(i))
∂U

, is a positive diagonal
matrix; for the same reason, due to the fact thatΦ(U) is diagonal the off-diagonal blocks of
Ĉ(U l,(i)), denotedÂl,k, are reduced to the blocksAl,k of the matrixA. ConsequentlŷC(U l,(i))
is an M-matrix.

So the implementation of the Newton method requires the solution of the following linear
system

Ĉ(U l)δU l = F̂ (U l),

which will therefore be solved by a multi-splitting method;since the matrixĈ(U l) is an M-
matrix, the multi-splitting method will converge (see [21]).

For the solution of problem (1) by the Newton method, by considering for example the
block Jacobi method obtained by choosingMl and W̃l given by (8)-(9), the implemented
multisplitting method associated to the iteration numberi of the Newton method leads to solve
iteratively in parallel forl = 1, . . . ,m, the algebraic sub-systems

Ĉl,l(U
l,(i))δU

l,(i)
l = Bl, (12)

whereBl is given by
Bl = F̂l(U

l,(i))−
∑

k 6=l

Âl,kδU
k,(j(k))
k (13)

F̂ (U l,(i)) is the right hand side resulting from the Newton process, i.e.

F̂ (U l,(i)) = F − Φ(U l,(i))−AU l,(i), (14)

and the values of the components of the vectorsδU
k,(j(k))
k come from the computation per-

formed on the splitting numberk, k 6= l, and performed by other processors by using the
iterate numberj(k) of an iterative method.

Then, each sub-system (12) is solved independently by a processor or a set of processors
and communications are required to update the right-hand side of each sub-system, such that
the vectors updated by the other processors represent the data dependencies between the dif-
ferent blocks. For the target applications, in the implemented multi-splitting method, we have
in fact a two level iteration; an external parallel iteration and an inner iteration due to the fact
that, since the matriceŝCl,l are also sparse, it is highly recommended to solve the subsys-
tems (12) by an iterative method. In our implementation a Krylov method has been chosen
for the solution of each sub-problem (12). It should be notedthat for the external parallel
iteration, the considered computing method fits well withinthe formulation of general parallel
asynchronous methods described in section 2, since inter-processors communications can be
synchronous or asynchronous.

4 Application to the numerical solution of non-linear boundary
value problem

There are several kinds of partial differential equations which, after discretization, lead to
the solution of pseudo-linear algebraic systems such as theone found in (1). In the sequel
we will denote byΩ an open domain included inR3, ∂Ω the boundary ofΩ, f a sommable
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square function andu → φ(u) a diagonal monotone increasing, convex and continuously
differentiable nonlinear operator. So the following nonlinear convection – diffusion problems
can be considered

{

−ν∆u+ a∂u
∂x

+ b∂u
∂y

+ c∂u
∂z

+ du+ φ(u) = f, everywhere inΩ,
u = 0, everywhere in∂Ω,

(15)

whereν, a, b, c, d are some constant coefficients,ν > 0, d ≥ 0.

Problem (15) can occur in plasma physics or to model solar ovens [23]; such a problem
arises from the implicit temporal discretization of parabolic problems that appear in similar
applications modeled as the one modeled below







∂u(t,x)
∂t

− ν∆u(t, x) +Qt∇u+ eru = g(t, x), everywhere in[0, T ]× Ω, b > 0,
u(t, x) = 0, everywhere in[0, T ]× ∂Ω,

u(0, x) = u0(x), everywhere inΩ,
(16)

whereT > 0, u0 : Ω → R is the initial condition,Q is a vector with components(a, b, c).

After temporal discretization the stationary problem associated with the implicit time march-
ing scheme, is defined as follows

{

−ν∆u+Qt∇u+ u
δτ

+ eru = f, everywhere inΩ ⊂ R3,

u = 0, everywhere in∂Ω,
(17)

whereδτ is the time step arising in the implicit scheme.

After spatial discretization the aim is to solve a pseudo-linear algebraic systems similar to
(1) by combining the Newton method with the parallel asynchronous multisplitting method.
Note that, by choosing appropriate finite difference approximation, particularly for the convec-
tion term where according to the sign of the coefficientsa, b, c, forward or backward schemes
are considered so that the discretization matrix is an M-matrix; moreover sinceφ(u) is a diag-
onal monotone increasing nonlinear operator, assumptions(4) and (5) are well verified. Thus
the previous parallel synchronous or asynchronous multisplitting studied method for the par-
allel solution of this problem can be applied.

5 Nonlinear multisplitting method implementation

This section presents the implementation of our multi-splitting method to solve nonlinear sta-
tionary systems like nonlinear convection-diffusion problems presented in Section 4. It should
be noticed that we do not no difference is made between processors or cores.

The focus was put on solving 3D nonlinear systems of equations involving a single variable
which can be formulated as in (1). The well-known Newton iteration method was used to
linearize the nonlinear problem. Then the parallel multi-splitting iteration scheme was applied
to solve each algebraic linear system issued from the linearization, in such a way that each
system is associated tom splittings as shown in (12).

The Newton-multisplitting method was implemented on a simulated parallel platform com-
posed ofm blocks that correspond to them splittings in Formula (12). In this case, each split-
ting was solved in parallel on a group (or a block) ofp processors by using the well-known
Krylov iterative method GMRES [29]. The outer iterations ofthe multi-splitting method (i.e.
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Algorithm 1: Parallel Nonlinear multi-splitting method performed on a cluster
Output: SolutionUnewt

1 Set initial solution:Unewt = 1.0
2 while ‖Unew

multi‖2 ≥ εNewton do
3 Reset the initial local solutionUold

multi to an arbitrary value
4 Update global right-hand side: Formula (14)
5 Update local sparse matrixAmulti: Formula (11)
6 while ‖Uold

multi − Unew
multi‖∞ ≥ εMultisplitting do

7 Compute local right-hand side:Bmulti: Formula (13)
8 Parallel GMRES to solve:Amulti × Unew

multi = Bmulti: Formula (12)
9 Exchange local shared values ofUnew

multi with neighbor blocks
10 Uold

multi = Unew
multi

11 end
12 Compute solution:Unewt = Unewt + Unew

multi: Formula (10)
13 end

intra-blocks communications) are either synchronous or asynchronous, but the inner iterations
(GMRES iterations) are synchronous.

Algorithm 1 presents the main key-points of our multi-splitting method executed in parallel
to solve nonlinear systems. All variables are local to all processors which are gathered inm
blocks ofp processors or cores.

The algorithm uses the Newton iteration to linearize the nonlinear system to be solved
(lines from 2 to 13). From line 6 to line 11, each linear subsystem issued from the linear-
lization is solved in parallel using a multi-splitting method. First the local right-hand side
Bmulti, corresponding toBl involved in the formula (12) and defined by (13) (see line 7) is
computed, then the GMRES method is applied in parallel to solve the subsystem like (12) by
a block ofp processors (line 8). The GMRES iteration represents the inner iteration of the
multi-splitting method. At each outer iteration, blocks exchange the data of their local solu-
tion Umulti, corresponding in fact toδU l,(i)

l involved in the formula (12), shared with their
corresponding neighbors (see line 9). The solution of the nonlinear system is updated at each
Newton iteration (line 12).

The outer iterations of the multi-splitting method can be either synchronous or asynchronous.
In the synchronous version, the global convergence of the multi-splitting method is detected
when the value ofUmulti is stabilized corresponding to the following stopping test

‖Uold
multi − Unew

multi‖∞ < εMultisplitting (18)

whereεMultisplitting is the tolerance threshold for the computation ofUmulti. However in
the asynchronous version, the global convergence is detected when all blocks have locally
converged. The convergence detection implemented was implemented as in [30].

6 Experiments

In the following, the conducted experiments are described.The problem considered is de-
scribed in section 4. Each dimension of the 3D problem is discretized in150 elements using
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Nb. Proc. Mode Exec. Times (in s) Asyn. Gain
2× 8 Sync 127.9
2× 8 Async 111.86 1.14
2× 16 Sync 61.19
2× 16 Async 48.51 1.26
2× 32 Sync 25.79
2× 32 Async 21.93 1.17

Table 1: Execution times of both synchronous and asynchronous iteration modes of the 3D
problem of size1503.

a finite difference scheme. So there are1503 elements to take into consideration. In all the
experiments, the following parameters have been chosen:εMultipsplitting = 1 × 10−8 and
εNewton = 1×10−4. Up to64 cores were used to conduct our experiments. Experiments have
been achieved on the mesocentre of the University of Franche-Comté. Machines are composed
of Xeon(R) CPU E5-2640 v3 @ 2.60GHz processors. They are linked with an Infiniband net-
work. The code is parallelized with MPI. As the mesocentre isused by many users, jobs are
run automatically by the scheduler and users cannot have anycontrol on the cores used.

In Table 1, execution times of the synchronous version and the asynchronous version are
reported using respectively 16, 32 and 64 cores. The number of blocks was fixed to2 because
it was observed that this would lead to obtain the best performances possible. So in this
table, 2 × 8 represents a case with 16 cores using 2 blocks with 8 cores. Itcan be seen
that the asynchronous version is always faster than the synchronous version. Moreover, each
solution computed with the synchronous and asynchronous mode has been compared with the
solution computed with a standard solver in order to be able to compute the error. For all the
experiments, the error with the max norm is between1× 10−7 and1× 10−8. As the machine
used only enables one to submit parallel jobs with64 cores, larger scale experiments could not
be run.

7 Conclusion

In the present study, a mixed method combining parallel asynchronous method as an outer it-
eration with the Krylov method for the solution of diagonal subproblems, was presented. Such
a calculation method has been used for the solution of univalued pseudo - linear stationary
problems and implemented in a cluster. In future work we willconsider the use of such mixed
methods for the solution of multivalued pseudo - linear stationary problems. These problems
arise in boundary value problems where the solution is subjected to some constraints. We will
also implement the proposed mixed method on grid architecture for the parallel solution of
univalued or multivalued pseudo - linear stationary problems.
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[14] R. Couturier, C. Denis, F. Jézéquel, “GREMLINS: a large sparse linear solver for grid
environment”, Parallel Comput 34(6–8), 380 - 391, 2008.

[15] R. Couturier, L. Ziane Khodja, “A scalable multisplitting algorithm to solve large sparse
linear systems”, The Journal of Supercomputing, 69 (1), 200- 224, 2014.

[16] A. Frommer, “Parallel nonlinear multisplitting methods”, Numerische Mathematik, 56,
269 - 282, 1989.
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