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Abstract. This review presents the epidemiological data regarding the exercise-related complication in exercising sickle cell trait14

carriers, and focuses on the different potential mechanisms that could be involved in these adverse events, such as hemorheological15

alterations, inflammation, vascular adhesion of circulating blood cells, oxidative stress and impaired nitric oxide metabolism.16

We also discuss the effects of different modulating factors such as vascular function, environment (hot temperature), hydration17

status, physical fitness, exercise intensity and genetic factors.18
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1. Introduction19

Sickle cell anemia (SCA) is a genetic disease, characterized by the presence of a mutant hemoglobin20

(Hb), namely HbS, replacing the normal Hb (HbA). The hallmarks of the disease are anemia and recurrent21

painful vaso-occlusive crises, which result from the physical obstruction of small blood vessels with22

rigid sickle-shaped red blood cells (RBCs) and involve contributing inflammatory factors and vascular23

adhesion processes [7, 47]. Recent evidences also suggest that decreased nitric oxide bioavailability, as a24

consequence of the great amount of cell-free hemoglobin, participates in several chronic complications25

of sickle cell anemia such as pulmonary hypertension, leg ulcers and priapism [34].26

Sickle cell trait (SCT) is the heterozygous form of SCA, which is marked by the presence of both27

HbS (less than 50%) and HbA. SCT prevalence can reach 8–10% of African-Americans population and28
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10% in the Caribbean Islands. In Africa, prevalence can sometimes be even more important in some29

sub-Saharan area. SCT is usually considered as a benign condition, compared with SCA, which does not30

affect growth and mental development [1, 2, 14, 17, 36].31

However, although debated [27], SCT carriers could be at risk for developing hyposthenuria, hema-32

turia, renal medullary carcinoma and ocular complications following traumatic hyphema, such as retinal33

vascular occlusions and secondary glaucoma [17]. But larger cohort studies are clearly needed to defini-34

tively support those associations [27]. Nevertheless, there is epidemiological evidence of higher risk35

to develop venous thromboembolism and pulmonary embolism among African Americans with SCT36

than in non-SCT carriers [4], and this risk could be even more important in women with SCT taking37

hormonal contraceptive [5]. This higher risk for thromboembolic complications could be related to the38

greater resting blood viscosity values frequently found in SCT carriers [23, 48, 52]. It seems that almost39

one third of SCT carriers exhibit greater baseline blood viscosity than the mean value of patients with40

sickle cell hemoglobin C disease, a disease known to be very exposed to thromboembolic complications41

[48].42

Therefore, even if a direct causal relationship between SCT and the observed medical complications43

is difficult to prove, evidence suggest that the medical status of this population should not be dismissed44

and further large epidemiological studies are needed to test the associations between SCT and several45

medical conditions.46

2. Epidemiological studies on Exercise Collapse Associated with Sickle cell Trait (ECAST)47

One of the most debated issue for SCT carriers concerns the hypothesis of a greater risk to die unexpect-48

edly in response to exercise compared to the general population [14, 27, 36, 42]. If it is usually admitted49

that SCT carriers are at risk to develop complications, such as splenic syndrome, when exercising in50

altitude, the debate is still running regarding exercise at sea level.51

Kark et al. [34] were the first to conduct a large cohort study on the exercise-related death among the52

2, 087, 600 people who entered the US Armed Forces basic enlisted military training during a five-year53

period (1977–1981). Forty-one exercise-related deaths occurred. Risk ratios were examined among the54

black recruits, ignoring the small number of non-blacks with SCT. The relative risk of exercise-related55

death explained by pre-existing disease (largely silent heart disease) was 2.3 for SCT, but this was not56

statistically significant. The relative risk of exercise-related death unexplained by pre-existing disease57

was 28 for SCT. The excess of exercise-related death with SCT was likely caused by the immediate stress58

of exercise. About 50% of the deaths resulted from heat illness due to over exertion and the remaining59

cases were idiopathic sudden deaths. Recently, Harmon et al. [29] reviewed the cause of all cases of60

sudden death in student-athletes from the National Collegiate Athletic Association from January 200461

through December 2008. The authors demonstrated that 72 deaths occurred in football athletes (due to62

trauma unrelated to sports activities or medical causes). Thirteen of the 20 deaths due to medical causes63

occurred during exertion; cardiac (6.46%) SCT associated (5.39%), and heat stroke unrelated to SCT64

(2.15%). All deaths associated with SCT occurred in African-American Division I football athletes. The65

risk of exertional death in Division I football players with SCT was 1 : 827 which was 37 times higher66

than in athletes without SCT.67

To summarize, although the SCT condition is largely benign, few large epidemiological studies, both68

in army [32] and civilians [29], suggest that SCT condition is associated with an increased risk for69

exercise-related complication. The term ECAST has recently been introduced by O’Connor et al. [42],70
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which regroups severe complications occurring in SCT carriers in response to exercise including severe71

muscle pain and fulminant collapse [24].72

3. Blood rheology and inflammatory markers in SCT carriers73

Several studies compared the hemorheological properties at rest and during exercise between SCT74

carriers and subjects without SCT. On the whole, SCT carriers have slightly reduced red blood cell75

(RBC) deformability [18, 19, 22, 30, 39, 49], increased RBC aggregation [22], increased RBC aggregates76

strength [49], high blood viscosity [19, 23, 48, 52] and increased plasma level in vascular cell adhesion77

molecule (VCAM-1) [40, 41]. In addition, a prolonged and strenuous exercise has been demonstrated78

to cause a greater increase in blood viscosity [51], higher RBC lipid oxidative stress [49] and higher79

leucocytes and platelets activation [50] in SCT carriers than in a control group. We previously suggested80

that all these biological abnormalities could be susceptible to increase the risks for microcirculatory blood81

flow impairment in SCT carriers [13, 15, 17]. However, in a recent study that compared the baseline82

hemorheological profile between SCT carriers, healthy subjects and patients with either SCA or sickle-83

cell hemoglobin C disease (SCC), we demonstrated that most of the hemorheological abnormalities found84

in SCT carriers should be considered subclinical, in comparisons with the abnormalities observed in SCA85

and SCC patients [48]. This observation is not true for 1/4 to 1/3 of SCT carriers who present elevated86

levels of blood viscosity with possible clinical relevancy [48, 52]. Whether this subpopulation of SCT87

carriers is at greater risk for ECAST requires further studies. If 25%–33% of the SCT population exhibits88

elevated blood viscosity values, why do not we observe more frequent complications? The participation89

of a combination of modulating factors, as discussed below (vascular function, environmental factors,90

physical fitness, exercise intensity, genetic factors), must be strongly considered.91

4. Modulating factors involved in ECAST92

4.1. Vascular function in SCT carriers93

Vascular function of SCA patients is impaired. One of the main reasons is the decrease of the nitric94

oxide (NO) bioavailability caused by the chronic hemolysis and oxidative stress [34]. The plasma free95

hemoglobin and the release of RBC arginase scavenge NO and consumes L-arginine, respectively. This96

decrease in NO bioavailability results in endothelial dysfunction and a loss of vasomotor reserve. In97

addition, the mechanic aggression of endothelium by the flowing rigids sickle RBCs causes endothelial98

dysfunction [37]. However, while vascular function has been described in the context of SCA [8, 21,99

56], no research protocol specifically focused on SCT population. Few studies compared the plasma NO100

levels between SCT carriers and healthy subjects and show very slightly decreased NO concentration in101

SCT carriers [49], mainly in sedentary people [12]. In contrast, the presence of �-thalassemia in SCT102

carriers seems to normalize the plasma NO level [25]. These studies have been conducted in small groups103

in a descriptive fashion; it is therefore difficult to draw definitive conclusions on NO status in SCT104

carriers. In addition, while some studies reported increased VCAM-1 level in SCT carriers (at rest and105

during exercise) compared to healthy subjects [40, 41], others reported no difference between the two106

populations [49, 50]. Here again, the small amount of available data does not allow a clear understanding107

of specific vascular mechanisms in SCT carriers.108
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Fig. 1. Relationships between mean arterial pressure (MAP) and blood viscosity in 94 healthy non-SCT carriers (Fig. 1A) and
118 healthy SCT carriers (Fig. 1B). These data have been collected in Senegal and Guadeloupe using the same equipment
(cone-plate viscometer, Brookfield DVII+, CPE-40 spindle) at high shear rate (225 s−1). The relationship was not significant in
non-SCT carriers while it was positive and significant in the SCT group.

Increased blood viscosity has classically been viewed as a risk factor for cardiovascular diseases. How-109

ever, counterintuitive data have been recently reported in animal models demonstrating that increment in110

blood viscosity resulted in a paradoxical decrease of vascular resistance [53]. This observation demon-111

strates that vascular function, if not impaired, is able to adapt to increased blood viscosity, until a certain112

threshold, and thus modulating vascular resistance [26, 28, 31]. A rise in blood viscosity has been shown113

to increase the wall shear stress applied to the endothelium level, which produces more vasodilators,114

such as NO, leading to compensatory vasodilation [16, 20, 44, 45, 53, 54]. Vazquez et al. [54] demon-115

strated that, in healthy controls, blood pressure and blood viscosity were not correlated which strongly116

supports the concept that vascular function may easily compensate for the increase in blood viscosity117

in healthy individuals. In contrast, blood viscosity and blood pressure (or systemic vascular resistance)118

are positively correlated in type 1 diabetes [54] and in SCA [35], suggesting impaired vascular function119

in these diseases. We looked at the relationships between blood pressure and blood viscosity in a group120

of healthy non-SCT carriers and in SCT carriers (Fig. 1A and 1B, respectively). The results obtained in121

non-SCT carriers show no relationship between blood viscosity and blood pressure, which confirms the122

findings from Vazquez et al. [54]. In contrast, we observed a positive relationship in our group of healthy123

SCT carriers without cardiovascular disease, suggesting that the vascular function of SCT carriers may124

be less able to compensate for the high blood viscosity described in this population [48, 52]. Further125

studies using vascular function exploratory techniques (e.g. flow-mediated dilation) must now be done126

to confirm and strengthen these results.127

4.2. Role of the environmental factors128

Exercise at high altitude exposure increases the risks for splenic infarction in SCT carriers due to massive129

sickling into this organ [46]. But, other environmental factors, such as hot environment exposure, have130

been hypothesized to play a role in the occurrence of ECAST [13, 30, 33, 42]. Bergeron et al. [9] tested the131

effect of a brisk walking of 45 min duration performed in hot environment on the sickling rate in few SCT132

carriers. They demonstrated that sickling rate remained low and unchanged by the mild exercise when133

subjects were adequately hydrated. In contrast, when water intake was not provided, the percentage of134
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sickle RBCs increased above baseline values. Hydration has been demonstrated to be beneficial on blood135

rheology too. For instance, we demonstrated that hydration was able to normalize the blood viscosity of136

the SCT carriers to the same level of healthy subjects during a prolonged submaximal cycling exercise and137

a 90 min soccer game [23, 52]. Indeed, although hot exposure may further impair the rheology of blood138

and promote RBC sickling in SCT carriers, adequate hydration is able to normalize these abnormalities.139

Whether greater hemorheological alterations induced by hot exposure and dehydration is sufficient to140

trigger ECAST is unknown, but Hedreville et al. [30] reported the case of a cyclist with SCT who141

participated to a prolonged race (140 km) in hot environment (35◦C). The cyclist felt very thirsty all142

along and after the race. The following day, he developed a massive central retinal vein occlusion, which143

rapidly worsen into neovascular glaucoma. The patient had no cardiovascular risk factor and no genetic144

mutation involved in hypercoagulation diseases, but he had very rigid RBCs [30]. Authors hypothesized145

that hemorheological alterations caused by the presence of SCT, the prolonged effort and the dehydration146

could have precipitated the occurrence of this complication. Adequate hydration should therefore be147

strongly promoted in exercising SCT carriers, particularly when exercising under hot exposure [13], to148

limit the risks for vascular complications.149

4.3. Physical fitness and exercise intensity150

Pre-exercise fatigue due to illness (viral infection for example) or lack of sleep [42], and poor condition-151

ing [3] seem to play a role in the occurrence of adverse events in exercising SCT carriers. Aufradet et al. [3]152

demonstrated that the inflammatory response of exercising sedentary SCT carriers was greater than that153

seen in exercising subjects without SCT or exercising physically trained SCT carriers. They concluded154

that regular physical training could decrease endothelial activation and vascular adhesion responses in155

SCT carriers [3]. More recently, Chirico et al. [12] reported that oxidative stress response to exercise was156

attenuated in trained compared to untrained SCT carriers. In addition, plasma NO level during exercise157

was greater in trained than in untrained SCT carriers. Indeed, physical fitness would presumably limit158

the risk for ECAST.159

On the other hand, no study specifically looked at the effect of various exercise intensities on biological160

markers in a given group of SCT carriers. Yet, some authors [24] suggested that it might be a key factor161

involved in ECAST. The greater amount of lactic acid produced by active muscles and the subsequent162

metabolic acidosis could promote the polymerization of hemoglobin S, hence precipitating the sickling163

of RBCs [18] and microcirculatory dysfunction. Muscle microvascular occlusions could then trigger164

rhabdomyolysis [24]. Messonnier et al. [38] recently looked at the effects of a moderate and prolonged165

cycling exercise on biochemical markers reflecting rhabdomyolysis in SCT carriers but no difference166

with a control group was observed, demonstrating that such an exercise is probably not intense enough167

to impair muscle microcirculation and function in SCT carriers. Well-designed exercise protocols of168

various intensities are needed to test the effects of exercise intensity on biological parameters and muscle169

microcirculatory function in a given group of SCT carriers.170

4.4. Genetic factors171

�-thalassemia is a major modulator of the clinical severity in SCA patients with the presence of172

�-thalassemia increasing the risks of vaso-occlusive crisis and osteonecrosis [34] but decreasing the risks173

of stroke [10]. The increased risk of vaso-occlusive like complications in SCA patients with �-thalassemia174

events is due to the reduction of HbS percent resulting in a decrease of the hemolytic rate leading to the175
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Fig. 2. Proposal of putative mechanisms that could be involved in the cases of rhabdomyolysis, renal failure and death reported
in few SCT carriers in response to exercise. Exercise may cause greater hemorheological alterations (mainly blood viscos-
ity and RBC sickling) and promote higher inflammatory and oxidative stress responses in SCT carriers compared to healthy
controls. In addition, plasma nitric oxide content is slightly decreased in some SCT carriers that could lead to altered vas-
cular function in this population, but this needs to be confirmed in larger studies using accurate techniques. SCT carriers
are characterized by vascular remodeling. All these abnormalities seem to be modulated by several factors. Exposure to
hot environment and dehydration further impaired the blood rheology of SCT carriers. Physical fitness and regular train-
ing has been shown to normalize the inflammatory, oxidative stress and nitric oxide responses of SCT carriers. Exercise
intensity is thought to play a key role in the modulation of these abnormalities but it has never been experimentally tested.
The presence of �-thalassemia in SCT carriers limits the vascular remodeling of SCT carriers, blunts the oxidative stress
responses during exercise, normalizes the nitric oxide level and improves blood rheology (mainly RBC deformability). All
the biological abnormalities, if present in a same subject, could impair microcirculatory blood flow in exercising muscles,
hence causing local ischemia. This local ischemia, if exaggerated, could lead to rhabdomyolysis. Recently, it has been sug-
gested that other genes defect could predispose SCT carriers to rhabdomyolysis but this hypothesis needs to be tested.
Then, the delivery of toxic by-products occurring during rhabdomyolysis could cause renal failure. Finally, the loss of K+

could ultimately lead to cardiac arrest. One should be noted that this cascade of events is hypothetical and further longitu-
dinal and basic science studies need to be done to confirm or not these mechanisms. + = protective effect; − = deleterious
effect.
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increase of hemoglobin level and blood viscosity [34]. In contrast, the reduction of hemolysis in these176

patients protects them from the development of cerebral vascuolopathy [10]. In addition, �-thalassemia177

by improving the deformability of the RBCs [6], may be an advantage in certain tissues, such as the178

brain [10]. Few studies also look at the effects of �-thalassemia in SCT carriers. The first one was the179

study of Monchanin et al. [39] and they demonstrated that SCT carriers with �-thalassemia had greater180

RBC deformability than SCT carriers without. Then, Faes et al. [25] demonstrated that the presence of181

�-thalassaemia may blunt the higher level of oxidative stress and the impaired bioavailability of NO182

observed in SCT carriers at rest and during exercise. Vincent et al. [55] performed muscle biopsies in183

SCT carriers with and without �-thalassemia. Probably as a consequence of the greater hemorheological184

impairment [39, 49, 52], SCT carriers without �-thalassemia are marked by lower capillary density, lower185

capillary tortuosity and enlarged microvessels compared to non-SCT carriers. However, the presence of186

�-thalassemia normalized these abnormalities. It seems that �-thalassemia improves the biological and187

microcirculatory profiles of SCT carriers and this could be a way to decrease the risk for ECAST.188

Nevertheless, further epidemiological studies are needed to comfort this hypothesis.189

An alternative hypothesis is that HbS is a marker for other gene variants that worsen the outcome of190

severe exercise complications [42]. One such category might be metabolic susceptibility to exertional191

rhabdomyolysis. Gene variants associated with �S gene polymorphisms could account for some of the192

excess risk, especially if these variants mainly act to decrease the chance of surviving severe ECAST.193

Several gene defects may predispose to rhabdomyolysis [11, 43]. Further studies should screen for the194

presence of genetic defects that could explain the exercise-related events, improve the understanding of195

ECAST pathophysiology and ultimately allow an answer as to whether SCT is or is not an independent196

risk factor of exercise-related sudden death [42].197

5. Conclusion198

The present review focused on the different potential mechanisms that could be involved in the exercise-199

related complications reported in SCT carriers. The Fig. 2 summarizes the main findings collected in200

the last two decades. This review emphasizes the need to 1) perform further systematic epidemiological201

studies to really assess the burden of SCT in the society, and 2) continue explorative protocols investigating202

the SCT-related microcirculatory and endothelial specificities that influence the vascular function.203
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