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Spectral-based detection of chromatin loops
in multiplexed super-resolution FISH data

Michaël Liefsoens 1,2,3 , Timothy Földes2,4 & Maria Barbi 2

Involved in mitotic condensation, interaction of transcriptional regulatory
elements and isolation of structural domains, loop formation has become a
paradigm in the deciphering of chromatin architecture and its functional role.
Despite the emergence of increasingly powerful genome visualization tech-
niques, the high variability in cell populations and the randomness of con-
formations still make loop detection a challenge. We introduce an approach
for determining the presence and frequency of loops in a collection of
experimental conformations obtained by multiplexed super-resolution ima-
ging. Based on a spectral approach, in conjunction with neural networks, this
method offers a powerful tool to detect loops in large experimental data sets,
both at the population and single-cell levels. The method’s performance is
confirmed on experimental FISH data where Hi-C and other loop detection
results are available. The method is then applied to recently published
experimental data, where it provides a detailed and statistically quantified
description of the global architecture of the chromosomal region under study.

Loop formation is central to understanding chromatin architecture
and its functional role. During mitosis, chromatin adopts a compact
structure composed of loops, forming a rod-like configuration1. SMC
(structural maintenance of chromosome) proteins like condensin and
cohesin play a pivotal role in organizing these loops2. Recent research
reveals that loop formation, mediated by proteins such as CCCTC-
binding factor (CTCF) and cohesin, is also critical in interphase for
gene regulation by facilitating interactions between distant enhancers
and promoters in mammals3,4, Drosophila5, and yeast6. The identifica-
tion of chromatin loops has become central to unraveling gene reg-
ulation complexities and spatial genome organization7. Furthermore,
cohesin-dependent loops are involved in the segmentation of inter-
phase chromosomes into topologically associating domains (TADs),
defined as sub-Mb self-interacting regions, often delimited by CTCF-
binding. Depletion of CTCF disrupts both TAD loops and insulation of
neighboring TADs8. Key questions arise regarding loop formation
mechanisms, their prevalence, determinants of their position and
sizes, and biological functions.

The loop extrusion mechanism9 performed by most SMC family
proteins can explain loop formation. In particular, in interphase,

cohesins perform loop extrusion by binding to DNA as dimers, after
which they act as motors, sliding in opposite directions and enlarging
the loop by pulling along the chromatin fiber10. Looping by SMC
complexes is observed in various cell types, includingmammalian and
bacterial cells11. As insulator proteins, CTCF and cohesin regulate
chromatin loop stability, probably as a ’dynamic complex’ that fre-
quently breaks and reforms throughout the cell cycle12.

Visualizing the dynamics of loop extrusion in single living cells
remains challenging. Fluorescence microscopy tracking two loop
anchors has been explored7,13, but requires prior anchor position
knowledge and, thus, a strategy to identify the loop. In high-
throughput genomic techniques like Hi-C14, stable loops manifest as
discrete points in contact maps. Data analysis tools detecting DNA
loops in contact maps, based on contact count enrichment or specific
patterns, are available15–17.

Hi-C methods, however, lack the ability to reconstruct the poly-
mer’s spatial trajectory, only quantifying contact frequencies between
monomers. These limitations might be overcome by combining
fluorescence in situ hybridization (FISH) and super-resolution micro-
scopy to achieve high-resolution imaging of individual genomic
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regions (Hi-M18, ORCA19, OligoFISSEQ20, MERFISH21,22). These are high-
throughput, high-resolution, microscopy-based technologies that, for
the first time, allow the visualization of the spatial trajectory of the
polymer by sequential labeling and imagingmultiple loci along a single
chromosome region, in fixed cells. This results in collections of con-
figurations, sampled with a resolution up to 30 kb, which are, for the
moment, difficult to fully exploit, especially to the aim of loop deter-
mination. The most frequent approaches are based on the recon-
struction of distance maps, then interpreted as contact maps21,23,24.
However, this approach restricts the information to a level already
obtainable with previous techniques.

Innovative methods are clearly needed to fully exploit this new
data. In this study, we address the possibility of characterizing chro-
matin loops through an alternative approach based on the spectral
representation of chain configurations, thereby leveraging the whole
information of chain 3D spatial arrangement offered by sequential
FISH methods.

Loops represent a distinctive aspect of chromosome folding,
whichmust be consideredwithin the broader context of the stochastic
chromatin architecture. At a macroscopic level, heterochromatin is
denser and transcriptionally repressed, while euchromatin is lighter
and active, akin to polymers adopting globule and coil conformations,
respectively25–31. More specifically, super-resolution imaging of epige-
netic domains in Drosophila28 seems to indicate that their structure is
compatible with the behavior of a self-attracting polymer close to the
coil-globule transition30. This transition, governed by the monomer-
monomer interaction parameter ε, manifests through state-dependent
scaling properties of the mean squared radius of gyration 〈Rg〉 or,
equivalently, the end-to-end distance 〈R2〉 as a function of monomer
number N. Scaling laws, thus, enable the identification of the folding
state. Nevertheless, this method necessitates the comparison of
polymers with varying lengths, which may not always be feasible.

In prior work31, we developed an approach for analyzing fluor-
escent imaging data that overcomes this obstacle. Our method
employs spectral analysis of configurations, focusing on long-distance
features. Specifically, we apply a discrete cosine transform (DCT) to
spatial coordinates, i.e. performing aRousemodedecomposition, and,
by taking the mean squared amplitudes of the DCT coefficients Xp, we

construct a power spectral density (PSD) as hX2
pi= hbEpi. For low ε, in the

coil state, PSDs follow the expected scaling hbEpi / p�ð1 + 2νÞ, where the
exponent ν ≈ 0.588 is the Flory exponent32: this scaling law is indeed
the spectral counterpart of Flory’s scaling, 〈R2〉 ~ N2ν. However, as ε
increases above a critical value εθ(N), the strong attraction induces a
second-order phase transition to curled-up conformations, called
globules31,33,34. Globules have a roughly spherical volume and uniform
density, yielding the typical scaling 〈R2〉 ∝ N2/3. Now, this state has a
characteristic spectrum that becomes constant for the smallest p
modes, making it possible to use the PSD to characterize the coil-
globule state of a polymer by identifying its low p spectral scaling31.

These findings emphasize the significance of examining large-
scale features, namely the first spectral modes, when probing overall
polymer organization. Theymotivate further exploration to determine
if this spectral approach can detect loops in chromosomal regions. In
this work, we develop a spectral-based technique to detect loops in
chromatin conformations acquired by multiplexed sequential FISH
data. Additionally, we construct a neural network (NN) to segregate
looped and non-looped conformations at the single-cell level.

Results
Power spectral density differentiates between looped and non-
looped fBm-based polymer models
As a first step, we extend the PSD analysis to circular polymers, to
examine the impact of looping on the spectrum.We employ aminimal,
yet instructive, model of polymer configurations represented as 3D

correlated random walks γn, using fractional Brownian motion (fBm).
The degree of correlation of the fBm is determined by the Hurst
exponent H:

Cγγði, jÞ=
1
2
σ2
γði2H + j2H � ji� jj2HÞ, ð1Þ

where σ2
γ = hγ21 i is the variance of the first step. For our theoretical

description, we consider polymer conformations with a uniformHurst
exponentH. Following ref. 35 and as detailed in Supplementary Note 1,
we define a looped fBm as

λn = γn � BðHÞ
n R : ð2Þ

here, R = γN−γ1 represents the fBm end-to-end vector and
BðHÞ
n =N�2H Cγγðn,NÞ is the appropriate bridge function needed to

connect the two ends of the fBm to construct an fBm loop.
For our simplified fBmmodel, the PSD of the looped chain can be

obtained analytically. Thanks to the linearity of the DCT, the difference
between looped and linear (i.e. non-looped) fBm is indeed simply the
DCT of the bridge function BðHÞ

n R. The symmetry properties of this
function then ensure that (i) the even modes for looped fBm remain
asymptotically unchanged compared to those of the corresponding
non-looped; and (ii) the odd modes systematically decrease, with the
extent of reduction diminishing as the mode number p increases.
These results are proven in Supplementary Note 1. Additionally, we
demonstrate that the latter property is a general consequence of the
condition that the first and lastmonomer coincide, and thus applies to
any looped conformation.

It’s interesting to observe that the difference between looped and
non-looped configurations primarily impacts the first modes, empha-
sizing the pivotal role of large-scale features in defining polymer
structure. The behavior of the PSD for non-looped and looped fBm
polymer configurations is visually depicted in Fig. 1a.

Log-spectral ratio Λ(x) as an effective observable for loops in
fBm signals
These spectral features offer a method to distinguish between looped
and non-looped configurations. Consider indeed a statistical ensemble
of 3D signal realizations xn. We introduce the log-spectral ratio Λ(xn)
for xn, defined as the logarithmic difference between the observed
amplitude of the firstmode and its amplitude predicted on the basis of
a power-law extrapolation from the second and fourth modes. Some
manipulation (detailed in Supplementary Note 2) yields the following
expression for the log-spectral ratio:

ΛðxnÞ= log
hbE2i

2

hbE1ihbE4i

 !
: ð3Þ

Fig. 1a provides an illustration of the definition of Λ(xn) based on the
PSD of linear and looped fBm related by Equation (2). Based on our
fBm model, we can demonstrate that the log-spectral ratio for a non-
looped random walk scales as N−2 for N→∞. In contrast, for a looped
fBm, it converges to a finite limit of approximately 1.66, which clearly
distinguishes the two configurations (see Supplementary Note 2).

For finite chains, we determine a discrimination metric by com-
puting the absolute difference between the spectra of looped and non-
looped random walks, and then normalizing it by the same difference
for N at infinity (=1.66). This results in a discriminability level ranging
between 0 and 1. This quantity can be calculated analytically and con-
verges remarkably fast: havingN >6 is sufficient to achieve a 90percent
discriminability level; N > 20 guarantees a 99 percent discrimin-
ability level.

To ensure the robustness and applicability of Λ(xn) for signals
with varying degrees of correlation, we calculate and display in Fig. 1b
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the PSD of fBm signals with different Hurst exponents H. Clearly, the
behavior theoretically described above and shown in Fig. 1a is always
observed, regardless of the value of H.

The log-spectral ratio Λ(xn) proves, therefore, to be a robust
observable that allows us to determine whether a polymer is in a linear
or looped configuration, independently of its degree of correlation.

Fig. 1 | Principle of the log-spectral ratio and Λ-plot exemplified on a simulated
single loop dataset. a Theoretical PSD for an H =0.5 fBm γn (Equation (S8), blue
curve) and the corresponding looped λn (Equation (S9), orange curve). Snapshots
show one specific conformation before (upper) and after (lower) looping bymeans
of Equation (2). The parameter Λ(x) is the difference between the observed first
mode (here for the looped conformations) and the expected first mode extra-
polated from the second and fourth modes (see black dotted line and circles).
b Estimated PSD for looped (dashed lines) and non-looped (solid lines) fBm signals
with varying Hurst exponents (H =0.3, 0.35, …0.75, from yellow to purple), each
from samples of 2000 signals of length N = 512. c Estimated PSD of self-interacting
looped (dashed lines) and non-looped (solid lines) polymers for
ε =0,0.1, 0.2, 0.3, 0.4,0.49 (fromyellow topurple). Each spectrum isobtained from

samples of 20000 equilibrium conformations for a polymer sizeN = 512, simulated
by the on-latticeMonte Carlo approach. d Λ-plot for an ensemble of 2000 samples
of a (randomwalk) polymerwithN = 300monomers, all containing an internal loop
of size 100 in the middle (from index 100 to 200). Different rows focus on distinct
sub-regions of the same polymer: whole polymer; first third; inner loop; first two
thirds (including the loop). The first column displays a mean polymer configura-
tion, (similar to the ShRec3D algorithm45, see Methods). Sub-regions are colored
accordingly. The second column shows the distance map of the polymer, where
coloring focus on the selected region. The third column shows the Λ-plot for this
polymer ensemble, with colored triangles highlighting regions corresponding to
the selected sub-chain. The spectrum for the selected sub-region is shown in
column 4.
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However, our aim is to investigate the presence of loops in chromo-
somes. This implies two additional issues, which will be addressed in
the following sections. First, as discussed in the introduction, chro-
matin domains are expected to be near the coil-globule transition30

and exhibit more or less collapsed, globule-like conformations,
depending on epigenetics and transcription activity28,29. Therefore, it is
crucial to verify whether the log-spectral ratio remains reliable across
the coil-globule transition. Second, chromatin loops can vary in size
and position along the chromosome. Consequently, we need to adapt
our approach to this more general case.

Λ detects loops across the simulated coil-globule transition
To validate the log-spectral ratio approach for identifying loop struc-
tures in polymeric molecules, regardless of their state along the coil-
globule transition, we performed Monte Carlo simulations of a self-
avoiding walk on a cubic lattice with an energy gain of −ε (in units of
kBT) associatedwith nearest-neighbor “contact”, simulatingmonomer-
monomer effective attraction. Linear and circular polymers were
simulated separately, with reptation moves in the former case30 and
Crankshaft rotation, wedge flip, and kink-translocation techniques36 in
the latter, which enhanced simulation efficiency. For the circular
polymer, the initial configuration was obtained by the growing SAW’s
algorithm outlined in ref.36.

Spectra were then estimated and compared for linear and looped
polymers across a range of ε values from 0 to 0.5. As shown in Fig. 1c,
the difference between the looped and non-looped configurations of
the simulated polymers reproduces the expected behavior. Conse-
quently, Λ(x) can be defined and used in the same way as theoretically
predicted.

Efficient identification of internal loops with the Λ-plot
We can introduce an internal loop within a random walk by extending
the procedure outlined in Eq. (2) to an inner segment, which gen-
eralizes the definition of the bridge function. This enables us to gen-
erate sets of fBm-based polymer configurations {xn} that incorporate
one ormore internal loops. These loops are defined by their positions ι
and lengths η, meaning that monomers ι − η/2 and ι + η/2 are brought
together.

We used these synthetic configurations with internal loops to
develop and validate a loop-detection technique, named the Λ-plot
and based on the computation of the log-spectral ratio. For each set of
N-length signals {xn}, we consider all the sub-signals for any length
η and any center ι, defined as {x(ι, η)} = (xι−η/2…xι+η/2−1). We calculate the
log-spectral ratio Λ(x(ι, η)) for each of these sub-signals and represent
the results on a color-scale on the plane (ι, η). In Fig. 1d, we provide
typical examples of the expected outcomes when identifying a single
inner loop, and compare these results with corresponding distance
maps and relevant spectra of sub-polymers.

As showcased in Fig. 1d, Λ-plots show distinct maxima indicating
the presence of a loop. A careful inspection reveals that the ι coordi-
nate of these maxima precisely corresponds to the midpoint of the
loop, while the η coordinate is systematically slightly larger than the
actual loop size. Thanks to our straightforward loopmodeling, we can
derive analytical results, as outlined in Supplementary Note 3.

For a given fBm signal containing an internal loop centered at ι0
with a size of θ, the Λ-plot restricted to the ι = ι0 line is indeed given by
Equation (S10). This allows a precise determination of the loop posi-
tion and size starting from the detected maxima (ι, η). As mentioned
earlier, wehave ι0 = ι, and fromEquation (S10), the loop size θ is related
to η by θ = η/μ0, where μ0 ≈ 1.34767 is a universal constant. Finally, in a
typical experiment, only a fraction of the configurations will exhibit a
specific loop. In SupplementaryNote 4,wederive an expression for the
log-spectral ratio Λ (for fixed ι = ι0) for mixed populations, and show
that the position of the maximum is independent of p, while its
amplitude depends on it.

With these results, we can formulate amethod for detecting loops
in signals. Given a set of signals {xn} containing internal loops, to
estimate their position and size, follow these steps:
1. Calculate the estimated Λ-plot from the available samples;
2. Find the position (ι = ι0, η) of any maximum;
3. Divide η by μ0 ≈ 1.34767 to find the approximate size of the

corresponding loop;
4. The estimated loop falls then betweenmonomers ι0 − η/(2μ0) and

ι0 + η/(2μ0).

Note that, taken a point (ι, η) on the Λ-plot, the triangle of which it
is the vertex corresponds to the Λ-plot of the region [η − ι/2, η + ι/2], as
shown by the multiple examples given in Fig. 1d.

Λ-plot loop-detection benchmark
To assess the performance of theΛ-plotmethod onexperimental data,
we first apply it to selected regions ofmouse embryonic stem cells, for
which Hi-C37 and DNA seqFISH+38 are available. Our comparison
involves two aspects. First, we assess our results against the identifi-
cation of Hi-C data loops using the HiCCUPS method39, as conducted
by Lee et al. Second, we compare our findings with loops detected
using the SnapFISH method they introduced based on DNA seqFISH+
data. We analyzed this publicly available DNA seqFISH+ dataset where
the authors selected one region from each chromosome, with region
length ranging from 1.5Mb to ~2Mb. Among the 19 chromosomes, we
then focus on eight of them where HiCCUPS detected loops are also
considered in ref. 24, so to compare our findings with both HiCCUPS
and snapFISH outputs. To identify potential loops, we automatically
detect Λ-plot maxima, and then filter maxima above a certain thresh-
old, followed by a width-based filtering (see Methods, Supplemen-
tary Note 6).

The detection filtering parameters, listed in Supplementary
Table 1, can be adjusted to set the detection rate. Here, we have
intentionally chosen them to be less restrictive. With this choice, we
identify 22 out of 35 loops previously identified by HiCCUPS, indi-
cating the detection of 7 additional loops compared to snapFISH on
the same dataset, as detailed in Table 1. All the details and plots of
these benchmark results are given in Supplementary Note 7. Our
method, thanks to the fact that it analyzes the entire conformation
between two loci, enables the detection of more loops, some of
which would be impossible to detect by a simple evaluation of the
end-to-end distance between loop ends. However, it’s important to
note that our method is prone to localization errors in regions with
complex architectures, where, for example, several loops are nested.
All in all, this demonstrates the usefulness of the Λ-plot analysis in
identifying loops in FISH data, motivating us to continue our
investigation.

Application to an independent multiplexed FISH dataset
We then apply our approach to MERFISH datasets by Bintu et al.,
acquired fromHCT116 cells of human chromosome 2121. The examined
genomic region hosts the RUNX1 gene, known for encoding a highly
conserved transcription factor featuring a complex regulatory
mechanism40. The region spans from 34.6Mb to 37.1Mb and is sam-
pled at a genomic resolution of 30 kb. The 3D position of the 30 kb
segment’s center of mass is determined as the center of a Gaussian
fit of the fluorescence spot imaged using diffraction-limited
microscopy21.

Two variants were analyzed: an untreated, wild-type variant (WT),
and an auxin-treated variant. Cohesin depletion, resulting from auxin
treatment, leads to the removal of TADs at the population level3,
without altering the occurrence of TAD-like structures in individual
cells. However, it does disrupt the typical positioning of domain
boundaries, often associated with CTCF-binding sites, which explains
the loss of TADs at the population level21.
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In Fig. 2a, we present theΛ-plots we obtained for the two datasets,
along with the identified maxima. For comparison, the median dis-
tance maps for the same datasets are shown in Fig. 2b, and the cor-
responding Hi-Cmaps3 in Fig. 2c. In the distancemap forWT data, two
large TADs are evident, along with numerous sub-TADs. However,
identifying specific loops is challenging. In the auxin-treated variant,
the (sub-)TADs are less pronounced, and a significant loss of structural
detail is observed at the ensemble average level. No distinct loop can
be identified from the distance map.

The log-spectral ratio detects numerous loops in the conforma-
tions, listed in Table 2. Specifically, we detected 14 loops in the WT
(labeled 1–14) and 8 loops in the auxin-treated variant (labeled A1 to
A8). In the wild-type cells, loop extremities align with regions rich in
RAD21, a cohesin protein complex component, indicating they are
likely due to cohesin-mediated loop extrusion halting at a physical
barrier, likely CTCF (Figs. 2 and 3f).

In auxin-treated cells, some cohesins remain (as shown by the
RAD21 peaks) and may account for certain loops, namely A2 and A3
(Figs. 2 and 3g). Other loops seem, however, unrelated to cohesin-
mediated loop extrusion.We then exploredwhether these loops could
be due to enhancer-promoter or promoter-promoter interactions,
known to persist despite cohesin loss41 and be invisible in regular Hi-C
maps42. Using a 30 kb threshold for colocalization with ChIP-seq epi-
genetic peaks associated with active enhancers and promoters, we
found three potential enhancer-promoter loops and two potential
promoter-promoter loops (Supplementary Fig. 5). The remaining loops
had ends that colocalized with neither epigenetic marks (see Supple-
mentaryNotes 8 formore details). Yet, given the genomic resolution of
the data and the uncertainty as to the location of the loops, we believe
that the definite ascription of a biological origin for loops detected in
the cohesin-depleted cells requires further validation against ultra-
high-resolution 3C data, such as Micro-C, which, to the best of our
knowledge, are not available for the specific cell line under study.

Examining the relative positions of loops, with the help of the
graphical representation in Fig. 3f, g, is also interesting. First of all, we
can notice a rather complex region, withmany overlapping loops. This
observation is in agreement with the complexity of the corresponding
Hi-C map. Some loops overlap or are included within larger loops.
Notably, some loops are closely adjacent to each other, such as loops
A4 and A8 or loops 12 and 14, forming what appears to be the two
“petals" of a flower-like shape. It’s interesting to note that ref. 5 sug-
gests that flower-like looping is a fundamental mechanism in chro-
matin folding, leading to hubs or clusters of interacting cis-regulatory
modules including enhancers and promoters. This shows that our

algorithm is capable of detecting such structures. However, it’s
important to confirm that these loops are present simultaneously in
unique configurations, rather than being a result of averaging across
the entire dataset. To address this question, we need to determine in
which specific samples a detected loop is present. Thiswill be explored
in the next subsection.

Using neural networks to segregate looped and non-looped
configurations
To extend and enhance the log-spectral method, it is of particular
interest to be able to sort, for each specific loop, the looped and non-
looped conformations from the dataset, enabling further analysis of
separate datasets. A naive attempt would be to simply rely on the
distance between the two extremities of the identified loop. However,
it is important to notice that the position of each probe is determined
by fitting aGaussian to the spot representing the entire 30 kb segment.
While this method accurately determines the segment’s center of
mass, the distance between the specific loci that interact at the loop
ends is provided with a limited resolution, of the order of the standard
deviationof theGaussian spot (see Fig. 5). Consequently,while two loci
may indeed be in direct physical contact, the center of mass of the
30 kb regions containing them might appear distant in the processed
data. This resolution effect is illustrated in the original publication by
Bintu et al. (see Fig. 1C in ref. 21), where 3D STORM images of two pairs
of chromatin segments show different degrees of overlap but similar
distances between their center positions, of the order of 300nm.
Moreover, this issue was encountered in a recent analysis of the
dynamics of CTCF sites, which required sophisticated inference-based
analysis to establish contacts7. We show in Supplementary Note 9 and
particularly Supplementary Fig. 7, based on simulations, that the
probe-probe distance is indeed, rather counter-intuitively, a very bad
discriminant for looped conformations.

To overcome this difficulty, we developed a NN approach. Once a
loop is identified by locating a maximum (ι, η) in the Λ-plot of FISH
data, we train a NN to recognize loops of size η/μ0 in a chain of size η
(see Equation (S11)). To this aim, we generate synthetic data, namely
artificial looped and non-looped random walks at a scale of 1 kb, and
then coarse-grained by taking the center of mass of consecutive 30 kb
segments in order to mimic the experimental procedure. Then, the
trained NN is applied to each individual experimental conformation to
ascertain whether it contains a loop at the specified position. This, in
turn, partitions the dataset into two distinct sub-populations: one with
looped configurations and the other with non-looped configurations.
In Methods, we give more details about the NN approach and the
training data, while in Supplementary Note 9 we assess its efficiency
and robustness by applying it on artificial configuration ensembles of
varying parameters.

For illustration, in Fig. 4, we present a comparison of average
distance maps and mean configuration reconstructions for the whole
auxin-treated dataset and those derived from its sub-populations - one
with loop A4 and the other without, as determined by our NN
approach. Strikingly, in the looped sub-population distance map, a
local minimum appears at the position of the predicted loop. Corre-
spondingly, the Λ-plots show a strong enhancement of the A4 max-
imum in the looped population, where it overcomes all other maxima,
while it is clearly suppressed in the plot for the non-loopedpopulation.
While the loop extremities are closer in the looped population (see
Fig. 4), the mean end-to-end distance remains clearly as large as the
standard deviation of the Gaussian spot, and therefore, too large to be
used as a discriminating parameter.

End-to-end distance distributions for looped and non-looped
populations overlap
Thanks to NN, the distance between the two extremities of the loop
(for the experimental datasets) can be investigated at the sub-

Table 1 | Comparison between Λ plot loop detections and
HiCCUPS and snapFISH loop detections

Chrm. # Total Λ loop
detections

Matching Λ loops/
HiCCUPS loops

Matching SnapFISH
loops/HiC-
CUPS loops

2 11 2/4 1/4

3 5+(9) 3/4 4/4

6 12 6/7 4/7

9 5 2/4 0/4

10 7 2/4 0/4

11 3 0/1 1/1

14 4 3/7 1/7

16 8 4/4 4/4

Tot. 55+(9) 22/35 15/35

Wecompare thedetections obtainedbyourapproach to thosediscussedbyLee et al.24. For each
of the considered chromosomes the total number of loops detected by the Λ-plot, and the
fraction of HiCCUPS loops detected respectively by Λ-plot and snapFISH are given. Numbers in
brackets correspond false positives due to the presence of missing lines in the dataset (see
Supplementary Note 7).
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population level. The distributions of end-to-end distances are shown
in Fig. 3a, b. As predicted, there is a significant overlap in the end-to-
end distance distributions between the two sub-populations. Based on
simulations, wewere able to show that the overlap is largely due to the
resolution effect previously discussed.

Despite their inefficiency at the single conformation level, the
distributions in Fig. 3a, b reveal some variations between looped and
non-looped populations for both the wild-type and auxin-treated
cases, with a systematically shorter mean distance in looped popula-
tions with respect to non-looped ones.

More quantitatively, the mean end-to-end distance is on average
1.8 times larger in thenon-looped than in the loopedpopulation for the
WTdataset, and 2.6 larger for the auxin-treated dataset.When the non-
looped conformations only are taken into account, all the mean end-
to-end distances (within the loop region) fit well to a power-law with
slightly varying exponents (see Table 3), as expected for linear
polymers.

Note that the presence of two coexisting phases for certain
positions of the same data recently suggested by Remini et al.43 can be
justified by this result, and indeed the distributions obtained here can

Fig. 2 | Λ-plot based loop-detection on an HCT116 human chromosome region,
wildtype and auxin-treated.The Λ-plots (a), distancemaps (b), andHi-Cmaps3 (c)
for the experimental data of Bintu et al. for both the wild-type variant (left) and an
auxin-treated variant (right). a Purple lines link the positions of Λ maxima and
detected loops. In each plot, purple circles indicate the location of loops detected

by the Λ-plot procedure. The symbol linewidth is proportional to the corre-
sponding maximum Λ intensity. Each detectedmaximum is given a loop id. On the
bottom distance and Hi-C plots, green diamonds represent Rad21 main ChIP-seq
peaks3.

Article https://doi.org/10.1038/s41467-024-51650-w

Nature Communications |         (2024) 15:7670 6

www.nature.com/naturecommunications


be fitted, albeit not perfectly, by the theoretical expressions they
proposed.

Correlation between nested loops detected
The detection of loops at the single conformation level also enables us
to investigate the relationships between loops, specifically the joint
probabilities of each loop pair. In Fig. 3c, d, we present the Pearson
correlations for the loops detected at the single-cell level in the
experimental data.

In both datasets, the majority of loops show positive correlations
with all other loops. No significant anti-correlations appear. The for-
mer alignswith thefinding byBintu et al. that two loci A andB aremore
likely to be in contact if locus B is in contact with any other locus C
located upstream of B21. We extend this observation to suggest that
loci A and B have a higher contact probability if any other loci C and D
are in contact. Intriguingly, this effect is stronger in the auxin-treated
cells, which was also noted by Bintu et al. for 3-point cooperation. In
this dataset, due to the absence of cohesin contacts, the proportion of
contacts due to random chain fluctuations is expected to be pro-
portionallyhigher than inWT. Thehigher pairwise correlation between
loops in the absence of cohesin may, therefore, be due to a general
physical feature of chromatin architecture, such as large-scale con-
formational changes, whose effect may be masked in WT due to the
superposing effect of cohesin. This aligns with the view of chromatin
being at the critical point of the coil-globule phase transition, where
large-scale density fluctuations are expected, as already suggested27,30.

Both in theWTandauxin-treated samples, some looppairs appear
more correlated than the average. Notably, (5, 7), (6, 7), (10, 11), (12, 13),
(13, 14); and (A1, A2), (A4, A5), (A4, A6), (A5, A6), (A6, A8), (A7, A8), all
exhibit correlations larger than 0.15.

In the auxin-treated case, at least one group of three mutually
correlated loops, (A4, A5, A6), exists. The probability of observing at
least one of them in the total dataset is here 54%, of which 6% of the
coexistence of the three of them and 18% of the coexistence of two of
them. However, their relative organization is hard to interpret.

More generally, it is challenging to find a common origin for the
observed correlations. In our search for a common rationale, we have
carried out various statistical analyses. These analyses revealed a
consistent feature among all significantly correlated loop pairs: as

shown in Fig. 3e, for both datasets and for almost all correlated loop
pairs, one loop is always contained within the other, and their extre-
mities are either coincident or very close (≤ 2 probes). If we accept to
say that loopA8 is included in A6 (within the 2 probes) and that the left
ends of loop A5 and A6 are close enough (distance = 4 probes), this is
indeed the case for all the WT and auxin-treated loops mentioned
above, with the unique exception of (A4, A6).

Flower-like loop architecture
A particular architectural feature is showcased by loops 12, 13, and 14.
Loops 12 and 14 seem to combine together to form loop 13, like two
petals in a flower-like shape. Indeed, loops 12 and 13, and loops 13 and
14 are positively correlated, while loops 12 and 14 are not. More
explicitly, when loop 13 is present (58% of the total), it is associated
with 12 or 14 in about 48% of cases, but only 17% with both of them.
Also, while the presence of loop 12 or 14 is up to 72% of the total, they
only coexist in 21% of the cases, and only 4% of the time in the absence
of loop 13. This suggests a more complex organization than a flower
shape, for which the simultaneity of loops 12 and 13 will necessarily
bring the three ends close to each other and, therefore, imply the
presence of 14. In fact, loops 12 and 14 overlap in part in the middle of
loop 13. One compelling explanation is the existence of 2 additional
loops within loop 13 that haven’t been detected. One of these forms a
flower-like structurewith loop 12 (designated as 12’), and theotherwith
loop 14 (designated as 14’). Both pairs 12 and 12’, and 14 and 14’
cooperate, independently from one another, to form loop 13. This
claim is coherent with the landscape of RAD21 peaks within loop 13
(see Fig. 3f), suggesting an intricate loop structure that can’t be
resolved at this resolution. Moreover, considering the previously
mentioned resolution effect, it is clear that loop coordinates at the
30 kb scale are not necessarily a clear indication for common
extremities.

Insights into chromatin local architecture
We can use the analogy of fBm to gain further insights into chromatin
architecture features in TADs. Let’s consider the two large TADs in
the wild-type (chr21:346000000:36100000, region (1), and
chr21:36100000:37100000, region (2)) and the entire region in the
auxin-treated dataset (Region 3) as a potential third TAD. If we treat

Table 2 | Specifics of the loops detected in wild-type and auxin-treated HCT116 regions

Loop id 1 2 3 4 5 6 7

Loop range (probe #) 3–9 7–15 5–29 11–27 8–52 23–43 21–51

Starting point (Mb) 34.69 34.81 34.75 34.93 34.84 35.29 35.23

Ending point (Mb) 34.87 35.05 35.47 35.41 36.16 35.89 36.13

Loop length (Mb) 0.18 0.24 0.72 0.48 1.32 0.60 0.90

Frequency (%) 60 ± 10 39 ± 3 65 ± 4 67 ± 4 53 ± 4 61 ± 5 44 ± 3

Loop id 8 9 10 11 12 13 14

Loop range (probe #) 40–44 38–48 49–57 48–60 58–68 58–78 64–78

Starting point (Mb) 35.80 35.74 36.07 36.04 36.34 36.34 36.52

Ending point (Mb) 35.92 36.04 36.31 36.40 36.64 36.94 36.94

Loop length (Mb) 0.12 0.30 0.24 0.36 0.30 0.60 0.42

Frequency (%) 56 ± 8 35 ± 2 41 ± 3 49 ± 4 34 ± 2 58 ± 5 59 ± 4

Loop id A1 A2 A3 A4 A5 A6 A7 A8

Loop range (probe #) 6–18 4–24 15–47 38–64 48–62 44–76 58–70 56–78

Starting point (Mb) 34.78 34.72 35.05 35.74 36.04 35.92 36.34 36.28

Ending point (Mb) 35.14 35.32 36.01 36.52 36.46 36.88 36.70 36.94

Loop length (Mb) 0.36 0.60 0.96 0.78 0.42 0.96 0.36 0.66

Frequency (%) 41 ± 3 36 ± 3 32 ± 2 25 ± 2 33 ± 3 27 ± 2 39 ± 4 34 ± 3

Inferred loop ranges ι0 ± η/(2μ0), genomic coordinates, and estimated proportions of looped conformations (Frequency) as inferred by neural networks (see main text), for the loops identified in
Fig. 2a in WT and auxin-treated samples.
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these regions as non-looped, we can fit the internal end-to-end dis-
tance 〈R2(s)〉 with a power-law f(s) =A(s/30 kb)2H, for each of these
regions. The fitted exponentsH are given in the first row of Table 3. It’s
worth noting that these three values are quite close to each other, and
they are not significantly distant from1/3,which is the typical exponent
expected for the crumpled globule model25,44.

However, our previous results allows us to potentially determine
the effects of the presence of loops on the exponentH. In particular, if
we only select thepopulationwith two loops or fewer for thewild-type,
and the population without any loops for the auxin-treated variant, we

find different exponents, as shown in the second row of Table 3. By
excluding looped populations, the fitted exponents change notably,
becoming closer to 0.4 rather than 0.3. This suggests that an incorrect
interpretation of R(s) behavior in experimental data might result from
the influence of undetected loops in chromatin.

It’s important to note that an exponent of about 0.4 in non-
looped chromatin is consistent with the hypothesis that chromatin
conformations can be described as polymers at the coil-globule
phase transition30,31, which indeed leads to a wider range of possible
exponents.

Fig. 3 | Single-cell-based loop statistics and correlations for the wild-type and
auxin-treated HCT116 regions. a, bDistributions of end-to-end distances rijwhich
measure the separation between the two extremities i = ι0−η/(2μ0) and j = ι0 + η/
(2μ0) for looped (orange) and non-looped (blue) configurations across all loops
identified in the FISHdata. c,d Pearson correlation (seeMethods) between loops in
both WT and auxin-treated datasets. e Pairwise correlation for the presence of
loops plotted against the minimum distance between loop ends considering all

possible pairs of ends for both WT (green) and auxin-treated (purple), filled sym-
bols correspond to nested loop pairs where one loop is contained in the other. In
gray, as a reference, the result obtained by shuffling the presence/absence ele-
ments, loop by loop (see Methods). f, g For the two sets of loops, a graphical
representation is given, with Rad21 main ChIP-seq peaks represented by green
diamonds3. White circular points represent the 30 kb probes. Gray points corre-
spond to loop anchors.
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Discussion
Despite their high accuracy in determining the three-dimensional
structure of chromosomes, multiplexed FISH experiments can only
visualize the center ofmass of probe segments. Gauging the proximity
of loci contained within these segments is therefore challenging. As
our study on synthetic data clearly confirms, FISH-based distance
maps cannot detect the presence of all loops in experimental multi-
plexed super-resolution FISH data, due to this limited resolution. Yet,
FISH experimental data offers more comprehensive information than
distance maps by encompassing the complete 3D configuration,
information that has been overlooked until now.

Using all the information on the 3D configuration, the Λ-plot
approach introduced in this work provides a reliable and fast method
to detect loops in synthetic as well as experimental multiplexed FISH
data, irrelevant of size and position, and sensitive to small looped
populations.

Based on the analysis of the conformation’s low-frequencymodes
to characterize the presence of loops in a chain, the method takes
great advantage of the large-scale characteristics of polymers and is,
therefore, more robust than indeterminate small-scale properties.

The presence of loops is confirmed via a NN approach, which
further results in the opportunity to classify chromatin conforma-
tions as looped or non-looped in each cell by assessing the presence
of specific loops in each measurement. We have demonstrated the
feasibility, speed, and reliability of this process by mimicking both
the 3D chromatin arrangement and the limited resolution effect in
simulated configurations used to train the NN. A significant portion
of the success of this NN approach is attributed to the initial gui-
dance provided by the Λ-plot, which also provides a physically
interpretable and mathematically sound basis for the detection
pipeline. Thanks to the ease with which we can generate artificial
training data based on an fBm model, we can furthermore avoid
wasting valuable measurements.

The proposed detection pipeline was tuned to have a fairly high
sensitivity, as the main purpose is to provide a tool with which
potential loops can be detected. These potential loops may then be
studied further by examining additional information coming from
other biological signals. The higher sensitivity of the detectionpipeline
enabled the detection of several loops either in DNA seqFISH+ mouse
embryonic stem cells38 and human chromosome 21 HCT116 cells21. For
the former, our approach outperforms distance-based approaches on
loops already detected through Hi-C maps, and detects additional
loops that need further confirmation.

The latter includes two datasets, one wild-type and one cohesin-
depleted. We detected loops in both datasets with comparable
occurrence frequencies, in different locations. Although determining
the biological determinants at the origin of these loops is beyond the
scope of this work, we have been able to establish strong correlations
with Rad21, characteristic of the presence of cohesin, in the wild-type,
while more varied determinants, including enhancer-promoter con-
tacts, are suggested for the cohesin-depleted system.

Table 3 | Comparisonof scaling laws formixed configurations
compared to mainly non-looped sub-populations

Region (1) (2) (3)

All conformations 0.284 ± 0.014 0.314 ± 0.014 0.300 ±0.003

Low loop content 0.41 ± 0.03 0.436 ± 0.011 0.372 ± 0.004

Values of the exponent H obtained by fitting 〈R2(s)〉=A(s/30 kb)2H for the two large TADs in the
wild-type, region (1) and (2), and the entire region in the auxin-treated dataset (3) (see also main
text) while considering all the conformations (upper row) or only conformations with two loops
or less (for theWT, 171 samples) or without any loops (for the auxin-treated variant, 834 samples)
(lower row).

Fig. 4 | Typical example of output of neural network segregationof looped and
non-loopedpopulations.We focus on loopA4 (detected in 24%of thepopulation,
see Table 2). The first column shows the Λ-plot, distance map, and mean config-
uration (similar to the ShRec3D algorithm45, see Methods) for all data. The second

and third columns show Λ-plot, distance map, and mean configuration for mea-
surements that the NN recognized as containing or lacking loop A4, respectively.
The end-to-end distance (length of the red segment) in the mean configuration is
640nm, 547 nm, and 710 nm, respectively.
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Another intriguing question involves the potential existence of
clusters of adjacent loops, resulting in flower-like structures remi-
niscent of cis-regulatorymodule hubs5. The ability to examine loops
at the single-cell level now allows for a quantitative investigation of
correlations between different loops for the first time. In the data-
sets studied here, one candidate flower-like structure was studied.
The correlations point toward a more complex behavior than a
simple coexistence of two “petal" loops, this being potentially
related to the observation that these loops are not adjacent but
partially overlap in the center of the larger loop. Moreover, we
evidenced the frequent presence of correlation between loops that
are nested one in the other and sharing one end. This rather unex-
pected finding surely deserves to be further investigated on alter-
native datasets.

The method introduced here broadens data processing possibi-
lities and strengthens the foundation for advancing chromatin’s the-
oretical understanding through precise and comprehensive
experimental data analysis. We discovered that the corresponding
critical exponents of 1/3, frequently encountered in experimental data,
may result from averaging looped and non-looped configurations
within a dataset. This effect may have remained unnoticed due to the
need for a prior looped conformations segregation.

Multiple future research endeavors are possible with the devel-
oped method, and we highlight some topics that warrant further
exploration. The study of loop extrusion in interphase by cohesin has
been a hot topic since its (re)-discovery3. Notwithstanding, a surprising
amount of questions remain open. For example, the interaction of
cohesin with other cohesins, physical barriers and regulatory proteins
(WAPL and NIPBL) remains poorly understood, as does its modality of
translocation (symmetric or one-sided). In this context, the detection
of cohesin-CTCF loops and the ability to classify conformations with
respect to the presence of a specific loop at the single-cell level could
potentially contribute to elucidating certain issues. Similarly, the
identification of potential enhancer-promoter and promoter-
promoter loops at the single-cell level could forward the under-
standing of how regulatory elements interact to orchestrate gene
expression regulation.

In addition, our confidence in the versatility of the spectral-based
technique developed in this study encourages its application to
investigate a broader range of phenomena. For instance, the method
can be adapted for detecting plectonemes in supercoiled DNA or for
identifying density variations across the genome or in spatial
arrangements, such as alternating coils and globules, or alternating A
and B compartments. These structures are predominantly character-
ized by their large-scale behaviors, where low-mode spectral features
prove to be particularly suitable for in-depth investigation. Preliminary
investigations of data from ref. 22, which is on amuch larger scale than
the one considered here, seems to indicate indeed that the same
analysis can readily identify AB-compartments and their correspond-
ing boundaries. These findings are consistent with the conclusions
drawn in the original paper. Additionally, loopswere also detected and
warrant further investigation in future research.

Method
We confirm that our research complies with all relevant ethical
regulations.

Mean polymer configuration: ShRec3D-like approach
The ShRec3D algorithm45 is aimed to reconstruct spatial distances and
three-dimensional genome structures from observed contacts
between genomic loci. In the data from multiplexed super-resolution,
the single configurations are known. However, we follow a simplified
approach in the spirit of the ShRec3D algorithm in order to have a
representation of the average features of an entire dataset. To this aim,
we calculate individual distance maps for each configuration, then

average over all these maps. This average map will be invariant to
translations and rotations of each individual polymer. Moreover, the
averagedmap will still be a distancemap (i.e. be symmetric and satisfy
the triangle inequalities).

Maxima detection
The detection of maxima on the Λ-plots is automated as follows. First,
the peak_local_maxima function from the python library Scipy is
applied to identify all local maxima greater than a predetermined
threshold, that was fixed to threshold = 0.1, see Supplementary
Note 5. Due to the correlations between overlapping sub-chains, loop
maxima are expected to decay progressively. Consequently, loop-
related maxima appear as blobs rather than isolated maxima in the
Λ-plot. We therefore gauge the width of each detected maxima by
examining the Λ value of its nearest neighbors and only retain the
maxima based on the number of nearest neighbors that exceed a
certain threshold (see Supplementary Table 1 and Supplementary
Fig. 4). In particular, we required that atmost two nearest neighbors of
the maximum are lower than half the detection threshold, i.e.
nn_threshold = 0.05. More details are given in Supplemen-
tary Note 6.

NN specifics
The NN used in this work has five layers. The input layer takes the 3D-
coordinates of the N probes and reduces this to N nodes. Prior to
input, the polymer data is normalized so that its center of mass is in
the origin and the radius of gyration becomes one. The following
layers have thirty, five, and two nodes, respectively. Finally, the
output layer has one node. The network has the ReLU-activation
function on hidden layers, and a sigmoid-activation function on the
output layer, see for example ref. 46.Weuse the binary cross-entropy
as loss function.

Each time the position of a maximum (ι, η) of the Λ-plot is found,
the NN is trained to segregate random walks with and without an
internal loop for loop sizes lying uniformly in the range

η
μ0

± max 0:1
η
μ0

, 1
� �

, ð4Þ

whereμ0 is given in Equation (S11). This range is arbitrarily chosen as to
give enough variability in the training data so that the NN can more
easily generalize to unseen data. Training is done using a batch size of
20; 200 epochs; and with the loss on the validation data as overfitting
check (with callback to best parameters after loss of validation data
starts to increase).

We train our NN on looped random walks artificially generated
following the procedure detailed in the next section—with balanced
training data—with 25000 learning samples, 7500 validation samples,
and 5000 test samples for both the looped (Equation (S1)) and non-
looped random walk. The validation samples are used to monitor and
prevent overfitting, and the test samples give an estimate of the
intrinsic accuracy of the NN, following the procedure delineated in
Supplementary Note 9.

We want to remark that it is an enormous benefit that we can use
synthetic training data, as we do not need to waste any experimental
data on training the networks.

Reproduction of the limited spatial resolution
As discussed, the experimental resolution of 30 kb means that con-
secutive strands of DNA of 30 kb are lit up, and then, via Gaussian
fitting, the center of mass of each strand is determined with high
accuracy. However, there is no guarantee that this center of mass is
always part of the DNA strand, and,more importantly, even if twoDNA
loci come together to form a loop, the centers of mass of the larger
segments may be quite far apart. We reproduced this effect explicitly
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in Fig. 5, by simulating a polymer chain at the resolution of a Kuhn
length (of the order of 1 kb), then considering 30 kb long sub-chains.
The centers ofmass of consecutive sub-chains are then calculated. It is
clear from the figure that, while the anchor points of the loops in the
1 kb resolution walk are, as expected, close together, the corre-
sponding positions in the coarse-grained walk are quite far apart.
Hence, it is reasonable to think that naive techniques—such as looking
at the distance between two FISH markers—can miss these loops.
Remarkably, the log-spectral ratio Λ singles out the low-frequency
modes and thus take more advantage of the large-scale polymer
features.

Accordingly, theNNprocedure has to take these local errors into
account, and has to learn to look at the large-scale features. There-
fore, following the previous idea, we chose to generate (looped and
non-looped) randomwalkdata at a scale of 1 kb, coarse-grain themby
taking the center of mass of consecutive 30 kb segments, and then
train the NN on the resulting data. When tested on synthetic data, the
NN obtains remarkable accuracy in finding the underlying looped
configuration, indicating that it only takes into account the large-
scale features of being looped or not. This is discussed inmore detail
in Supplementary Note 9, where we also study the effect of this
center of mass sampling on the measured end-to-end distance
distributions.

Time complexity
Creating the Λ-plot requires studying all the sub-polymers at all pos-
sible positions, which can be quite time extensive at first glance.
Luckily, due to the application of the Fast Fourier Transform to com-
pute the Discrete Cosine Transform and by using the fast vectorizing
abilities of numerical software like NumPy, this is actually not a pro-
blem. Without performing a detailed analysis—since the timing results
were satisfactory—we can report that the creation of the two experi-
mental Λ-plots of Fig. 2a only took about 30 seconds, which is for
around 20,000 configurations of 83 3D-points each. This timing is for a
MacBook pro with apple M1 MAX chip and 32 GB RAM. The training
and application of each NN to each separate loop takes about 25 min-
utes in total (training one after the other).

Pearson correlation and randomized datasets
The Pearson correlation used in Fig. 3c, d is classically defined as the
covariance of the two variables divided by the product of their stan-
dard deviations:

ρXY =
E½XY � �E½X �E½Y �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½X2� � ðE½X �Þ2
� �

E½Y 2� � ðE½Y �Þ2
� �r ð5Þ

In Fig. 3e, the Pearson correlation is calculated using Equation (5),
whereX and Y are the binary vectors of lengthN indicating the absence
(0) or presence (1) of two different loops across the N configurations.
To get a statistical estimate of the fluctuations, X and Y are then
shuffled to randomize the loop presence, while keeping its overall
presence probability unchanged. The same procedure is repeated,
separately, for the WT and auxin-treated datasets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The main data used is publicly available at https://github.com/
BogdanBintu/ChromatinImaging/tree/master and has been collected
in the context of ref. 21. The data used for the benchmarking process is
publicly available at https://zenodo.org/records/3735329 and has been
collected in the context of ref. 38. Finally, additional. Source data are
provided with this paper.

Code availability
The code tomake the Λ-plots and apply the NNs is publicly available at
https://github.com/michael-liefsoens/Lambdaplot under the GNU
GPLv3 license.
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