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The speed at which individuals interact, in particular prey and predators, affects ecological processes at all scales, including how fast matter
and energy flow through ecosystems, and how stable communities are. Environmental heterogeneity and individual variabilities are generally
believed to be the main factors underlying the variation of consumption rates of prey by predators. We challenge this view by comparing
predicted variability from a stochastic model to experimental data. We first analyze a stochastic model of a simple random walk with elementary
ecological processes involved in prey consumption, including prey depletion, predator movements and prey handling. We provide sharp
approximations of the distribution of the consumption rate and a quantitative prediction of the coefficient of variation when stochastic foraging
is the only source of variability. Predictions are then compared to the coefficients of variation estimated from data from dozens of various
species and experimental contexts. We show that the predictions only accounting for intrinsic stochasticity in foraging are compatible with
the range of observed values, in particular in 1 or 2 dimensional space. After evaluating the robustness of our model’s predictions through
stochastic computer simulations, we conclude that the main driver of the variation of the consumption rate is the foraging process itself rather
than environmental or between-individual variabilities. Our approach lays the foundations for unifying foraging theory and population ecology,
and as such has many empirical and theoretical implications for both fields.
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The assessment of ecosystems services, of the impact of harvesting natural resources, or of the stability of ecological1

communities requires identifying the main drivers of biomass and energy flux and species dynamics. In particular,2

the consumption rate of prey at different levels of trophic food webs, such as prey by predators, affects the dynamics of ecological3

networks (e.g. plant-insects (1)), or the evolution of traits involved in interactions, as between hosts and their parasites (2).4

Decades of researches in ecology provided a vast catalog of possible factors affecting the variability of consumption rates within5

and across species, suggesting consumption rates are idiosyncratic and their variability is due to specificity at different scales,6

from the contingent evolutionary history of each species (3) to individuals’ personality, experience or ontogeny (4–7). Here, we7

challenge this view and test the hypothesis that observed within-species variations in consumption rates were mostly due to the8

intrinsic stochasticity of foraging in a depleted, unknown and spatialized environment.9

Many factors have been identified as potential drivers of the variations of the consumption rates in predator-prey interactions,10

as testifies the abundant literature studying the evolution of traits and behaviors involved in foraging or the functional form of11

the relationship between prey abundance and predator consumption rates (the so-called functional responses). For instance, the12

time devoted to search for a prey depends on its local density (8–10), on the seasonal or spatial variation of the habitat (11, 12),13

the heterogeneity of prey distribution (13–15), the dimensionality of the environment (16–18), the presence of competing14

foragers (19) or the relative size between the prey and the predator (20, 21). Once a prey is found, the predator must spend15

some time to handle it which might depend on the quality of the prey (22) or on where and when it is more efficient to forage16

for another prey (23). Any other kind of interactions within or between species can also affect the consumption rates: predators17

can change their behavior in response to their own predators (24, 25), because of parasitism (26), if foraging is collective (27),18

or the rate at which prey are regenerated (28, 29).19

A majority of studies have focused on a single factor among many others, in one or a few species. A few large scale analyses20

assessed whether one or several of these factors would drive variability of the consumption rates both within and between21

species. (30) showed that body mass and environment temperature generally affect the mean consumption rate across species.22

(31) focused on systematic statistical biases due to the non-linearity of the functions that are inferred in population ecology,23

casting doubt on estimations and models comparison, but also highlighting that experimental and methodological errors24

should be accounted for. All studies considered only three possible sources of variations (environmental, between-individuals25

or measurement errors), but did not consider variation that could come from the foraging process itself. Considering that26

foraging is a stochastic process in an unknown and depleted environment, the stochasticity of the foraging process itself is an27

unavoidable intrinsic source of variation of the consumption rate of prey by predators. Even if experimental conditions are28

perfectly controlled, if individuals are identical and if there are no measurements errors, foraging individuals would follow29

different paths when searching for prey, producing an intrinsic source of variation.30

Our goal is to theoretically quantify this intrinsic source of variation and to compare it to experimental data. In the end, we31

aim at addressing the following questions: are observed variations of the same order of magnitude than the variations expected32

under stochastic foraging only? If so, that would suggest that environmental heterogeneity, between-individuals variability33
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or measurements errors have negligible effect on a large scale on the variation of the consumption rates. Otherwise, if the34

observed variations are much larger than expected under foraging stochasticity only, that would be an evidence that these other35

sources of variability are the primary drivers. Finally, if observed variations are much smaller than expected, that would be36

evidence that some additional behavioral or ecological mechanisms are central. Our approach thus overall consists in providing37

predictions under a stochastic ’null’ or ’neutral’ model and evaluate to what extent it can explain the variability observed in38

data.39

To this end, we derive the distribution of consumption rates that describes the number of prey consumed over a given foraging40

duration by a single predator modeled as a random walk, taking into account dimensionality, prey depletion, and handling41

and searching times. Although random walks are well-known objects extensively studied in mathematics and physics, their42

connection to consumption rates and functional responses in ecology has not yet been explored. We find sharp approximations43

of the distributions of the consumption rate by exploiting duality identities between a simple random walk and the foraging44

process. We then estimate the asymptotic of the range and the return times of a random walk, and we use uniform integrability45

via exponential moments to quantitatively predict the coefficient of variation, which is a standardized statistic measuring the46

relative magnitude of variations. We then compare the theoretical coefficient of variation of the consumption rates to the ones47

obtained in experimental and field observations. With numerical simulations, we then assess the generality or our results48

by estimating the robustness of the theoretical coefficient of variation. Our results suggest that the intrinsic stochasticity of49

the foraging process is the main driver of consumption rates variation, because predators visit already depleted sites a large50

proportion of their foraging time.51

Distribution of the consumption rate in a spatialized depleted environment52

Our first goal was to quantitatively evaluate the order of magnitude of the variations of the consumption rates due to53

the stochasticity of the foraging process itself, while neglecting all other possible sources of variations (between-individual54

and environmental variabilities, measurements errors). We developed a stochastic model containing the simplest yet most55

fundamental mechanisms shared by predator species: predators forage in an unknown spatialized environment; they take56

some time to consume prey; their prey are depleted when consumed; and their total foraging duration is large relatively to57

moving from one site to another and handling a prey. We considered one predator following a symmetrical random walk58

on a regular grid, either in 1d, 2d or 3d, during a total duration t. Even though these assumptions are very simple, they59

are satisfied when the scale of movements are large enough relatively to body size and foraging bout duration (3). Each60

node initially contains a prey with probability p. The predator has no memory of its past foraging path and prey do not61

regenerate. The searching time τe, i.e. the time taken by the predator to move from one site to another, only depends on62

the distance between sites. If the predator visits a site containing a prey, it spends there a time τh (the handling time) to63

consume the prey before moving to another site. If the site is empty, the predator randomly and immediately moves to one64

adjacent site. As the foraging path followed by the predator is stochastic, the total number of prey Rt consumed during65

the foraging bout with duration t is a random variable, as well as the consumption rate Ft := Rt/t. Assuming the dura-66

tion of foraging t is large, the distribution of F
(d)
t in a d-dimension space can be approximated by (proofs in Supp. Mat. A and B)67
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where K, κ, γ and π are numerical constant with known explicit values, W(d)
t are random variables whose law only depends70

on dimension d = 1, 2, 3, oP (ηt) means that the quantity is negligible compared to ηt in probability, i.e. for any ε > 0,71

P (oP (ηt) ≥ εηt) → 0 as t → ∞. Eq. (1) shows that, depending both on the dimension of prey distribution in space and on72

the predator’s movements, the consumption rates follow different distributions W(d)
t =law W(d). This is because the foraging73

path itself has very different properties: W(1) is the difference between the maximal and minimal position of a 1-dimensional74

Brownian motion; W(2) is the local time of self-intersection of a 2-dimensional Brownian motion; W(3) is a centered Gaussian75

distribution. Despite the simplicity of the process, only accounting for spatial structure, depletion, searching and handling,76

it gives rise to rich and non-trivial emerging properties: the form of the first order of the distribution approximation (the77

deterministic part) strongly depends on dimension: handling has no role in 1d, only a second order role in 2d, and a first78

order role in 3d. Eq. (1) also shows that the second order term, that reflects the magnitude of random fluctuations, can79

not be neglected in 1d or 2d as its magnitude is equal or similar to the first order term (the mean). In addition, stochastic80

fluctuations in 1d or 2d follow non-classical distributions. In a 3d environment, the random fluctuations of the consumption81
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Fig. 1. Predicted range of the coefficient of variation of the consumption rate in a simple random walk with handling (Eq. (2)). Solid lines (no handling time, τh = 0): minimum
coefficient of variation in 2d (red solid line); maximum coefficient of variation in 3d (green solid line). Solid gray line: coefficient of variation in 1d (independent of the total
foraging time t, foraging time between sites τe and handling time τh).

rate are expected to have a much smaller magnitude than the mean, and to follow a Gaussian distribution with a non-standard82

normalization.83

Coefficient of variation of the consumption rates due to foraging84

Our goal is to evaluate the contribution of the intrinsic stochasticity of foraging on the within-species variation of consumption85

rates across all species and observational contexts. We thus chose the coefficient of variation as a standardized statistic86

for measuring the variability of the consumption rates. The expected coefficient of variation of the consumption rates87

under foraging stochasticity was calculated from the two first moments of the distribution of the consumption rate as88

CV(d)
t = σ

[
F

(d)
t

]
/E
[
F

(d)
t

]
, where E and σ respectively are the mean and standard deviation. When the duration of foraging89

t is large, the coefficient of variation can be approximated for t → ∞ by (Eq. (1), Supp. Mat. B )90
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[2]91

Our model predicts that the coefficient of variation of the consumption rate covers a very large range of orders of magnitude,92

but neither for all dimensions nor all parameter values (compare the green and red zones, and the gray line in Fig. 1). Roughly93

speaking (see also Mat. and Met.), the coefficient of variation should be of order 10−1 in 1d, at least of order 10−1 in 2d, and94

at most of order 10−1 in 3d. Under the assumptions that the searching time of sites with potential prey is much lower than the95

total foraging duration (t/τe ≫ 1, e.g. (24, 32)) and that the handing time is at most of the same order than the searching96

time (τh/τe ∼ O(1), e.g. (24, 30, 32)), the coefficient of variation when considering the stochasticity of foraging only, can even97

further be expected to be almost constant and lie between orders 10−1 and 1 in 1d and 2d, or to be very small (≪ 10−1) in 3d98

(Fig. 1) .99
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Predicted vs. observed coefficients of variation100

In order to test to what extent the stochasticity of foraging on its own drives the variability of the consumption rates, we101

compared our model’s quantitative predictions to coefficients of variation estimated from data. The consumption rates were102

collected from three categories of datasets, with different uncertainty levels and experimental controls, and different potential103

sources of variations (see Methods and Supp. Mat. E for further details). Dataset 1: the highest level of uncertainty as it104

largely comes from the automatic digitization from figures and tables in published papers. Dataset 2: an intermediate level of105

uncertainty as it was not known whether a single individual was used different times for a given or different treatments, which106

made not possible the distinction between within and between-individuals variability. Dataset 3: the lowest uncertainty as the107

observed individuals were known and observed several times. We then calculated the coefficient of variation of the foraging108

rates for all datasets for each experimental treatments (i.e. generally for an environmental condition, a given pair of prey and109

predator species, and a given initial prey density). We obtained more than 3800 estimations of the coefficient of variation, for110

more than one hundred species of prey and one hundred species of predators, for species ranging from unicellular (e.g. ciliates)111

to vertebrate (e.g. fish and birds), for initial prey density varying by up to 15 orders of magnitude across experiments. We112

then compared the range of observed values with the expected values under foraging stochasticity only (Fig. 2, Fig. Supp113

E.1). For all three datasets, a large majority of the measured coefficients of variation lie between 0.1 and 1 (respectively 73.2%,114

87.8% and 85.1% for datasets 1, 2 and 3; Fig. 2(a-c), Fig. Supp E.1). The medians are close to 0.298, the value predicted in 1d115

(respectively 0.291, 0.408 and 0.273). In a large majority of cases, the observed coefficients of variation falls within the range116

predicted in our model in a 1d or 2d environment. In addition, the predicted range of the coefficients of variation in 2d is in117

line with a larger proportion of observations than in 3d for all three datasets (85.2% vs. 69.3%, 92.3% vs. 60.3%, and 86.9% vs.118

75.5%, 2d vs. 3d, in datasets 1, 2 and 3, respectively). It suggests that foraging effectively occurred as in a 1d or 2d space.119

Figure 2(a-b) also shows that the dimensionality of the experiment has no effect on the range of the observed coefficients of120

variation, as the observed coefficients of variation cover the whole range of predicted values (compare colored dots in Fig. 2(a)121

and (b)).122

We then assessed the validity and robustness of the predicted coefficient of variation using numerical stochastic simulations123

by accounting for additional ecological mechanisms possibly adopted by different species: memory, preferred foraging direction124

and larger movements. Fig. 3 (a) shows that the coefficient of variation predicted in our model is very close to simulations125

in 1d, but it is slightly overestimated in 2d and 3d (predicted and simulated values are yet of similar order of magnitude).126

This overestimation might be due to a very slow speed of convergence of the approximation as the predicted values slightly127

gets closer to simulations when times t increases (Fig. 3 (a)). As predicted by our model (Eq. (2)), the probability p that a128

site initially contains a prey does not affect the coefficient of variation (Fig. 3(b)). Short term memory slightly decreases the129

coefficient of variation (compare Figs. 3(a) and (c)). Longer movements significantly decrease the coefficient of variation in 2d130

but only when the jump range is very large (dark dots), otherwise they do not affect it in 1d and only slightly in 3d (Fig.131

3(d)). Finally, the coefficient of variation is strongly affected when the predator has a preferred foraging direction, which is not132

surprising as the foraging path becomes more deterministic as the weight of direction preference increases (Fig. 3(e)). Overall,133

we found that our model is robust to additional mechanisms except in situations where the stochasticity of the foraging paths134

is decreased. This is consistent with general properties of random walks (see Supp. Mat. A4). Hence, additional mechanisms135

can, on the one hand, have little effect on the coefficient of variation which would explain why most observed values fall in the136

range predicted by our model (between 0.1 and 1). On the other hand, they can partly explain why observed coefficients of137

variation are much lower than 0.1.138

Searching for prey is the main driver of consumption rate variability139

In summary, despite several sources of variations in experiments could contribute to the estimated coefficient of variations,140

stochasticity of the foraging process alone is quantitatively compatible with the range covered by data. Two possibilities can141

explain that the coefficients of variation estimated from observations mostly lie between 0.1 and 1 across a large majority of142

species and observational contexts (Fig. 2, Supp. Inf. C)). Hypothesis 1 : Foraging paths stochasticity is negligible relatively143

to other sources of variability. If so, one should explain how is it possible that between-individual variability, environment144

heterogeneity and measurements altogether scale such that the estimated coefficients of variation mostly varies in such a small145

range of values between (0.1-1) across all species and experimental contexts. Hypothesis 2 : Foraging paths stochasticity is146

the main driver, and the effective dimension of foraging is 1d or 2d. As our model’s predictions are in line with most of the147

estimated coefficients of variations, it suggests that experimental errors, environmental and between-individuals variabilities are148

negligible. In other words, the coefficient of variation of the consumption rate is large in 1d and 2d because the randomness of149

foraging paths is strongly linked to the randomness of the number of prey effectively consumed. In 3d, paths are also highly150

random but the number of prey consumed is very little affected by the particular trajectory taken by the predator.151

Between-individual, between-species, or environmental variabilities can still affect the consumption rates as its mean and152

variance depend on the handling and searching times (Eqs. (3) and (4)):153
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[3]154
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Fig. 2. Coefficients of variation of prey consumption rates in experiments compared to the maximal range predicted by the model (lines). (a) Dataset 1: data from the FoRAGE
database; (b) Raw data (between and within individuals variation confounded): (c) Raw data (between and within individuals variation isolated). Dimensionality of space in the
model and experiment is represented by colors: Models in 1d, 2d, 3d respectively in black, red and green; Experiments in 2d, 3d or mixed (prey distributed on surfaces in a 3d
system, e.g. on leaves in a terrarium) respectively in red, green and blue.
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Fig. 3. Robustness of the prediction of the coefficients of variation. The sub-figures compare the value predicted of the coefficient of variation in 1d, 2d or 3d from Eq. (2)
(solid line) and the value estimated from exact stochastic simulations (dots) where additional mechanisms are added to the reference model (a) (Eq. (2)) with sites initially
containing a prey with probability p = 0.5 for two total foraging times t = 105 and t = 107; Sub-figure (b) shows coefficients of variation where sites initially contained prey
with probability p = 0.05, 0.1, 0.25, 0.5 (from darker to lighter colors); (c) With short term memory (the predator avoids the immediate previously visited site); (d) With jump:
The predator can move to more distant site in one step. The distance follows a power-law distribution with exponent θ = 2, 2.5, 3, 3.5 (from lighter to darker colors, shorter to
larger jumps); (e) With drift: The predator has a preferred foraging direction with weight µ = 0.05, 0.1, 0.25, 0.5 (from darker to lighter colors). Default values for simulations
(unless indicated): t = 107, τh = 0.1, τe = L/(x1/d − 1) with x the sites density and L = 103 an arbitrary length value between two sites.
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Var
[
F

(d)
t

]
∼

t→+∞


4p2 ln 2−2/π

tτe
, d = 1,

p2 2Kπ2

τ2
e (ln t

τe
)4 , d = 2,

p2 27κ4

2π2
ln t

τe

t(τe+κτh)3 , d = 3.

[4]156

However, the average of the consumption rate and the magnitude of its fluctuations, measured by the standard deviation,157

both similarly depend on the parameters of the model in 1d and 2d, in such a way that they are of the same order. In 3d,158

standard deviations are on the contrary expected to be much smaller than the average. That is why the coefficient of variation159

is expected to be large for any species or ecological contexts.160

Dimensionality matters because of depletion161

The mean and variance of F
(d)
t are very different depending on dimension (Eq. (3) and Eq. (4)). The relative importance162

of the searching vs. handling times in a functional response with depletion depends on dimensionality not because of the163

predator-prey interaction itself (as suggested in (16)), but because the time spent to successfully forage non-empty sites grows164

on different scales. In 1d, the handling time τh is negligible, while in 3d the searching and handling times have an effect of the165

same order. In 2d, handling has an effect of the same order than searching when foraging duration is short, otherwise it has a166

second order effect on the consumption rate. Consequently, estimating a parameter such as the handling time would need167

controlling for the time scale of depletion relatively to foraging duration in experiments. Eq. (3) also shows that the decrease of168

the consumption rate with foraging duration t depends on dimension: it decreases rapidly in 1d (as 1/
√

t), slowly in 2d (as169

1/ ln t) and is constant in 3d (as E
[
F

(3)
t

]
does not depend on t at first order).170

Eq. (4) shows that handling time has no effect on the variance of the consumption rate Var
[
F

(d)
t

]
in a 1d or 2d environment,171

even if the repartition of prey in the environment is initially homogeneous (p = 1). In contrast, both handling and searching172

times equivalently affect it in 3d. It thus suggests that handling would little contribute to variation of the consumption rates in173

a 1d or 2d depleted environment. Eq. (4) also shows that the size of the fluctuations are differently affected by the foraging174

duration t: in 1d, fluctuations are expected to have the same order as the mean and standard deviation both decreases as 1/
√

t;175

in 2d, fluctuations are expected to be lower than the mean but of similar order, (the mean decreases as 1/ ln t and the standard176

deviation as 1/(ln t)2; in 3d, fluctuations are expected to be of an order lower than the mean (as the mean does not depend on177

t while the standard deviation rapidly decreases as 1/
√

t). This means that it is expected that variability of consumption rates178

should be negligible in a 3d environment when compared to the mean, but at least of similar order of magnitude in a 1d or 2d179

environment.180

Bridging the gap between foraging theory and functional responses in ecology181

Assuming that the searching time τe is a decreasing function of prey density x (e.g. 1/x(1/d)), our model also provides functional182

responses, i.e. a function describing how consumption rate of a predator is related to prey density (8)(Fig. Supp. C.1). Many183

functional responses have been proposed under the assumption that prey depletion is negligible (33–35), only a few with prey184

depletion (29, 36, 37). All functional response models have neglected space, the foraging process and its stochastic nature, thus185

perpetuating a division between the fields interested either in foraging or functional responses (see (9) for a critical review).186

Here, by explicitly including the foraging process of prey distributed in space, even though under simplifying assumptions, we187

contribute in bridging the gap between those two mostly independent fields with promising outcomes. For instance, the form of188

the functional responses with depletion including the foraging process are very different than the one which is mostly used, the189

Rogers-Royama equation (29, 36, 37). We also show that in a 3d environment, the first order approximation gives the form of190

a Holling type II functional response. This suggests that depletion would have little effect on the functional response in cases191

where prey are distributed in 3d. Finally, as our results show that fluctuations of the consumption rate are of the same order192

than the average, it suggests that using deterministic models such as the Rogers-Royama equation for interpreting data or193

estimating parameters is limited.194

Another assumption differs between the Rogers-Royama model with prey depletion and ours: they supposed a fixed initial195

number of prey while we supposed an open-ended environment with virtually no prey limitation. At first sight, supposing a196

fixed initial number of prey would be closer to experimental design as prey are generally distributed in a closed environment197

at the start of the experiments. However, data show little relationship between initial density of prey and the coefficient of198

variation (Fig. 2), as predicted by our model (Eq. (2), Fig. 3). In fact, we collected the coefficients of variation from data only199

when there was variation in the number of prey consumed, i.e. when CT > 0. Cases where CV = 0 were found in data only200

when the initial number of prey was low, i.e. when for a given initial density all prey were consumed by each predator in all201

replicates. As the order of magnitude of the estimated coefficient of variation lie within the range predicted by our model, it202

suggests that as soon as there exists some variation in the number of prey consumed, the prey-predator system works as if in203

an open-ended space. This should depict experimental conditions where the total duration of the experiment was short enough204

that prey were not fully depleted, but long enough relatively to the handling and searching times. Finally, despite we do not205

impose a fixed initial number of prey, the order of magnitude of the variation of the consumption rates is well captured by our206

model, further strengthening our conclusion that the stochasticity of the foraging paths is the main driver.207
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Theoretical and empirical implications208

The fact that foraging variations are mostly driven by foraging paths stochasticity suggests that the handling time has a209

negligible effect on consumption rate relative to searching time. This is true for both the coefficient of variation and the210

expectation (Eq. (3)). It also suggests that the variability of the consumption rate within and between species is little affected211

by the individuals or species properties such as variation in size or other traits, or trophic levels, and that foraging occurs in an212

environment with an effective dimension 1d or 2d, even when it is actually in 3d. This can be an evidence that predators213

actually forage in 1d or 2d (38, 39), or, not exclusively, that prey are distributed in 1d or 2d. Finally, other mechanisms214

certainly affect the consumption rates as many papers showed how animals tend to change their behavior depending on the prey,215

habitat, their own state, etc. However, our results show that additional mechanisms have negligible impact on within-species216

variability compared to the intrinsic variability due to searching for prey.217

As the predictions from our model are mostly compatible with data, stochastic foraging in a spatialized and depleted218

environment could be seen as a null model for consumption rates and functional responses studies. It is important because219

many studies aim at inferring parameters such as the attack rate from experimental data (24, 29, 30). As the variation of the220

consumption rate has the same order of magnitude than the mean, it makes inference difficult: the control one might have on221

the quality of an estimator is limited by the inherent noise from the observed process and its outcomes. This result is also222

important from both a theoretical and empirical viewpoints, as stochasticity in population biology is generally thought to be223

important only when population is low (e.g. genetic drift, demographic stochasticity). Our results show that it is generally not224

the case as stochasticity is expected to be large even in large systems on a short time scale. The resulting implications of225

the interactions stochasticity on the understanding and modeling of populations and communities dynamics remains an open226

question. On a side note, our results provide a ’quick and dirty’ criterion for evaluating the validity of a stochastic model227

of foraging or prey consumption of a predator: its coefficient of variation should lie between 10−1 and 1, and close to 0.3 on228

average.229

As a null model, our approach can also help explaining the observed discrepancies between data and predictions (Fig. 2)230

such as why coefficients of variation range from one to (rarely) several orders of magnitude lower than 10−1. Our numerical231

simulations suggest that some non-exclusive additional mechanisms, such that predator’s memory or a preferred foraging232

direction, can significantly decrease the coefficient of variation. Our model also suggests that in some experimental contexts, the233

effective dimension of foraging is closer to 3d, or that it could be due to the fast regeneration of prey(34), which would however234

be inconsistent with most experimental conditions. Finally, it could be due to experimental design itself as the boundaries of235

the environment can be either attractive (39) or repulsive. Coefficients of variation which range from one to several orders of236

magnitude larger than 1 can be an evidence that other sources of variation are at least as important as the intrinsic stochasticity237

of the foraging paths. It can also be due to particular situations in 2d such as a large searching or handling times compared to238

the total foraging duration (Fig. 1).239

Finally, our results have implications for the evolution of foraging and the study of the optimal foraging theory. The fitness240

of individuals depends on the variance of the parameters of the system (40) but also on the inherent variance of the process241

itself as shown here. As this variance depends on dimensionality, foraging strategies can be expected to have differently evolved242

depending on dimensionality, yet independently of spatial heterogeneity. Using simulations of random walk in 2d, (41) predicted243

that optimal foraging strategies would evolve directional motion (i.e. movements with little turning). However, we showed that244

a preferred direction for foraging tends to largely decrease the coefficients of variation, which would not be consistent with245

data. This would surprisingly suggest that species have evolved sub-optimal foraging behaviors, as the observed coefficients of246

variations are larger than expected under a preferred foraging direction. Otherwise, it more likely suggests that other traits247

and mechanisms have evolved in order to optimize foraging efficiency in an unknown spatialized environment rather than a248

preferred direction.249

Supporting Information (SI). Supporting information are provided as a separate file.250

SI Datasets. Information about data sources and accessibility are given in Supp. Inf. E.251

Materials and Methods252

Please describe your materials and methods here. This can be more than one paragraph, and may contain subsections and equations as253

required.254

Model. A forager performs a random walk in a d-dimension environment where prey are distributed on a lattice. The time taken to go255

from one site to another is τe. Note that by assuming that the searching time τe is proportional to x(−1/d), where x is the density of sites256

potentially containing prey, our functions F (d) are functional responses, as classically defined. If a site is visited for the first time, it257

contains a prey with probability p. Consuming the prey takes a handling time τh. When a prey is consumed, it is not renewed (the time258

scale for prey renewal is supposed much larger than the foraging time scale). Given these times, the distribution of Rt, the number of259

prey consumed after a time t, is linked by a duality argument to the distribution of the minimum number of searching steps needed to260

consume at least a given number of prey. By exploiting the convergence in law of the distribution of the number of distinct sites visited261

after a given number of steps (42–44), the distribution of R
(d)
t converges in law as t → ∞ to different explicit expressions depending on262

the dimensionality of the environment (Supp. Mat B). Approximations of the first two moments of R
(d)
t are then obtained. Finally, the263

distribution of the consumption rates and its first two moments are then deduced as F
(d)
t := R

(d)
t /t (see details in Supp Mat. A and B).264
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Orders of magnitude of the coefficient of variation. Depending on the dimension, the coefficient of variation is expected to differ in orders265

of magnitude (Fig. 1, note the log-scale on the y-axis). When the total foraging time t is large enough, the coefficients of variation in266

a 1d, 2d, 3d depleted environments are respectively expected to be of order O(1) ≫ O(1/ ln t) ≫ O(
√

ln t/t). Note that the order of267

magnitude of the coefficient of variation in a renewed environment is close to the one in a 3d depleted environment: O(1/
√

t) (34). In268

other words, in 1d, the coefficient of variation is expected to be constant. As ln t/τe increases very slowly with t/τe, the coefficient of269

variation in 2d is expected to be of an order of magnitude either slightly lower or larger than in 1d (compare the red zone and the gray line270

in Fig. 1). On the contrary, the coefficient of variation in 3d is expected to rapidly decrease with t/τe and thus to be at least one order271

of magnitude lower than in 1d and 2d. This is because stochastic fluctuations of the number of prey consumed are generally expected272

to be much larger in 1d or 2d than in 3d. Eq. (2) also shows how the coefficient of variation of the consumption rate is expected to be273

affected by the ecological and behavioral parameters. In 1d, the coefficient of variation does not depend on any parameter. In 2d and274

3d, the coefficient of variation is not affected by the initial heterogeneity of prey repartition p, while it is affected by the searching and275

handling times τe and τh in different ways. An increasing searching time τe generally increases the coefficient of variation in 2d and 3d,276

but has a non-monotonous effect in 3d as it decreases it for low values of t/τe. The handling time has opposite effect on the coefficient of277

variation as it increases it in 2d while it decreases it in 3d (Eq. (2), compare full and dashed lines in Fig. 1). In particular, the coefficient278

of variation shows a maximal value for τh = 0 in 3d, while it can take arbitrarily high values in 2d.279

Stochastic numerical simulations of foraging rates. The path followed by a foraging individual was numerically simulated on a d-dimensions280

lattice where each node initially contains a prey with probability p. The individual moves to the next site, which is randomly chosen281

with equiprobability among the four nearest (cardinal) ones. The sites are homogeneously distributed with a density x on the lattice.282

One thousand stochastic simulations are generated for all set of parameters values (sites densities x and total foraging duration t). The283

empirical distribution of the foraging rates and its expectation were estimated. In order to test for the robustness of the approximations284

obtained with our model, we added behavioral features: random walk with (stochastic) jumps to distant sites, with preferential direction285

(drifted random walk), with short-term memory (avoidance of the last visited site).286

Datasets. The coefficient of variation of the consumption rate were estimated from three different datasets with different degree of287

uncertainties regarding the sources of variability (i.e. data collection methodology, experimental controls, between-individuals variability,288

within-individuals variability, controlled or uncontrolled environmental variability, variability due to the foraging process itself). Further289

details are given in Supp. Mat. E. Dataset 1: We extracted relevant data from the FoRAGE database (45) which compiles functional290

responses from controlled experiments in the published literature. FoRAGE database was populated by raw data or summary statistics291

either automatically digitized from articles’ figures or gathered from articles’ tables. There were often uncertainties about how many actual292

observations were represented by one dot on figures (several dots overlapped if individuals in a replicate consumed the same number of293

prey). Another uncertainty source was the standard deviations with zero values, which can either be due to entries errors in the database294

or because of a true absence of variation. We thus decided to discard all experiments with no variation within an experimental treatment295

in the database. In order to be conservative and to limit noise due to data collection, we also discarded experiments from the FoRAGE296

database that do not satisfy the following criteria: (i) at least eight independent measurements for a given experimental treatment and (ii)297

at least 80% of raw data recognizable from the figures among all replicates for a given treatment. We overall estimated 3181 coefficients of298

variation for various experimental conditions (regarding prey density, temperature, environmental dimensions, prey and predator species,299

etc.), for 126 predator and 104 prey species, covering a biomass range of near 7 and 12 orders of magnitude, respectively. We sorted data300

regarding the dimension of the environment (as acknowledged by the database’ authors): 2d, 3d, or a mix between 2d and 3d (for instance301

when prey were distributed on plant leaves within a 3d space such as a terrarium). Overall, the coefficient of variation calculated from302

Dataset 1 may come from different sources of variation: measurement errors including populating the database and digitization, between303

and within individuals variability, the stochastic foraging process itself, controlled or uncontrolled environmental variability. Dataset 2: We304

estimated 602 coefficients of variation from 41 different raw datasets collected either from the Dryad repository, or the database by (31), or305

directly from the authors. We only considered datasets with a single species of prey in a given experiment, with known initial prey densities306

or number, and with replicates within densities. The coefficients of variations were directly calculated from raw data when available, or307

from the mean, the standard error and the number of replicates otherwise. It was generally not known whether replicates used the same308

individuals several times independently or not. When the experiments considered different treatments for a given density (e.g. different309

temperatures or prey size), we calculated the coefficient of variation across treatments. Overall, the coefficient of variation calculated from310

Dataset 2 potentially comes from different sources of variation: measurement errors, uncontrolled environment variability, between and311

within individuals variability, or the stochastic foraging process itself. Datasets 3: We estimated 229 within-individuals coefficients of312

variation from datasets kindly provided by Yuuki Watanabe, Agustina Gómez-Laich and Stefan Linzmaier. In the three cases, several313

measurements were obtained from the same individuals thus allowing to isolate the within individuals from between-individuals variability.314

These datasets included the consumption rates observed for several individuals during different sessions of observations for each individual.315

Overall, the coefficients of variation estimated from Dataset 3 potentially comes from different sources of variation: measurements errors,316

within individual variability, uncontrolled environmental conditions, and the stochastic foraging process itself.317
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A Behaviors of the range of random walks

We first gather various results on the number of distinct sites visited by a simple, symmetric, random walk on Zd.

This random variable is usually called the “range” of the random walk. It is the central quantity to define the

“functional response” in our context. We will state known results for any dimension d, with a particular focus on

dimensions d = 1, 2, 3. It turns out that in d = 1 and d = 2 the mean number of distinct visited sites grows more

slowly than the duration n of the random walk, a consequence of “oversampling” as each site is repeatedly visited

while the number of visits grows with n. We in particular show that, even in the simplest situation, rich and diverse

behaviors of the random walks emerge according to d. We will indicate below the degree of generality in which

the following results remain valid (with slight modifications).

A.1 Setting and two basic results

Let d ≥ 1 be an integer and denote by (e(1), . . . , e(d)) the canonical basis for the lattice Zd, so we have i =

(i(1), . . . , i(d)) for i ∈ Zd. We call “sites” the elements of Zd. We focus on d = 1, 2, 3. Let (Xn)n≥0 be the

simple symmetric random walk on Zd starting from the origin, where Xn =
(
X(1)

n , . . . , X(d)
n

)
is the position of the

random walker at time n on Zd. This process can be viewed as a Markov chain with state space Zd, initial state

X0 = 0 := (0, . . . , 0), and transitions probabilities (for n ≥ 0)

P
(
Xn+1 = j |Xn = i

)
=

1

2d

if j − i ∈ {± e(1), . . . ,± e(d)} (that is, if i and j are nearest neighbors), and this transition probability is equal to 0

otherwise. The process (Xn)n≥0 can also be seen as a sum of a sequence of independent identically distributed

random variables. Letting (ξk)k≥1 be a sequence of i.i.d. random variables taking values in {± e(1), . . . ,± e(d)}

such that

P
(
ξk = ± e(i)

)
=

1

2d
, i = 1, . . . , d

we define

X0 = 0 and Xi =

i∑
k=1

ξk, i = 1, 2, . . . .

Definition A.1. The range of the random walk is the sequence of random variables defined by

Nn = Card{Xi : i ≤ n} = Card
{
k ∈ Zd : ∃ i ≤ n such that Xi = k

}
, n ≥ 1.

By convention we set N0 = 1.

Hence, Nn is the number of distinct sites visited up to time n by the random walk. Note in passing that (Nn)n≥0

is a non-Markovian process.

Let

κ = κ(d) = P(no return to 0) = P(∀n > 0 : Xn ̸= 0). (A.1)

2



The first result about the range is a kind of “law of large numbers”.

Theorem A.2. Let d ≥ 1. Then

P

(
Nn

n
−−−−→
n→+∞

κ(d)

)
= 1. (A.2)

It is well known that when d = 1 or 2, the walk is recurrent, that is, it visits any site infinitely many times

with probability one, hence, in particular, κ(1) = κ(2) = 0. When d ≥ 3, the random walk is transient, hence

0 < κ(3) < 1. See [1, p. 38] for a proof.

The second basic result about the range tells us that, when d ≥ 2, Nn ∼
n→+∞

E(Nn), with probability one.

Theorem A.3. Let d ≥ 2. Then

P

(
Nn

E(Nn)
−−−−→
n→+∞

1

)
= 1. (A.3)

See [2] for a proof. Notice that this result is not true for d = 1. In that case, we will see that Nn /E(Nn) converges

only in law (to some non-degenerate random variable).

A.2 Link with return times to the origin

Let d ≥ 1. For j ≥ 1, we define new random variables Υj associated to the random walk by

Υj =


1 if the j-th step hits a new site

0 otherwise.

Formally, Υj = 1{Xj ̸=Xj−1,Xj ̸=Xj−2,...,Xj ̸=X0=0}. Hence we have

Nn =

n∑
j=1

Υj (A.4)

since we are exactly counting the total number of distinct visited sites when the random walk made n steps. Next,

for j ≥ 2,

E
(
Υj

)
= P (Xj ̸= Xi for i = 1, . . . , j − 1)

(we have E
(
Υ1

)
= P(X1 ̸= X0) = 1), that is, E

(
Υj

)
is the probability that the j-th step takes the walk to a

non-visited site in any of the preceding j − 1 steps. The basic but fundamental observation is that

E
(
Υj

)
= P(T0 > j) =

+∞∑
k=j+1

P(T0 = k) (A.5)

where T0 = inf{n ≥ 1 : Xn = 0}, the first time the walk hits the origin. That is, the expected value of Υj is exactly

the probability that the walk did not come back to the origin in j steps (since it starts at the origin). Hence, in

view of (A.4) and (A.5), we have

E( Nn) =

n∑
j=1

E
(
Υj

)
=

n∑
j=1

P(T0 > j) =

n∑
j=1

+∞∑
k=j+1

P(T0 = k). (A.6)

Hence, we are left to estimate P(T0 = k) (k ∈ 2N) to estimate E( Nn). 1

1We let Z+ = {0, 1, 2, . . .} be the positive integers including 0, and we will denote by N = {1, 2, . . .} the set of strictly positive integers.
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Remark A.4. Observe that κ = limj→+∞P(T0 > j) = limj→+∞E
(
Υj

)
(see (A.1)).

Remark A.5. It turns out that (A.5) (hence (A.6)) is valid for any random walk because it only relies on the fact that the

random variables ξk are independent and identically distributed, which implies that (ξ1, ξ2, . . . , ξj)
law
= (ξj , ξj−1, . . . , ξ1),

for all j ≥ 1. Hence, we can “reverse” (in law) the path of the random walk to get

P(Xj ̸= Xj−1, Xj ̸= Xj−2, . . . , Xj ̸= X0 = 0) = P(ξj ̸= 0, ξj + ξj−1 ̸= 0, . . . , ξj + ξj−1 + · · ·+ ξ1 ̸= 0)

= P(ξ1 ̸= 0, ξ1 + ξ2 ̸= 0, . . . , ξ1 + ξ2 + · · ·+ ξj ̸= 0)

= P(T0 > j).

A.3 Mean, variance and convergence in law of the range

We deal with the cases d = 1, 2, 3, considered separately, since very different behaviors occur.

A.3.1 Case d = 1

It is straightforward that

Nn = 1 + max
0≤k≤n

Xk − min
0≤k≤n

Xk = 1 +max{Xp −Xq : 0 ≤ p ≤ n, 0 ≤ q ≤ n}.

One expects that E(Nn) = O(
√
n ). In [3] the authors obtain the following exact formula:

E(Nn) =

2
⌊
n
2

⌋
⌊
n
2

⌋


22⌊
n
2 ⌋
(
n+ 2

⌊
n
2

⌋
+ 1
)
, n ≥ 1.

Stirling approximation n! ∼
n→+∞

nn e−n
√
2πn yields

E(Nn) ∼
n→+∞

√
8

π

√
n. (A.7)

For the variance we have (see [4])

Var(Nn) ∼
n→+∞

4

(
log 2− 2

π

)
n. (A.8)

The random variable Nn /
√
n converges in law to a non-degenerate probability distribution ([5],see also [4]), namely,

we have the following result.

Theorem A.6. We have
Nn√
n

law−→ F := max
0≤s≤1

B(1)

s − min
0≤s≤1

B(1)

s , (A.9)

where (B(1)
s )s≥0 is the standard one-dimensional Brownian motion.

Compare this convergence in law with Theorem A.3 in view of (A.7). We see that Nn /E( Nn) doesn’t converge

to 1 with probability one, but converges in law to a non-degenerate random variable. There is a formula for the

probability density function ρ of the random variable F , namely

ρ(u) =
8√
2π

+∞∑
m=1

(−1)m−1m2 e−
m2u2

2 , u ∈ R+ . (A.10)
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(So the cumulative distribution function of F is continuous.) This is proved by Feller [4].

We end this section by an important remark.

Remark A.7. Looking at the proof of Theorem 6.2 in [5], we have that E(Nn /
√
n) −−−−→

n→+∞
E(F) =

√
8/π and

Var(Nn /
√
n) −−−−→

n→+∞
Var(F) = 4 (log 2− 2/π). This follows from a uniform bound in n of the third moment of Nn /

√
n,

which implies that the square of Nn /
√
n is uniformly integrable. This is a well-known sufficient condition to ensure, from the

convergence in law, the convergence of the first two moments of Nn /
√
n toward the first two moments of F . Another way to

proceed is to compute directly the first and second moments of F using its density, and to see that the results match with (A.7)

and (A.8). Note also that, by classical properties of the Brownian motion, one has E(F) = 2E(|B(1)

1 |) = 2
√
2/π (twice the

expected value of the standard half-normal distribution).

A.3.2 Case d = 2

We first recall the classical approximation [2]:

E(Nn) =
πn

log n

(
1 +O

(
log logn

log n

))
. (A.11)

In fact, in order to obtain precise enough approximation of the number of prey consumed (see Section B.2 below)

we need an approximation at order 2 for E(Nn) that we couldn’t find in the literature, so we provide a proof.

Proposition A.8. For all n ≥ 2, we have

E( Nn) =
πn

log n

(
1− γ

log n
+O

(
1

(log n)2

))
(A.12)

where γ is the Euler-Mascheroni constant (γ = −
∫∞
0

log(u) e−u du ≈ 0, 577).2

Proof. We use [6, Theorem 1.3] which gives for any k ∈ 2N

P(T0 = k) =
π

k(log k)2

(
1− 2γ

log k
+O

(
1

(log k)2

))
. (A.13)

Hence for all j ≥ 2 we have

P(T0 > j) =

+∞∑
k=j+1

P(T0 = k) =
π

log j

(
1− γ

log j
+O

(
1

(log j)2

))
where we approximate in the standard way the series by an integral. Using (A.6) yields (A.12) after some standard

but tedious calculations. More precisely, we need an asymptotic expansion for, e.g.,

n∑
j=2

1

log j

(which goes to +∞ when n→ +∞.) The basic idea is to approximate this sum by an integral, and then integrate

by parts. Then one can use the following expansion for the offset logarithmic integral:

Li(x) :=

∫ x

2

du

log u
=

x

log x
+

1!x

(log x)2
+ · · ·+ (k − 1)!x

(log x)k
+O

(
x

(log x)k+1

)
.

2Note that log stands for the natural logarithm.
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We refer to [7, Section 3.3] for a nice exposition.

Concerning the variance, Jain and Pruitt [5] proved that

Var( Nn) ∼
n→+∞

2π2K n2

(log n)4
(A.14)

where

K = −
∫ 1

0

log u

1− u+ u2
du+

1

2
− π2

12
≈ 0.8495. (A.15)

Finally, Le Gall [8] proved the following result. We introduce the short-hand notation

Zn :=
(log n)2

n

(
Nn−E(Nn)

)
. (A.16)

Theorem A.9. We have

Zn
law−→ −2π2LG (A.17)

where the random variable LG is the “renormalized self-intersection local time” for planar Brownian motion.

Formally,

LG =

∫∫
{0≤s<t≤1}

δ(0)(B(2)

s − B
(2)

t ) dsdt− E

( ∫∫
{0≤s<t≤1}

δ(0)(B(2)

s − B
(2)

t ) dsdt

)

where (B(2)

t )t≥0 is a two-dimensional (standard) Brownian motion. Also formally E(LG) = 0, as it should be since

it is the limit of centered random variables. Notice the unusual normalization by n/(log n)2, and the fact that the

limiting random variable is not Gaussian. An elementary rigorous construction of LG is provided in [9].

The following uniform control of the exponential moment of the random variables Zn will be essential below.

See [10] (Theorem 5.4 p. 26) for a proof.

Theorem A.10. There exists θ > 0 such that

sup
n∈N

E (exp (θ|Zn|)) < +∞. (A.18)

By standard arguments, we deduce the following corollaries.

Corollary A.1. There exist c1, c2 > 0 such that

sup
n∈N

P
(
|Zn| > u

)
≤ c1 e

−c2u, u > 0. (A.19)

Proof. By Markov inequality we have (since θ > 0)

P
(
|Zn| > u

)
= P

(
θ|Zn| > θu

)
= P

(
eθ|Zn| > eθu

)
≤ E (exp (θ|Zn|)) e−θu .

This proves (A.19) with c1 = supn∈NE (exp (θ|Zn|)) and c2 = θ.
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Corollary A.2. We have

lim
n→+∞

E
(
Z2
n

)
= E

(
(−2π2LG)

2
)
= Var(2π2LG) = 2π2K (A.20)

where K is defined in (A.15).

Proof. A classical condition implying that convergence in law of Zn to −2π2LG enforces convergence of E(Z2
n) to

E
(
(−2π2LG)

2
)

is uniform integrability of
(
Z2
n

)
n∈N (see Theorem 3.5 p. 31 in [11]). Using Corollary A.1, it is

straightfoward to obtain supn∈NE
(
Z3
n

)
< +∞, which implies the desired uniform integrability.

Remark A.11. Notice that the previous proof actually shows that, for all p ≥ 1, E(|Zn|p) converges to the p-th moment of

−2π2LG .

A.3.3 Case d = 3

Dvoretsky and Erdös [2] proved that

E(Nn) = κ(3)n+O
(√

n
)
, (A.21)

where κ(3) ≈ 0.6595 (recall that this is the probability that the walk never returns to the origin). This is consistent

with (A.2). Jain and Pruitt [12] (see Theorems 2 and 4) proved the following results.

Theorem A.12. We have
Nn−κ(3)n

σ
√
n log n

law−→ N (0, 1) (A.22)

where N (0, 1) is a standard Gaussian random variable (mean 0 and variance 1), and

σ =
3
√
3κ(3)2√
2π

. (A.23)

We also have

Var( Nn) ∼
n→+∞

σ2 n log n.

A.4 More general random walks

For the sake of simplicity, we considered only the simplest random walks, namely, simple symmetric random walks.

In fact, all the previous results hold true for a much more general class of random walks, up to minor changes, that

we briefly describe. We refer to the book of [13] for more informations on random walks. We consider increments

ξk’s (k ≥ 1) that are independent and identically distributed random variables taking values in Zd, not necessarily

in {± e(1), . . . ,± e(d)}. (The case treated so far is the very special case when, if the walk is at a given site, the

next move is to choose one of the 2d nearest neighbors of that site with probability (2d)−1.) The corresponding

random walk is defined by X0 = 0 (so we suppose that the walk starts at the origin of Zd), and Xn =
∑n

k=1 ξk,

n = 1, 2, . . .. We assume that E(ξ1) = 0 and E(|ξ1|2) < +∞.3

3For i ∈ Zd, |i|2 := (i(1))2 + · · ·+ (i(d))2.
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An important subclass of random walks with these two properties is the class of finite-range symmetric random

walks. This means that there exists a finite set V = {i1, . . . , ir} ⊂ Zd\{0} which is generating (that is, every j ∈ Zd

can be written as α1i1 + · · · + αrir for some α1, . . . , αr ∈ Z, so that the walk will be irreducible, and a function

ϱ : V → ]0, 1] with ϱ(i1) + · · · + ϱ(xr) = 1, defining a symmetric probability distribution p on Zd as follows:

p(ik) = p(−ik) = 1
2ϱ(ik) (ik ∈ V ). (Notice that we consider only the case p(0) = 0, that is, the walk has to leave

the site where it is with probability one.) Given p, one can define (Xn)n≥0 as the (time-homogeneous) Markov

chain with state space Zd and transition probabilities P(Xn+1 = ℓ|Xn = k) = p(ℓ − k), or as Xn =
∑n

k=1 ξk

where the ξk’s are independent random variables with distribution p. The simple symmetric random walk is the

case where V = {e(1), . . . , e(d)}.

We now indicate how the results of Section A.3 generalize.

We denote by Q =
(
E(ξ

(i)
1 ξ

(j)
1 )
)
1≤i,j≤d

the covariance matrix, and we let σ2 :=
(
detQ

)1/d
.

Theorem A.2 remains true for the class of random walks described above. In fact, having integrable increments

is enough, see [1, p. 38].

Theorem A.3 can be generalized in dimension d = 2 for any random walk as above, provided it is recurrent,

see Theorem 3.1 in [5].

Concerning Section A.3.1 (d = 1), Theorem A.6 is true for any random walk as defined above, up to replacing

the interval 0 ≤ s ≤ 1 by 0 ≤ s ≤ σ2.

Concerning the results listed in Section A.3.2 (d = 2), one has limn→+∞(log n/n) Nn = 2πσ2 almost-surely.

Approximation (A.12) relies on (A.13) which remains the same, up to a multiplicative constant:

P(T0 = k) =
2πσ2

k(log k)2

(
1− 2γ

log k
+O

(
1

(log k)2

))
.

This is because we can use [6, Theorem 1.3].

Theorem A.9 remains true with −2π2LG replaced by −4π2σ2 LG , see [8]. Regarding the variance, (A.14)

remains the same, up to the constant (see [5], Theorem 4.2): Var( Nn) ∼
n→+∞

c n2

(logn)4 where c = 8π2 K σ4 (where K

is defined in (A.15)).

Concerning Section A.3.3 (d = 3), we get the same behavior for the above class of random walks, up to

constants that depend on ξ1, see [14].

Remark A.13 (Random walks with a drift). The situation is very different when E(ξ1) ̸= 0 (non-zero drift). In that

case, the walk is strongly transient regardless of the dimension. We recall that a random walk is either transient or recurrent.

Transience means that the probability that the walk never comes back to the origin is strictly positive, that is, κ(d) > 0

(see (A.1)). There are recurrent random walks only if the dimension is one or two. The simple symmetric random walk

in dimensions 1 and 2 is recurrent. We will not define strong transience here. For instance, every random walk such that

E(ξ1) ̸= 0 and E(|ξ1|2) < +∞ is strongly transient. We just want to emphasize that, in that case, discarding the trivial

case where the range grows deterministically (which is when κ(d) = 1), its variance grows like a constant times n, and a
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central limit theorem in the classical form is true: there exists σ2 > 0 such that (Nn−nκ(d))/(σ
√
n)

law−→ N(0, 1), see [14]

for details.

Remark A.14. Notice that the random walk may take place on a proper subgroup of Zd. In this case, the subgroup is

isomorphic to some Zd′
for d′ ≤ d. If d′ < d, then the transformation should be made and the problem considered in d′

dimensions. We implicitly assumed that this reduction had been made, if necessary, and that d is the genuine dimension of

the random walk. (This means in particular that the determinant of the covariance matrix of the random walk is not equal

to 0.)

B The number of consumed prey

All proofs and results given in this section are new.

B.1 Process dual to the range

Observing that (Nn)n≥1 is an increasing process, it is natural to define its “inverse”, namely

Sk = inf{n ≥ k : Nn ≥ k}, k ≥ 1. (B.1)

This is the smallest number of steps for the walk to visit at least k distinct sites. We have the following fundamental

“duality relation”

{Nn ≤ k} = {n ≤ Sk}. (B.2)

In particular, studying the law of Nn is equivalent to studying the law of Sk. Observe that, for each k, Sk is a

stopping time.

B.2 Connecting the number of consumed prey to the range of the random walk

We define two important parameters:

• τe, defined as the time needed for a predator to go across an edge of the lattice Zd

• τh, defined as the handling time, i.e., the time taken by the predator to consume one prey.

The dimensionless parameter τh/τe will show up in many instances. We will always assume that τe > 0 (τh can be

equal to 0). The first one gives a time scale with respect to which we can say what a large time t means. Then, we

define the stochastic process giving the evolution of our system. It is the joint process made of the random walk

(Xk)k≥0 and the corresponding sequence of (random) times (Tk)k≥0 at which the walk (the predator) visits the

sites.
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Let (Xk, Tk)k≥0 be the double sequence of random variables giving the sites that the predator visits (that is,

the position of the random walk), together with the corresponding arrival times. The random walk (Xk)k≥0 we

consider is the simple symmetric random walk defined in the previous section (recall that X0 = (0, . . . , 0)). We

can recursively define the arrival times by setting T0 = 0, and letting

Tk+1 =


Tk + τh + τe if Xk ̸∈ {X0, X1, . . . Xk−1}

Tk + τe otherwise.

The condition Xk ̸∈ {X0, X1, . . . Xk−1} is equivalent to Nk > Nk−1. Then, the number of prey found before time

t is

Rt = Card
{
k ≥ 0 : Tk ≤ t, Nk > Nk−1

}
= Card

{
k ≥ 0 : Tk ≤ t,Xk ̸∈ {X1, . . . Xk−1}

}
.

The functional response (the consumption rate) is then defined as

Ft =
Rt

t
.

Now, by definition of Rt and using (B.2), we have

{Rt > k} = {Skτe + (k − 1) τh < t} =
{
Sk <

t

τe
− (k − 1)

τh
τe

}
=
{
Nn(t) > k

}
(B.3)

where

n(t) := nk(t) =

⌊
t

τe
− (k − 1)

τh
τe

⌋
(B.4)

where ⌊·⌋ denotes integer part. (For n(t) to be larger than or equal to 1, there is an obvious constraint on t and k,

namely t
τe
≥ (k − 1) τhτe + 1.)

B.2.1 Case d = 1

We have the following result.

Theorem B.1. As t→ +∞, we have

Rt√
t/τe

law−→ max
0≤s≤1

B(1)

s − min
0≤s≤1

B(1)

s (B.5)

where (B(1)
s )s≥0 is the standard one-dimensional Brownian motion.

Observe that τh plays no role in the limiting random variable.

Proof. Let t > 0. For convenience, we set te := t/τe (dimensionless parameter counting time in units of τe). Let

u ∈ R. Using (B.3) and (B.4), we have

P

(
Rt√
te
≤ u

)
= P

√n(t)

te

Nn(t)√
n(t)

≤ u

 (B.6)
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where

n(t) =

⌊
te −

(
u
√
te − 1

) τh
τe

⌋
.

Since
√

n(t)
te
→ 1 as t→ +∞, using Slutsky’s theorem and Theorem A.6, we obtain√

n(t)

te

Nn(t)√
n(t)

law−→ F

where F = max0≤s≤1 B(1)
s − min0≤s≤1 B(1)

s . This means that the right-hand side in (B.6) goes to P(F ≤ u) (its

cumulative distribution function is continuous since F has a density). 4 But, since u ∈ R is arbitrary, we obtain

that the left-hand side in (B.6) goes to P(F ≤ u) for all u ∈ R, which entails the convergence in law of Rt/
√
te to

F .

The first two moments of Rt/
√
t/τe do converge to those of max0≤s≤1 B(1)

s −min0≤s≤1 B(1)
s .

Proposition B.2. We have

E

(
Rt√
t/τe

)
−−−→
t→+∞

E

(
max
0≤s≤1

B(1)

s − min
0≤s≤1

B(1)

s

)
= 2

√
2

π
≈ 1.5958,

and

Var

(
Rt√
t/τe

)
−−−→
t→+∞

Var

(
max
0≤s≤1

B(1)

s − min
0≤s≤1

B(1)

s

)
= 4

(
log 2− 2

π

)
≈ 0.2261.

Proof. In view of Remark A.7, we show how to control the third moment of R̃t := Rt/
√
te (where te = t/τe),

uniformly in t. Since R̃t is a positive random variable, we only need to control the tail probability P
(
R̃t > u)

for u > 0. Taking n(t) =
⌊
te − (k − 1) τhτe

⌋
with k = k(t, u) = u

√
te, we get at once using (B.3) and the obvious

inequality Nn(t) ≤ N⌊te⌋ that

P
(
R̃t > u

)
= P

(
Rt > k

)
≤ P

(
N⌊te⌋ > k

)
= P

(
N⌊te⌋√

te
> u

)
.

We conclude by using Theorem 6.2 in [5] which states that E
[(

N⌊te⌋√
te

)3]
= O(1), and the formula E

(
R̃3

t

)
=

2
∫ +∞
0

u2P
(
R̃t > u

)
du.

B.2.2 Case d = 2

The situation for d = 2 is completely different from that in dimension d = 1.

Theorem B.3. We have(
log
(

t
τe

))2
t
τe

Rt −
π t

τe

log
(

t
τe

)
 law−→ −π

(
2πLG +

π τh
τe

+ γ

)
, as t→ +∞ (B.7)

where LG is the random variable appearing in Theorem A.9.

4Recall that if (Yn)n≥0 is a sequence of real-valued random variables, and Y a real-valued random variable, then Yn
law−→ Y if and only if

P(Yn ≤ u) → P(Y ≤ u), as n → +∞, at every point where u 7→ P(Y ≤ u) is continuous.
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Proof. Let t > 0. As before, we set te := t/τe. To alleviate notation, let a(t) := (log t)2/t, and

R̃t := a(te)

(
Rt −

πte
log te

)
.

Using (A.12), we rewrite the left-hand side of (B.7):

R̃t = a(te)
(
Rt − E

(
N⌊te⌋

) )
− πγ +O

(
1

log te

)
. (B.8)

Hence, by Slutsky’s theorem, if a(te)
(
Rt − E

(
N⌊te⌋

))
converges in law to a random variable, say, W , then R̃t

converges in law to

W − πγ. (B.9)

We now want to use (B.3), that is

{Rt ≤ k} = {Nn(t) ≤ k}, (B.10)

where we take

n(t) = n(t, u) =

⌊
te − (k − 1)

τh
τe

⌋
and k = k(t, u) :=

⌊
a(te)

−1u+ E
(
N⌊te⌋

)⌋
,

and where u ∈ R is a continuity point of the cumulative distribution function of −2π2LG . Hence, the equality

between the events in (B.10) writes

{
a(te)

(
Rt − E

(
N⌊te⌋

) )
≤ u} =

{
a(te)

(
Nn(t)−E

(
N⌊te⌋

) )
≤ u

}
. (B.11)

Using Theorem A.9, with n replaced by n(t), we have

a(n(t))
(
Nn(t)−E(Nn(t))

) law−→ −2π2LG . (B.12)

(Observe that n(t)→ +∞, as t→ +∞, since E
(
N⌊te⌋

)
∼

t→+∞
(πte)/ log te by (A.11), whence n(t) ∼

t→+∞
te.) To use

(B.12), we write

a(te)
(
Nn(t)−E

(
N⌊te⌋

))
=

a(te)

a(n(t))

(
a(n(t))

(
Nn(t)−E

(
Nn(t)

)))
+ a(te)E

(
Nn(t)− N⌊te⌋

))
. (B.13)

Using (A.11), and the fact that k ∼
t→+∞

π te/ log(te), we have

E
(
N⌊te⌋

)
− E

(
Nn(t)

) ∼
t→+∞

π

log te

τhk

τe
∼

t→+∞

τht

τ2e

π2

(log te)2
.

Hence

a(te)E
(
Nn(t)− N⌊te⌋

) ∼
t→+∞

−π2 τh
τe
. (B.14)

We leave to the reader check that a(n(t))/a(te) ∼
t→+∞

1. Then, we apply Slutsky’s theorem once more, together with

(B.12), to obtain that the right-hand side of (B.13) converges in law to −2π2LG − (π2τh)/τe. Hence we obtain by

(B.13) that

a(te)
(
Nn(t)−E

(
N⌊te⌋

)) law−→ −2π2LG − π2 τh
τe
.

12



It follows that P
(
a(te)

(
(Nn(t)−E

(
N⌊te⌋

))
≤ u

)
−−−→
t→+∞

P
(
− 2π2LG − (π2τh)/τe ≤ u

)
for any u ∈ R is an arbitrary

continuity point of the cumulative distribution function. We deduce, using (B.11), that a(te)
(
Rt −E

(
N⌊te⌋

)) law−→

−2π2LG − (π2τh)/τe. Therefore, coming back to (B.8) (see the sentence right after it, and also (B.9)), we finally

obtain that W = −2π2LG − (π2τh)/τe, which entails that

R̃t
law−→ −2π2LG −

π2τh
τe
− πγ

which after rearrangement is exactly (B.7), which ends the proof.

The following result is the analog of Corollary A.2, and its proof goes along the same lines.

Proposition B.4. We have

E(Rt) ∼
t→+∞

πte
log te

(B.15)

and 
(
log
(

t
τe

))2
t
τe


2

Var (Rt) −−−→
t→+∞

2π2K, (B.16)

where K is defined in (A.15).

Proof. As before, we use the notations te = t/τe, a(t) = (log t)2/t, and

R̃t := a(te)

(
Rt −

πte
log te

)
.

We first show how to control P
(
R̃t > u

)
for all u > 0, uniformly in t (which is the crucial point). We use again

(B.3), that is,

{Rt > k} = {Nn(t) > k}, (B.17)

where we now take

n(t) = n(t, u) =

⌊
te − (k − 1)

τh
τe

⌋
, k = k(t, u) :=

⌊
a(te)

−1u+
πte
log te

⌋
.

Since Nn(t) ≤ N⌊te⌋ we have

P(Rt > k) = P(Nn(t) > k) ≤ P(N⌊te⌋ > k). (B.18)

We now bound the rightmost term:

P(N⌊te⌋ > k) = P

(
a(te)

(
N⌊te⌋−

πte
log te

)
> u

)
= P

(
a(te)

(
N⌊te⌋−E(N⌊te⌋)

)
> u+ a(te)

(
πte
log te

− E(N⌊te⌋)
))

.

We use again (A.12) to get

a(te)

(
πte
log te

− E(N⌊te⌋)
)

= πγ +O
(

1

log te

)
,

13



which is larger than πγ/2 for all t larger than some t0 (independent of u). It follows from (B.18) that

P
(
R̃t > u

)
= P(Rt > k) ≤ P

(
a(te)

(
N⌊te⌋−E(N⌊te⌋)

)
> u+

πγ

2

)
, t ≥ t0,

therefore, using (A.19), we obtain

sup
t≥t0

P
(
R̃t > u

)
≤ c1 e

−c2u . (B.19)

We now turn to show how to control P
(
R̃t < −u

)
for all u > 0, uniformly in t. We have

P
(
R̃t < −u

)
= P

(
a(te)

(
Rt −

πte
log te

)
< −u

)
= P

(
Rt < −

u

a(te)
+

πte
log te

)
= P(Nn(t) < k)

where we used (B.3) with k = k(t, u) := −a(te)u+ (πte)/ log te, whence

n(t) ≥
⌊
te +

(
u

a(te)
− πte

log te

)
τh
τe

⌋
≥
⌊
te

(
1− πτh

τe

1

log te

)⌋
=: n′(t).

(Observe that the rightmost term does not depend on u.) It follows that Nn(t) ≥ N⌊te(1−πτh
τe

1
log te

)⌋, hence

P
(
R̃t < −u

)
≤ P

(
Nn′(t) < k

)
= P

(
a(te)

(
Nn′(t)−

πte
log te

)
< −u

)
= P

(
a(te)

(
Nn′(t)−E

(
Nn′(t)

))
< −u+ a(te)

(
πte
log te

− E
(
Nn′(t)

)))
.

Once more, we use(A.12), and it is left to the reader to check that

a(te)

(
πte
log te

− E
(
Nn′(t)

))
= −π

(
π
τh
τe
− γ

)
+O

(
1

log te

)
.

There exists t′0 (independent of u) such that for all t ≥ t′0 the right-hand side is less than or equal to −(π2τh)/τe +

(3πγ)/2, hence, using (A.19), we obtain

P
(
R̃t < −u

)
≤ c1 e

3πγc2
2 e−c2u,

therefore

sup
t≥t′0

P
(
R̃t < −u

)
≤ c1 e

3πγc2
2 e−c2u . (B.20)

Combining (B.19) and (B.20), we thus proved that

sup
t≥t0∨t′0

P
(∣∣R̃t

∣∣ > u
)
≤ 2c1 e

3πγc2
2 e−c2u .

Reasoning as in the proof of Corollary A.2, we deduce that the expected value of the left-hand side of (B.7)

converges to the expected value of its right-hand side, that is,

a(te)

(
E
(
Rt

)
− πte

log te

)
→ −π

(
π
τh
τe

+ γ

)
, as t→ +∞. (B.21)

(Recall that E(LG) = 0.) This implies (B.15). We also know that

E
(
R̃2

t

)
→ E

[(
2π2LG +

π2 τh
τe

+ πγ

)2
]
= Var(2π2LG) +

(
π2 τh
τe

+ πγ

)2

, as t→ +∞. (B.22)
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Since

a(te)
2 Var(Rt) = E

(
R̃2

t

)
−
(
a(te)

(
E
(
Rt

)
− πte

log te

))2

as t→ +∞,

(B.16) follows from (B.21) and (B.22). The proof of the proposition is now complete.

B.2.3 Case d = 3

We now deal with the case d = 3 which is completely different from the cases d = 1 and d = 2.

Theorem B.5. We have

Rt −
 κ(3)

1 + κ(3)τhτe

 t
τe√

t
τe
log t

τe

law−→ N
(
0, η2

)
, as t→ +∞, (B.23)

where N
(
0, η2

)
is a centered Gaussian random variable with variance

η2 =
σ2(

1 + κ(3)
τh
τe

)3 , (B.24)

where σ is given in (A.23).

Observe that, when τh → 0, the coefficient of t/τe in (B.23) goes to κ(3), and η goes σ. So, in the limit τh → 0,

Rt behaves in the same way, in law, as Nn if n is replaced by t/τe (see (A.22).

Proof. Let t > 0. Fix u ∈ R and recall that te = t/τe. In view of (B.3) and (B.4) and the normalisation we are

interested in for Rt, we choose k = ⌊uσ
√
te log te + c te⌋, where c is a constant which will be chosen later on, and

get

P

(
Rt − c te

σ
√
te log te

≤ u

)
= P

(
Nn(t)−c te
σ
√
te log te

≤ u

)
. (B.25)

Now we rewrite the random variable that appears in the right-hand side of the previous equation as follows:

Nn(t)− c te

σ
√
te log te

=

√
n(t) log n(t)

te log te

Nn(t)−κ(3)n(t)
σ
√
n(t) log n(t)

+
1

σ

κ(3)n(t)− c te√
te log te

. (B.26)

We have

κ(3)n(t)− c te =

(
κ(3)

(
1− cτh

τe

)
− c

)
te − κ(3)σ

τh
τe

u
√
te log te +O(1).

If the coefficient of te is not equal to 0, then (κ(3)n(t) − c te)/
√
te log te blows up as t → +∞. To get a finite

contribution in the limit, we look for a value of c making this coefficient equal to 0, which works if

c =
κ(3)

1 + κ(3) τhτe
. (B.27)

It is easy to check that

n(t) ∼
t→+∞

(
1− c τh

τe

)
te =

te
1 + κ(3) τhτe

.
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Hence √
((n(t) log n(t))/(te log te) ∼

t→+∞

1√
1 + κ(3) τhτe

.

We now apply Slutsky’s theorem, together with Theorem A.12, to get that the right-hand in (B.26) side converges

in law to
N (0, 1)√
1 + κ(3) τhτe

− κ(3)τh
τe

u

where N (0, 1) is a standard Gaussian random variable. Since the limiting random variable has a density, its

cumulative distribution function is continuous, hence we finally obtain (remember (B.26)):

P

(
Nn(t)−c te
σ
√
te log te

≤ u

)
−−−→
t→+∞

P

 N (0, 1)√
1 + κ(3) τhτe

− κ(3)τh
τe

u ≤ u

 = P (N ′ ≤ u)

where N ′ is a centered Gaussian random variable with variance 1/
(
1 + κ(3) τhτe

)3
. In view of (B.25), this means

that

P

(
Rt − c te

σ
√
te log te

≤ u

)
−−−→
t→+∞

P (N ′ ≤ u)

where c is given in (B.27). Since this is true for an arbitrary u ∈ R, we thus proved that

Rt −
 κ(3)

1 + κ(3)τhτe

te
√
te log te

law−→ σN ′

which concludes the proof, since the random variable σG′ is equal in law to a centered Gaussian random variable

with variance σ2/
(
1 + κ(3) τhτe

)3
.

We finish this section by the following proposition.

Proposition B.6. We have

E(Rt) ∼
t→+∞

 κ(3)

1 + κ(3)τhτe

 t

τe
and Var

 Rt√
t
τe
log t

τe

 −−−−→
t→+∞

η2,

where η is defined in (B.24).

We leave the proof to the reader. It follows the same pattern as before, namely the strategy consists in

proving some uniform integrability, which in turn results from the uniform control of the 4th-order moment of(
Nn−E(Nn)

)
/
√
n log n proved in [5](see Theorem 4).

B.3 Coefficients of variation of Rt

Let σ(Rt) :=
√
Var(Rt), that is, σ(Rt) is the standard deviation of Rt. We now compute the coefficient of variation

defined as CV(d)
t = σ(Rt)/E(Rt) for d = 1, 2, 3.
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In dimension one, we deduce from Proposition B.2

CV
(1)
t ∼

t→+∞

2
√

log 2− 2
π

2
√

2
π

≈ 0.3.

In dimension two, Proposition B.4 implies that

CV
(d2
t ∼

t→+∞

√
2K

log t
τe
− γ − π τh

τe

≈ 1.3

log t
τe

.

Finally, in dimension 3, Proposition B.6 gives

CV
(3)
t ∼

t→+∞

3
√
3κ(3)

√
2π
√
1 + κ(3)

τh
τe

√√√√ log t
τe

t
τe

≈ 0.8√
1 + 0.7 τh

τe

√√√√ log t
τe

t
τe

.

B.4 Adding prey at random on the lattice

The same approach allows to extend the results on the asymptotic behavior of the functional response to the case

where we drop at each site (independently of one another) a prey with probability p. We can follow the same

argument as above and now use (B.29) and (B.30) below.

More precisely, we assume that, at each site, we draw a prey at random with probability p, where p ∈ (0, 1] is

fixed. The prey are drawn independently of one another. Let us count the number of prey N
(p)
n seen by the predator

after n steps, i.e., the number of different sites where there is a prey. Observe that N(1)n = Nn. Moreover, the process(
N
(p)
n

)
n≥0

can be constructed using (Nn)n≥1 as follows. Let (Bi)i∈Zd be independent Bernoulli random variables

with parameter p. The event Bi = 1 corresponds to the presence of a prey at site i. We denote by Yk ∈ Zd the value

of the k-th distinct site visited by the random walk (Xn)n≥0, so that (Y1, . . . , YNn) are the sites successively visited

after n step. The key observation is that the random variables Vk = BYk
also form a sequence of independent

identically distributed Bernoulli random variables with parameter p, which is independent of (Nn)n≥1. Moreover

N(p)n =

Nn∑
k=1

Vk. (B.28)

First, we immediately deduce that

E
(
N(p)n

)
= pE(Nn). (B.29)

Next, letting a
(d)
n = E(Nn), recall that Nn /a

(d)
n converges to 1 with probability one in dimensions d = 2, 3 (see

(A.3), (A.11) and (A.21)). We deduce that

P

(
N
(p)
n

a
(d)
n

−−−−→
n→+∞

p

)
= 1.

Indeed,
N
(p)
n

a
(d)
n

=
Nn

a
(d)
n

(
1

Nn

Nn∑
k=1

Vk

)
.
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The term in front of the average goes to 1 with probability one, and the the average goes almost surely to p by the

strong law of large numbers applied to the Bernoulli random variables Bk (since Nn → +∞ with probability one).

Finally, for the convergence in law, we exploit again the previous results, which can be gathered as :

Nn−a(d)n

b
(d)
n

law−→W(d) (B.30)

where

W(1) = max
0≤s≤1

Bs − min
0≤s≤1

Bs, a(1)n = 0, b(1)n =
√
n,

W(2) = −2π2LG , a(2)n =
πn

log n
, b(2)n =

n

(log n)2
,

W(3) = N (0, 1), a(3)n = κ(3)n, b(3)n = σ
√
n log n,

see (A.9), (A.17), and (A.22).

We use Lévy’s convergence theorem to get convergence in law for N
(p)
n from the one for Nn. More precisely,

(B.28) yields

N(p)n = p Nn +

Nn∑
k=1

(Vk − p).

Since E
(
eλ(Vk−p)

)
= (1− p) e−λp + p eλ(1−p) (λ ∈ C), and conditioning upon Nn, we get

E
(
eit(N

(p)
n −pa(d))

n )/b(d)n

)
= e−itpa(d)

n /b(d)n E

((
(1− p) e−itp/b(d)n + p eit(1−p)/b(d)n

)Nn
eitp Nn /b(d)n

)
= e−itpa(d)

n /b(d)n E
(
e(itp/b

(d)
n +o(1)) Nn

)
= E

(
eitp(Nn −a(d)

n )/b(d)n

)
+ o(1)

−−−−−→
n→+∞

E
(
eitpW

(d)
)

using (B.30). By Lévy’s convergence theorem, this gives

N
(p)
n −p a(d)n

b
(d)
n

law−→ pW(d) .
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2

C Derivation of the coefficient of variation

C.1 Reminder: Distribution of the consumption rate

The distribution of the number of prey consumed by a single predator after a time t is given in App. B. Recall that

the consumption rate (or functional response) after a time t is defined as

F
(d)
t :=

R
(d)
t

t

which gives

F
(d)
t =



p√
τet
W(1)

t + oP

(
1√
t

)
if d = 1

πp
τe ln t/τe

(
1− 1

ln t/τe

(
γ + π τh

τe
+ 2πW(2)

t

))
+ oP

(
( 1
ln t )

2
)

if d = 2

κp
τe+κτh

+ p
√

ln t/τe
tτe(1+κτh/τe)

3 W(3)
t + oP

(√
ln t
t

)
if d = 3

(C.1)

where p is the probability that a site contains a prey, γ ≈ 0.577 is Euler-Mascheroni constant, κ ≈ 0.659 is the

probability that a simple symmetric random walk never returns to the origin in Z3, and W(d)
t =law W(d) are

different random variables depending on dimensionality (see App. B.2 for details): W(1) is the difference between

the max and min position of a 1-dimensional Brownian motion: W(1) = maxs≤1 B(1)s −mins≤1 B(1)s ; W (2) = LG

is the local time of self-intersection of a 2-dimensional Brownian motion; W(3) = N (0, η2) is a centred Gaussian

distribution with a constant variance η2. Finally, oP (ηt) is defined such that for any ε > 0, P (oP (ηt) ≥ εηt) → 0

as t→∞.

The mean, variance and the coefficient of variation of the consumption rate Ft are summarized and illustrated in

the following table and figures:

Table 1: Summary of statistics for the distribution of the consumption rate.

Dimension Expectation Varariance Coefficient of variation

1D 2p
√

2
π

1√
τet

4p2 ln 2−2/π
tτe

√
π
2 ln 2− 1 ≈ 0.298

2D p π/τe
ln t/τe

(
1− γ+τhπ/τe

ln t/τe

)
p2 2Kπ2

τ2e(ln t/τe)4

√
2K

log t
τe

−γ−π
τh
τe

≈ 1.3
log t/τe

3D p κ(3)
τe+κ(3)τh

p2 27κ(3)4

2π2

ln t/τe
tτe(1+κ(3)τh/τe)

3
0.8√

1+0.7 τh
τe

√
log t

τe
t
τe
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Figure C.1: Illustration of the mean and standard deviation of the consumption rate Ft (parameters: t = 103, τe =

1, τh = 0.045). 20



C.2 Coefficient of variation of the consumption rate with between individuals variabil-

ity

Suppose now that the consumption rate is a random variable which depends on two independent sources of ran-

dom variations denoted ω1 and ω2, such that Ft(ω1, ω2) := Rt(ω1, ω2)/t. ω1 is the between-individual variability

for searching and handling , i.e. parameters involved in searching τe(ω1) and handling τh(ω1) for a focal individual

are randomly chosen in distributions depending on ω1. The parameters involved in the searching and handling

times can have any explicit form (not necessarily Gaussian) but with finite mean and variance. ω2 is the variability

due to the foraging stochastic process itself, i.e. the stochastic trajectory of the focal individual when foraging

follows a random distribution W(d)(ω2). The distribution W(d)(ω2) followed by the trajectories directly emerges

from the assumptions of the foraging process, here the simple random walk in dimension d.

As shown in (C.1), when the foraging time t is large, the distribution of the consumption rate in a d-dimension

space after a time t for a focal individual takes the general form

F
(d)
t (ω1, ω2) = m

(d)
t (ω1) + s

(d)
t (ω1)W(d)

t (ω2) + oP

(
s
(d)
t (ω1)

)
, (C.2)

where m
(d)
t (ω1) and s

(d)
t (ω1) are functions which depend on time t, the dimension of space d, and the properties

of individuals given by parameters τh(ω1) and τe(ω1). When these parameters are compactly supported in (0,∞),

the proof of uniform integrability, namely Proposition B.4, can be directly extended, since all bounds are uniform

with respect to parameters. We obtain that the mean and variance of the consumption rate satisfy, for t → ∞

(thereafter notations ω1 and ω2 are dropped for the sake of simplicity):

E
[
F

(d)
t

]
∼ E

[
m

(d)
t

]
+ E

[
s
(d)
t W(d)

]
,

Var
[
F

(d)
t

]
∼ E

[(
m

(d)
t + s

(d)
t W(d)

)2]
− E

[(
m

(d)
t + s

(d)
t W(d)

)]2
∼ E

[(
m

(d)
t

)2]
− E

[(
m

(d)
t

)]2
+ E

[(
s
(d)
t W(d)

)2]
− E

[(
s
(d)
t W(d)

)]2
+ 2

(
E
[(

m
(d)
t s

(d)
t W(d)

)]
− E

[
m

(d)
t

]
E
[
s
(d)
t W(d)

])
.

As the sources of variability ω1 and ω2 are independent, we have

E
[
s
(d)
t W(d)

]
= E

[
s
(d)
t

]
E
[
W(d)

]
,

Var
[
s
(d)
t W(d)

]
= E

[(
s
(d)
t

)2]
Var

[
W(d)

]
+Var

[
s
(d)
t

]
E
[
W(d)

]2
.

In addition, as we have E
[
m

(1)
t

]
= 0 and E

[
W(2)

]
= E

[
W(3)

]
= 0 (Eqs. C.1), the expression of the variance of

the consumption rate F
(d)
t further simplifies to
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Var
[
F

(d)
t

]
∼ E

[(
m

(d)
t

)2]
− E

[(
m

(d)
t

)]2
+ E

[(
s
(d)
t W(d)

)2]
− E

[(
s
(d)
t W(d)

)]2
(C.3)

∼ Var
[
m

(d)
t

]
+Var

[
s
(d)
t W(d)

]
. (C.4)

Finally, a general expression for the coefficient of variation of the consumption rate is

CV
[
F

(d)
t

]
∼

√
Var

[
m

(d)
t

]
+Var

[
s
(d)
t W(d)

]
E
[
m

(d)
t

]
+ E

[
s
(d)
t W(d)

]

∼

√
Var

[
m

(d)
t

]
+ E

[(
s
(d)
t

)2]
Var

[
W(d)

]
+Var

[
s
(d)
t

]
E
[
W(d)

]2
E
[
m

(d)
t

]
+ E

[
s
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which finally gives (Eqs. C.1)
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.

Roughly speaking, the coefficient of variation of the consumption rate F
(d)
t is a function of two variance

components such as: c1 Var [ω1] + c2 Var [ω2] + c3 Var [ω1] Var [ω2], where c1, c2, c3 are constants. This shows

that if the between-individuals variability has a lower order than the variability of the foraging process itself

(Var [ω1] ≪ Var [ω2]), then the coefficient of variation of the consumption rate CV [Ft] should be of the same

order than the coefficient of variation of the foraging process, i.e. of order 1 in 1D, 1/ ln t in 2D, or 1/
√
t in 3D.

In other words, if the main driver of the variation of the consumption rate is the foraging process itself, then the

coefficients of variation estimated from data should be at most of order 1 (or more precisely it should fall within

the range given in Tab. 1). If its order of magnitude is larger than 1 (or more precisely if it falls outside the range

given in Tab. 1), then we could conclude that the main driver of the variation of the consumption rate is the

between-individual variability (i.e. Var [ω1]≫ Var [ω2]).

Two other alternatives are possible, yet less plausible. First, the coefficient of variation estimated from data

could be of order lower than 1, which would mean that both the between-individual variability and the variability

due to the foraging process itself are of order lower than 1. Second, the coefficient of variation estimated from data

could be of order 1 and at the same time the between-individual variability be of order larger than the variability

22



from the foraging process. If so, it would remain to explain how it is possible that the between-individual variability

is such that the coefficient of variation falls exactly in this order of magnitude. Those two alternatives would seem

even less plausible when the estimated coefficients of variation cover a large number of species and experimental

and ecological contexts, as in our case and the datasets we compiled.

Therefore, we finally make two global predictions: either the coefficients of variation estimated from data are

at most of order 1, or they are of order larger than 1. We would then conclude that the main driver of the variation

of the consumption rate is the foraging process in the former case, or that it is external sources of variations, such

as the between-individual variability, in the latter.
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D Stochastic simulations

D.1 Standard setup

We first evaluated the accuracy and the convergence rate of the approximation of CV
(d)
t , the coefficient of variation

of the consumption rate, defined as the number of prey per unit of time consumed by a predator foraging in a

d-dimensional space during a total foraging duration t.

To achieve this, we conducted numerical stochastic simulations of a consumer randomly and symmetrically

walking on a d-dimensional homogeneous square lattice where each node initially contains a prey (Fig. D.1). The

consumer moves from one node to any of the four other adjacent nodes at constant speed v. When a node with

a prey is encountered, the consumer feeds on the prey, which takes a constant handling time τh, and the node is

depleted (we assume there is no regeneration of the prey). If the node was already visited, the consumer randomly

moves to any of the adjacent node without spending handling time on the currently visited node.

Denoting x the initial density of prey in the lattice, and L an arbitrary length unit, the distance between two

prey in the lattice is

y(d)(x) =
L

x1/d − 1
. (D.1)

The time to cover this distance is then given by τ(d)e (x) = y(d)(x)/v. A simulation run (i.e. one trajectory or

realization of the stochastic process) is stopped when the total foraging duration t is reached, time at which the

total number of prey consumed R
(d)
t (x) is counted, and the consumption rate F

(d)
t (x) = R

(d)
t (x)/t is recorded.

104 realizations per initial density x were run with the following parameters values: t = 107, v = 1, τh = 0.1,

L = 1000.

d = 1

y

L

d = 2

y

L

d = 3

L

y

Figure D.1: Illustration of the lattice for d = {1, 2, 3}. The red dot denotes the starting position of the walker. L

is an arbitrary length unit; y is the distance between two nodes; d is the dimension of space.
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D.2 Robustness

We evaluated, under various ecological contexts, the robustness of the analytical approximations of CV
(d)
t , the

coefficient of variations of the consumption rate. We ran numerical stochastic simulations of modified versions of

the standard algorithm described in the previous section. Specifically, we ran simulations with one the four following

additional mechanisms (detailed below): Walk with stochastic length jumps, walk with drift, self-avoiding walk,

and walk in an initially heterogeneous and random repartition of prey on the lattice.

Jumps with random length. The consumer moves in the lattice following a symmetrical random walk with

jumps of length following a truncated power-law distribution P (k) ∼ k−θ with k ∈ [1, kmax], where kmax is the

maximum step-size. Simulations were run for the following parameter values: θ ∈ {2.0, 2.5, 3.0, 3.5}, kmax = 10.

Other parameters were the same than in the standard setup (see previous section).

Walk with drift. The consumer moves on the lattice in a preferred direction, denoted→. The drift parameter

µ ∈ [0, 1] is defined such that, each step, the consumer has the probability

P(jump =′→′) =
1 + (2d− 1)µ

2d

to move in this preferred direction, and a probability

P(jump ̸=′→′) =
1− µ

2d

to move in any of the 2d − 1 remaining directions: ← in 1D, ←, ↓ or ↑ in 2D, ←, ↓ or ↑, +1 level or −1 level in

3D. If µ = 0 the movement is symmetrical and resumes to the standard random walk. If µ = 1, the movement

is unidirectional. Simulations were run with following parameter values, corresponding to an increasing biased

random walk µ ∈ {0.05, 0.1, 0.25, 0.5}.

Self-avoiding walk with a short term memory. The consumer had a short-term memory avoiding the node

it just left.

Walk on a lattice with a random initial repartition of prey. Each node of the lattice initially contains a prey

with probability p. In practice, each time the consumer visited an unvisited node, a Bernoulli trial with probability

p were drawn. If p = 1, the walk resumes to a typical random walk on a uniform graph (as detailed in the previous

section), if p = 0 the lattice is initially empty. By default simulations were run for p = 1/2, unless indicated.
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E Data

N.B.: All data, associated papers (when available) and R scripts are available on the following server: github.

E.1 Dataset 1: FoRAGE database

The first dataset was obtained from the database FoRAGE [15], dowloaded from https://knb.ecoinformatics.org/

in january 2021 (version 12.18.18). The database contains the predator and prey species names, the literature

source, the initial prey density (either per m2 or m3), the consumption rate (the number of prey eaten per day

per predator), the sample size per treatment (i.e. the initial density). The database FoRAGE was partly built by

automatically extracting data from papers’ figures, and partly populated directly from tables (see [15] for details).

We discarded all data where at least one of these information was missing.

There were two categories of available data that were differently used for the calculation of the coefficient of

variation estimations: i) raw data or ii) summary statistics. In the case of i) raw data: because there could have

overlaps between dots in figures (i.e. when different predators fed on the same number of prey), the number of

data could be lower than the sample size announced in the initial paper, in particular when the initial density of

prey was low. We thus curated the database by removing the data with too large uncertainty: we only kept data

where the sample size was ≥ 8 and where the number of available measured consumption rate was at least 80%

of the sample size (i.e. at least 8 data points if the sample size was 10, for example). In addition, when a single

dot was detected from the figure for a given experimental treatment, the FoRAGE’s authors filled the database

with a single value for as many independent replicates as supposed from the methods described in the original

paper (for example, if the sample size was n = 10 but a single dot in a figure was observed, the database was

populated with 10 rows, one for each replicate, with the same number of eaten prey). As a consequence, there was

no variation in the consumption rate in this case but with no certainty about whether it was due to the limit of

data collection itself or because there was indeed no variation. We thus decided to exclude these data when there

was no variation. The coefficients of variation were estimated by calculating the mean and the standard deviation

within initial density directly from raw data. This resulted in 142 estimated coefficients of variation (calculated on

1266 from 15108 initial data after curation), for 19 predator and 17 prey species.

In the case of ii) summary statistics: we only kept data where the mean, the standard error and the sample size

were available, where the sample size was ≥ 8 (to ensure minimal quality for summary statistics estimations and be

consistent with case i) raw data), and where the standard error was > 0 (because there was uncertainty whether it

was true or false zero, and because a standard error equal to 0 was mostly encountered in low densities treatments

suggesting that all prey were eaten in all replicates). We calculated the coefficients of variation directly from the

mean, standard error and sample size, within an initial density, by applying the formula of the definition of the

standard error: σ =
√
n se (where n is the sample size, σ is the standard deviation, and se is the standard error;
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n and se are given in the database). This resulted in 3039 estimated coefficients of variation aftr curation (from

6797 estimated mean and se consumption rates in total in the database), for 126 predator and 104 prey species.

Overall the coefficients of variation calculated from data compiled in the FoRAGE database may contain the

following sources of variations: i) between individuals; ii) within individuals (if different or identical individuals

were used for a given initial density or for different initial densities, information not available from the database);

iii) between environments, as it was not known to what extent the environmental conditions of the experiment

were controlled; iv) experimental and observations errors; v) errors due to the FoRAGE database build itself (in

particular due to the automatic image analysis and data collection); vi) from the foraging process itself.

Fig. E.1 shows the median and quartiles of all the coefficients of variation calculated from the FoRAGE database.

The median is 0.2905. 73.2% of the coefficients of variation lie between 0.1 and 1, and 95.5% lie between 0.01 and

10.

E.2 Dataset 2: Raw data, potentially entangled between- and within- individuals vari-

ations

The datasets were obtained from

• The Dryad deposit (search in january 2021 with keywords: "foraging", "intake", "functional response", "visi-

tation rate", 15 collected datasets).

• The database by [16] available at github.com/stoufferlab/general-functional-responses (25 datasets).

From this database, we extracted and used only datasets where the number of predators was fixed to one,

where there was several measurements at a given density, and a single type of prey; we excluded any dataset

where inconsistencies were detected or with uncertainties; we included datasets where the mean, the sample

size and the standard errors were available, from which we calculated the coefficients of variation.

• Data from direct authors sharing. We directly contacted authors for data sharing (1 dataset from [17].

Overall we computed 602 coefficients of variation from 41 different datasets (from which 20 coefficients of

variation were equal to 0, all in the case of low densities: suggesting that all prey were consumed by all predators,

resulting in a standard deviation equal to 0; As the minimum non-zero value of the coefficient of variation was

≥ 0.029, we discarded zero values). The coefficients of variation calculated from these datasets potentially contains

the following sources of variations: i) between individuals; ii) within individuals (if different or identical individuals

were used for a given initial density or for different initial densities, information not available from the database by

[16], or with uncertainty from datasets downloaded from Dryad, or the dataset shared by the author ); iii) between

environments, as it was not known to what extent the environmental conditions of the experiment were controlled;

iv) experimental and observations errors; v) the foraging process itself.
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Fig. E.1 shows the median and quartiles of all the coefficients of variation calculated from these raw datasets.

The median is 0.408, 87.8% of the coefficients of variation lie between 0.1 and 1, and 100% lie between 0.01 and 10.

List of references: Data obtained directly from the authors: [17]. Data obtained from Dryad deposit: [18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Data from the database: [16].

E.3 Dataset 3: Raw data, accounting for within individuals variations

We collected three datasets directly from the authors where consumption rates were measured several times for

the same individuals. One dataset were obtained in natural conditions [33], in semi-natural conditions [34], or

in controlled conditions [35]. We directly calculated coefficients of variation within individuals from the raw

data shared by [33] and [35]. The coefficients of variation were calculated by the authors themselves and shared

with us in the case of the Imperial shag [34]. It resulted in 229 estimations of within-individuals coefficients of

variation. In natural and semi-natural conditions, the sources of possible variations were: i) within individuals; ii)

the environment (including uncontrolled prey densities); iii) experimental errors, iv) the foraging process itself.

In the controlled conditions, the sources of possible variations were: i) within individuals; ii) experimental errors;

iii) the foraging process itself. In the case of the crayfish experiments [35], we could calculate the coefficients of

variation within individuals within and across densities as the same individuals were used several times for a given

density, and for different densities.

Fig. E.1 shows the median and quartiles of all the coefficients of variation calculated from these datasets. The

median is 0.273, 85.1% of the coefficients of variation lie between 0.1 and 1, and 99.1% lie between 0.01 and 10.
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Figure E.1: Boxplot of the coefficients of variation of the consumption rate of prey per single predator calculated

from different datasets (see text for details).
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