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Biofuel impact on Diesel engine after-treatment: deactivation mechanisms and soot reactivity
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The real soot samples were collected from filters operated
on a medium-duty truck in real driving conditions or from
engine bench using standard or 100% biofuel as well as
doped biofuel. The use of biodiesel significantly reduces the
soot formation. There is no significant impact of biodiesel on
the soot specific surface, the higher value being obtained for
an accelerated soot loading. Experiments performed at
laboratory scale showed no relationship between volatile
fraction and real soot reactivity under passive regeneration
conditions. Adding alkali metals to the real Diesel soot
enhances soot oxidative reactivity in the whole temperature
range (200 – 600 °C), regardless the cycle of production
applied. Those species act as catalyst for soot oxidation
process. The kinetic of soot oxidation in presence of water
in the feed gas, at low temperature (≤ 400 °C), is significantly
increased in the presence of phosphorus.
Model soot were collected on a glass microfiber filter in the
post flame region of an atmospheric axisymmetric co-flow
diffusion flame burner. Particle size distribution and
oxidative reactivity of model soot from the burner are in the
same range as real soot derived from Diesel engine.

BACKGROUND: The new emission standards for diesel engines empower the need of complex and high efficient after-treatment systems, the durability being a crucial aspect. When biofuel is used, the after-
treatment catalytic system is exposed to large amounts of poisons, the particles composition being as well impacted. The comprehension of the involved deactivation mechanisms as well as soot reactivity is a
complex and multidisciplinary challenge.
METHODOLOGY: One focus was the study of the deactivation of the DOC and SCR catalysts through poisoning. Limited information is available about the physics and chemistry of the particles formed when
biodiesel is used. The second focus was therefore devoted to the impact on soot reactivity in mechanistic and kinetic terms using model and real soot.
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Model poisons: 
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The impact of Na and P on the SCR activity of Cu/FER catalyst
was studied depending on the mineral loading (until 2wt%)
and the impregnation solvent (H2O or ethanol).
Acidity (measured by NH3 adsorption) was poisoned after Na
addition which directly affected the NOx conversion at low
temperature (250°C). Na impregnation in water led to a
stronger catalyst deactivation than in ethanol, because water
favors the migration of the Cu exchanged species, leading to
the formation of CuO extra framework species. It appears
that the deNOx efficiency at high temperature (500°C) is
clearly related to the amount of active exchanged copper.
Cu-P interactions were evidenced after phosphorus addition,
leading to a decrease in redox behaviors (NO oxidation and
NH3 oxidation) and consequently in the SCR activity (especially
at low temperature and in Standard SCR condition). Again,
lower deactivations were observed when the wet
impregnations were performed in ethanol.

Soot Sample Ash (%)
Volatils (%)

110 – 400 °C
P (%) K (%)

B7-Customer Cycle 1,84 3,91 0,05 0,1

B100-Customer Cycle 7,78 5,56 0,05 0,1

B100-High Loading 1,53 0,75 0,19 0,03

B100(K+P)-High Loading 4,62 1,00 0,89 1,17

Aref > MD7 ≈ B7-BM-CA > MD30Soot Sample Composition

Aref
70 mol% n-decane

+ 30 mol% α-
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Catalyst rCO
1 rC3H6

1 rNO
1 NO2/NOX

1.3% PtPd 2.54 4.32 6.02 0.298

1.6% Na – 1.3% 

PtPd
1.32 0.29 5.05 0.244

5.6% P – 1.1% PtPd 5.95 7.61 4.27 0.259

1Reaction rate ((mol/s·gPGM)·105) at 180, 210 and 250ºC for 
CO, C3H6 and NO respectively.
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Catalyst

1. Impregnation 2. Drying 3. Calcination

Drying, 100°C
1 night

Aqueous phase
Vacuum evaporation, 90 °C, 2h
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650°C Air + 10% H2O
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Catalyst
SBET (m2 g-

1)
VP (cm3 g-

1)
DP

(nm)
1.3% PtPd 60 0.23 14

1.3% PtPd (x2-650ºC) 54 0.40 31
1.6% Na – 1.3% PtPd 50 0.41 28
5.6% P – 1.1% PtPd 33 0.26 32
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The DOC was exposed to Na and P impurities, which are
specific of the use of biofuel, being studied their impact on the
catalytic performance.
BET specific surface area decreased and the total pore volume
increased after addition of Na, due to the second hydrothermal
treatment. In presence of P, partial blocking of the smallest
mesopores decreasing pore volume was detected. TEM images
showed a homogenous distribution of Na on the alumina bulk,
which could modify the Al2O3 acid sites. On the other hand,
bigger Pd-Pt particles were formed and a layer of phosphorus
coated on the alumina surface was observed in the case of P-
poisoned catalyst.
Catalytic results have shown that Na have a negative impact
on CO oxidation, whereas an improvement can be observed in
presence of P. In addition, P poisoned catalyst enhance C3H6

conversion, while Na impurities have the contrary effect. All
elements have shown a negative effect on NO oxidation.
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PERSPECTIVES

Collected data by academic partners combined with results
obtained on engine bench and vehicles will be used to build
kinetic models that will be integrated to empower an ageing
predictive model taking into account the use of biodiesel;

Adapted/innovative systems with improved poisoning
resistance.

CONCLUSIONS

Impact of biofuel poisoning elements to DOC & SCR performance has been identified, Na
having the highest deactivation potential; SCR deactivation mechanism has been proposed.

Comparison between real and model soot as well as the impact of Na, K and P on soot
oxidation have been successfully studied.

Biofuel use leads to more poisoning of the oxidation catalysts, especially due to Na, with a
direct impact on DOC performance in terms of NO2 formation which might indirectly affect
soot oxidation rate and NOx reduction.


